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A(G) > 4, if the maximum degree of G is at most two, then
G is overfull, which in turn gives A(G) > n/2 + 1. We show
that for any critical class 2 graph G, if the minimum degree
of Ga is at most two and A(G) > n/2+1, then G is overfull.
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1. Introduction

We will mainly adopt the notation from the book [13]. Graphs in this paper are simple,
i.e., finite, undirected, without loops or multiple edges. Let G be a graph. A k-edge-
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coloring of G is a map ¢: E(G) — {1,2,...,k} that assigns to every edge e of G a color
p(e) € {1,2,...,k} such that no two adjacent edges receive the same color. Denote by
C* (@) the set of all k-edge-colorings of G. The chromatic index x'(G) is the least integer
k > 0 such that C¥(G) # . Denote by A(G) the maximum degree of G. In 1960’s,
Vizing [16] and, independently, Gupta [6] proved that A(G) < x'(G) < A(G) + 1. This
leads to a natural classification of graphs. Following Fiorini and Wilson [4], we say a
graph G is of class 1 if x'(G) = A(G) and of class 2 if x'(G) = A(G) + 1. Holyer [9]
showed that it is NP-complete to determine whether an arbitrary graph is of class 1.

A graph G is critical if X'(H) < x'(G) for every proper subgraph H of G. In in-
vestigating the classification problem, critical graphs are of particular interest. Critical
graphs of class 2 have rather more structures than arbitrary graphs of class 2, and it
follows from Vizing’s Theorem that every graph of class 2 contains a critical graph of
class 2 with the same maximum degree as a subgraph. In this paper, we call a critical
class 2 graph A-critical if A(G) = A.

Since every matching of G has at most ||V (G)|/2] edges, X' (G) > |E(G)|/||V(G)|/2].
A graph G is overfull if |E(G)|/||V(G)|/2] > A(G). Clearly, if G is overfull then x'(G) =
A(G) 4+ 1 by Vizing’s Theorem, and so G is of class 2. Applying Edmonds’ matching
polytope theorem, Seymour [12] showed that whether a graph G contains an overfull
subgraph of maximum degree A(G) can be determined in polynomial time. A number
of outstanding conjectures listed in Twenty Pretty Edge Coloring Conjectures in [13] lie
in deciding when a A-critical graph is overfull.

The core of a graph G, denoted by Ga, is the subgraph induced by all its maximum
degree vertices. Vizing [16] proved that if Ga has at most two vertices then G is class 1.
Fournier [5] generalized Vizing’s result by showing that if G is acyclic then G is class
1. Thus a necessary condition for a graph to be class 2 is to have a core that contains
cycles. A long-standing conjecture of Hilton and Zhao [7] claims that for a connected
graph G with A > 4, if the maximum degree of G is at most two, then G is overfull.
We [1], along with Guangming Jing, recently confirmed this conjecture, which in turn
implies A(G) > n/2+ 1, where n = |V(G)| is the order of G. In this paper, by imposing
a condition on the maximum degree of G, we relax the condition A(Ga) < 2, and show
a result analogous to the Hilton-Zhao Conjecture as follows.

Theorem 1.1. Let G be a A-critical graph of order n. If §(Ga) < 2 and A(G) > n/2+1,
then G is overfull.

By the proof of the Hilton-Zhao Conjecture [1], for A > 4, the connected class 2
graphs with maximum degree A and A(Ga) < 2 are A-critical with A(G) > n/2 + 1.
Thus, implicitly, Theorem 1.1 is much stronger than the Hilton-Zhao Conjecture, but
we don’t have a direct proof for that. A graph G is said to be just overfull if |E(G)| =
A(G)[3|V(G)]] + 1. We hope that the new edge coloring techniques we introduced in
our proof may shed some light on attacking the Just Overfull Conjecture — Conjecture
4.23 (page 72) in [13].
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Conjecture 1.2. Let G be a A-critical graph of order n. If A(G) > n/2, then G is just
overfull.

Chetwynd and Hilton in 1986 [2,3] made a much stronger conjecture, commonly re-
ferred to as the Ouerfull Conjecture that for a A-critical graph of order n, if A(G) > n/3
then G is overfull. Except some very special results [3,8,11], the Overfull Conjecture
seems untouchable with current edge coloring techniques.

Let G be a graph and H C G be a subgraph. For v € V(G), N(v) is the set of
neighbors of v in G and d(v) = |N(v)| is the degree of v in G. Let Ny (v) = N(v)NV (H)
and dg (v) = |[Ng(v)]. More generally, for a subset S C V(G), let Ng(S) = Upes Ny (v)
be the neighborhood of S in G that is contained in V(H). For two vertices u and v, we
write u ~ v if they are adjacent, and write u ~ v if otherwise. For a nonnegative integer
k, a k-vertez is a vertex of degree k. We denote by V;, and Ny (v) the set of all k-vertices,
repetitively, in V(G) and N(v). Let N[v] = N(v) U {v} and Ng[v] = Ni(v) U {v}. For
convenience, for any nonnegative integers p and ¢, let [p,q] ={i € Z : p <i < ¢}.

A vertex v of a graph G is called light if it is adjacent to at most two A(G)-vertices,
ie, dg,(v) < 2. Anedge e of G is critical if x'(G—e) < x'(G). Clearly, if G is A-critical
then every edge of G is critical. In a A-critical graph, for a light vertex, what can we say
about its neighbors? The following lemma reveals some of their properties.

Lemma 1.3 (Vizing’s Adjacency Lemma (VAL)). Let G be a class 2 graph with mazimum
degree A. If e = zy is a critical edge of G, then x is adjacent to at least A — d(y) + 1
A-vertices from V(G)\ {y}.

Let G be a A-critical graph and r be a light vertex of G. We claim d(s) > A — 1 for
every s € N(r). Otherwise, by VAL, r is adjacent to at least A —d(s) + 1 > 3 vertices
of degree A, giving a contradiction. Consequently, we have d(s) = A —1 or d(s) = A.
As A > 3 and r is light, we have N(r) = Na(r) U Na_1(r). We also see that r must
be adjacent to exactly two A-vertices if r is light. These facts will be frequently used
throughout this paper.

Theorem 1.1 is a consequence of the following three technical results.

Theorem 1.4. Let G be a class 2 graph with maximum degree A, r € VA be light, and
s € Na_1(r). If rs is a critical edge of G, then all vertices in N(s)\ N(r) are A-vertices.

Theorem 1.5. Let G be a class 2 graph with mazimum degree A, r € V(G) be a light
A-vertex and s € Na_1(r) such that rs is a critical edge. For every x € V(G) \ Nr], if
d(x) <A =3, then N(z) N N(s) C N(r)\ Na(r).

Theorem 1.6. Let G be a A-critical graph of order n. If A > n/2+ 1 and §(Ga) < 2,
then n is odd.
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Proof of Theorem 1.1. Let G be a A-critical graph of order n such that 6(Ga) < 2
and A > n/2 + 1. By Theorem 1.6, n is odd. Let r be a light A-vertex of G. Since
INA—1(r)] = A—2, we have 2| E(G)| < nA—(A—2). Thus to show 2| E(G)| > (n—1)A+2
(i.e., G is overfull), we only need to show that all vertices in V(G) \ Na_1(r) are A-
vertices.

Assume to the contrary that there exists * € V(G)\ Na—1(r) such that d(z) < A—1.
Since every vertex in N[r]\ Na_i1(r) is a A-vertex, we have z ¢ N]r|. Since n is odd,
A > n/2+1 implies A > (n + 1)/2 + 1. We first suppose that d(z) > A — 2, ie.,
|IN(x)] > (n—1)/2. Since |[Na_1(r)] = A =2 > (n—1)/2 and r ¢ N(z), we conclude
that N(z) N Na_1(r) # 0. Let s € N(z) N Na_1(r). Since G is A-critical, rs is a critical
edge of G. Applying Theorem 1.4, we get d(z) = A, a contradiction. Thus d(z) < A —3.
Since G is A-critical, = has a neighbor u with degree A. As A > (n+1)/2 4+ 1 and
INA—1(r)] = A — 2, we find a vertex s € N(u) N Na_1(r). Thus u € N(z) N N(s). Since
d(u) = A and d(z) <A —3,u ¢ N(r)\ Na(r). Again, rs is a critical edge of G as G is
A-critical. Applying the contrapositive statement of Theorem 1.5, we get d(z) > A — 2,
which gives a contradiction. O

Theorems 1.4 to 1.6 study some structural properties of vertices outside the neigh-
borhood of a light vertex. The study of structural properties of vertices beyond a given
neighborhood plays a key role in our proof, and we believe that the technique may be
useful on tackling other edge coloring problems involving overfull properties.

2. Preliminaries

This section is divided into three subsections. We first give some basic notation and
terminologies, then define a slightly modified and specific Vizing fan centering at a light
vertex, and finally we investigate some properties of a A-edge-coloring around a light
vertex.

2.1. Basic notation and terminologies

Let G be a graph with maximum degree A, and let e € E(G) and ¢ € C2(G — e).
When we apply some definitions later, we may drop the phrase “w.r.t. ¢” or surpass the
coloring symbol ¢ whenever the coloring ¢ is clearly understood.

For a vertex v € V(G), define the two color sets

o(v) ={o(f) : f#eisincident to v} and B(v)=[1,A]\ ¢(v).

We call p(v) the set of colors present at v and @(v) the set of colors missing at v. If
[#(v)] = 1, we will also use B(v) to denote the color missing at v.

For a vertex set X C V(G), define $(X) = [, cx P(v) to be the set of missing colors
of X. The set X is elementary w.r.t. ¢ or simply p-elementary if p(u) Np(v) = @ for
any two distinct vertices u,v € X.
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For a color «, the edge set E, = {f € E(G)|¢(f) = a} is called a color class. Clearly,
E, is a matching of G (possibly empty). For two distinct colors «, 8, the subgraph of G
induced by E, U Ej is a union of disjoint paths and even cycles, which are referred to as
(o, B)-chains of G w.r.t. ¢. These chains are also called Kempe-chain. For z,y € V(G),
if © and y are contained in the same (a, §)-chain with respect to ¢, we say « and y are
(a, B)-linked. Otherwise, they are («, 8)-unlinked.

For a vertex v, let Cy(a,,¢) denote the unique (a,f)-chain containing v. If
Cy(a, B, ) is a path, we just write it as P,(«, 8, ¢) and simply as P,(«, ) is ¢ is un-
derstood. The notation P,(«, 8, ¢) is commonly used when we know |g(v) N{a, S} = 1.
If we interchange the colors a and f on an (a, 8)-chain C of G, we briefly say that the
new coloring is obtained from ¢ by an («, 8)-swap on C, and we write it as ¢/C. This
operation is called a Kempe change. If C' = wwv is just an edge, the notation wv: o — 8
means to recolor the edge uv that is colored by a using the color 5.

Suppose that «,3,v are three colors such that « € P(x) and 8,7 € p(z). An
(o, B) — (B,7) swap at x consists of two operations: first swaps colors on P, (a, 83, ¢)
to get a new coloring ¢’, and then swaps colors on P, (3,7, ¢’). When 5 = a, an («, a)-
swap is just a vacuous recoloring operation.

For a given path P, a vertex u and an edge uv, we write w € P and uv € P foru € V(P)
and uv € E(P), respectively. Suppose x € P. For two vertices u,v € P, (a, 8, ¢), if u lies
between = and v, then we say that P, («a, 3, ) meets u before v.

