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We discuss the thermodynamic and magnetic properties of a competing high-spin/low-spin
two-orbital two-electron model on a square-lattice possibly relevant to the nickelates such as
Ba2NiO2(AgSe)2 (BNOAS). We focus on parameter regimes where a high-spin (S = 1) and a
low-spin (S = 0) state are energetically close to each other and discuss various exchange processes
in such a system. The model we study is motivated by, but different from, the Kondo-necklace
model proposed for the system recently [Jin et al, Phys. Rev. Research 2, 033197 (2020)]. Although
there are similarities between the two models in terms of the ground-state phases and their symme-
tries, the detailed properties of the different phases and the nature of phase transitions are entirely
different and should be easy to distinguish from an experimental point of view.

I. INTRODUCTION

Following the discovery of high-temperature supercon-
ductivity in the cuprates, many new families of materials
have been synthesized with competing magnetic and su-
perconducting phases. In particular, several iron based
superconductors are known to have competing magnetic
and superconducting phases and, at stoichiometry, are
often modelled as multi-orbital spin-one systems [1].

The discovery of superconductivity in the nickelates
has brought renewed interest to these systems as well
[2]. Although much recent excitement comes from dop-
ing the Ndn+1NinO2n+2 family of materials where nickel
ions have a Ni1+ ionic state with d9 electron configura-
tion providing an analog of the cuprates, there are other
nickelate families with the more usual Ni2+ ionic state
and d8 electron configuration [3, 4]. Our work is focused
on competing high-spin and low-spin states in these lat-
ter systems.

Jin et al [5, 6] have recently studied the material
Ba2NiO2(AgSe)2 (BNOAS) by Density Functional The-
ory (DFT) and found a rather striking result. Ni atoms
have d8 electronic configuration, with competing spin-
zero and spin-one states, where the lowest energy state
has spin-zero. Depending on the value of the Hubbard
repulsion U , this lowest energy singlet state can be made
of two electrons occupying two different orbitals (dx2−y2

and dz2). A lower energy of this singlet compared with
the triplet amounts to an antiferromagnetic intra-atomic
exchange, which goes against the Hund’s rules. Jin et al
have proposed an effective Kondo-necklace model, where
the two electrons on an atom are exchange coupled by
an antiferromagnetic intra-atomic exchange. In addition,
one of the electrons (in the dx2−y2 orbital) has an ex-
change interaction with electrons on neighboring atoms
in the plane, whereas the electron in the other state (in
the d2z orbital) provides an analog of the local spin in the
Kondo models. To leading order, its only coupling is to
the other spin in the same atom. This leads to a Kondo-

necklace model with two spin-half operators ~S1i and ~S2i

at each site of the square-lattice and Hamiltonian:

HKN = J
∑
〈i,j〉

~S1i · ~S1j + JK
∑
i

~S1i · ~S2i, (1)

where the first sum runs over nearest-neighbor pairs. At
small J/JK the system is in a non-magnetic singlet phase,
where the two spins on each atom combine to form a sin-
glet. At large J/JK , the system is in the Neel phase with
antiferromagnetic order. The two phases are separated
by a quantum critical point in the universality class of
the 3-dimensional classical Heisenberg model [7].

Here we will focus on an alternative model for this in-
sulating system with d8 electron configuration and two
d-holes in two orbitals with competing high-spin and low-
spin states. In a two-orbital system, two electron (or two-
hole) configuration leads to one triplet and 3 singlets.
Two of the singlets correspond to the two electrons occu-
pying the same orbital, while a singlet and a triplet cor-
respond to electrons occupying different orbitals. We will
assume that the intra-atomic Hund’s coupling is the nor-
mal ferromagnetic one so that the triplet state is lower in
energy when the two electrons occupy different orbitals.
However, Hubbard repulsion U , crystal field splittings
and ligand interactions are such that one of the singlets
formed from holes occupying the same orbital (plus lig-
ands) is lower in energy than the triplet state. Since
intra-atomic Hund’s exchange is typically of order 1 eV,
we will assume that the other two singlet states are sig-
nificantly higher in energy and not relevant to the low
energy properties. A similar competing low-spin/high-
spin scenario has been discussed recently for Ni d8 ions
in the material NiO2 by Jiang et al [8].

Competing high-spin-low-spin states also arise in exci-
tonic magnetism studied by a number of authors using
a two-band Hubbard model [11], where an electronic ex-
citation leads to the formation of a bound triplet exci-
ton. The ordering properties of such excitons have been
investigated at weak [11] and strong [12, 13] couplings



2

mostly in the ground state but also at finite temperatures
by mapping on to classical Blume-Emergy-Griffiths type
spin-one Ising models [14]. We will discuss the relation-
ship of our work to these previous studies.

