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We study the spin-one Kitaev model on the honeycomb lattice in the presence of single-ion
anisotropies. We consider two types of single ion anisotropies: A Dj11 anisotropy which preserves
the symmetry between X, Y, and Z bonds but violates flux conservation and a Dioo anisotropy
that breaks the symmetry between X, Y, and Z bonds but preserves flux conservation. We use
series expansion methods, degenerate perturbation theory, and exact diagonalization to study these
systems. Large positive D111 anisotropy leads to a simple product ground state with conventional
magnon-like excitations, while large negative D111 leads to a broken symmetry and degenerate
ground states. For both signs there is a phase transition at a small | D111| &~ 0.12 separating the more
conventional phases from the Kitaev spin liquid phase. With large D1oo anisotropy, the ground state
is a simple product state, but the model lacks conventional dispersive excitations due to the large
number of conservation laws. Large negative Digop leads to decoupled one-dimensional systems and
many degenerate ground states. No evidence of a phase transition is seen in our numerical studies at
any finite D1gp. Convergence of the series expansion extrapolations all the way to Digo = 0 suggests
that the nontrivial Kitaev spin-liquid is a singular limit of this type of single-ion anisotropy going

to zero, which also restores symmetry between the X, Y, and Z bonds.

Introduction. Kitaev’s spin-half honeycomb lattice
model [1] provides a remarkable example of an exactly
soluble emergent behavior with a quantum spin liquid
ground state and Majorana fermion excitations [2-13].
The search for such quantum spin liquid phases in spin-
half materials remains a major focus of current research
[14-21]. Larger spin Kitaev models share some exotic
properties of the spin-half models, namely they have con-
served fluxes through each hexagon and no spin-spin cor-
relations beyond nearest neighbors [22-24]. Yet, they
are different in other key respects. As first proposed by
Baskaran, Sen and Shankar [22] integer spin systems are
unlikely to have Majorana fermions. The difference be-
tween integer and half integer spins is also highlighted
in the work of Minakawa et al. [25], who found that in-
troducing large anisotropy between X, Y, and Z bonds
leads to a very different type of ground state in inte-
ger spin systems with no long-range entanglement as
compared with half-integer spin systems where similar
anisotropy maps on to the well known Toric code model
[2]. Numerical studies have found further evidence of a
gap in the excitation spectra for integer spins and for
field induced spin-liquid phases [23, 24, 26-35] as well as
of large nearly degenerate subspaces giving rise to en-
tropy plateaus [23, 24, 36, 37]. In a very recent paper,
Chen et al. [38] have shown the existence of emergent
Z5 spin liquid phase in the spin-one system with exotic
deconfined anyonic excitations which are not Majorana
fermions.

In this work we study the spin-one Kitaev model with
two different types of single-ion anisotropies. The first
model is given by:

> (SF+SY 4 57)7, (1)

K2

while the second model is:

Ho = Hr + Dioo 2(55)27 (2)

where H}, is the pure spin-one Kitaev honeycomb model
Hamiltonian given by

M =K Y SISF+> SUSy+> S5t | (3
(i3) (i-k) [i.]

Here the X, Y, and Z couplings are on nearest neighbors
of the honeycomb lattice pointing along the three sets of
bond directions (see Fig. 1).

It is evident that D11 preserves the symmetry be-
tween X, Y, and Z bonds whereas Digg does not. For
each hexagon in the lattice (with sites labeled 1,...,6 as
shown in Fig. 1) one can define the plaquette flux oper-
ator

Wp — eiw(SerSngngJrSjJrSngSg). (4)

As shown in Ref. [22], the W), operators both commute
with the Kitaev couplings and each other and have eigen-
values equal to £1. Hence the model, in the absence of
single-ion anisotropy, has conserved Z, flux variables on
each hexagonal plaquette of the honeycomb lattice. One
can show that Digg term commutes with all the flux vari-
ables whereas D111 term does not.