2.2. Modified Vizing fans and Kierstead paths

The fan argument was introduced by Vizing [14,15] in his classic results on the upper
bounds of chromatic indices. We will use multifans, a generalized version of Vizing fans,
given by Stiebitz et al. [13], in our proof. To simplify the arguments, we will not include
maximum degree vertices in our fans except the center vertex.

Definition 2.1. Let G be a graph with maximum degree A. For an edge e = rs; € E(G)
and a coloring ¢ € C2(G — e), a multifan centered at r w.r.t. e and ¢ is a sequence
F,(r,s1: sp) = (r,r81,51,7S82,82,...,7Sp, Sp) With p > 1 consisting of distinct vertices
T,81,82,...,5, and edges rs1,7s2,...,rs, satisfying the following condition:

(F1) For every edge rs; with i € [2,p], there exists j € [1,7—1] such that ¢(rs;) € B(s;),
and none of s1,...,s, is a A-vertex.

We will simply denote a multifan F,(r,s1 : sp) by F if we do not need to emphasize
the center r, and the non-center starting and ending vertices. We also notice that if

Fy(r,s1 @ sp) is a multifan, then for any integer p* € [1,p], F,(r,s1 : sp+) is also a
multifan. The following result regarding a multifan can be found in [13, Theorem 2.1].
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Lemma 2.2. Let G be a class 2 graph, e = rs; be a critical edge and ¢ € CA(G —e). If
Fy(r,s1:8p) is a multifan w.r.t. e and ¢, then V(F) is @-elementary.

Suppose that e = rs; is a critical edge of a class 2 graph G and Fi,(r,s1 : sp) is a
multifan w.r.t. e and a coloring ¢ € C2(G — e). Given a color a € B(s;), we call a vertex
se with £ € [2,p] an a-inducing vertez if there exists a subsequence (sg,, Sy, - -, Se,)
terminated at sg, = sg such that ¢(rse, ) = o € B(s1) and for each i € [2,k], p(rse,) €
P(s¢,_,). We also call the above sequence an a-inducing sequence, and a color 8 € B(sy)
an a-inducing color or a color induced by a. For convention, « itself is also called an
a-inducing color. Since V(F') is elementary, every color in g(V (F)\{r}) is induced by a
color in B(s1).

As a consequence of Lemma 2.2, we have the following linkage properties of vertices
in a multifan.

Lemma 2.3. Let G be a class 2 graph, e = rs; be a critical edge and p € C2(G — e).
Then, for every multifan F,(r,s1 : sp), the following three statements hold.

(a) For any color v € @(r) and any color § € B(s;) with i € [1,p], vertices r and s; are
(v, 6)-linked w.r.t. .

(b) Fori,j € [1,p], if two colors § € B(s;) and X € B(s;) are induced by two different
colors in B(s1), then the corresponding vertices s; and s; are (6, \)-linked.

(¢) Fori,j € [1,p], suppose two colors § € B(s;) and X € B(s;) are induced by the same
color in @(s1). If s; and s; are not (0, \)-linked and j > i, then r € Py, (6, A, ¢).

The proof of Lemma 2.3(a) can be found in [13, Theorem 2.1], and the proof of
Lemma 2.3(b) and (c¢) can be found in [1, Lemma 3.2]. All the three proofs go by
contradiction and argue in the similar way. Suppose the desired linkage does not exist.
Then we will be able to find a Kempe-chain starting at a vertex of F', containing no
edges of F, and ending at a vertex outside of V(F). Swapping the two colors on the
Kempe-chain gives a new edge coloring ¢1. A subsequence of F' is still a multifan with
respect to 1 but its vertex set is not ¢i-elementary, which contradicts Lemma 2.2.

Let G be a class 2 graph, r € V(G) be a light vertex, rs; € E(G) be a critical edge and
¢ € CA(G —rs1). Let Fy(r,s1 : sp) be a multifan w.r.t. rs; and ¢. By VAL, except two
A-vertices, all other neighbors of r are (A — 1)-vertices. In particular, d(s;) = A — 1 for
all i € [1,p]. Hence, |@(s1)| = 2 and [p(s;)| = 1 for each 7 € [2,p]. Assume without loss
of generality ®(s1) = {2, A}. Then, all 2-inducing vertices form a 2-inducing sequence
and all A-inducing vertices form a A-inducing sequence. By relabeling if necessary, we
assume (Sg, ..., Sq) is a 2-inducing sequence and (Sq+1,- - -, Sp) is a A-inducing sequence
for some « € [1,p], where we define (sa, ..., S,) to be the empty sequence if o < 2. We
call a multifan typical at a light vertex r, denoted by Fi,(r,s1 : so @ sg), if 1 € B(r),
?(s1) = {2, A} and either |[V(F)| =2 or |V(F)| > 3 with the following two conditions.
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Sa Sa+1

Fig. 1. A typical multifan F,(r,s1 : so : sg) at a light vertex r, where @(r) = 1 and @(s1) = {2, A}.

(1) (s2,---,8q) is a 2-inducing sequence and (sq4+1,--..,53) is a A-inducing sequence of
F.

(2) For each i € [2,8], ¢(rs;) =i and §(s;) = ¢ + 1 except when i = a+ 1 € [3,5]. In
this case, @(rsqa+1) = A and B(sq41) = a + 2.

A typical multifan at a light vertex r is depicted in Fig. 1.

By relabeling vertices and colors if necessary, every multifan centered at a light vertex
r is corresponding to a typical multifan at r on the same vertex set. Thus in this paper,
we assume all multifans at r are typical.

We close this subsection with Kierstead paths, which were introduced by Kierstead [10]
in his work on edge colorings of multigraphs.

Definition 2.4. Let G be a graph, e = vyv; € E(G), and ¢ € C2(G —e). A Kierstead path
w.r.t. e and ¢ is a sequence K = (vg, vov1,v1, V1V2,V2, . .., VUp—1, Up—1Up, Up) With p > 1
consisting of distinct vertices vy, v1, ..., v, and edges vov1, V102, . . ., Vp—1Vp satisfying the
following condition:

(K1) For every edge v;—1v; with i € [2,p], there exists j € [0,7— 2] such that ¢(v;—1v;) €
?(v;)-

Clearly a Kierstead path with at most three vertices is a multifan. So we consider
Kierstead paths with four vertices and restrict on its simple graph version. The following
lemma was proved in Theorem 3.3 from [13].

Lemma 2.5. Let G be a class 2 graph, e = vovy € E(G) be a critical edge, and K =
(vo, vov1, V1, V1V, Vo, Uov3, v3) be a Kierstead path w.r.t. e and a coloring p € C*(G —e).
If min{dg(v1),dg(v2)} < A, then V(K) is @-elementary.
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Let G be a class 2 graph of maximum degree A, e be a critical edge and ¢ € C2(G —e).
Let T be a sequence of vertices and edges of G. We denote by V(T') and E(T) the set
of vertices and the set of edges that are contained in 7', respectively. For simplicity, we
write §(T") for p(V(T)). If V(T) is yp-elementary, then for a color 7 € B(T'), we denote
by @7 (1) the unique vertex in V(7)) at which 7 is missing. A coloring ¢’ € C*(G — e)
is called T'-stable w.r.t. o if §'(z) = p(z) for every vertex x € V(T') and ¢'(f) = »(f)
for every edge f € E(T). Clearly, ¢ is T-stable w.r.t. itself.

Let F = F,(r,s1: 84 : 85) be a typical multifan w.r.t. e = 7s; and ¢ € C2(G — rs1).
By the definition above, if ¢’ is F-stable, then F' is also a typical multifan w.r.t. e and
¢'. Let 7,8 € [1,A] be two colors and P be a (v,d)-path. If E(P)N E(F) = () and
neither endvertices of P is in V(F'), then Kempe change /P gives an F-stable coloring.
Applying Lemma 2.3, we have the following results on stable coloring, which will be used
heavily in our proofs.

Lemma 2.6. Let G be a class 2 graph and F = F,(r,s1 : so : 53) be a typical multifan
w.r.t. a light vertex r, critical edge rs1, and a coloring ¢ € C*(G —rsy). For any color
v €B(F) and x ¢ V(F), the following statements hold.

o the Kempe change p/P.(1,7,¢) gives an F-stable coloring provided g(x)N{1,~} # 0.

e if v is 2-inducing, then the Kempe change ¢/ Py (v, A, @) gives an F-stable coloring
provided v ¢ Py(v,A, ) and o(x) N {v, A} # 0; and

o if v is A-inducing, then the Kempe change ¢/ Py (2,7, ) gives an F-stable coloring
provided r ¢ Py(7,2,¢) and p(x) N {y,2} # 0.

2.3. T-sequence, rotation, and shifting

Throughout this subsection, we assume that G is a class 2 graph, r € V(G) is a light
vertex, e = rs; € E(G) is a critical edge of G and ¢ € C*(G — e). We also assume that
Na(r) = {ui,uz} and Na_1(r) = {s1,..., 54}, where ¢ = d(r) — 2. Furthermore, we
assume that F' = F,(r,s1 : sq : sg) is a typical multifan at r. Since |[@(s;)| = 1 for each
i € [2,q], for notation convenience, we also use @(s;) to denote the color that is missing
at s;.

We call F a mazimum multifan at r if |V (F)| is maximum over all colorings in C* (G —
e) and all multifans centered at r. Clearly, if F' is maximum, then colors «+1 and 8+ 1
are assigned to edges ru; and rug, respectively, i.e., a+1,8+1 ¢ {o(rsg41),...,0(rsq)}
(see Fig. 1).

Definition 2.7. For a color 7 ¢ B(F), a 7-sequence is a sequence of distinct vertices
(v1,v2,...,v) with v; € {sgq1,...,54} such that ¢(rv1) = 7, and the following three

conditions are satisfied.

(i) {v1,...,vi—1} is elementary and B(v;) ¢ B(F) for each i € [1,t — 1];
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Fig. 2. A rotation in the neighborhood of r.

(ii) @(rv;) = P(v;—1) for each i € [2,¢]; and

(iii) There are three possibilities for p(v;): (A) p(vy) = 7, (B) @(v¢) € B(F), or (C)
?(vy) = P(v;) for some i € [1,¢ — 1]. Accordingly, we name the T-sequence type A,
type B, and type C, respectively, where a type A sequence is also called a rotation.

An example of a rotation is given in Fig. 2, where 17; = ®(v;_1) for each i € [2,1].
Lemma 2.8. If F' is mazimum, then for any color T ¢ B(F), there is a unique T-sequence.

Proof. Since 7 ¢ ©(r), there is a vertex s € N(r) such that ¢(rs) = 7. Since F is
maximum, we have a+ 1,5+ 1 € {p(ru1), p(ruz)}, and so s ¢ {u1,uz2} =: Na(r). Since

o(rs;) € B(F) for all i € [2,5], s = vy for some vy € {sg41,...,5}, where we recall
qg=d(r)—2.
Starting with a singleton sequence (v1), let (v1,...,v:—1) be a longest sequence of

vertices in N(r) \ V(F) satisfying the following two conditions:

(i) {v1,...,ve—1} is elementary and B(v;) ¢ P(F) for each i € [1,¢ — 1]; and
(ii) p(rv;) = P(v;—1) for each i € [2,t — 1].

