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We study the spin-one Kitaev model on the honeycomb lattice in the presence of single-ion
anisotropies. We consider two types of single ion anisotropies: A D111 anisotropy which preserves
the symmetry between X, Y , and Z bonds but violates flux conservation and a D100 anisotropy
that breaks the symmetry between X, Y , and Z bonds but preserves flux conservation. We use
series expansion methods, degenerate perturbation theory, and exact diagonalization to study these
systems. Large positive D111 anisotropy leads to a simple product ground state with conventional
magnon-like excitations, while large negative D111 leads to a broken symmetry and degenerate
ground states. For both signs there is a phase transition at a small |D111| ≈ 0.12 separating the more
conventional phases from the Kitaev spin liquid phase. With large D100 anisotropy, the ground state
is a simple product state, but the model lacks conventional dispersive excitations due to the large
number of conservation laws. Large negative D100 leads to decoupled one-dimensional systems and
many degenerate ground states. No evidence of a phase transition is seen in our numerical studies at
any finite D100. Convergence of the series expansion extrapolations all the way to D100 = 0 suggests
that the nontrivial Kitaev spin-liquid is a singular limit of this type of single-ion anisotropy going
to zero, which also restores symmetry between the X, Y , and Z bonds.

Introduction. Kitaev’s spin-half honeycomb lattice
model [1] provides a remarkable example of an exactly
soluble emergent behavior with a quantum spin liquid
ground state and Majorana fermion excitations [2–13].
The search for such quantum spin liquid phases in spin-
half materials remains a major focus of current research
[14–21]. Larger spin Kitaev models share some exotic
properties of the spin-half models, namely they have con-
served fluxes through each hexagon and no spin-spin cor-
relations beyond nearest neighbors [22–24]. Yet, they
are different in other key respects. As first proposed by
Baskaran, Sen and Shankar [22] integer spin systems are
unlikely to have Majorana fermions. The difference be-
tween integer and half integer spins is also highlighted
in the work of Minakawa et al. [25], who found that in-
troducing large anisotropy between X , Y , and Z bonds
leads to a very different type of ground state in inte-
ger spin systems with no long-range entanglement as
compared with half-integer spin systems where similar
anisotropy maps on to the well known Toric code model
[2]. Numerical studies have found further evidence of a
gap in the excitation spectra for integer spins and for
field induced spin-liquid phases [23, 24, 26–35] as well as
of large nearly degenerate subspaces giving rise to en-
tropy plateaus [23, 24, 36, 37]. In a very recent paper,
Chen et al. [38] have shown the existence of emergent
Z2 spin liquid phase in the spin-one system with exotic
deconfined anyonic excitations which are not Majorana
fermions.

In this work we study the spin-one Kitaev model with
two different types of single-ion anisotropies. The first
model is given by:

H1 = HK +
D111

3

∑

i

(Sx
i + Sy

i + Sz
i )

2, (1)

while the second model is:

H2 = HK +D100

∑

i

(Sz
i )

2, (2)

where Hk is the pure spin-one Kitaev honeycomb model
Hamiltonian given by

HK = K





∑

〈i,j〉

Sx
i S

x
j +

∑

(i,k)

Sy
i S

y
k +

∑

[i,l]

Sz
i S

z
l



 . (3)

Here the X , Y , and Z couplings are on nearest neighbors
of the honeycomb lattice pointing along the three sets of
bond directions (see Fig. 1).
It is evident that D111 preserves the symmetry be-

tween X , Y , and Z bonds whereas D100 does not. For
each hexagon in the lattice (with sites labeled 1, . . . , 6 as
shown in Fig. 1) one can define the plaquette flux oper-
ator

Wp = eiπ(S
z

1
+Sy

2
+Sx

3
+Sz

4
+Sy

5
+Sx

6
). (4)