II. EXCHANGE PROCESSES AND THE MODEL
HAMILTONIAN

The overlap between orbitals on neighboring atoms
leads to inter-atomic exchange processes. A general two-
band Hubbard model for the nickelates was studied by
Hu and Wu [9], who used perturbation theory to argue
for a Kugel-Khomskii type spin-orbital model [15] with
many possible terms.

Here we take as our starting point for deriving the ef-
fective low energy Hamiltonian two key assumptions mo-
tivated by the work of Jin et al [5] and Jiang et al [8]:
(i) One spin-zero and one spin-one state forms the low
energy subspace of our system and all others states are
at significantly higher energy. Thus, all inter-atomic ex-
changes must be projected on to these low energy states
of each atom. (ii) Inter-atomic hopping is much larger for
spins in one of the orbitals (e.g. dx2−y2) than the other
(e.g. dz2). These considerations lead to the following
inter-atomic exchanges in order of decreasing magnitude:

1. Spin-one Heisenberg exchange J : The largest inter-
atomic exchange is a Heisenberg coupling J between
neighboring atoms when both are occupied by spin-one
states. For this exchange, overlap between dx2−y2 or-
bitals is sufficient. The difference from the Kondo neck-
lace model of Jin et al is that the projection to the low
energy subspace means that the Heisenberg coupling is
between spin-one states on neighboring atoms. It is not
a coupling for spin-half or just one of the two spins. That
is forbidden by the large intra-site Hund’s coupling. We
will discuss why this fundamentally changes the proper-
ties of the model.

2. Triplet hopping process K : When there is a spin-
zero on one site and a spin-one on a neighboring site,
the two sites can exchange their spin states. This is a
much weaker process than the Heisenberg exchange as it
requires overlap of both (e.g. dx2−y2 and dz2 ) orbitals
on neighboring atoms and thus may require either a lat-
tice distortion or a higher-order process. In our model
we will ignore this term in the numerical study. Qualita-
tively, it is important in the non-magnetic phase where
even a small value is relevant to the dispersion of spin
excitations.

3. Triplet-pair creation/destruction process W : A pair
of triplets with total spin-zero can turn into a pair of
spin-zero states on neighboring sites and vice versa. This
process will require cross overlap between neighboring
dx2−y2 and dz2 orbitals. We will assume this process is
the weakest and will not discuss it any further.

Thus, our low energy states on an atom are charac-

terized by ni = 0 or 1, with ni = 0 corresponding to
spin-zero and ni = 1 to the spin-one state. In addition,
when ni = 1, there are three spin states corresponding
to Szi = 0,±1. Thus, there are 4-states per atom. The
effective Hamiltonian can be expressed in terms of ni and
the quantum spin-one operators ~Si as:

Hn = ∆
∑
i

ni + J
∑
〈i,j〉

ninj ~Si · ~Sj , . (2)

We will assume that the parameter ∆ is greater than zero
so that the lowest energy state on each atom has spin-
zero. This Hamiltonian can also be expressed, apart from
an additive constant, in terms of two spin-half spins on
each atom as in the Kondo necklace model with a Kondo
coupling as:

HK = JK
∑
i

~S1i ·~S2i+J
∑
〈i,j〉

(~S1i+~S2i)·(~S1j+~S2j), . (3)

with the Kondo coupling JK = ∆, which means that
for an isolated atom the energy of the triplet state is
higher than that of the singlet by an amount JK = ∆.
The key difference between the model proposed in the
present paper with respect to the Kondo-necklace model
arises from the inter-atomic exchange term. It is easy to
verify that for the Hamiltonian in Eq. 3, the total spin
on each site is a good quantum number. In other words,
the commutator of the Hamiltonian with the total spin
on a site vanishes.

[HK , (~S1i + ~S2i)
2] = 0. (4)

This fundamentally changes the physical behavior. A
comparison of key properties are presented in Table 1
and discussed in the next section.

III. GROUND STATE PHASES OF THE MODEL

Ground state phases and properties of the Kondo-
necklace model have been studied previously [7]. Cer-
tain aspects of the ground state phase diagram of the
present model can be obtained using results from the
literature [16–18]. Like the Kondo-necklace model, this
model has two phases. For small J/∆ the model is in
a non-magnetic singlet phase, where each atom is occu-
pied by electrons in a spin-zero state. For large J/∆ the
model is in a spin-one Neel state with long-range antifer-
romagnetic order. However, there are key differences in
the properties of the two phases and the phase-transition
between the two models as outlined in Table 1.