Let v; be a vertex in N(r) such that ¢(rvy) = @(vi—1). Since P(vi—1) ¢ B(F),
vy € {sg41,...,8¢}. If vy = vy, then (vq,...,v,-1) is a T-sequence of type A. Thus we
assume that v, # vy, ie., P(vi—1) # 7. Since P(vi—1) # P(v;) for all i € [1,¢ — 2],
ve & {va,...,v—1}. Hence vy # wv; for each i € [1,t — 1]. By the maximality of
(v1,...,v:—1), P(vt) can only have three possibilities, (A), (B) or (C), as listed in condi-
tion (iii) of Definition 2.7.

Moreover, since each [@(s;)| = 1 for all i € [3+1, ¢], the sequence above is unique. O

Lemma 2.9. If F is mazimum, then for any color 7 ¢ @(F), r € Py, (1,A) and r €
P, (2,7).
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Proof. We only show r € Py, (7,A) since the proof for the other case is symmetric.
Suppose to the contrary that r ¢ P, (7,A). Let p(rvi) = 7 for v1 € {sg41,...,54}
and (v1,...,v:) be the T-sequence by Lemma 2.8. Let ¢’ = ¢/C.(7,A). Notice that
under the coloring ¢’, ¢'(rv1) = A and ¢'(rsa+1) = 7, and the color on each edge
from E(F)\ {rsq+1} and the missing color on each vertex of F are the same as the
corresponding colors under . Hence, F' = (1,751, 81,...,7S0, Sa, TV, V1, . .., Vs, Vt) IS &
multifan w.r.t. e and ¢'.

We consider three cases according to the type of this 7-sequence: type A, type B,
or type C with respect to the coloring ¢. We note that if @' (v;) = 7, then, due to
@' (rsq+1) = 7, F' can be extended to a larger multifan:

*
F* = (r,781,81,- -+, 7SasSa, TV1, U1, - - -, TUL, Vg, TSad1, Satls - - -, TS3, S3)

which is also larger than F', giving a contradiction to the maximality of F'. We will use
F’" and F* to lead a contradiction in our proof.

Type A: In this case p(v;) = 7. If C.(1,A,p) # P, (1,A, ), then @' (v;) = 7, and so
F* is a multifan w.r.t. e and ¢’, giving a contradiction. Thus C,.(1, A, p) = P, (7, A, ¢),
which in turn gives @'(v;) = A. In this case, A € ¥ (s1) N ¥ (vy), and so F’ is not
elementary, giving a contradiction.

Type B: In this case B(v;), denoted by v, is in B(F). If v € B({r,s1,...,54}) and
~v # A, then F’ is not elementary, giving a contradiction. Thus, we have either v = A
or v € o({sa+1,---,58})-

Assume first that v # A. Let v = $(s;) for some j € [ + 1, f]. Since P.(1,7,¢) =
Py (1,7,¢) and 1,7 ¢ {7, A}, we still have P,(1,v,¢") = P.(1,7,9) = P, (1,7,¢").
Let ¢ = ¢'/P,,(1,7,¢"). Under ¢”, F' is also a multifan. However, color 1 € @"(r) N
©" (v4), giving a contradiction to V(F’) being elementary. Thus v = A. If C,.(7, A, ) =
P,, (1, A, ), then @' (v¢) = 7, which in turn shows that F* is a multifan w.r.t. e and ¢/,
a contradiction. Thus Cy(7, A, @) # P,,(1,A,¢). So ¢'(v;) = A, which in turn shows

that F’ is not elementary since A is also in @(s1), a contradiction.

Type C: Suppose @(v:) = P(v;—1) = 7; for some i € [2,t] and some 7; € [1,A] \ B(F).
Note that one of v;_1 and v; is (1, 7;)-unlinked with r. By doing a (1, 7;)-swap at a vertex
in {v;_1, v} that is (1, 7;)-unlinked with r, we convert this case to the Type B case. O

Note that under the condition of Lemma 2.9, if P is a (2,7)- or (7, A)-chain disjoint
from P, (2,7) or Ps, (7,A), then we also have r ¢ P, and so the Kempe change ¢/P
gives an F'-stable coloring.

Definition 2.10. Let h,¢ € [1,q]. The shifting from sp to s; is a recoloring operation
rs; » p(rs;) — ®(s;) for all i € [h,{], i.e., replacing the current color on the edge rs;
with the missing color at s; for all i € [h, ).
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We apply shiftings when the sequence (sp,...,s¢) forms a rotation or is a type B
T-sequence, where 7 = ¢(rsp,), such that B(sg) = 1. Since 1 € B(r), we obtain another A-
edge coloring in both cases. We do not know whether a shifting can be achieved through a
sequence of Kempe changes. So, in this paper, “Kempe changes” do not include “shifting”.
In the proof, we sometimes use the following weaker version of “stable” coloring.

Definition 2.11. A coloring ¢’ € C2(G —rs1) is V/(F —r)-stable (w.r.t. F and ¢) if V/(F)
is the vertex set of a multifan F,, at r w.r.t. rs; and ¢', @'(s1) = B(s1) = {2, A}, and
P (V(Fo )\ {r}) = (V(F) \ {r}). Moreover, a V(F — r)-stable coloring ¢’ is called
V(F)-stable if @' (r) = @(r).

Lemma 2.12. For any color v € B(F) and a vertex x € V(G) \ V(F), the following two
statements hold.

o if vy is 2-inducing, then the Kempe change ¢/ P,(y, A, p) gives a V(F)-stable coloring
provided @(x) N {~,A} # 0, and

o if vy is A-inducing, then the Kempe change ¢/ Py (2,7, p) gives a V(F)-stable coloring
provided @(x) N {~,2} # 0.

Proof. By symmetry, we only prove the first statement. If r ¢ P, (v, A, ), we are done
by Lemma 2.6. Assume 7 € P.(v, A, ). Since p(z) N {v, A} # 0, P.(7,A, ) is disjoint
from Ps, (v,A,p) = Pvgl(v)(%A,go). Let ' = ¢/Py(v, A, p). Note that p(rsa+1) = A.

Let s; = ¢, (7) for some i € [1,a]. We have ¢/(rsq+1) =7 and ¢'(rs;) = A. So,

!/
F' = (r,rs1,81,782, ..., T8i—1,8i—1,TSa+1, Sa+t1;- -1 58, TSis- -, Sa)

is a multifan w.r.t. rs; and ¢'. Clearly, @'(s1) = ®(s1) = {2,A} and &' (V(F')) =
P(V(F)). Hence, ¢’ is V(F)-stable. O

Let 7 € [1,A]\ ®(F) and (v1,v2,...,v:) be the T-sequence at r. If the T-sequence is
of type A, the shifting of this sequence yields a coloring in C2(G — €), which is F-stable.
We call such an operation an A-shifting. If the 7-sequence is of type B and satisfies
?(v;) = 1, the shifting of this sequence yields a coloring ¢’ € C*(G — e) with @'(r) = 7,
which is V(F — r)-stable. We call such an operation a B-shifting.

Let P be a (7, +*)-chain with endvertices = and y, where * represents any color from
[1,A]\ {7}. Suppose that rv; € E(P) and z,y ¢ {v1,...,v}. If either the A-shifting or
the B-shifting is eligible, we do it and obtain a new coloring ¢’. Notice that @ (v1) = 7.
So, either Py (7,%,¢") = P,,(1,%,¢") or P,(7,%,¢") = Py, (T, *,¢") but not both. Conse-
quently, x and y are (7, *)-unlinked w.r.t. coloring ¢’. We will use this “unlink” technique
in the following lemma. In the proofs, we may need to preserve some colors at a vertex,
which leads to the following definition.
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Definition 2.13. Given a set S of colors, a coloring ¢’ is called S-avoiding (w.r.t. ) if
every Kempe change applied in obtaining ¢’ from coloring ¢ does not involve any color
from S.

In the following lemma, whenever P.(7, A) or P.(2,7) is used, it implicitly implies
that one of the two colors from 7 and A or from 2 and 7 is missing at x.

Lemma 2.14. Suppose F is a mazimum multifan, N[r] # V(G) and B(F) # [1,A]. For
any vertex x € V(G) \ N[r] and any color T € [1,A]\ (F) with g(z) N {7, A} # 0, the
following statements hold.

(i) If T € @(x), then there is an F-stable coloring ¢' € C*(G—rsy) such that 1 € @' (x).

(i) If T € B(x), then there exists an F-stable and {A}-avoiding coloring ¢' such that
1 € @' (x) unless the T-sequence (v1,...,v) with respect to ¢ is of type B and
?(vy) = A.

(iii) Suppose r € Ps, (1,A,¢") = Py(1,A,¢") for every F-stable and {7, A}-avoiding
coloring ¢'. Then the T-sequence (v1,...,vy) with respect to ¢ is of type B with
P(v) = A

(iv) Suppose r € Py, (1,A,¢") = Py(1,A, ") for every F-stable and {2, 7, A}-avoiding
coloring ¢'. Then the T-sequence (vy,...,v;) with respect to ¢ is of type B with
() € {2,A}.

(v) Suppose r € Py, (1,A,¢") = Pu(1,A,¢") and r € Py, (2,7,¢") = Py(2,7,¢") for
every V(F)-stable coloring ¢ with 1,7 € @'(z). Then the T-sequence (v1,...,vt)
with respect to ¢ is of type B with B(vy) = 1.

(vi) Suppose r € Py (1,A,¢") = Pu(1,A,¢") for every V(F)-stable and {1,7,A}-
avoiding coloring ¢'. Then we can modify ¢ into a V(F)-stable and {1,7,A}-
avoiding coloring ¢* such that the T-sequence (v1,...,v;) with respect to p* is of
type B in which $* (vy) is in {1, A} or is 2-inducing.

(vii) Supposer € Py, (2,7,¢') = Py(2,7,¢") for every V(F)-stable and {1, T, A}-avoiding
coloring ¢'. Then we can modify ¢ into a V (F)-stable and {1, 7, A}-avoiding color-
ing ©* such that the T-sequence (v1,...,v) with respect to ¢* is of type B in which
" (vy) is in {1, A} or is 2-inducing.

Proof. Let (v1,...,v:) be the 7-sequence with respect to ¢. We will apply either an
A-shifting or a B-shifting on (v1,...,v;) to cutoff the linkage between either « and r or
x and s; by the remark prior to Definition 2.13. We show the statements by considering
the type of the T-sequence (v1,...,v:) one by one.

Assume first that (vq,...,v:) is of type A. We prove (i) and (ii) together. For (i), we
may assume that z and r are (1, 7)-linked for every F-stable ¢', since otherwise we just
apply a (1,7)-swap at x to get a desired coloring. For (ii), we may assume that xz and r
are (1, 7)-linked for every F-stable and {A}-avoiding ¢’, since otherwise we just apply
a (1,7)-swap at = to get a desired coloring. Thus v; and r are (1, 7)-unlinked and so we
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apply a (1,7)-swap at v, and then apply a B-shifting from v; to v; to obtain a coloring
¢'. Let ¢ be obtained from ¢’ by renaming 7 as 1 and vice versa. Then ¢” is F-stable
and it is a desired coloring for both (i) and (ii). For each of (iii) to (vii), by applying
the A-shifting on (vy,...,v:), we cutoff the linkage between x and s; and so obtain a
contradiction to the assumptions of the statements.

