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1. Introduction

We consider only simple graphs. Let G be a graph. Denote by V(G) and E(G) the vertex set and edge set of G, respec-
tively. An edge k-coloring of G is a mapping ¢ from E(G) to the set of integers [1,k]:={1,...,k}, called colors, such that
no two adjacent edges receive the same color with respect to ¢. The chromatic index of G, denoted x'(G), is defined to be
the smallest integer k so that G has an edge k-coloring. We denote by C¥(G) the set of all edge k-colorings of G. In 1960's,
Vizing [10] showed that every simple graph G has chromatic index either A(G) or A(G) + 1. If x'(G) = A(G), then G is
said to be of class 1; otherwise, it is said to be of class 2. Holyer [4] showed that it is NP-complete to determine whether
an arbitrary graph is of class 1. However, by Vizing’s Theorem and the fact that x’(G) > |E(G)|/L|V(G)|/2], a graph G must
be class 2 if |[E(G)| > A(G) ||V (G)|/2]. Such graphs are called overfull. Easily implied by its definition, overfull graphs are of
odd order.

We call G edge-chromatic critical or A-critical if x'(G) = A(G)+1 and x’(H) < A(G) + 1 for every proper subgraph H
of G. For example, odd cycles and the graph obtained from the Petersen graph by deleting one vertex are edge-chromatic
critical. We study sufficient conditions for a class 2 graph to be edge-chromatic critical. A vertex-splitting in G at a vertex v
gives a new graph G* obtained by replacing v with two new adjacent vertices v1 and v, and partitioning the neighborhood
N¢(v) into two nonempty subsets that, respectively, serve as the set of neighbors of v{ and v, from V(G) in G*. We say
G* is obtained from G by a vertex-splitting. Vertex-splitting was called the “Mobius-type gluing technique” in [1] and [7]. It
is easy to see that a regular class 1 graph has even order, and that every graph obtained from a regular graph of even order
by a vertex-splitting is overfull. Hilton and Zhao [3] in 1997 proposed the following conjecture.
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Conjecture 1 (Vertex-splitting conjecture). Let G be an n-vertex connected class 1 A-regular graph with A > 4. If G* is obtained from
G by a vertex-splitting, then G* is A-critical.

Since the graph G* above is overfull and so is class 2, the difficulty of the vertex-splitting conjecture lies in checking
that every edge of G* is critical, i.e., its deletion decreases the chromatic index of G*. Hilton and Zhao [3] in the same paper
verified the conjecture for graphs G with A(G) > %(\/7 — 1)~ 0.82n. Song [5] in 2002 showed that the conjecture is true
for a special class of graphs G with A(G) > % Except this result, to our best knowledge, we are not aware of any other

progress on the conjecture. In this paper, we verify the conjecture for graphs G with A(G) > 0.75n as follows.

Theorem 1. Let n and A be positive integers such that A > @. If G is obtained from an (n — 1)-vertex A-regular class 1 graph by
a vertex-splitting, then G is A-critical.

Note that the (n — 1)-vertex A-regular class 1 in Theorem 1 is connected by the lower bound on A. The remainder of
this paper is organized as follows. In Section 2, we introduce some definitions and preliminary results. In Section 3, we
prove Theorem 1. In the last Section, we prove one newly developed adjacency lemma.

2. Definitions and preliminary results

Let G be a graph. For e € E(G), G —e denotes the graph obtained from G by deleting the edge e. The symbol A is reserved
for A(G), the maximum degree of G throughout this paper. A k-vertex in G is a vertex of degree k in G, and a k-neighbor of
a vertex v is a neighbor of v that is a k-vertex in G. For u, v € V(G), we use distg(u, v) to denote the distance between u
and v, which is the length of a shortest path connecting u and v in G. For S C V (G), define distg(u, S) = miny¢s distg (u, v).