Neel phase: The Neel phase is characterized by long-
range antiferromagnetic order and magnon excitations.
The key difference between the models lies in the behav-
ior of the uniform susceptibility. In the present model,
deep in the Neel phase, the susceptibility has the temper-
ature dependence of an antiferromagnet, that goes down
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below a temperature of order J , when short-range anti-
ferromagnetism develops. At low temperatures, as the
spins are locked antiferromagnetically, they have only a
weak transverse susceptibility [16–18]. In contrast, in
the Kondo-necklace model, as one gets away from the
critical point, the low temperature uniform susceptibil-
ity becomes large. This is because the local spins become
nearly free and thus develop almost Curie-like suscepti-
bility [7].

Non-magnetic singlet phase: In the Kondo necklace
model, the singlet phase has a dispersive triplet exci-
tation, where the dispersion band-width is set by the
inter-atomic exchange energy J . As the phase transi-
tion is approached, the excitation gap will go to zero at
the antiferromagnetic wave-vector and at k = 0, with
neutron-scattering spectral weight strongly concentrated
near the anti-ferromagnetic wave-vector. In contrast, for
the present model, the triplet will be static and com-
pletely localized in the absence of the triplet-hopping
process discussed earlier. It is the weaker triplet hop-
ping process K that will lead to a dispersion for the ex-
citations. Thus, one would expect the dispersion to be
relatively weak and being unrelated to the exchange J it
should have a minimum at k = 0. In addition, there will
be a clustering of the spinful states as when the spin-one
states are clustered together their energy will be lowered
than when they are separated.

Ground state Phase Transition : In the Kondo neck-
lace model there is a quantum critical point separating
the non-magnetic phase from the antiferromagnet. In
contrast, in the present model, there will be a first order
phase transition. Well before the gap to spin-one exci-
tations closes, the exchange energy will lower the energy
of the Neel state below that of singlets. Thus the system
will undergo a phase separation and a first order ground-
state phase-transition between the two phases. Since the
ground state energy of the spin-one model is known ac-
curately [16] to be approximately −2.327J per site, the
phase transition will happen at ∆ = 2.327J .

Finite temperature phase transition : In the present
model there will be a first order liquid-gas type phase
transition at finite temperatures ending at a critical
point. Even though the spin degrees of freedom cannot
order at finite temperatures, the Ising variables ni can
have a true phase transition. Since the transition will oc-
cur at temperatures well below the mean-field Neel tem-
perature of 8J/3, by that temperature short-range order
will be well developed. Hence, we can study the transi-
tion to a good approximation by replacing the Heisenberg
coupling in the Hamiltonian by its low temperature ex-
pectation value which will be only weakly temperature
dependent. Thus our model becomes:

H = ∆
∑
i

ni − J̃
∑
〈i,j〉

ninj , (5)

where J̃ is minus the expectation value of < ~Si · ~Sj >
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FIG. 1: Sketch of the phase diagram for the model. A line
of first order phase transitions, shown by dashed line, sepa-
rates the Renormalized Classical phase (RC) from the non-
magnetic spin-zero phase. The line of phase transitions ter-
minates at an Ising critical point.

on a nearest neighbor bond. It is weakly temperature
dependent at low temperatures [16]

J̃(T ) =
2.327

2
J − aT 3. (6)

The T 3 term comes from the reduction in energy due to
the magnons.

By the standard mapping

ni = (si + 1)/2, (7)

this can be expressed in terms of the Ising variables si =
±1 as:

H = −JI
∑
〈i,j〉

sisj + h
∑
i

si + C, . (8)

where

JI =
1

4
J̃ ,

and,

h =
∆− 2J̃

2
.

For the Ising model in Eq. 8, the phase transition line is
given by h = 0, that is ∆ = 2J̃ . At T = 0, the transition
is at ∆ = 2.327J . The line of first order transitions will
terminate at a critical point, which can be obtained from
the solution of the 2D Ising model to be at T = 2JI

ln 1+
√
2
.

In the ∆/J and T/J plane the phase boundary gradually
bends down due to the temperature dependence of J̃ . If
we assume the approximate mapping to the Ising model
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all the way up to the critical point then the critical point
is roughly at ∆/J = 2.2, Tc/J = 0.6. The phase diagram
is sketched in Fig 1.