Assume now that (vq,...,v:) is of type B. Let B(v:) = v € B(F). Recall that r and
?p () are (1,7)-linked by Lemma 2.3(a). For (i), we simply apply a (1,7)-swap at v
and then apply a shifting from v; to v;. Then by renaming 7 as 1 and vice versa, we
obtain an F-stable coloring ¢’ such that color 1 is missing at x. For (ii), we repeat
exactly the same argument as for (i) unless v = A. For Statements (iii) and (iv), we
suppose by contradiction that the corresponding conclusion does not hold. We simply
apply a (1,)-swap at v, apply a shifting from v; to v;, and then rename 7 as 1 and vice
versa. Denote the resulting coloring by ¢’. For (iii), ¢’ is F-stable and {7, A}-avoiding
but Ps, (1,A,¢") # P.(1,A,¢’), a contradiction. For (iv), ¢’ is F-stable and {2, 1, A}-
avoiding but Ps, (1,A,¢") # Py(7,A,¢’), a contradiction. We show (v) now. We may
assume that v # 1 and v is 2-inducing by the symmetry between 2 and A. Since s;
and @' (7) are (7, A)-linked by Lemma 2.3(b), we first apply a (7, A)-swap at v;. The
resulting coloring ¢’ is V(F')-stable and 1,7 € @'(z), so we still have r € Ps, (1,A,¢') =
P.(r, A, ¢"). Now we apply a (7, A)-swap at v; to get a new coloring ¢”. The coloring ¢
is still V(F)-stable satisfying 1,7 € @”(x). However, the sequence (vy,...,v;) is of type
A with respect to ¢, and so we can reach a contradiction as in the first case. For (vi) and
(vii), we are done if v is 1 or A or 2-inducing. If v is A-inducing, we apply a (2, y)-swap
at v;. The resulting coloring is V(F)-stable by Lemma 2.12 and is {1, 7, A}-avoiding.
Now the missing color of v; is a 2-inducing color, as desired.

Assume finally that (vy,...,v:) is of type C. That is, B(v:) = ®(v;—1) = 7; for some
i € [2,t] and some 7; € [1,A] \ §(F). We show that under the assumption of each
statement, we can reduce this sequence into a type B 7-sequence with respect to an F-
stable coloring. For each of (i) to (iv), since one of v;_1 and v; is (1, 7;)-unlinked with r,
we apply a (1,7;) swap at a vertex in {v;_1,v:} that is (1, 7;)-unlinked with r, resulting
in a type B 7-sequence (v1,...,v;—1) or (vy,...,v) such that the color 1 is missing at
the last vertex of the sequence. For (i) and (ii), we can find a desired coloring as in type
B case; and for (iii) and (iv), we obtain a contradiction as in type B case. For (v), since
7 € [1,A]\ (F), by Lemma 2.9, r € Ps, (7;, A). Since one of v;_1 and v is (13, A)-
unlinked with r, we apply a (7;, A)-swap at a vertex in {v;_1,v;} that is (7;, A)-unlinked
with r, resulting in a type B 7-sequence (v1,...,v;—1) or (v1,...,v;) such that the color
A is missing at the last vertex of the sequence. Then we can obtain a contradiction as in
the type B case. For (vi) and (vii), since 7; € [1, A]\ @(F), by Lemma 2.9, r € P, (2, 7;).
Since one of v;_1 and v; is (2, 7;)-unlinked with r, we apply a (2, 7;)-swap at a vertex in
{vi—1,v:} that is (2, 7;)-unlinked with r, resulting in a type B 7-sequence (v1,...,v;—1)

or (v1,...,v¢). O
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3. Proof of Theorem 1.4

Theorem 1.4. Let G be a class 2 graph with mazximum degree A, r € Va be light, and
s € Na—1(r). If rs is a critical edge of G, then all vertices in N(s)\ N(r) are A-vertices.

Proof. Assume to the contrary that there exists z € N(s)\ N(r) with d(z) < A. Clearly,
x # r. Denote s by s1. Let ¢ € C2(G — rsy) and assume the corresponding multifan F
w.r.t. rs1 is maximum and typical.

We claim that there is an F-stable coloring such that color 1 is missing at x. To see
this, let 7 € @(z). If 7 € B(F), then $'(7) and r are (1,7)-linked by Lemma 2.3(a).
So, P,(1,7) does not contain any edge of F and does not end at any vertex in F. Hence
v/ Py(1,7) is F-stable such that color 1 is missing at . We assume that 7 ¢ B(F'). By
Lemma 2.14(i), there is an F-stable coloring such that color 1 is missing at z. So the
claim is true and we may assume 1 € p(z).

Let p(s17) = 7. If 7 € B(F), we may assume it is 2-inducing. Since 7' (7) and r are
(1,7)-linked by Lemma 2.3(a), we apply a (1, 7)-swap at  and get an F-stable coloring.
We then apply a (7, A)-swap at z and get a new coloring ¢’. Since 7 is 2-inducing, it
follows that s; and $,'(7) are (7,A)-linked, and A is still missing at s;. We see that
F* = (r,rs1,51,517,¢) is a multifan w.r.t. ¢’. However, we have A € @'(s1) N ¥ (z),
contradicting V(F*) being elementary. Thus we assume that 7 ¢ @(F). We apply a
(1, A)-swap at = and get an F-stable coloring ¢’. Then Ps, (1, A,¢") = sz does not
contain vertex r, showing a contradiction to Lemma 2.9. O

4. Proof of Theorem 1.5

In this section, we let G be a class 2 graph with maximum degree A, rs; € E(G) be
a critical edge with r being a light vertex and s; € Na_1(r), and let € V(G) \ N|r]
with d(z) < A —2.

Theorem 1.5. If d(r) = A and d(x) < A =3, then N(x) N N(s1) C N(r) \ Na(r).

The proof of Theorem 1.5 is based on the following three lemmas whose proofs will
be given in the following three subsections, respectively. Let ¢ € C2(G — rsy) and F
be a typical multifan w.r.t. rs; and ¢. We additionally assume that F' is a maximum
multifan w.r.t. edge rs;.

Lemma 4.1. Suppose that r is a A-vertex and u € N(s1) N N(z) with u ¢ N(r)\ Na(r).
Then there is no V(F')-stable coloring p1 such that ¢1(uz) = A and {1,2} C @, (z) or
pr(uz) = 2 and {1, A} C 7, ().

Lemma 4.2. Suppose that r is a A-vertex and u € N(s1) N N(x) with u ¢ N(r)\ Na(r).
Then there is no V(F)-stable coloring v1 such that ¢1(s1u) = 1 and {2,A} C 5, (z).
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By relaxing the condition d(r) = A to d(r) > A — 1, we have the following results.
Lemma 4.3. Under the assumption d(r) > A — 1, the following statements hold.

(i) Assume dg(x) < A — 3. If there is a V(F)-stable coloring ¢ such that 1 € p(x),
then there is a V(F)-stable coloring v1 such that {2, A} C @, (x).

(ii) If there is a V/(F)-stable coloring ¢ such that {2, A} C B(x), then there is a V(F)-
stable coloring @1 such that ¢1(uzx) € {2,A} and 1 € @, (x). Furthermore, we can
choose @1 such that if p1(s1u) is 2-inducing, then p1(ux) = A; and if p1(s1u) is
A-inducing, then pi(ux) = 2.

(iii) If there is a V (F)-stable coloring ¢ such that p(uz) € {2, A} and 1 € p(x), where
o(uz) = A if p(s1u) is 2-inducing, and e(ux) = 2 if @(s1u) is A-inducing, then
there is a V(F)-stable coloring w1 such that o1(s1u) =1 and {2, A} N, (x) # 0.

(iv) Assume dg(x) < A — 3. If there is a V(F)-stable coloring ¢ such that ¢(sju) =1
and {2, A}N@(x) # 0, then there is a V (F)-stable coloring p1 such that o1 (s1u) =1
and {2,A} C @, ().

Lemma 4.3 describes a process of modifying ¢ into a V' (F)-stable coloring ¢; such that
v1(s1u) =1 and {2, A} C 3, (z), which in turn gives a contradiction to Lemma 4.2. We
list the processes as separate statements as some of them will be applied independently
in the last section also.

Proof of Theorem 1.5. Let Na_1(r) = {s1,52,...,8a_2}. Suppose to the contrary that
there is a vertex u € V(@) such that u ¢ N(r) \ Na(r) and v is adjacent to both x
and s1. Then u ¢ {r,s1,...,8a_2} since ¢ N(r). Following the notation given at the
beginning of this section, we let ¢ € C2(G —rs1), and F be a typical multifan w.r.t. rs;
and ¢. We also assume that F' is a maximum multifan w.r.t. rs;.

We claim that there exists a V (F')-stable coloring ¢’ such that 1 € @’(z). Let 7 € p(z).
If 7 € B(F), then by Lemma 2.6, the Kempe change ¢/P,(1,7,¢) gives an F-stable
coloring ¢’. Clearly, 1 € @’ (x). Thus, we assume that 7 € [1, A]\@(F). By Lemma 2.14(i),
there is an F-stable coloring ¢’ such that 1 € @’(z). Now applying Lemma 4.3(i)-(iv), we
can modify ¢’ into a V (F)-stable coloring ¢ such that ¢1(s1u) =1 and {2, A} C g, ().
This gives a contradiction to Lemma 4.2. O

4.1. Proof of Lemma /.1

By symmetry, we only prove the first part of the conclusion. Suppose to the contrary
that there is a V(F')-stable coloring o1 such that ¢1(ux) = A and {1,2} C 3, (). Notice
that 1 € B, (r) NP, (z) and 2 € B, (s1) NPy (x). Let 7 = p1(s1u).

Consider first that 7 € @, (F). If 7 = 1, then ¢1(s1u) € $,(r) and ¢1(uz) = A €
©,(s1), and so K = (r,rs1, s1, s1u, u, uz, x) is a Kierstead path. Since d(s;) = A — 1,
V(K) is elementary by Lemma 2.5, showing a contradiction to 2 € @, (z) Ng;(s1). So,
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7 # 1. We claim that 7 is A-inducing. Suppose to the contrary that 7 is 2-inducing.
We let ¢ = p1/P,(1,7,¢1). By Lemma 2.6, ¢ is F-stable. If syu ¢ P,(1,7,¢1), then
Y(s1u) = 7, and so Py, (1,A,v) = squx, contradicting that s; and E;l(T) are (1,A)-
linked (Lemma 2.3(b)). If syu € Py(1,7,¢1), then 9(s;u) = 1 € (r) and ¥ (uzx) =
A € 9(sy1), so under ¢, K = (r,7s1, 81, 81U, u, uz, ) is a Kierstead path with d(s;) =
A —1 < A, but 2 is missing at both s; and z, showing a contradiction to V(K) being
elementary (Lemma 2.5). Thus 7 is A-inducing. We apply (A, 1) — (1, 2)-swaps at « and
get an F-stable coloring ¢’ (Lemma 2.6). Notice that ¢'(uz) = 2 and {1,A} C @' ().
This gives back to the previous case by the symmetry between 2 and A, which leads to
a contradiction. Thus, 7 € [1, A]\ &, (F).