An edge e € E(G) is a critical edge of G if x'(G —e) < x'(G). If G is connected, class 2, and every edge of G is critical,
then clearly G is A-critical. Edge-chromatic critical graphs have more structure than general class 2 graphs. For example,
Vizing’s Adjacency Lemma (VAL) from 1965 [10] is a useful tool that reveals certain structure at a vertex by assuming the
criticality of an edge.

Lemma 2 (Vizing’s Adjacency Lemma (VAL), [10]). Let G be a class 2 graph with maximum degree A. If e = xy is a critical edge of G,
then x has at least A — dg(y) + 1 A-neighbors in V(G) \ {y}.

Let G be a graph and ¢ € C*(G —e) for some edge e € E(G) and some integer k > 0. For any v € V(G), the set of
colors present at v is ¢(v) = {@(f) : f is an edge incident to v}, and the set of colors missing at v is @(v) =[1,k] \ ¢(v).
For a vertex set X C V(G), define @(X) = J,cx @(v). We call X elementary with respect to ¢ or simply ¢-elementary if
@) Ne(v) =0 for every two distinct vertices u, v € X.

For two distinct colors «, B8 € [1,k], let H be the spanning subgraph of G with E(H) ={f € E(G) : ¢(f) € {«, B}}. Each
component of H is either an even cycle or a path, which is called an («, B)-chain of G with respect to ¢. If we interchange
the colors @ and 8 on an (&, B)-chain C of G, we get a new edge k-coloring of G, and we write

¢ =¢/C.

This operation is called a Kempe change.

Let x,y € V(G), and «, B € [1, k] be two distinct colors. If x and y are contained in the same («, 8)-chain of G with
respect to ¢, we say x and y are («, 8)-linked with respect to ¢. For a vertex-edge sequence S, we use V(S) to denote the
set of all vertices contained in the sequence.

2.1. Multifan and Kierstead path

The fan argument was introduced by Vizing [8,9] in his classical results on the upper bounds of chromatic indices for
simple graphs and multigraphs. We will use multifan, a generalized version of Vizing fan, given by Stiebitz et al. [6], in our
proof.

Let G be a graph, e=rs; € E(G) and ¢ € CkK(G — e) for some integer k > 0. A multifan centered at r with respect to e
and ¢ is a sequence Fy(r,s1:5p) = (r,181,51,152,82,...,7Sp,Sp) with p > 1 consisting of distinct vertices r,s1,52,...,Sp
and distinct edges rsy,7S2, ..., 1S, satisfying the following condition:

(F1) For every edge rs; with i € [2, p], there exists j e [1,i— 1] such that ¢(rs;) € ¢(s;).

We will simply denote a multifan F,(r,s1:sp) by F if ¢ and the vertices and edges in Fy(r, sq :sp) are clear. The following
result regarding a multifan can be found in [6, Theorem 2.1].
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Fig. 1. A Kierstead path with non-elementary vertex set in a 3-coloring of P* — xy.

Lemma 3. Let G be a class 2 graph and Fy (r, s1 : sp) be a multifan with respect to a critical edge e = rsq and a coloring ¢ € C2(G—oe).
Then the following statements hold.

(a) V(F) is p-elementary.
(b) Let o € @(r). Then foreveryi € [1, p]l and B € ¢(s;), r and s; are («, B)-linked with respect to .

Let G be a graph, e=vovq € E(G), and ¢ € C*(G — e) for some integer k > 0. A Kierstead path with respect to e and @ is
a sequence K = (vo, voV1,V1,V1V2,V2,...,Vp_1,Vp_1Vp, Vp) With p > 1 consisting of distinct vertices vg, v1,...,Vp and
distinct edges vovi, viVa, ..., Vp_1V, satisfying the following condition:

(K1) For every edge v;v;yq with i € [1, p — 1], there exists j € [0,i — 1] such that @(v;vi11) € @(vj).