For either type of anisotropy, large positive D leads
to a simple product ground state that can be studied
by non-degenerate perturbation theory and high order
series expansions. For large negative D, one can study
the system by degenerate perturbation theory. For Djq;
the phases at large positive or negative Dj1; are con-
ventional phases. We find in our numerical studies that
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FIG. 1: Geometry of the honeycomb lattice, with the x, y,
and z bond directions indicated. The N = 12 and N = 18 site
clusters studied using exact diagonalization are shown within
dashed lines (with periodic boundary conditions). For each
hexagonal plaquette (with sites labeled 1,...,6 as shown),
one can define the flux operator W, given by Eq. (4).

these phases are separated from D;1; = 0 by phase tran-
sitions. However, no such transition is evident with D1gq
anisotropy. In this case even though the large |Dio]
ground states lack long-range entanglement, the phases
remain exotic, either characterized by absence of con-
ventional dispersive excitations or by a large number of
ground states. Our study suggests that any long-range
entangled quantum spin-liquid ground state depends cru-
cially on the Do anisotropy going to zero.

A nonzero D1gg cannot arise in a system with full sym-
metry of the honeycomb lattice where X, Y, and Z bonds
are equivalent but D17 must always be present. Our
study implies that experimental realizations of a Kitaev
spin-liquid phase are possible in an undistorted honey-
comb structure with Di1; single ion anisotropy, up to
some moderate value of either sign. However, lattice dis-
tortions which allow D1 terms to arise may immediately
destabilize any phase with long range entanglement.

Model and Perturbation Theories. It is convenient to
work in the |x), |y), |z) basis introduced by Koga et al.
[23], which can be expressed in terms of the S* basis as
follows:

(Ims = 1) = Jms = —1)) ()

1
|z) = _'ﬁ
ly) = 7 (Ims = 1) + Jms = —1)) (6)
|2) = |ms =0). (7)

In this basis the spin operators are given by

SY|B) = icapy ) - (8)

The ground state at large positive D111 is given by
[4g) =TT 10), (9)
where the state |0) at a site is given by
0) = () + I} + 1)) (10)
=—(|z z)),
/3 Y

i.e. the eigenvector of the 3 x 3 matrix (S% + SY + §%)?2
with an eigenvalue of zero. To study this anisotropy we
construct two states orthogonal to |0). In particular, we
choose the states

1) = —=(l2) = [v)), (11)

1
V2
and,

_ L
V6

The single-ion anisotropies are diagonal in this basis as
are the flux variables.

For large positive Dq11, ground state properties can
be obtained by nondegenerate perturbation theory which
can be calculated by the linked-cluster method [39-41].
The linked-cluster method states that a ground state
property per site, P, can be expanded as a sum over
all linked clusters c as

P=>"L(c) x Wp(c), (13)

2) (lz) + ly) = 212)). (12)

where L(c), called the lattice constant, is the number of
ways the linked-cluster ¢ can be embedded in the lattice
per lattice site. The quantity Wp(c), called the weight
of the cluster associated with the property P, is defined
entirely by the property on the cluster and on its sub-
clusters s that can be embedded in c. It is defined as

We(c) = NP(c) = > _ Wa(s), (14)

sCc

where P(c) is the property calculated for the finite clus-
ter and N, is number of sites in the cluster. One can
show that the weight of a cluster with N, bonds only
contributes in order N, or higher. Thus including all
clusters with up to N bonds in Eq. 13 guarantees that
one has the correct expansion in the thermodynamic limit
to order N.

For the expansion around the large positive D117 we
work in the basis of direct product of states |0), |1) and
|2). In this basis the D111 term is diagonal. Tt is useful to
predetermine the 9 x 9 perturbation matrix for the Kitaev
couplings in the product basis of two sites. Once the
matrix elements of the unperturbed Hamiltonian and the
perturbation are known, perturbation theory for a finite
system is reduced to simple recursion relations [39-41],
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FIG. 2: Phase diagram of the spin-one Kitaev model in the presence of D111 (top panel) and Digo (bottom panel) single-ion
anisotropy. The ground states observed in the limits of both large positive and large negative anisotropy, and the intermediate

Kitaev spin liquid (KSL) region are indicated.

which can be carried out through automated computer
programs.
We obtain the ground state energy as

Ey/Di11 =Y an(K/Din)"™. (15)

The occupation probability of the single-spin excited
states |1) or |2) at a site in the ground state is given
by

NnNig = an(K/Dlll)n (16)

The coefficients a,, and b, up to n = 10 are given in
the Supplemental Material [42]. Numerical results will
be presented in the next section when we compare with
exact diagonalization.