As shown in Ref. [22], the Wp operators both commute
with the Kitaev couplings and each other and have eigen-
values equal to ±1. Hence the model, in the absence of
single-ion anisotropy, has conserved Z2 flux variables on
each hexagonal plaquette of the honeycomb lattice. One
can show that D100 term commutes with all the flux vari-
ables whereas D111 term does not.
For either type of anisotropy, large positive D leads

to a simple product ground state that can be studied
by non-degenerate perturbation theory and high order
series expansions. For large negative D, one can study
the system by degenerate perturbation theory. For D111

the phases at large positive or negative D111 are con-
ventional phases. We find in our numerical studies that
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FIG. 1: Geometry of the honeycomb lattice, with the x, y,
and z bond directions indicated. The N = 12 and N = 18 site
clusters studied using exact diagonalization are shown within
dashed lines (with periodic boundary conditions). For each
hexagonal plaquette (with sites labeled 1, . . . , 6 as shown),
one can define the flux operator Wp given by Eq. (4).

these phases are separated from D111 = 0 by phase tran-
sitions. However, no such transition is evident with D100

anisotropy. In this case even though the large |D100|
ground states lack long-range entanglement, the phases
remain exotic, either characterized by absence of con-
ventional dispersive excitations or by a large number of
ground states. Our study suggests that any long-range
entangled quantum spin-liquid ground state depends cru-
cially on the D100 anisotropy going to zero.
A nonzero D100 cannot arise in a system with full sym-

metry of the honeycomb lattice whereX , Y , and Z bonds
are equivalent but D111 must always be present. Our
study implies that experimental realizations of a Kitaev
spin-liquid phase are possible in an undistorted honey-
comb structure with D111 single ion anisotropy, up to
some moderate value of either sign. However, lattice dis-
tortions which allowD100 terms to arise may immediately
destabilize any phase with long range entanglement.
Model and Perturbation Theories. It is convenient to

work in the |x〉, |y〉, |z〉 basis introduced by Koga et al.

[23], which can be expressed in terms of the Sz basis as
follows:

|x〉 = − 1√
2
(|ms = 1〉 − |ms = −1〉) (5)

|y〉 = i√
2
(|ms = 1〉+ |ms = −1〉) (6)

|z〉 = |ms = 0〉 . (7)

In this basis the spin operators are given by

Sα |β〉 = iǫαβγ |γ〉 . (8)

The ground state at large positive D111 is given by

|ψg〉 =
∏

i

|0i〉 , (9)

where the state |0〉 at a site is given by

|0〉 = 1√
3
(|x〉+ |y〉+ |z〉), (10)

i.e. the eigenvector of the 3 × 3 matrix (Sx + Sy + Sz)2

with an eigenvalue of zero. To study this anisotropy we
construct two states orthogonal to |0〉. In particular, we
choose the states

|1〉 = 1√
2
(|x〉 − |y〉), (11)

and,

|2〉 = 1√
6
(|x〉 + |y〉 − 2 |z〉). (12)

The single-ion anisotropies are diagonal in this basis as
are the flux variables.
For large positive D111, ground state properties can

be obtained by nondegenerate perturbation theory which
can be calculated by the linked-cluster method [39–41].
The linked-cluster method states that a ground state
property per site, P , can be expanded as a sum over
all linked clusters c as

P =
∑

c

L(c)×WP (c), (13)

where L(c), called the lattice constant, is the number of
ways the linked-cluster c can be embedded in the lattice
per lattice site. The quantity WP (c), called the weight
of the cluster associated with the property P , is defined
entirely by the property on the cluster and on its sub-
clusters s that can be embedded in c. It is defined as

WP (c) = NcP (c)−
∑

s⊂c

WP (s), (14)

where P (c) is the property calculated for the finite clus-
ter and Nc is number of sites in the cluster. One can
show that the weight of a cluster with Nb bonds only
contributes in order Nb or higher. Thus including all
clusters with up to N bonds in Eq. 13 guarantees that
one has the correct expansion in the thermodynamic limit
to order N .
For the expansion around the large positive D111 we

work in the basis of direct product of states |0〉, |1〉 and
|2〉. In this basis the D111 term is diagonal. It is useful to
predetermine the 9×9 perturbation matrix for the Kitaev
couplings in the product basis of two sites. Once the
matrix elements of the unperturbed Hamiltonian and the
perturbation are known, perturbation theory for a finite
system is reduced to simple recursion relations [39–41],
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FIG. 2: Phase diagram of the spin-one Kitaev model in the presence of D111 (top panel) and D100 (bottom panel) single-ion
anisotropy. The ground states observed in the limits of both large positive and large negative anisotropy, and the intermediate
Kitaev spin liquid (KSL) region are indicated.