Clearly a Kierstead path with at most 3 vertices is a multifan. We consider Kierstead paths with 4 vertices. The result
below was proved in Theorem 3.3 from [6].

Lemma 4. Let G be a class 2 graph, e = vov1 € E(G) be a critical edge, and ¢ € CA(G—oe). IfK = (vo, voV1, V1, V1V2, V2, V2V3, V3)
is a Kierstead path with respect to e and ¢, then the following statements hold.

(a) If min{d¢(v1),d¢c(v2)} < A, then V (K) is ¢-elementary.
(b) [@(v3) N (@(vo) Up(vi))| < 1.

3. Proof of Theorem 1

The proof of Theorem 1 is mainly an application of a new adjacency lemma, Lemma 5 below. The truth of the vertex-
splitting conjecture could be proved when A > % if the vertex set of every Kierstead path on four vertices is elementary.
Unfortunately, this is not true. A counterexample has been found using the graph P* obtained from the Petersen graph by
deleting one vertex, see Fig. 1: let ¢ € C3(P* — xy) be the given coloring. Then K = (x,xy, y, yz, z,zw, w) is a Kierstead
path as ¢(yz) =3 € ¢(x) and ¢(zw) =2 € (x), and V(K) is not g-elementary since 3 € @(x) N @(w).

We define a short-kite to be a 6-vertex graph consisting of a 4-cycle abuca and two additional edges ux and uy. The
new adjacency lemma below is an attempt to reveal some elementary properties of a Kierstead path on four vertices by

incorporating some additional structure to the path.

Lemma 5. Let G be a class 2 graph, H C G be a short-kite with V (H) = {a, b, c, u, x, y}, and let ¢ € C*(G — ab). Suppose

K =(a,ab,b,bu,u,ux,x) and K*=(b,ab,a,ac,c,cu,u,uy,y)
are two Kierstead paths with respect to ab and @. If p(x) U@ (y) € @(a) U(b), then max{d¢ (x),dc(y)} = A.
The proof of Lemma 5 will be given in the last section. Since all vertices not missing a given color « are covered by

the matching that consists of all edges colored by « in G, we have the Parity Lemma below, which has appeared in many
papers, for example, see [2, Lemma 2.1].

Lemma 6 (Parity Lemma). Let G be an n-vertex multigraph and ¢ € CX(G) for some integer k > A(G). Then for any color o € [1, A],
HveV(G):ae@(v)}=n (mod 2).
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Let G be a graph and u, v € V(G) be adjacent. We call (u, v) a full-deficiency pair of G if d(u) + d(v) = A(G) + 2. Note
that if we split a vertex x of a A-regular graph into u and v, then we obtain a full-deficiency pair (u, v). If G is A-critical,
then a full-deficiency pair (u, v) of G is called a saturating pair of G — uv in [1].

Lemma 7. If G is an n-vertex class 2 graph with a full-deficiency pair (a, b) such that ab is a critical edge of G, then G satisfies the
following properties.

(i) Forevery x € (N¢(a) UNg (b)) \ {a, b}, dc(x) = A;
(ii) Forevery x € V(G) \ {a, b}, if distg(x, {a, b}) =2, thendc(x) > A — 1. Ifalso dg(a) < A and dg(b) < A, thendg(x) = A;
(iii) For every x € V(G) \ {a, b}, if dg(x) = n — |Ng(a) U Ng(b)|, then dg(x) > A — 1. If also dg(a) < A and d¢(b) < A, then
dc(x) = A.

Proof. We let ¢ € C*(G —ab) and F = (b, ba, a) be a multifan with respect to ab and ¢. By Lemma 3(a),

lp(V(F)I=1@@]|+|@b)| = (A —(dc(@ — 1)+ (A —(dc(b) - 1)) = A. (1)

By Lemma 3, for every ¢’ € C2(G — ab), {a,b} is ¢’-elementary and for every i € ¢’(a) and j € @'(b), a and b are
(i, j)-linked with respect to ¢’. We will use this fact very often.