For K = 0 there are 2NN single particle excitations
corresponding to state |1) or |2) on a site. It is straight-
forward to construct the leading order in K tight-binding
hopping model for these excitations. The system clearly
has conventional single-particle excitations.

For large negative Dq1; the states |1) and |2) provide
degenerate on-site ground states. In this 2" dimensional
Hilbert space one can obtain the effective Hamiltonian
by degenerate perturbation theory. Remarkably, in this
reduced subspace, S*, SY, and S* become identical off-
diagonal operators and the system maps on to an effective
spin-half Ising model, with commuting terms, that has
two degenerate ground states with long-range order.

For the case of large Do the ground state is given by
lg) =[] I2)- (17)

One can study its properties by non-degenerate pertur-
bation theory using the linked-cluster method [39-41].
The ground state energy series is

Ey/Dioo = »_ ¢n(K/D1go)*". (18)

This model is invariant under a change of sign of the
Kitaev couplings and hence the properties depend only
on (K/DlOQ)Q.

The occupation probability of the single-spin excited
states |x) or |y) at a site in the ground state is given by

Nyy = Zdn(K/Dloo)Qn. (19)

The coefficients ¢, and d,, up to n = 12 are given in
the Supplemental Material [42]. Numerical results will
be presented in the next section when we compare with
exact diagonalization.

Note that despite the product ground state, this sys-
tem remains unconventional. Due to various conserva-
tion laws, single-particle states remain confined to single
bonds, an |z) excitation is confined to a single Y bond,
where as a |y) excitation is confined to a single X bond.
Only states in the zero-flux sector can be delocalized [43].
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FIG. 3: Exact diagonalization results for a N = 18 site cluster
with Djgo anisotropy, with |K| = 1. We show (a) the second
derivative of ground state energy (arbitrary units), (b) entan-
glement entropy, (c) fidelity susceptibility (arbitrary units),
and (d) ((S%)?) as a function of Digo. Note that ((S?)?) is
equivalent to nsy as defined in Eq. (19).

At large negative D1, we need to carry out a degener-
ate perturbation theory in the space of states |z) and |y)
on the different sites. In this case, it is easier to go back
to the S* basis. In the degenerate 2V dimensional Hilbert
space given by |S* = £1), the system at first breaks into
decoupled dimers along the Z bonds. Depending on the
sign of the Kitaev couplings, in first-order perturbation
theory, the lower energy state corresponds to parallel or
antiparallel spins on each dimer. This still leaves 27V/2
degenerate states. A higher order degenerate perturba-
tion theory in this subspace is needed. In the 4" order,
the system breaks into coupled chains of Z-bond dimers.
The Z-bond dimers in a row are coupled by a transverse
Ising exchange coupling between effective spin-half de-
grees of freedom on neighboring dimers. Thus, there are
two degenerate ground states for each such chain of Z-
bond dimers and the system has large but nonextensive
ground state degeneracy. In Fig. 2 we show a phase di-
agram illustrating the ground states observed for both
D111 and D1gp anisotropy.

To study the model near D = 0 it is essential to per-
form numerical studies.

Numerical Studies. We study the ground states of the
model with different values of the anisotropy using Lanc-
zos exact diagonalization of 12 and 18 site clusters for
both D111 and Digp anisotropy. The larger system size
study is enabled in the latter case by the conserved fluxes,
which reduce the connected Hilbert space size, and hence
the ground state is always found in the zero flux sec-
tor. For Dj;; anisotropy the fluxes are not conserved,
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FIG. 4: Exact diagonalization results for a N = 18 site cluster
with D111 anisotropy, for both ferromagnetic (FM) and anti-
ferromagnetic (AF) Kitaev couplings. We show (a) the second
derivative of ground state energy (arbitrary units), (b) entan-
glement entropy, (c) fidelity susceptibility (arbitrary units),
and (d) ((S® + SY 4+ S*)?) as a function of Di11. Note that
2((S* +8Y+5%)?) is equivalent to ni2 as defined in Eq. (16).

however, the translational symmetries of the 18-site clus-
ter (along with an inversion symmetry) give a reduced
Hilbert space dimension ~ 31—8, enabling Lanczos exact
diagonalization of this larger system size.