Since F is a maximum multifan, by Lemma 2.8 there is a unique 7-sequence
(v1,...,v¢). We claim that syu € Py(1,7,91) = P.(1,7,1). Otherwise, let ¢/ =
©1/Py(1,7,¢1). Clearly, 7 € @' (). If syu ¢ Py(1,7,¢1), then Ps (7,A,¢") = sjuz.
In this case, if P,(1,7,¢1) did not end at r, then ¢’ is F-stable, which in turn gives
r € Py, (1,A,¢") = syux by Lemma 2.9, a contradiction; if P,(1,7, 1) ended at r, then
¢ is V(F — r)-stable and @'(r) = 7, which in turn gives Py, (1,A,¢') = syux, which
should contain r and end at r by Lemma 2.3(a), giving a contradiction. Then we assume
that P, (1,7, 1) contains edge s1u and does not end at 7. In this case, ¢'(s;u) = 1 € P'(r)
and ¢ (ur) = @1(ux) = A € P'(s1), and so K’ = (r,rs1, 51, s1u, u,uzr, x) is a Kierstead
path. But, 2 € ¥'(s1) N’ (z) shows that V(K') is not elementary, a contradiction.

We consider below the T-sequence (v1, ..., v;) according to its type, but deal with the
situation in the following claim first.

Claim 4.1. There does not exist a V (F)-stable coloring ¢" with ¢'(s1u) = 7, ¢'(ux) = A,
2 € ¢'(x), and the T-sequence w.r.t. ¢’ is of type B with @' (vy) = 1.

Proof. Suppose to the contrary that there is such a V' (F)-stable coloring. We also assume
that under coloring ¢', the T-sequence is also (v1, ..., v). We do the B-shifting from v; to
vy to get a new coloring ¢*. Note that ¢* is a V(F —r)-stable coloring, and ¢*(s1u) = 7 =
@ (r) and ¢*(ux) = A € $*(s1), which in turn shows that K = (r,rsy, 1, s1u, u, ux, )
is a Kierstead path. But, 2 € $*(s1) N $*(x) shows that V(K) is not elementary, a
contradiction. 0O

If the T-sequence is of type A, i.e., g;(v;) = 7, we apply a (1,7)-swap at v; to get a
coloring ¢'. Since syu € Py(1,7,01) = P-(1,7,¢1), ¢’ is F-stable. We also notice that
¢ (uz) = p1(uz) = A and 2 € P'(x), which gives a contradiction to Claim 4.1.

Suppose that the 7-sequence is of type C, more specifically, 7, (v;) = $;(vi—1) = 7; for
some i € [2,t]. Since one of v;_; and v; is (1, 7;)-unlinked with r, we apply a (1, 7;)-swap
at a vertex in {v;_1,v;} that is (1, 7;)-unlinked with r to get an F-stable coloring ¢'.
Clearly, 1 € @'(v;—1) or 1 € @(v;). In either case, the resulting T-sequence is of type B
with color 1 missing at the last vertex, which gives a contradiction to Claim 4.1.
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Fig. 3. Three steps of Kempe changes.

Suppose now that the 7-sequence is of type B and let i, (v¢) =  for some v € @, (F).
By Claim 4.1, v # 1. If v # A, we first apply a (1,7)-swap at v; and get an F-stable
coloring ¢’. Note that 1 ¢ ¥’(z) may occur. Under coloring ¢’, the T-sequence is of type
B and 1 € @ (vt), giving a contradiction to Claim 4.1. Thus, v = A. We consider two
cases regarding whether ¢ = 1.

Case 1.t = 1.

We first do three Kempe changes as below. Step 1: (1, A)-swap(s) at both v; and =
(s1 and r are (1, A)-linked); Step 2: a (1,7)-swap at v; (only changes the color on the
edge rv1); and Step 3: (2,7)-swap(s) at both = and vy (s1 and r are (2, 7)-linked). See
Fig. 3 for this sequence of changes.

Note that Step 1 gives an F-stable coloring, Step 2 gives a V(F — r)-stable coloring,
and Step 3 gives a stable coloring w.r.t. the new multifan obtained in Step 2.

We then color rs; by 7 and uncolor siju to give a coloring ¢, which is followed by 5
Kempe changes as follows. Step 1: uz: 1 — 7; Step 2: (1, 2)-swap(s) at both = and v1 (s1
and wu are (1,2)-linked); Step 3: (1, A)-swap(s) at both  and v; (s; and w are (1, A)-
linked); Step 4: a (1,7)-swap on the (1,7)-chain containing s;7; Step 5: (1, A)-swap(s)
at both = and v; (57 and w are (1, A)-linked). Since every recoloring is a Kempe change,
the final coloring is in C*(G — syu). See Fig. 4 for this sequence of changes.

Under the current coloring, we have P, (1,2) = s17v1. On the other hand, since sju
is uncolored and 1 and 2 are missing at w and s; respectively, Py, (1,2) = P,(1,2), giving
a contradiction.

Case 2.t > 2.

Let ¢1(rvy) = Py(vi—1) = 7¢. As the 7-sequence (vy,...,v:) is of type B, we have
7+ # 7. We may assume that v;_; and r are (1, 7;)-linked. Otherwise, the (1, 7)-swap
at v;_1 gives an F-stable coloring that contradicts Claim 4.1. We apply a (1, 7)-swap
at x and get an F-stable coloring. By Lemma 2.9, r € P, (74,A). As ¢1(rvy) = 7%
and @;(v;) = A, we then have r € Py, (14, A) = P, (1, A). We thus apply (74, A)-
swaps at both = and v,_; and get an F-stable coloring ¢’. Note that ¢'(uz) = 7, and
A€ (@) NF (v1) N (00).
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Fig. 4. Five steps of Kempe changes.

By Lemma 2.9, r € Py, (1, A). We claim that P, (1, A, ¢’) = P,(7, A, ¢’). Suppose to
the contrary that Ps, (1, A, ¢') # Pu(1, A, ¢"). If Po(7,A,¢") # Py, (1,A,¢"), we do the
following sequence of five Kempe changes: the (7, A)-swap at x, the (1, A)-swap at v; (s1
and r are (1, A)-linked), the (1,7;)-swap on the (1,7)-chain containing uz, the (2, A)-
swap at x, and the (1, A)-swap at z. Except the Kempe change that the (2, A)-swap at
x may possibly change the colors on two edges of F', all other changes are F-stable. Thus
the final resulting coloring is V(F')-stable. Under the current coloring, Ps, (7, A) = sjux
that does not contain vertex r, giving a contradiction to Lemma 2.9.

Under the assumption that Ps, (7, A, ¢') # P(7,A,¢’), by the argument above, we
assume then that P, (7, A, ¢') = P, (7, A, ¢'). We do the (7, A)-swap at x that is also the
(1, A)-swap at vy to get an F-stable coloring. Note that A is no longer missing at = unless
7 is also previously missing at . Since s; and r are (1, A)-linked, we apply a (1, A)-swap
at v;—1 to get an F-stable coloring, and apply a shifting from v; to v.—1, which give a
V(F — r)-stable coloring. Denote the corresponding new multifan by F™*. Since s; and r
are (7, A)-linked, we apply a (7, A)-swap at both = and v; to get an F*-stable coloring



Y. Cao et al. / Journal of Combinatorial Theory, Series B 156 (2022) 145-173 163

such that A is missing at x. Since r € Py, (7, A) = P,,(7t,A) by Lemma 2.9, we do
the (A, 7)-swap at z, which does not affect the multifan. Denote the resulting coloring
by ¢*. Since ¢*(s1u) = 7 = §*(r) and ¢*(uz) = A € §*(s1), (r,781, 51, S1U, U, UL, T)
is a Kierstead path. But, 2 € $*(s1) N *(z), giving a contradiction. Therefore r €
P, (1,8, ¢") = Pu(1, A, ¢).

Recall that ¢'(s1u) = 7, ¢’ (ux) = 76, A € T (2) NG (ve—1) NP (vr), and 2 € P (z). We
apply a (7, A)-swap at both v;_; and v;. Under the new coloring, 7 is missing at both
vi—1 and v;. We may assume that v; and r are (1, 7)-unlinked by doing the A-shifting
from vy to vy_1 if necessary. Thus we apply a (1, 7)-swap at v;. Denote the new coloring
by ¢*. If p*(s1u) = 7, we apply a (1, 7¢)-swap on the (1, 7¢)-chain containing uz and then
apply a (1, A)-swap at x. This gives a type A 7-sequence (v1,...,v;—1), which we have
dealt with previously. Thus ¢*(sju) = 1. We apply a (1,7)-swap on the (1,7;)-chain
containing uz and then apply a (1, A)-swap at both x and v;. This leads back to Case 1
with v; in the place of v; and 7; in the place of 7. O

4.2. Proof of Lemma /.2

Let w € N(s1) N N(z) with w ¢ N(r) \ Na(r). Suppose to the contrary that there
is a V(F)-stable coloring ¢; such that ¢q(sju) = 1 and {2,A} C @;(z). Note that
u # r, as every neighbor of r has degree at least A — 1 in G while d(z) < A — 3. Thus
u ¢ N[r]\ Na(r). Let ¢1(ux) = 7. Clearly, 7 # 1.

Since F' is a maximum multifan, r € Ps, (7, A) and r € Py, (2,7) by Lemma 2.9. We
claim that P, (7,A) = Py(r,A) and Ps, (2,7) = P,(2,7). Otherwise, say P,(7,A) and
P, (1, A) are disjoint. We apply a (7, A)-swap at  and get an F-stable coloring ¢’. Since
O (s1u) = p1(s1u) =1 € P (r) and ¢'(ux) = A € @' (s1), K = (r,7s1, 51, $1U, U, U, )
is a Kierstead path and 2 € @'(s1) N @ (z), contradicting V(K) being elementary
(Lemma 2.5).

We claim that 7 ¢ 3, (F). Otherwise, Py, (1,A) = P__—1,_ (7, A) if 7 is 2-inducing

Pip (7)
and Py, (2,7) = Pj-1,y(2,7) if 7 is A-inducing. In either case, we get a contradiction

to the previous cl:ilrg. Since the multifan F' is maximum, there is a unique 7-sequence
(v1,...,v¢) by Lemma 2.8. Since r € Ps, (2,7) = P,(2,7) and r € P, (1,A) = Py(7,A),
rv; € Py(2,7) and rv; € Py(1,A).

If the T-sequence is of type A, we do the A-shifting and get an F-stable coloring ¢/,
and under this coloring P, (A, 7,¢") # Ps, (A, 7,¢'). But, ¥'(z) = p,(z) 2 {2,A} and
¢’ (s1u) = p1(s1u) = 1, giving a contradiction.

Suppose then that the 7-sequence is of type B: @, (v:) = 7 for some v € @, (F). If
v = 1, we do the B-shifting and get a V(F — r)-stable coloring. Note that F' is also a
multifan w.r.t. the new coloring and that 7 and A are missing at r and sy, respectively.
We then apply a (7, A)-swap at x and get an F-stable coloring ¢’ w.r.t. the previous
coloring. Note that F is a multifan w.r.t. rs; and ¢, @'(r) = 7, {2,7} C @'(z) and
¢'(ur) = A, showing a contradiction to Lemma 4.1. So, v # 1, say v is 2-inducing. Let
¢ = ¢/P,,(1,7,9). If s;u ¢ P,,(1,7,¢), the argument turns back to @;(v;) = v =1
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case, which we just settled. Thus we assume ¢'(sju) = . We apply a shifting from
vy to v;. Then as s and r are (7, A)-linked, we apply a (7, A)-swap at . Now up to
exchanging the role of 1 and 7, we have a V(F)-stable coloring ¢” such that @”(r) = 1,
@"(uz) = A and {1,2} C @"(x). This again gives a contradiction to Lemma 4.1.