Since @(a) N@(b) =@ and p(a) Up(b) =[1, A], it follows that ¢(a) = @(b). Thus for any x € N¢(a) \ {b}, (a, ab, b, ax, x)
is a multifan with respect to ab and ¢ and so {a, b, x} is p-elementary by Lemma 3(a). It follows from (1) that d¢(x) = A.
Symmetrically, for each x € Ng(b) \ {a}, dg(x) = A. This proves (i).

For (ii), let x € V(G) \ {a, b} such that dist¢ (x, {a, b}) = 2. We assume that dist;(x,b) =2 and let u € (Ng(b))\ {a}) "N¢(x).
Then by (1), K = (a,ab, b, bu, u, ux, x) is a Kierstead path with respect to ab and ¢. By (1) and Lemma 4(b), it follows that
de(x) > A—1.1f dg(a) < A and dg(b) < A, then V(K) is ¢-elementary by Lemma 4(a). Since @(a) Ug@(b) =[1, A] by (1), it
follows that d¢ (x) = A.

For (iii), let x € V(G) \ {a, b} such that d¢(x) > n — |[Ng(a) U Ng(b)|. The degree condition on x implies that N¢(x) N
(Ng(a) U Ng (b)) # @, which implies that distg(x, {a, b}) < 2. But dist¢(x, {a, b}) # 0 since x ¢ {a, b} by hypothesis, and if
distg (x, {a,b}) =1 or 2 then the result follows from (i) or (ii) respectively. O

Corollary 8. Let G be an n-vertex class 2 graph with a full-deficiency pair (a, b) such that ab is a critical edge of G. If A > 3(”4—71), then
there exists at most one vertex x € V(G) \ {a, b} such thatdg(x) = A — 1.

Proof. Assume to the contrary that there exist distinct x, y € V(G) \ {a, b} such that d¢(x) =dg(y) = A — 1. By Lemma 7(i),
X,y ¢ (Ng(a) UNg(b)) \ {a, b}. Since a and b are adjacent in G and d¢(a) + dg(b) = A + 2, it follows that d¢ (x) + |Ng(a) U
Ne)|>A—-1+(GA+2)=3A+1>2®m—1)+1>n. Hence by Lemma 7(jii), we may assume that one of a and b,
w.lo.g.,, b, has degree A. Thus d¢(a) = 2. Let ¢ be the other neighbor of a in G. As ab is a critical edge of G and d¢(a) =2
and d¢(b) = A, Lemma 2(VAL) implies that dg(c) = A. Thus (a,c) is a full-deficiency pair of G as well. Similarly, we may
assume X, y ¢ Ng(c).

Since dg(b) =dg(c) = A and x, y ¢ N¢ (b)) UNg(c), we get [Ng(b) NN (c)| = 2A — (n—2) > 2% — (n—2) > 1. Similarly,
INc(X) N Ne(¥)| = 2(A —1) — (n —2) > § — 2. Since b,c ¢ (Ng(b) N N¢(c)) U (Ng(x) N Ng(y)), we get [Ng(b) N Ng(c) N
Ne(X) N"NeW)| > 5+ (5 —2)—(m—2)=0. Let u € Ng(b) N Ng(c) N Ng(x) N Ng(y), H be the short-kite with V(H) =
{a.b,c,u,x,y}, and ¢ € CA(G —ab). As {a, b} is p-elementary, [@(a) Ug(b)| = [@(a)| +|@(b)| = A and so @(a) Up(b) =[1, A].
Thus K = (a,ab, b, bu,u,ux,x) and K* = (b,ab,a,ac,c,cu,u,uy) are two Kierstead paths with respect to ab and ¢, and
Px)Up(y) C@(a)Ugp(b). However, dg(x) =dg(y) = A — 1, contradicting Lemma 5. O

Theorem 1. Let n and A be positive integers such that A > @. If G is obtained from an (n — 1)-vertex A-regular class 1 graph by
a vertex-splitting, then G is A-critical.