We show below results of ground state energy and its
second derivative, on-site occupation probabilities, en-
tanglement entropy when the system is divided into two
equal halves, and fidelity susceptibility defined as

_ 2[1 = [(Wy(@)[thg(x + do)) |]

dx?

XF . (20)

In Fig. 3 the results for various ground state properties
with the Djgo anisotropy from Lanczos diagonalization
of the 18-site cluster are shown. In Fig. 4 the results are
shown for the corresponding study of the 18-site cluster
with Di11 anisotropy.

It is evident from the figures that the Dj;; model
undergoes a phase transition as the D117 = 0 limit is
approached. For the 18-site cluster we find no signif-
icant difference in behavior for ferromagnetic and an-
tiferromagnetic Kitaev couplings. Peaks in the second
derivative of the energy and fidelity susceptibility occur
at D111 ~ +0.12, along with a region of maximum entan-
glement entropy between these values. The value of the
anisotropy at which the transition occurs is similar in the
two cases. The average plaquette flux (W) approaches 1
as the D111 = 0 limit is approached as expected, changing
rapidly in the transition region and falling to zero in the
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FIG. 5: Average value of the plaquette flux operator W, as a
function of (a) D111 anisotropy and (b) Digo anisotropy, for
both ferromagnetic (FM) and antiferromagnetic (AF) Kitaev
couplings. Exact diagonalization results are shown for a N =
12 site cluster.

limit of large negative or large positive D111 anisotropy,
as shown in Fig. 5(a).

In contrast, for the Djgg anisotropy the sharpest
changes occur at Digp = 0. The entanglement entropy,
fidelity susceptibility, and second derivative of ground
state energy are all sharply peaked very near Digg = 0.
In the finite system the peaks are not strictly at Dygg = 0,
but they are also system size dependent and consistent
with the singularity being right at D199 = 0. The transi-
tion at D1gg = 0 is further supported by comparison with
the series analysis, which is done in the thermodynamic
limit, presented in the next section. Since the ground
state is always in the zero flux sector, we have (W) =1
for all values of Do as shown in Fig. 5(b).

Comparison with Series Expansion and Discussion. A
direct comparison of the energy and state occupation n,
for positive Doy are shown in Fig. 6. For the Djgg
anisotropy the series are in powers of (K/Digg)?. One
can estimate the ground state energy in the large K/ D10
limit by using Padé extrapolation. Since the energy in
this limit must go as K, we first square the energy se-
ries. The resulting series are analyzed by [n/n — 1] Padé
approximants. This ensures the correct large K/D1gg
behavior. The series results for different Padé approx-
imants are shown. One can see that the range of con-
vergence is improving as more terms are added. How-
ever, the convergence slows down as Digg goes to zero.
The extrapolated values at K/Djg9 — oo from [n/n — 1]
Padé are then further extrapolated as a function of 1/n
in Fig 7. The linear fit to 1/n gives ground state energy
at Digop = 0 of E/K = —0.656, which is close to the
value E/K ~ —0.65 obtained from previous numerical
studies of finite-size clusters [23, 27]. The success of this
extrapolation is evidence that the transition to a long-
range entangled state happens very close to Dipg = 0,
likely right at Dqgp = 0. Also, the need to extrapolate
Padé results with 1/n suggests that Digo = 0 is a singu-
lar limit. Thus, for any nonzero Dig9p > 0, the ground
state is adiabatically connected to the product state at
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FIG. 6: (a) Ground state energy per site and (b) local occu-
pation of excited states as a function of Digo. Exact diago-
nalization results are shown for a N = 18 site cluster, along
with Padé approximants to each series expansion.
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FIG. 7: Asymptotic K/D1go — oo value of ground state en-
ergy from [n/n — 1] Padé approximant for the ground state
energy series is further extrapolated as a function of 1/n to
get an estimate for the Digo = 0 ground state energy. It is
found to be approximately E/K = —0.656.

large D1gp and hence lacks long-range entanglement.