which can be carried out through automated computer
programs.
We obtain the ground state energy as

Eg/D111 =
∑

n

an(K/D111)
n. (15)

The occupation probability of the single-spin excited
states |1〉 or |2〉 at a site in the ground state is given
by

n12 =
∑

n

bn(K/D111)
n. (16)

The coefficients an and bn up to n = 10 are given in
the Supplemental Material [42]. Numerical results will
be presented in the next section when we compare with
exact diagonalization.
For K = 0 there are 2N single particle excitations

corresponding to state |1〉 or |2〉 on a site. It is straight-
forward to construct the leading order in K tight-binding
hopping model for these excitations. The system clearly
has conventional single-particle excitations.
For large negative D111 the states |1〉 and |2〉 provide

degenerate on-site ground states. In this 2N dimensional
Hilbert space one can obtain the effective Hamiltonian
by degenerate perturbation theory. Remarkably, in this
reduced subspace, Sx, Sy, and Sz become identical off-
diagonal operators and the systemmaps on to an effective
spin-half Ising model, with commuting terms, that has
two degenerate ground states with long-range order.

For the case of large D100 the ground state is given by

|ψg〉 =
∏

i

|zi〉 . (17)

One can study its properties by non-degenerate pertur-
bation theory using the linked-cluster method [39–41].
The ground state energy series is

Eg/D100 =
∑

n

cn(K/D100)
2n. (18)

This model is invariant under a change of sign of the
Kitaev couplings and hence the properties depend only
on (K/D100)

2.
The occupation probability of the single-spin excited

states |x〉 or |y〉 at a site in the ground state is given by

nxy =
∑

n

dn(K/D100)
2n. (19)

The coefficients cn and dn up to n = 12 are given in
the Supplemental Material [42]. Numerical results will
be presented in the next section when we compare with
exact diagonalization.
Note that despite the product ground state, this sys-

tem remains unconventional. Due to various conserva-
tion laws, single-particle states remain confined to single
bonds, an |x〉 excitation is confined to a single Y bond,
where as a |y〉 excitation is confined to a single X bond.
Only states in the zero-flux sector can be delocalized [43].
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FIG. 3: Exact diagonalization results for a N = 18 site cluster
with D100 anisotropy, with |K| = 1. We show (a) the second
derivative of ground state energy (arbitrary units), (b) entan-
glement entropy, (c) fidelity susceptibility (arbitrary units),
and (d) 〈(Sz)2〉 as a function of D100. Note that 〈(Sz)2〉 is
equivalent to nxy as defined in Eq. (19).

At large negativeD100, we need to carry out a degener-
ate perturbation theory in the space of states |x〉 and |y〉
on the different sites. In this case, it is easier to go back
to the Sz basis. In the degenerate 2N dimensional Hilbert
space given by |Sz = ±1〉, the system at first breaks into
decoupled dimers along the Z bonds. Depending on the
sign of the Kitaev couplings, in first-order perturbation
theory, the lower energy state corresponds to parallel or
antiparallel spins on each dimer. This still leaves 2N/2

degenerate states. A higher order degenerate perturba-
tion theory in this subspace is needed. In the 4th order,
the system breaks into coupled chains of Z-bond dimers.
The Z-bond dimers in a row are coupled by a transverse
Ising exchange coupling between effective spin-half de-
grees of freedom on neighboring dimers. Thus, there are
two degenerate ground states for each such chain of Z-
bond dimers and the system has large but nonextensive
ground state degeneracy. In Fig. 2 we show a phase di-
agram illustrating the ground states observed for both
D111 and D100 anisotropy.
To study the model near D = 0 it is essential to per-

form numerical studies.
Numerical Studies. We study the ground states of the

model with different values of the anisotropy using Lanc-
zos exact diagonalization of 12 and 18 site clusters for
both D111 and D100 anisotropy. The larger system size
study is enabled in the latter case by the conserved fluxes,
which reduce the connected Hilbert space size, and hence
the ground state is always found in the zero flux sec-
tor. For D111 anisotropy the fluxes are not conserved,
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FIG. 4: Exact diagonalization results for a N = 18 site cluster
with D111 anisotropy, for both ferromagnetic (FM) and anti-
ferromagnetic (AF) Kitaev couplings. We show (a) the second
derivative of ground state energy (arbitrary units), (b) entan-
glement entropy, (c) fidelity susceptibility (arbitrary units),
and (d) 〈(Sx + Sy + Sz)2〉 as a function of D111. Note that
1

3
〈(Sx+Sy+Sz)2〉 is equivalent to n12 as defined in Eq. (16).

however, the translational symmetries of the 18-site clus-
ter (along with an inversion symmetry) give a reduced

Hilbert space dimension ∼ 318

18 , enabling Lanczos exact
diagonalization of this larger system size.