Proof. Since A > @, any A-regular graph of order (n — 1) is connected. Thus G is obtained from a connected graph by

vertex-splitting and so is also connected. Since G is overfull, it is class 2. Therefore, to show that G is A-critical, we only
need to show that every edge of G is critical. Suppose to the contrary that there exists xy € E(G) such that xy is not a
critical edge of G. Let G* =G — xy. Then x'(G*)=A + 1.

Let ab be the edge of G whose contraction gives an (n — 1)-vertex A-regular class 1 graph. Then (a, b) is a full-deficiency
pair in G such that ab is a critical edge, which implies ab # xy, and every vertex in V(G) \ {a, b} has degree A. Since any
A-coloring of G — ab gives a A-coloring of G* — ab, ab is also a critical edge of G*. If {a,b} N {x, y} =@, then (a,b) is a
full-deficiency pair in G* and dg+(x) = dg+(y) = A — 1, which contradicts Corollary 8. Thus {a, b} N {x, y} # @, say a = x.
Then we have d¢+(a) +dg+(b) = A + 1. However, Lemma 2(VAL) implies that d¢+(a) 4+ dg=(b) > A + 2, a contradiction. O

4
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4. Proof of Lemma 5

We start with some notation. Let G be a graph and ¢ € C¥(G —e) for some edge e € E(G) and some integer k > 0. For all
the concepts below, when we use them later on, if we skip ¢, we mean the concept is defined with respect to the current
edge coloring.

Let x,y € V(G), and «, B € [1,k] be three colors. Let P be an («, 8)-chain of G with respect to ¢ that contains both
x and y. If P is a path, denote by Pjx (o, 8, ¢) the subchain of P that has endvertices x and y. By swapping colors along
Py (e, B, @), we mean exchanging the two colors @ and B on the path Py y(c, 8, @).

Define Px(c, B, @) to be the («, B)-chain of G that contains x; it is a path or a cycle. If Py is a path with x as an
endvertex and u, v € Py and u lies between x and v on Py, then we say that P, meets u before v. Suppose the current color
of an edge uv of G is «, the notation uv: o — 8 means to recolor the edge uv using the color . If [@(x)| =1, we will also
use @(x) to denote the color that is missing at x.

Lemma 5. Let G be a class 2 graph, H C G be a short-kite with V(H) = {a, b, c, u, x, y}, and let ¢ € C*(G — ab). Suppose

K =(a,ab,b,bu,u,ux,x) and K*=(b,ab,a,ac,c,cu,u,uy,y)

are two Kierstead paths with respect to ab and ¢. If (x) U@ (y) € @(a) U ¢(b), then max{d¢ (x),dc(y)} = A.

Proof. Assume to the contrary that max{d¢(x),d¢(y)} < A — 1. Since ¥ # @(x) € @(a) U@(b), V(K) is not p-elementary. It
follows from Lemma 4(a) that dg(b) =d¢(u) = A, and from Lemma 4(b) that |@(x)| <1, so that dg(x) = A — 1.

Let @(b) = {1}. Then ¢(ac) = 1. Let ¢’ be the coloring obtained from ¢ by uncoloring ac and coloring ab with color 1,
and let K’ = (a, ac, c, cu, u, uy, y). Note that ¢'(a) = @(a) and @'(c) = @(c) U@(b). Since K* is a Kierstead path with respect
to ab and ¢, it follows that K’ is a Kierstead path with respect to ac and ¢’. Now the argument of the previous paragraph
applied to ¢" and K’ shows that dg(c) = A and dg(y) = A — 1.