Phase behavior of this model has similarities with
those of Blume-Emergy-Griffiths biquadratic spin-one
Ising models [14] first introduced in context of He4/He3
mixtures. The ni = 0, 1 can represent He4 and He3
atoms respectively, whereas the spin variable is analo-
gous to the angular momentum carried by He3 atoms
only. This analogy has also been exploited in studies
of high-spin-low-spin competing states in excitonic mag-
nets. However, an Ising description is not appropriate for
a quasi-two dimensional Heisenberg spin system (spin-
one) with SU(2) symmetry due to the Mermin-Wagner
theorem [21], which implies that the spin-rotational sym-
metry cannot be spontaneously broken at any finite tem-
peratures.

IV. NUMERICAL STUDY OF FINITE
TEMPERATURE PROPERTIES
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FIG. 2: Antiferromagnetic structure factors as a function of
temperature for various values of ∆. Solid lines are 6th order
NLC, dotted lines are 5th order NLC, dashed lines are ED re-
sults for a 10-site cluster and dash-dotted lines are ED results
for an 8-site cluster.

In this section we study properties of our model more
quantitatively at high temperatures using Numerical
Linked Cluster Expansions (NLC) [19] and Exact Diag-
onalization (ED) of an 8 and a 10 site periodic cluster.
In NLC, extensive properties on a lattice L with N sites
are calculated, in the thermodynamic limit N → ∞, as
a sum over all linked clusters c as

P (L)/N =
∑
c

L(c)×W (c) (9)

Here L(c), called the lattice constant, is the number of
times the cluster arises in the lattice, per lattice site. The

quantity W (c) is the weight of the cluster. It is defined
recursively through the property on the finite cluster c as

W (c) = P (c)−
∑
s

W (s), (10)

where the sum runs over all proper sub-clusters s of the
cluster c.
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FIG. 3: Heat capacity as a function of temperature for differ-
ent values of ∆. Solid lines correspond to 6th order NLC and
dotted lines to 5th order NLC.
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FIG. 4: Entropy as a function of temperature for different
values of ∆. Solid lines correspond to 6th order NLC and
dotted lines to 5th order NLC.

We calculate the heat capacity per site C, the entropy
per site S, the uniform susceptibility per site χ and the
antiferromagnetic structure factor Sπ,π. Calculations are
done to 6th order, that is weights of all linked clusters
with 6 or less bonds are included in our study. NLC
converges at high temperatures but will break down when
correlation length exceeds a few lattice constants [19].
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The parameter regimes of the model can be divided
into 3 regions as seen from the behavior of the structure
factor in Fig. 2. The first region is −∞ < ∆ < 2. Rep-
resentative plots for the structure factors are shown for
∆ = 0 and ∆ = 1.5. As ∆ → −∞ this model reduces
to spin-one Heisenberg model which is known to have a
renormalized classical (RC) phase at low temperatures.
All the way up to ∆ = 2.0 the fundamental behavior
remains unchanged. The only change in properties is
that at high temperature the existence of spin-zero states
pushes down the onset of antiferromagnetic correlations.
Note that NLC and ED agree above T/J = 3. At lower
temperature the finite size data must saturate, they are
limited by total number of spins. NLC shows a rapid rise
in the structure factor. At the lowest temperatures NLC
must also break down as the correlation length increases
exponentially.

The second region is ∆ > 2.5. Representative plots for
the structure factors are shown for ∆ = 3.0 and 5.0. This
is a spin-zero phase in which NLC converges well at all
temperatures. The only finite size effects in ED are at
intermediate temperatures as seen at ∆ = 3.0 and they
are relatively small.

The third region is the transition region 2.0 < ∆ < 2.5.
This is a difficult region for numerical study at interme-
diate temperatures. As illustration, structure factor for
∆ = 2.3 is shown. One can see that ED and NLC di-
verge below a temperature of 1.5J . Finite sizes are too
small to capture the intermediate temperature behavior.
Although NLC also breaks down as we get close to the
transition, it does give us a glimpse of the transition be-
havior, which we now discuss.

In Fig. 3 we show the heat capacity as a function of
temperature for ∆ = 2.3, 2.4, 2.5 and 3.0. As ∆ is re-
duced from large values, the peak in the specific heat
moves to lower temperature and it increases in magni-
tude. However, at ∆ = 2.3 the specific heat curve devel-
ops a two-peak structure. The weak higher T peak signi-
fies a development of spin-zero dominance over spin-one
(gas phase in the liquid-gas analogy). This gives way,
through a first order transition, to the antiferromagnetic
phase (liquid or condensed phase in the liquid-gas anal-
ogy) at still lower temperature. The corresponding en-
tropy curves are shown in Fig. 4. At ∆ = 2.3, there
develops a shoulder in the entropy function followed by
a sharp downturn. NLC cannot capture the first order
transition well, we expect the plateau-like behavior to be
followed by a jump in entropy at the transition.