We show below results of ground state energy and its
second derivative, on-site occupation probabilities, en-
tanglement entropy when the system is divided into two
equal halves, and fidelity susceptibility defined as

χF =
2 [1− | 〈ψg(x)|ψg(x+ dx)〉 |]

dx2
. (20)

In Fig. 3 the results for various ground state properties
with the D100 anisotropy from Lanczos diagonalization
of the 18-site cluster are shown. In Fig. 4 the results are
shown for the corresponding study of the 18-site cluster
with D111 anisotropy.

It is evident from the figures that the D111 model
undergoes a phase transition as the D111 = 0 limit is
approached. For the 18-site cluster we find no signif-
icant difference in behavior for ferromagnetic and an-
tiferromagnetic Kitaev couplings. Peaks in the second
derivative of the energy and fidelity susceptibility occur
at D111 ≈ ±0.12, along with a region of maximum entan-
glement entropy between these values. The value of the
anisotropy at which the transition occurs is similar in the
two cases. The average plaquette flux 〈Wp〉 approaches 1
as theD111 = 0 limit is approached as expected, changing
rapidly in the transition region and falling to zero in the
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FIG. 5: Average value of the plaquette flux operator Wp as a
function of (a) D111 anisotropy and (b) D100 anisotropy, for
both ferromagnetic (FM) and antiferromagnetic (AF) Kitaev
couplings. Exact diagonalization results are shown for a N =
12 site cluster.

limit of large negative or large positive D111 anisotropy,
as shown in Fig. 5(a).

In contrast, for the D100 anisotropy the sharpest
changes occur at D100 = 0. The entanglement entropy,
fidelity susceptibility, and second derivative of ground
state energy are all sharply peaked very near D100 = 0.
In the finite system the peaks are not strictly atD100 = 0,
but they are also system size dependent and consistent
with the singularity being right at D100 = 0. The transi-
tion at D100 = 0 is further supported by comparison with
the series analysis, which is done in the thermodynamic
limit, presented in the next section. Since the ground
state is always in the zero flux sector, we have 〈Wp〉 = 1
for all values of D100 as shown in Fig. 5(b).

Comparison with Series Expansion and Discussion. A
direct comparison of the energy and state occupation nxy

for positive D100 are shown in Fig. 6. For the D100

anisotropy the series are in powers of (K/D100)
2. One

can estimate the ground state energy in the largeK/D100

limit by using Padé extrapolation. Since the energy in
this limit must go as K, we first square the energy se-
ries. The resulting series are analyzed by [n/n− 1] Padé
approximants. This ensures the correct large K/D100

behavior. The series results for different Padé approx-
imants are shown. One can see that the range of con-
vergence is improving as more terms are added. How-
ever, the convergence slows down as D100 goes to zero.
The extrapolated values at K/D100 → ∞ from [n/n− 1]
Padé are then further extrapolated as a function of 1/n
in Fig 7. The linear fit to 1/n gives ground state energy
at D100 = 0 of E/K = −0.656, which is close to the
value E/K ∼ −0.65 obtained from previous numerical
studies of finite-size clusters [23, 27]. The success of this
extrapolation is evidence that the transition to a long-
range entangled state happens very close to D100 = 0,
likely right at D100 = 0. Also, the need to extrapolate
Padé results with 1/n suggests that D100 = 0 is a singu-
lar limit. Thus, for any nonzero D100 > 0, the ground
state is adiabatically connected to the product state at
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FIG. 6: (a) Ground state energy per site and (b) local occu-
pation of excited states as a function of D100. Exact diago-
nalization results are shown for a N = 18 site cluster, along
with Padé approximants to each series expansion.