Since (a,ab, b) is a multifan with respect to ab and ¢, a and b are (1, «)-linked for any « € ¢(a) by Lemma 3(b). We
will need the following observation. Let & be a color and v a vertex such that « € @(a), v ¢ {a, b}, and {1,a} N@(v) £ @.
Then a and b are (1, @)-linked through c, and so P, (1, «) does not pass through a, b, or c. Thus a (1, @)-swap at v gives a
coloring that satisfies all the properties of ¢; in particular, K and K* are still Kierstead paths.

We wish to choose ¢ so that ¢(uy) = @(b) =1. Let 9(y) =« and @(uy) = . Assume S # 1. Then B € @(a), since
K* is a Kierstead path and ¢(c) =@. If ¢ # 1 then « € ¢(a), since @(y) C ¢(a) U @(b); thus a (1,x)-swap at y makes
©(y) =¢(b) =1. So we may assume that ¢(y) =1 anyway. Now a (1, 8)-swap at y makes ¢(uy) = ¢(b) = 1. So we may
assume that ¢(uy) =1 anyway. We consider now two cases.

Case 1. o(x) =@ (y).

Let @(ux) =y and @(x) =@(y) =n. As ¢(uy) =1, we have ¢(b) =1 ¢ {y,n}. As K is a Kierstead path and @(x) <
@(@)U@(D), y,n e@(a). Denote by P} (1, y) the maximal subpath of the chain P, (1, y) that starts at u along uy and does
not include the edge ux.

Claim 1a. We may assume that P};(1, y) ends at x, or at some vertex z € V(G) \ {a, b, ¢, u, x, y}, or passing c ends at a.

Proof. Since (a,ab, b) is a multifan with respect to ab and ¢, we have P,(1,y) = Pp(1,y). If u ¢ Py(1, y), then the (1, y)-
chain containing u is a cycle or a path with endvertices contained in V(G) \ {a,b,c,u, x, y}. Thus P (1, y) ends at x or at
some z € V(G)\{a, b, c,u,x, y}. Hence we assume u € Py(1, y). As a consequence, P;(1,y) ends at either b or a. If Px(1,y)
ends at b, we color ab by 1, uncolor ac, and exchange the vertex labels b and c. This gives an edge A-coloring of G — ab
such that P} (1, y) ends at a. Thus, if u € P4(1, ), we may always assume that P} (1,y) ends ata. O

Let @ (bu) = 4. Again, § € ¢(a). Clearly, § # 1, y. Since a and b are (1, §)-linked with respect to ¢, Py(1,§) cannot end at
y, and so n#34. Thus 1, y,8 and n are pairwise distinct.

Claim 1b. It holds that ub € Py (7, §) and Py(n, §) meets u before b.

Proof. Let ¢* be obtained from ¢ by coloring ab by § and uncoloring bu. Note that *(b) =1,9*(u) =48 and ¢*(uy) = 1.
Thus F* = (u,ub,b,uy, y) is a multifan with respect to bu and ¢*. Thus u and y are (1, §)-linked by Lemma 3(b). By
uncoloring ab and coloring bu by §, we get back the original coloring ¢. Therefore, under the coloring ¢, u € Py(n, §) and
Py(n,8) meets u before b. O

We apply the following operations based on ¢ starting with the current coloring of H. We first do ux:y — n and let
@1 be the resulting coloring, see Fig. 2(a). Note that y € ¢;(u) and both ux and another edge incident with u are colored

5
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1 1
sn:8¢ s?’]:8¢
1 1

Fig. 2. Recoloring operations on H in Case 1.