Thus the T-sequence is of type C: @ (v¢) = @1 (v;—1) = 7; for some i € [2,¢] and some
7; € [1, A]\@(F). We first apply a (1, A)-swap at . One of v;_; and v, is (74, A)-unlinked
with s;. We may assume that v; and s; are (7;, A)-unlinked (the proof for the other case
is similar). By Lemma 2.9, we have r ¢ P,,(7;, A). We first apply a (7, A)-swap at v,
and then a (1, A)-swap at both x and v;. This converts the problem back to the type B
T-sequence case. 0O

4.3. Proof of Lemma 4.3

For (i), we assume that 1 € @(z). Let 7 € @(x) \ {1}. If 7 € B(F), we apply a
(1,2)-swap at x, and then apply (r,1) — (1,A)-swaps at = to get a desired coloring
1. Thus 7 € [1,A] \ B(F). By Lemma 2.9, for any V(F)-stable coloring ¢’ such that
1,7 €@ (x), we have r € Py, (2,7,¢') and r € Py, (7, A, ¢’). We may further assume that
r € Py, (2,7,¢") = Pp(2,7,¢") and r € Py, (1,A,¢") = P.(1,A,¢"). For otherwise, say
there is a V (F')-stable coloring ¢’ such that 1,7 € §'(z) and Ps, (2,7,¢") # P.(2,7,¢'),
then under ¢’, we apply a (2,7)-swap at z and then a (1, A)-swap at x in getting a
desired coloring 1. Applying Lemma 2.14(v), we know that the 7-sequence (vy,...,v¢)
is of type B with $(v;) = 1. Let A € ®(z) \ {1,7}. Following a same argument as
above, we may assume that A € [1,A]\ §(F), and r € Ps,(2,\,¢') = P»(2,\,¢’) and
r € Ps,(\A,¢') = Py(\, A, ¢') for any V(F)-stable coloring ¢’ such that 1,\ € @'(x).
Applying Lemma 2.14(v) again, we know that the A-sequence (wy,...,wy) is of type B
with @(wk) =1.

If the two sequences are disjoint, then z is (1,2)-linked with at most one of v; and
wy. Assume, without loss of generality, that = and v; are (1,2)-unlinked. We apply a
(1,2)-swap at = and then apply a shifting from v; to v;. Now 7 is missing at r and r and
s1 are (7, A)-linked. We apply a (7, A)-swap at x. This gives a desired coloring ¢; up to
exchanging the role of 1 and 7. Therefore, the T-sequence and the A-sequence intersect.
Assume that v; = w; is the first common vertex of the two sequences. Then, the two
sequences are identical after this vertex.

If both 4, j are at least two, then P(v;—1) = P(w;_1), name it . By the definition
of T-sequence, v € [1,A] \ §(F). Since F' is maximum, r € P, (v,A) by Lemma 2.9.
One of v;_1 and w;_1, say v;_1, is not on Py (v,A). We apply a (v, A)-swap at v;_1
and get an F-stable coloring ¢'. But, the 7-sequence ends with a vertex missing color
A rather than 1 but the color 1 and 7 are still missing at x, giving a contradiction to
Lemma 2.14(v). Assume then that one of ¢ and j is 1. Assume, without loss of generality,
that j = 1, i.e., A = P(v;—1) and wy, ..., wy is the same as v;, ..., v;. We first apply a
(1,2)-swap at both = and v;. One of & and v;_1 is (1, A\)-unlinked with r. If x and r are
(1, A)-unlinked, we apply (A, 1) — (1, A)-swaps at x to get a desired coloring. If v;_; and
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r are (1, A)-unlinked, we apply a (1, A)-swap at v;_; and then apply a shifting from v; to
v;—1. Next, we apply a (7, A)-swap at = and get a V(F —r)-coloring ¢’. Switching colors
1 and 7 for the entire graph, we get a V(F')-stable coloring ;1 with {2, A} C 7, (z).

For (ii), let p(ux) = 7. If 7 € B(F), we may assume that either 7 = 1 or 7 is 2-
inducing. We apply (A, 7) — (7, 1)-swaps at x. This gives a V(F')-stable coloring ¢; such
that ¢1(uz) = A and {1,2} C %,(x), showing a contradiction to Lemma 4.1. Thus
7 € [1,A] \ §(F). If there is an F-stable and {2, 7, A}-avoiding coloring ¢’ such that
ré Pu(r,A,¢), then as r € Py, (7, A, ¢’) by Lemma 2.9, we apply a (7, A)-swap at x to
get a V(F)-stable coloring ¢'. If ¢/(s1u) is not A-inducing, then we apply a (1, 2)-swap
at = to get a desired coloring ¢1. If ¢'(syu) is A-inducing, we then apply (2, A) — (A, 1)-
swaps at x to get a desired coloring 1. Thus r € P.(7,A,¢’) for every F-stable and
{2, 1, A}-avoiding coloring ¢’, and thus r € Ps, (1, A, ¢') = P.(7,A,¢") by Lemma 2.9.
Applying Lemma 2.14(iv), the 7-sequence (vy,...,v:) is of type B with B(v:) € {2, A}.
Let p(syu) = «. Note that v ¢ {2,7, A}. By symmetry, we may assume that either v is
2-inducing or v € [1,A] \ (@(F) \ {1}). We may assume that $(v;) = 2. As otherwise,
if §(vs) = A, we apply a (1, A)-swap at both x and v; and then apply a (1,2)-swap at
vy and a (1, A)-swap at x, which converts back to the case when @(v:) = 2. We apply a
(1,2)-swap at v; and then apply a shifting from vy to v;. Next, we apply a (7, A)-swap
at x. Since v ¢ {2, 7, A} and s; and r are both (1, 2)- and (1, A)-linked, the color on sju
is still v. Up to exchanging the role of 1 and 7, we get a desired coloring ¢ .

For (iii), by symmetry, we let p(uz) = A and 1 € B(x) and show that there is a
V (F)-stable coloring ¢ such that ¢1(s1u) =1 and {2,A} Ng,(z) # 0. Let p(s1u) = 7.
Assume first that 7 € P(F). Clearly, 7 # 1. As otherwise, K = (r,7s1, 81, $14, u, ux, x)
is a Kierstead path, but 1 € $(s1) N@(z), showing a contradiction to Lemma 2.5. Since
p(ux) = A, the assumption of (iii) implies that 7 is 2-inducing. We apply a (1, 7)-swap at
x. Denote the new coloring by ¢*. If ¢*(s1u) = 7, then Ps, (1, A) = sjuz, contradicting
Lemma 2.3(b). Thus, ¢*(s;u) = 1. As s; and 1, (1) are (7, A)-linked, we apply a
(1, A)-swap at z, which gives a desired coloring ¢;.

Thus 7 € [1, A]\ @(F). We first apply a (1,2)-swap at = and still denote the resulting
coloring by ¢. We have p(uz) = A and 2 € @(z). Let (vy,...,v) be the T-sequence
guaranteed by Lemma 2.8. For any V(F)-stable and {2, 7, A}-avoiding coloring ¢', as
the multifan corresponding to F' under ¢’ is still maximum, by Lemma 2.9, we have
r € Ps,(2,7,¢"). Thus it must be the case that r € Ps, (2,7,¢') = Py(2,7,¢"). (Asif z
and s; were (2, 7)-unlinked with respect to ¢, we apply a (2, 7)-swap at z to get a coloring
¢". Then P, (1,A,¢") = sjux, which does not contain r, showing a contradiction to
Lemma 2.9.) By Lemma 2.14(iv) (the symmetric version with the roles of 2 and A
exchanged), the 7-sequence (v1,...,v;) is of type B and p(v) € {2, A}. If p(vy) = 2,
since r € Ps,(2,7) = Py(2,7), we apply a (2,7)-swap at v; and then apply a shifting
from vy to v;. This gives a type A 7-sequence. We then apply a shifting from vy to v;.
Denote the new coloring by ¢*. Then Ps, (2,7, ¢*) # Py(2,7,¢*). Still r € Py, (2,7, ¢%)
by Lemma 2.9. We apply a (2,7)-swap at z to get ¢**. Then Ps, (1, A, ¢**) = sjuxz,
showing a contradiction to Lemma 2.9. If B(v;) = A, since s; and r are (1, A)-linked, we
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apply a (1, A)-swap at v;. Then we apply a shifting from vy to v; and swap the colors 1
and 7 in the entire graph. Denote the new coloring by ¢; (note that ¢1(uz) could be A
or 7 and has to be 7, as otherwise K = (r,rs1, 1, $1u, u, uz, x) is a Kierstead path with
2€p,(s1)NPy(x)). We have p1(sju) =1 and 2 € B, (x), and so ¢; is a desired coloring,.

For (iv), by symmetry, we let ¢(sju) = 1 and 2 € P(x) and show that there is a
V(F)-stable coloring ¢ such that ¢1(s1u) =1 and {2, A} C @, (x). Let 7 € B(z) \ {2}.
If 7 =1 or is 2-inducing, we simply apply a (7, A)-swap at x. Thus we may assume that
7 is A-inducing. We apply (2,1) — (1, A)-swaps at x and then apply a (2, 7)-swap at =
to get a desired V(F)-stable coloring ¢1.

Thus 7 € [1,A] \ B(F). We first apply a (1,2)-swap at  to get an F-stable coloring
©*. Since s; and r are (1,2)-linked, we still have ¢*(syu) = 1. Now {1,7} C %*(x). By
Lemma 2.9, r € Py, (2,7,¢') and r € P, (1,A,¢") for every V(F)-stable coloring ¢’.
Thus we may assume that Py (7, A, ¢') = Py, (1,A,¢’) and P, (2,7,¢") = Ps, (2,7, ¢") for
every V(F)-stable coloring ¢' with {1,7} C @' (z). As otherwise, we can simply apply
either a (2, 7)-swap and then a (1, A)-swap at x or a (7, A)-swap and then a (1,2)-swap
at  to get a desired coloring ;. By Lemma 2.14(v), the 7-sequence (v1, ..., v:) is of type
B such that *(v;) = 1. Since dg(z) < A — 3, we let A € g*(z) \ {1, 7}. Using the same
arguments as above, we may assume that A € [1,A] \ *(F) and that the \-sequence
(w1, ...,wy) is of type B such that 7" (wy) = 1.

If the two sequences are disjoint, then x is (1, 2)-linked with at most one of v; and wy.
Assume, without loss of generality, that z and v, are (1, 2)-unlinked. We apply a (1, 2)-
swap at vs. Denote the new coloring by ¢**. The coloring ¢** is V(F)-stable with {1,7} C
@**(x). Furthermore, we may still assume that r € Py, (7, A, ¢™*) = Py(7, A, ¢**) and
r € Py, (2,7,0*) = Py(2,7,¢*). However, the 7-sequence (v1,...,v;) is of type B such
that @*(v;) = 2 now, showing a contradiction to Lemma 2.14(v). Therefore, the 7-
sequence and the A-sequence intersect. Assume that v; = w; is the first common vertex
of the two sequences. Then, the two sequences are identical after this vertex.