0.0 0.1 0.2 0.3 0.4 0.5

1/n
−0.70

−0.65
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−0.55

−0.50
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n
−
1]

FIG. 7: Asymptotic K/D100 → ∞ value of ground state en-
ergy from [n/n − 1] Padé approximant for the ground state
energy series is further extrapolated as a function of 1/n to
get an estimate for the D100 = 0 ground state energy. It is
found to be approximately E/K = −0.656.

large D100 and hence lacks long-range entanglement.
For the D111 case also the series expansion converges

well at large D111 values until the transition region
is reached beyond which the series expansion disagrees
sharply with the exact diagonalization results, as shown
in Fig. 8. No meaningful estimate of the properties in
the D111 → 0 limit can be obtained from the series. This
is consistent with the existence of a phase transition in
the model at finite D111.
We note that within perturbation theory the ferromag-

netic and antiferromagnetic Kitaev models are identical
in first few orders. The difference first arises in the or-
der (K/D111)

7. Similarly, the leading effective Hamilto-
nian at large negative D111 and the selection of order
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FIG. 8: Ground state energy per site as a function of D111

anisotropy, for both (a) ferromagnetic and (b) antiferromag-
netic Kitaev couplings. Results are shown comparing exact
diagonalization data for a N = 12 site cluster and a Padé
approximant of series expansion data.

does not depend on the sign of Kitaev exchange cou-
plings. Thus any difference between ferromagnetic and
antiferromagnetic Kitaev couplings is a higher-order pro-
cess and comparison with the exact diagonalization sug-
gests that it is numerically not very significant. We note
that the addition of other exchange couplings (such as
Heisenberg and Gamma couplings) and magnetic fields
to the Kitaev Hamiltonian causes sharp differences be-
tween ferromagnetic and antiferromagnetic Kitaev mod-
els in both the spin-half and spin-one cases [16, 26–30]
and these deserve further attention in the presence of
single-ion anisotropies.

Summary and Conclusions. In this paper we have
studied the spin-one Kitaev model with two types of
single-ion anisotropies using a variety of perturbative and
numerical methods. We find that the D111 anisotropy,
which preserves the symmetry between X , Y , and Z
bonds but violates flux conservation, leads to conven-
tional phases and excitations at large anisotropy val-
ues. There is a phase transition at a modest value of
D111/K ≈ 0.12 that separates these conventional phases
from the Kitaev spin liquid. In contrast, for large D100

anisotropy, even though the ground states are simple and
lack long-range entanglement the system remains exotic
at both large negative and positive D100 values. For pos-
itive D100 there is a non-degenerate ground state but
no conventional dispersive quasiparticle excitations. For
negative D100, the system decouples into chains of Z-
bond dimers that are coupled by an effective Ising cou-
pling along the chain. Thus there are two degenerate
ground states for each such chain. No signature of a
phase transition is seen in our study as a function ofD100.
The fidelity, second derivative of free energy and entan-
glement entropy are all sharply peaked near D100 = 0
suggesting that the Kitaev spin liquid emerges only upon
D100 going to zero and restoration of symmetry between
X , Y , and Z bonds. We emphasize that the Kitaev spin-
liquid becomes immediately unstable in the presence of

D100 anisotropy.
Candidate materials for spin-one Kitaev spin liquids

and underlying exchange mechanisms have been recently
proposed [26]. Real spin-one materials are known to al-
ways have some single-ion anisotropies. A material with
the full symmetry of the honeycomb lattice will likely
have only D111 anisotropy. Our work shows that the
anisotropy value must be small compared to Kitaev cou-
plings to realize a Kitaev spin liquid ground state. How-
ever, distortions which can allow nonzeroD100 anisotropy
may be particularly destabilizing to the long-range entan-
gled spin-liquid phase.
In future, it may be useful to study the nature of the

phase transitions for D111 anisotropy. Density matrix
renormalization group or tensor network studies on larger
system sizes may be helpful in this respect [38]. For a pos-
itive sign ofD111 the two phases on either side of the tran-
sition have no broken symmetries, hence we speculate
that the transition may be purely topological in nature,
although the transition could be first order. It would also
be interesting to better elucidate the mechanism for loss
of long-range entanglement with D100 anisotropy, which
should also throw further light on the nature of the spin-
liquid phase.
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