by n under ¢1. As Py(n,8,¢) = Py(n,8, ¢1), by Claim 1b, we still have ub € Py(n, 8, ¢1) and Py (7,8, ¢1) meets u before
b. We then do a (8, n)-swap on Py (1,8, 1) and let the resulting coloring be ¢, see Fig. 2(b). Now, under ¢, both
ub and another edge incident with u are colored by §. Next we do ub:8§ — 1 and let the resulting coloring be ¢3, see
Fig. 2(c). Under ¢s3, both ub and uy are colored by 1. As 1,8, 1, y are pairwise distinct, and ub ¢ P;(1, y, ¢), we still have
P:(1,y,93)=Pi(1,y,@). Thus by Claim 1a, Pj(1, y, ¢3) ends at x, or at some vertex z€ V(G) \ {a, b, c, u,x, y}, or passing
c ends at a. Now we do a (1, y)-swap on P} (1, ¥, ¢3) and let the resulting coloring be ¢4, see Fig. 2(d). As y € @3(u) and
b ¢ P;(1,y,¢3), now under ¢y, all the edges incident with u are colored by distinct colors. Thus ¢4 is an edge A-coloring.
As § € ©4(a) N @4(b), coloring the edge ab by the color § gives an edge A-coloring of G, contradicting the assumption that
x'(G)=A+1.

Case 2. 9(x) #P(y).
Let

pbu)=a, eux)=8, @K =t, and @(y)=y.

As p(uy)=¢b) =1, 1¢{«a, 8,y}, and clearly, o # 8. Since a and b are (1, «)-linked, Py(1, ) cannot end at y, and so
y # o. We will prove B # y later, when we need it. Since K is a Kierstead path, o, 8 € @(a). Since @(y) < @(a) U @(b),
y € ¢(a). Thus «, B,y € ¢(a) and T € (a) U {1}.

Claim 2. We may assume that ¢(x) = v = 1. (See Fig. 3(a).)

Proof. Suppose 7 # 1; then 7 € ¢(a). Thus a and b are (1, t)-linked. If uy ¢ Px(1, 7), we simply do a (1, 7)-swap at x. So
assume uy € Px(1, t), which implies uy ¢ Py(1, 7).

We do five swaps in succession, none of which change the color of bu, ux, or uy. We first do a (1, t)-swap at b; now
@) =¢@(ac)=r, and a and b are (1, 7)-linked, (&, 7)-linked and (y, t)-linked through c. Next we do an (¢, T)-swap at
X, so that there is no edge of color « at x. Then we do two swaps at b, a (y, t)-swap at b followed by a (1, y)-swap;
now @(b) =@(ac) =@(uy) =1, and a and b are lined by a (1, @)-chain ac...yub which cannot pass though x. Finally, a
(1, @)-swap at x gives the desired coloring. O

Note that b is linked to a by a (1, 8)-chain that does not pass through u, since 1 € @(x). So we now do a (1, 8)-swap
at b, color ab by «, recolor bu by 8, and uncolor ux. See Fig. 3(b). Note that F* = (u, ux, x,uy, y) is now a multifan. The
following facts now hold:

(1) pbw) =B, puy) =1, o) =a, p(x) = {1, B}, p(¥) = y.
(2) u and x are (1, «)-linked and (c, B)-linked (clearly). Also u and y are (y, «)-linked by Lemma 3(b) applied to F*.
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Fig. 3. Colors on the edges of H in Case 2.

Since V (F*) is ¢-elementary by Lemma 3(a), we have 8 # y.

We will do four swaps at a in succession, through which (1) and (2) hold: for each step, the truth of (2) before the swap
implies that (1) still holds after the swap; but (1) = (2). The four swaps at q, are, in order, an (&, y), an («, 8)-swap, a
(1, @)-swap, and another (¢, y)-swap. See Fig. 3(c) for the resulting coloring after these four swaps. The effects of these
swaps on @(ab), ¢(ac) and two known elements of @(a) are as follows.

p@b) @) ep)

Before the first swap: o B 1.y
After the (o, y)-swap: Yy B 1,
After the (o, B)-swap: Yy o 1.8
After the (1, «)-swap: Y 1 o, B
After the (o, y)-swap: o 1 B,y

Now Py (c, B) = uba, which contradicts the assertion in (2) that u and x are (¢, 8)-linked. This contradiction completes
the proof of Lemma 5. O
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