If both 4, j are at least two, then $*(v;—1) = ¥*(w;j_1), name it 7. By the definition
of 7-sequence, v € [1,A] \ *(F). Since F is maximum, r € Ps, (vy,A) by Lemma 2.9.
One of v;_; and w;_1, say v;_1, is not on Py, (v, A). We apply a (v, A)-swap at v;_1 and
get a coloring ¢**. The condition of Lemma 2.14(v) is satisfied by ¢**, but the current
7-sequence (v1,...,v;—1) ends with a vertex missing color A rather than 1, giving a
contradiction to Lemma 2.14(v). Therefore one of ¢ and j is 1. Assume, without loss of
generality, that j = 1, i.e., A = §"(v;—1) and wy, ..., wy is the same as v;, ..., vs. We first
apply a (1,2)-swap at both x and v;. Since r € Py, (A, A, p*) = P (A, A, ¢*), we apply a
(A, A)-swap at v;_1 to get a new coloring ¢**. Again, the condition of Lemma 2.14(v) is
satisfied by ¢™*, but the current 7-sequence (vy,...,v;—1) ends at a vertex missing color
A rather than 1, giving a contradiction to Lemma 2.14(v). O

5. Proof of Theorem 1.6

We introduce some new concepts in order to prove Theorem 1.6.
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5.1. Pseudo-fan

Let G be a class 2 graph and rs; be a critical edge. A pseudo-fan (P-fan) at r w.r.t.
rs; and a coloring ¢ € C2(G — rs1) is a sequence

S =8,(r,81:8;:8p) = (1,781,81,782,82,...,78t, 8¢, TSt41,St41, - - Sp—1,TSp, Sp)
such that all s1, ..., s, are distinct vertices in Na_1(r) and the following conditions hold:
(P1) (r,7rs1,51,752,52,...,75¢,5¢), denoted by F(r,s1 : s¢), is a maximum multifan at

r.

(P2) The vertex set V(S) is ¢/-elementary for every F-stable ¢’ w.r.t. ¢.

Clearly every maximum multifan is a P-fan, and if S'is a P-fan w.r.t. ¢ and F' = F,(r, 51 :
st), then by the definition above, S is also a P-fan w.r.t. every F-stable coloring ¢’. The
result below is a modification of Lemma 3.6 from [1].

Lemma 5.1. Let G be a class 2 graph with maximum degree A, v € Va be light, and
S = S,(r,s1: 8y 8¢) be a P-fan w.r.t. rs; and a coloring ¢ € C*(G — rs1). Then the
following two statements hold, where F' = F,(r,s1 : sp).

(a) For every vy € V(S)\ V(F), the p(rvi)-sequence (v1,...,v¢) is a rotation at r, and
v; and r are (1,(v;))-linked for each i € [1,t].

(b) For any i,j with i € [1,p] and j € [p+ 1,q] and colors v € B(s;) and 0 € B(s;),
r € Ps,(7,0) = Ps;(7,6). Moreover, if p(rz) =~ for some z € N(r), then Py, (v,9)
meets z before r.

Proof. By relabeling colors and vertices, we assume F is typical. Let F' = F,(7,$1 : Sq :
sg) be a typical multifan, where § = p.

For Statement (a), we let v; € V/(S)\V(F), and let p(rvy) = 7. Since F' is maximum,
by Lemma 2.8, we let (v1,...,v:) be the 7-sequence at r. We show first that the sequence
is a rotation or a type A sequence. We may assume the sequence is of type B or C. If
(v1,...,v;) is of type B, ie., B(v;) = v € B(F), since §p'(y) and r are (1,)-linked,
we apply a (1,7)-swap at v; to get ¢’. Then we apply the B-shifting from v; to v; and
exchange the role of 1 and 7 in the entire graph. This results in an F-stable coloring,
yet V() is not elementary, contradicting (P2) of the definition of a P-fan. If (vy,...,v;)
is of type C, i.e., B(v:) = P(v;—1) = 7; for some i € [2,¢] and some 7; € [1,A] \ B(F),
since one of v;_; and v; is (1, 7;)-unlinked with r, we apply a (1, 7;)-swap at a vertex in
{vi—1, v} that is (1, 7;)-unlinked with r. This gives an F-stable coloring such that the
corresponding 7T-sequence is of type B, converting the problem to the previous case. Thus
the 7-sequence (vy, ..., v:) is a rotation. Moreover, v; and r are (1, ®(v;))-linked for each

€ [1,t]. As otherwise, a (1,%(v;))-swap at v; would give rise to a type B 7-sequence,
contradicting what was proved above. The proof of Statement (a) is now complete.
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By Statement (a), we let (vq,. .., v¢) be the rotation containing s;, where v; = s;. For
the first part of Statement (b), suppose to the contrary that r € Ps,(7y,0) = Py, (7,0)
does not hold. Assume without loss of generality that ¢ € [1,a]. Then we have the
following three cases: r ¢ P, (v,d) and r ¢ P, (v,0); r ¢ Ps,(v,0) and r € P, (7,0); and
r € Ps,(7v,0) and r ¢ P,, (7, 9).

Suppose first that r ¢ Ps,(vy,0) and r ¢ P, (v, ). Then let ¢’ = ¢/Q, where Q is the
(7, 6)-chain containing r. Note that ¢’ and ¢ agree on every edge incident to r except two
edges rv2 and rz where z is the vertex in N(r) such that ¢(rz) = . Since r ¢ Py, (v, ),
r & Py, (v,0) and V(S) is p-elementary, @' (s;) = @(s;) for all s; € V(S). Thus under the
new coloring ¢/, F* = (1,781, 81, ..., 8,02, U, . .., IV, Vg, TV1, U1, TSi11, Sit1, - - -, S3) is a
multifan. This is because, if i < «, then @' (s;) = = ¢'(rv2) and @' (v1) = 6 = ¢’ (rsi+1);
and if i = a, then ¢/ (s;11) = A € §'(s1). As |[V(F)| < |[V(F*)|, we obtain a contradiction
to the maximality assumption of F. Suppose then that r ¢ Py, (v,d) and r € B, (v, 9).
Then let ¢ = ¢/P,, (7, d). Similar to the case above, one can easily check that F* =
(7P, 781,81, -+ -, 8i,TV2, V2, ..., TV, Vg, TV, V1) is a multifan. Since @' (s;) = @ (v1) = v, we
obtain a contradiction to Lemma 2.2 that V(F*) is ¢’-elementary. Suppose lastly that
r € P, (,0) and r ¢ P,, (7,0). Then let ¢’ = ¢/P,, (7, d). Note that ¢ is F-stable w.r.t.
, thus by the definition of a P-fan, V(S) is ¢'-elementary. But @'(s;) = ¢'(v1) = v, a
contradiction. This completes the proof of the first part of Statement (b).

For the second part of Statement (b), assume to the contrary that P, (7, d) meets r be-
fore z. Then Ps, (v, ) meets vg before r. Let ¢’ be obtained from ¢ by shifting from v; to
ve. Then r ¢ Ps, (9,7, ¢), showing a contradiction to the first part of Statement (b). O

5.2. Two structural lemmas

Lemma 5.2. Let G be a class 2 graph with mazximum degree A > 3, r € VA be light,
and rs1 be a critical edge. If S = S(r,s1 : sp 1 8¢) s a P-fan w.r.t. rs1 and a coloring
¢ € CA(G —rsy), then for any x € N(V(S)) \ N[r], d(z) # A — 1.

Proof. Suppose to the contrary that there is a degree (A — 1) vertex = ¢ N[r] and a
vertex s* € S such that x ~ s*. Let F = F(r,s1 : so : Sg) be the maximum multifan
contained in S. We further assume that F' is typical. Since rs; is a critical edge of G,
every edge of F is a critical edge of G. Thus by Theorem 1.4, s* € V(S)\ V(F).

We may first assume 1 € B(x). To see this, let 7 € B(z). If 7 € B(F), since 75" (1)
and r are (1, 7)-linked by Lemma 2.3(a), we simply apply a (1, 7)-swap at 2. Thus we
assume that 7 € [1, A]\ @(F). By Lemma 2.14(i), there is an F-stable coloring such that
1 is missing at x. We then apply a (1, A)-swap at z, still call the resulting coloring ¢.
We now have A € 3(x).

We claim that there is a V' (F)-stable coloring, still call it ¢, such that ¢(s*z) € {2, A}.
Let ¢(s*x) = 7. Assume first that 7 € B(F). If 7 is not A-inducing, we simply apply a
(1, A)-swap at z. Otherwise, we do (A, 1) — (1,2) — (2, 7)-swaps at x, and get a desired
V(F)-stable coloring. Thus, we may assume 7 € [1, A]\@(F). For every V (F')-stable and
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{7, A}-avoiding coloring ¢’, since F' is maximum, r € P, (7, A, ¢’) (by Lemma 2.9). We
claim P, (7, A, ¢') = Ps, (7, A, ¢'). Otherwise, a (7, A)-swap at x gives a desired coloring.
Applying Lemma 2.14(iii), the 7-sequence (v1,...,v:) is of type B and @(v;) = A. Since
r € Py, (1,A,¢) = P(1,A, ), we apply a (7, A)-swap at v; to get an F-stable coloring,
and then do the A-shifting from v; to vy. Under the new coloring, P, (7, A) # Py(7, A).
Since still » € Ps,(1,A) by Lemma 2.9, we apply a (7, A)-swap at = to get a desired
V (F)-stable coloring. So we may assume (s*x) = A.

We then show that there is a V' (F')-stable coloring, still call it ¢, such that ¢(s*z) = A
and 1 € @(z). Let 7 € §(z). If 7 € B(V(5)), by Lemma 2.3(a) and Lemma 5.1(a), we
simply apply a (1,7)-swap at . Thus 7 € [1,A] \ §(S). We may further assume that
there is no F-stable and {A}-avoiding coloring ¢’ such that 1 € @’(z). In particular, we
have P,(1,7,¢) = P.(1,7,¢). By Lemma 2.14(ii), the 7-sequence (v1,...,v¢) at r is of
type B such that B(v;) = A. Let $(s*) = 6. As V(5) is elementary and A € B(s1), we
have v, ¢ V(S), and so s* # v;. We also note that § # 7. Otherwise, by Lemma 5.1(a),
P (1,7,¢) = P.(1,7,¢), which gives a contradiction to P,(1,7,¢) = P.(1,7,¢). By
Lemma 5.1(b), r € Py, (8, A, ) = Ps« (8, A, ). We apply a (4, A)-swap at v; and get an
F-stable coloring ¢* with § missing at v;. Applying Lemma 5.1(a) to s* € V(5), we get
P.(1,0,0%) = P« (1,6, ¢*). We apply a (1,d)-swap at v:. Note that by Lemma 5.1(a),
the o(rs*)-sequence containing s* at r is a rotation, thus s* ¢ {vy,...,v:}. We apply
the B-shifting from v; to v followed by switching color 1 and 7 for the entire graph,
which results in a desired V(F')-stable coloring.