In Fig. 5, we show the uniform susceptibility as a func-
tion of temperature. For ∆ = 2.3, there is a sudden rise
in the susceptibility as the transition to high-spin states
occurs. This sudden rise continues even in the RC phase
as ∆ is lowered further. This result is potentially relevant
to experiments on BNOAS [22] as we discuss in the next
section. The NLC results are not valid on the ordered
side, the RC phase must have a finite susceptibility at

T = 0 [20].
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FIG. 5: Magnetic susceptibility as a function of temperature
for various values of ∆. Solid lines are 6th order NLC and
dotted lines are 5th order NLC.

The above properties clearly distinguish our model
from the Kondo-necklace, where a zero temperature
quantum critical point turns into a quantum-critical fan
at finite temperatures [7, 20].

V. SUMMARY AND DISCUSSIONS

In this paper we have studied the magnetic and
thermodynamic properties of a two-electron two-orbital
model system with competing high spin (S=1) and low
spin (S=0) states, possibly relevant to the nickelates with
a d8 electronic configuration. The model has some simi-
larities to the Kondo-necklace model proposed earlier by
Jin et al [5]. However, detailed experimental properties
are quite different and should be easy to distinguish ex-
perimentally. It is the purpose of the paper to bring out
these differences.

Being a two-dimensional model, there cannot be a Neel
phase at finite temperatures. Instead, there is a Renor-
malized Classical phase for the antiferromagnet, which
will develop Neel order at T = 0, or at finite temperatures
in presence of the slightest anisotropy or 3-dimensional
coupling. This phase is separated by a first order phase
transition from a non-magnetic spin-zero phase. The line
of first order transitions terminates at a liquid-gas critical
point.

The magnetic behavior in the vicinity of the transition
is quite unusual as the magnetic susceptibility can be
non-monotonic as a function of temperature and show a
sudden rise as one transitions from a low-spin to high-
spin phase. There can be hysteresis and meta-stability
of the low and high spin phases. At the phase transition
there should be a jump in entropy and a latent heat.
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Jiang et al [8] have discussed the importance of charge
transfer energy and the tuning (and crossing) of singlet-
triplet gap as a function of the charge transfer energy.
Thus, it is possible that different materials, with small
differences in ligand-environment, can be in different
parts of the phase diagram. Some maybe magnetic, some
non-magnetic and some may have parameters close to the
critical value.

The experimental results for the BNOAS material by
Matsumoto et al [22] look very intriguing. There is a
Neel transition at 130 K. Just above the Neel transition
at around 150 K the system has a sudden increase in
the magnetic susceptibility. The susceptibility increases
by almost a factor of 6 between 150 and 130 K. The
author’s speculate that this may be due to anisotropies
that cause canted ferromagnetism. It is also possible that
it is caused in part by the sudden emergence of high-spin
from low-spin as seen in the present model. If true, this
is direct evidence that the system is close to a degeneracy
between high and low-spin states.

This manuscript is focused on the parent insulating
materials. But, it is interesting to speculate about doping
and superconductivity. From this point of view also this
model may provide a sharp distinction to the proposal of
Jin et al. Upon doping, the Kondo-necklace model should
lead to the usual t-J model, whereas this model could lead
to a spin-one or type II t-J model recently proposed by
Zhang and Vishwanath [23], with new mechanisms for
superconductivity.
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Kondo Necklace Model High-spin-low-spin Model

Kondo Exchange JK
~S1i · ~S2i = JK

2
(~S1i + ~S2i)

2 + C Energy cost of spin one ∆ni

Intersite Exchange J ~S1i · ~S1j Intersite Exchange J(~S1i + ~S2i) · (~S1j + ~S2j)

Spin-rotational symmetry is SU(2) Spin-rotational Symmetry is SU(2)

Total spin on a site is not conserved Total spin on a site is conserved

Divergent Correlation Length at T = 0 Quantum Phase Transition is First Order

Quantum Critical Fan at Finite T First Order Phase Transition at finite T

Mermin-Wagner theorem applies Mermin Wagner theorem applies

In the ordered phase local spins are nearly free There are no local spins in the ordered phase

Curie-like susceptibility due to local spins Weak susceptibility of an ordered antiferromagnet

TABLE I: Comparison of the Kondo Necklace model proper-
ties with the High-spin-Low-spin model proposed in the pa-
per. Note that the key difference arises from the inter-site
exchange terms. As a result, in one case the total local spin
(~S1i+ ~S2i)

2 commutes with the Hamiltonian, in the other case
it does not.
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