For the D111 case also the series expansion converges
well at large Di11 values until the transition region
is reached beyond which the series expansion disagrees
sharply with the exact diagonalization results, as shown
in Fig. 8. No meaningful estimate of the properties in
the D111 — 0 limit can be obtained from the series. This
is consistent with the existence of a phase transition in
the model at finite Dq11.

We note that within perturbation theory the ferromag-
netic and antiferromagnetic Kitaev models are identical
in first few orders. The difference first arises in the or-
der (K/D111)". Similarly, the leading effective Hamilto-
nian at large negative D117 and the selection of order
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FIG. 8: Ground state energy per site as a function of D111
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netic Kitaev couplings. Results are shown comparing exact
diagonalization data for a N = 12 site cluster and a Padé
approximant of series expansion data.

does not depend on the sign of Kitaev exchange cou-
plings. Thus any difference between ferromagnetic and
antiferromagnetic Kitaev couplings is a higher-order pro-
cess and comparison with the exact diagonalization sug-
gests that it is numerically not very significant. We note
that the addition of other exchange couplings (such as
Heisenberg and Gamma couplings) and magnetic fields
to the Kitaev Hamiltonian causes sharp differences be-
tween ferromagnetic and antiferromagnetic Kitaev mod-
els in both the spin-half and spin-one cases [16, 26-30]
and these deserve further attention in the presence of
single-ion anisotropies.

Summary and Conclusions. In this paper we have
studied the spin-one Kitaev model with two types of
single-ion anisotropies using a variety of perturbative and
numerical methods. We find that the D;1; anisotropy,
which preserves the symmetry between X, Y, and Z
bonds but violates flux conservation, leads to conven-
tional phases and excitations at large anisotropy val-
ues. There is a phase transition at a modest value of
D111/K = 0.12 that separates these conventional phases
from the Kitaev spin liquid. In contrast, for large D1gq
anisotropy, even though the ground states are simple and
lack long-range entanglement the system remains exotic
at both large negative and positive Do values. For pos-
itive Djgo there is a non-degenerate ground state but
no conventional dispersive quasiparticle excitations. For
negative Dygp, the system decouples into chains of Z-
bond dimers that are coupled by an effective Ising cou-
pling along the chain. Thus there are two degenerate
ground states for each such chain. No signature of a
phase transition is seen in our study as a function of D1qg.
The fidelity, second derivative of free energy and entan-
glement entropy are all sharply peaked near Dipy = 0
suggesting that the Kitaev spin liquid emerges only upon
D1gp going to zero and restoration of symmetry between
X, Y, and Z bonds. We emphasize that the Kitaev spin-
liquid becomes immediately unstable in the presence of

D1po anisotropy.

Candidate materials for spin-one Kitaev spin liquids
and underlying exchange mechanisms have been recently
proposed [26]. Real spin-one materials are known to al-
ways have some single-ion anisotropies. A material with
the full symmetry of the honeycomb lattice will likely
have only Dp;; anisotropy. Our work shows that the
anisotropy value must be small compared to Kitaev cou-
plings to realize a Kitaev spin liquid ground state. How-
ever, distortions which can allow nonzero D1¢g anisotropy
may be particularly destabilizing to the long-range entan-
gled spin-liquid phase.

In future, it may be useful to study the nature of the
phase transitions for Dj1; anisotropy. Density matrix
renormalization group or tensor network studies on larger
system sizes may be helpful in this respect [38]. For a pos-
itive sign of D117 the two phases on either side of the tran-
sition have no broken symmetries, hence we speculate
that the transition may be purely topological in nature,
although the transition could be first order. It would also
be interesting to better elucidate the mechanism for loss
of long-range entanglement with Do anisotropy, which
should also throw further light on the nature of the spin-
liquid phase.
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