Hence, we may assume that ¢(s*z) = A, 1 € $(z), and $(s*) = §. By Lemma 5.1(a)
that P.(1,6,¢) = Ps(1,0,¢), we apply a (1,0)-swap at . Under the new coloring,
Py (0,A) = s1x, showing a contradiction to the fact that s* and s; are (6, A)-linked
(Lemma 5.1(b)). O

Lemma 5.3. Let G be a class 2 graph with mazimum degree A > 3, r € Va_1 be light, and
F be a multifan at v w.r.t. edge rs; and a coloring ¢ € C*(G —rsy). If F' is mazimum,
then B(r) € @(z) for any x € V(G) \ N[r] with (N(z) N N(s1)) \ Na_1[r] # 0.

Proof. Suppose to the contrary that there exists a vertex z € V(G) \ N[r] such that
(N(@) N N(s1)) \ Na_slr] # 0 and 3(r) € (). Let u € (N(z) N N(51)) \ Na_1[r),
2(r)={1,A—1} and B(s1) = {2, A}. So, {1,A =1} C B(z). Our goal is to modify ¢ in
getting a V (F')-stable coloring ¢’ such that K = (r,rsy, s1, $1u, u,uz, ) is a Kierstead
path but @'(z) N (¥’ (s1) UF'(r)) # 0, in achieving a contradiction to Lemma 2.5. Since
r is light, we may assume that F' = F(r,s1 : so : Sg) is typical.

By applying (1, 2)- and (A—1, A)-swaps at = when it is necessary, we may assume that
2, A € B(x). Applying Lemma 4.3(ii) and then Lemma 4.3(iii), we may assume that there
is a V(F)-stable coloring, still denoted by ¢, such that ¢(sju) = 1 and A € B(z). We
show next that there is a V' (F')-stable coloring, still denoted by ¢, such that ¢(sju) =1
and p(ux) = A.
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Let ¢(uxz) = 7. Suppose first that 7 € B(F). If 7 is not A-inducing, we apply a
(1, A)-swap at z in getting a desired V (F)-stable coloring. If 7 is A-inducing, we apply
(A,1)—(1,2) — (2, 7)-swaps at z in getting a desired V (F)-stable coloring. Suppose then
that 7 € [1,A] \ B(F). We claim that for every V(F)-stable and {1, 7, A}-avoiding col-
oring ¢', Py(1,A,¢") = Py, (1, A, ¢’). Otherwise, since F' is maximum, r € Py, (1, A, ¢’)
by Lemma 2.9. Then the (7, A)-swap at z gives a V(F)-stable coloring ¢* such that
©*(uz) = A and ¢*(syu) = 1, which is what we want. By Lemma 2.14(vi), we may
assume that the 7-sequence (vq,...,v;) is of type B such that $(v;) € {1,A} or is 2-
inducing. If g(v;) = 1, we apply a (1, 2)-swap at vy, so the color missing at v; is 2-inducing.
Thus we only need to consider two cases: either @(v;) is 2-inducing or B(v:) = A. If B(vy)
is 2-inducing, let @(v¢) = v for some v € B(F), we apply a (v, A — 1)-swap at v, where
A —1 is another color missing at r. Then we apply the B-shifting from vy to v; and get a
V(F — r)-stable coloring ¢’. In particular, we have 7 € @ (r). Since ¢'(s1u) =1 € @'(r)
and ¢'(uz) = 7 € @'(r), K = (r,rs1, 51, 51U, u,ux,x) is a Kierstead path. But A is
missing at both s; and z, achieving a contradiction to Lemma 2.5. Thus $(v:) = A.
Since r € Py, (1,A,0) = P.(1,A, ), we apply a (7, A)-swap at v, resulting in a type
A 7-sequence. Then the A-shifting from vy to vy gives a V(F)-stable coloring ¢’ such
that z and s; are (7, A)-unlinked. Since still » € P, (7, A, ¢’) by Lemma 2.9, we apply
a (1,A)-swap at x in getting a desired coloring.

Therefore we assume that ¢(sju) = 1 and p(uz) = A. Since p(s1u) = 1 € B(r) and
p(ur) = A € p(s1), K = (r,rs1, s1, 51U, u, ux, ) is a Kierstead path. We next show that
there is a V' (F)-stable coloring ¢’ keeping the Kierstead path but @' (z)N (@ (s1)Ug' (1)) #
(), which gives a contradiction to Lemma 2.5.

Let 7 € (). If 7 € B(F), we simply apply a (7, A—1)-swap at x to get a contradiction.
Thus, 7 € [1, A\B(F). We claim that for any V (F')-stable and {1, 7, A}-avoiding coloring
¢, Pp(2,7,¢") = Ps, (2,7, ¢"). Otherwise, since F' is maximum, by Lemma 2.9 we have r €
Py
Kierstead path, but 2 is missing at both = and s, a contradiction. By Lemma 2.14(vii),

1(2,7,¢"). Then the (2, 7)-swap at = gives a V(F)-stable coloring that maintains the
we may assume that the T-sequence (v1,...,v;) is of type B such that ®(v;) € {1, A} or
is 2-inducing. If p(v;) = 1, we apply a (1, 2)-swap at v;. Thus we only need to consider
two cases where ®(v;) # 1. If B(vy) is 2-inducing, let B(v:) = v for some v € B(F), we
apply a (v,A — 1)-swap at v; and then apply the B-shifting from v to v;. Now K =
(r,rs1, 81, 81U, u, ux, x) is a Kierstead path but 7 is missing at both r and z, achieving a
contradiction to Lemma 2.5. Thus @(v;) = A. Now applying (A, 1) —(1,2) — (2, A —1)-
swaps at v; and then the B-shifting from v; to v; gives the same contradiction as right
before. O

5.8. Proof of Theorem 1.6

Since all vertices not missing a given color « are saturated by the matching that
consists of all edges colored by « in GG, we have the following result.
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Lemma 5.4 (Parity Lemma). Let G be an n-vertex graph and ¢ € C2(G). Then for any
color a € [1,A], {v € V(G) : a« € (v)}| = n (mod 2).

Theorem 2.5. Let G be a A-critical graph with n vertices. If G has a light A-vertex and
A >n/2+1, then n is odd.

Proof. Let r be a light A-vertex of G. Recall that N(r) = Na(r) U Na_1(r). We prove
first that d(z) = A for every « € V(G) \ N[r]. Assume to the contrary that there exists
x € V(G)\N[r] withd(z) < A=1.Ifd(z) > A—2 > (n—1)/2,since d(r) = A > (n+3)/2,
we get |[N(r) N N(x)| > d(r) + d(z) — [N(x) UN(r)] > (n+1) — (n —2) = 3. Since
INA(r)| = 2, there exists s € Na_1(r) such that x ~ s. Since G is A-critical, rs is a
critical edge of G. But this gives a contradiction to Theorem 1.4. Thus d(z) < A — 3.
Then for any u € Na(z), there exists s € Na_1(r) such that u ~ s. Since every neighbor
of r from N(r)\ Na(r) has degree A — 1 and d(u) = A, we have u ¢ N(r) \ Na(r).
Again, using that rs is a critical edge of G, we obtain a contradiction to Theorem 1.5.

Assume to the contrary that n is even. We first claim that |N(s) N Na_1(r)] < %
for any s € Na_1(r). Let s € Na_1(r), ¢ € C*(G —75), and X C Na_1[r] be a largest
p-elementary set that contains r and s. By the Parity Lemma, every color from p(X)
is missing at another vertex from V(G) \ X. Since all vertices in V(G) \ Na_1(r) are of
maximum degree, we have |[Na_1(r) \ X| > [(Na_1(r) \ X)| > [p(X)| = |X|+ 1. On
the other hand, we have |[Na_1(r) \ X|+|X \ {r}| = A — 2. Combining the two formulas
above, we get |X| < £52. Thus [p(X)| = |X|+1 < 5. Since ¢ is an edge coloring,
in G — rs, all colors on edges incident with r are distinct and distinct from the color
missing at r. Therefore, there are at most 252 edges rs’ with s’ € N(r) such that ¢(rs’)
is missing at a vertex of G. Those edges include ruq, rug for uy,u; € Na(r), as o(ruq)
and (rug) are missed at vertices from a maximum multifan at r with respect to rs and
. Let Y = {z € N(r) : p(rz) presents at every vertex of G}. Then Y C Na_1(r) and
Y| >A—-1-452> 2 Now to show |[N(s) N Na_1(r)| < 52, it suffices to show that
N(s)NY = 0. For otherwise, if there exists z € N(s)NY, let G; be obtained from G —rs
by deleting all the edges colored by ¢(rz). Then G is still a class 2 graph and r is a light
A(GH)-vertex in Gy, and ¢ € CA~1(G} —rs). However, we have dg, (v) = A(G1) — 1 but
x € Ng,(s) \ Ng, (r), contradicting Theorem 1.4.

Let Na_1(r) = {s1,...,8a_2}, ¢ € CA(G —rs1), and let X be a largest ¢-elementary
set that contains r and s; such that X C Na_;[r]. By the same argument as above,
we have |X| < £2. Since [Na_1(r)| = A — 2, there exists a vertex € Na_1(r) such
that the color 7 = p(rz) is presented at every vertex of G. Let Gy be obtained from G
by deleting all the edges colored by 7. Then G is still a class 2 graph such that r is a
light maximum degree vertex, and ¢ € C2~H(Gy —7s1). As A(G1) = A —1>n/2+ 1,
there exists s* € Ng, (r) with dg, (s*) = A(G1) — 1 such that z ~ s* in G;. Note
that Gy is still a class 2 graph, and ¢, being restricted on G1, is a A(G;)-coloring of
G1. Let F,(r,s1 1 sq : sg) be a maximum typical multifan at » and S be a maximum
P-fan containing F. If s* € V(5), then we obtain a contradiction to Lemma 5.2. Thus
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s* ¢ V(S). Since V(5) is a largest P-fan containing F, there is a V(F')-stable coloring ¢
such that V(S) U {s*} is not ¢-elementary. Since V(S) is p-elementary by the definition
of S, B(s*) € B(S). As for every v € B(S) \ B(r), Fp'(7) and r are (1,7)-linked by
Lemma 2.3(a) and Lemma 5.1(a), we apply a (1,5(s*))-swap at s*. Let ¢(rs*) = 4.

If rs* is a critical edge of G1, then we already reach a contradiction to Theorem 1.4.
Thus, rs* is not a critical edge of G;. We let Go = G1 —rs*. Note that Gy is still a class
2 graph with r € Va(g,)—1 being a light vertex. The coloring ¢, being restricted on Go,
is a A(G2)-coloring of G, and F, (7, s1 : sS4 @ sg) is still a maximum typical multifan at
r. By the choice of ¢ before, we have 3(r) = p(s*) = {1, }.

Since s is adjacent in G5 to at most % vertices from {s1,...,8a_2}, and dg,(s1) >
A — 2, 51 is adjacent in Gy to at least A/2 — 1 vertices from V(G) \ {r,s1,...,5a-2}.
Similarly, dg, (s*) = A(G2)—2 = A—3, s* is adjacent in G» to at most 252 vertices from
{81,...,8a_2}, and s* » r, it follows that s* is adjacent in G to at least A/2—1 vertices
from V(G)\ {r,s1,...,8a—2}. Since A >n/2+ 2, |[V(G) \ {r,s1,...,5a-2}| <n/2 —1.
As 2(A/2 — 1) > n/2, there exists u € (Ng,(s1) N Ngy(s*)) \ {r,s1,...,8a—2}. Since
B(r) =p(s*) = {1, 6}, we obtain a contradiction to Lemma 5.3. O
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