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Let G be a simple graph, and let n, Δ(G) and χ′(G) be the 
order, the maximum degree and the chromatic index of G, 
respectively. We call G overfull if |E(G)|/�n/2� > Δ(G), and 
critical if χ′(H) < χ′(G) for every proper subgraph H of G. 
Clearly, if G is overfull then χ′(G) = Δ(G) + 1 by Vizing’s 
Theorem. The core of G, denoted by GΔ, is the subgraph 
of G induced by all its maximum degree vertices. Hilton and 
Zhao conjectured that for any critical class 2 graph G with 
Δ(G) ≥ 4, if the maximum degree of GΔ is at most two, then 
G is overfull, which in turn gives Δ(G) > n/2 + 1. We show 
that for any critical class 2 graph G, if the minimum degree 
of GΔ is at most two and Δ(G) > n/2 + 1, then G is overfull.

© 2022 Elsevier Inc. All rights reserved.

1. Introduction

We will mainly adopt the notation from the book [13]. Graphs in this paper are simple, 
i.e., finite, undirected, without loops or multiple edges. Let G be a graph. A k-edge-
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coloring of G is a map ϕ: E(G) → {1, 2, . . . , k} that assigns to every edge e of G a color 
ϕ(e) ∈ {1, 2, . . . , k} such that no two adjacent edges receive the same color. Denote by 
Ck(G) the set of all k-edge-colorings of G. The chromatic index χ′(G) is the least integer 
k ≥ 0 such that Ck(G) �= ∅. Denote by Δ(G) the maximum degree of G. In 1960’s, 
Vizing [16] and, independently, Gupta [6] proved that Δ(G) ≤ χ′(G) ≤ Δ(G) + 1. This 
leads to a natural classification of graphs. Following Fiorini and Wilson [4], we say a 
graph G is of class 1 if χ′(G) = Δ(G) and of class 2 if χ′(G) = Δ(G) + 1. Holyer [9]
showed that it is NP-complete to determine whether an arbitrary graph is of class 1.

A graph G is critical if χ′(H) < χ′(G) for every proper subgraph H of G. In in-
vestigating the classification problem, critical graphs are of particular interest. Critical 
graphs of class 2 have rather more structures than arbitrary graphs of class 2, and it 
follows from Vizing’s Theorem that every graph of class 2 contains a critical graph of 
class 2 with the same maximum degree as a subgraph. In this paper, we call a critical 
class 2 graph Δ-critical if Δ(G) = Δ.

Since every matching of G has at most �|V (G)|/2	 edges, χ′(G) ≥ |E(G)|/�|V (G)|/2	. 
A graph G is overfull if |E(G)|/�|V (G)|/2	 > Δ(G). Clearly, if G is overfull then χ′(G) =
Δ(G) + 1 by Vizing’s Theorem, and so G is of class 2. Applying Edmonds’ matching 
polytope theorem, Seymour [12] showed that whether a graph G contains an overfull 
subgraph of maximum degree Δ(G) can be determined in polynomial time. A number 
of outstanding conjectures listed in Twenty Pretty Edge Coloring Conjectures in [13] lie 
in deciding when a Δ-critical graph is overfull.

The core of a graph G, denoted by GΔ, is the subgraph induced by all its maximum 
degree vertices. Vizing [16] proved that if GΔ has at most two vertices then G is class 1. 
Fournier [5] generalized Vizing’s result by showing that if GΔ is acyclic then G is class 
1. Thus a necessary condition for a graph to be class 2 is to have a core that contains 
cycles. A long-standing conjecture of Hilton and Zhao [7] claims that for a connected 
graph G with Δ ≥ 4, if the maximum degree of GΔ is at most two, then G is overfull. 
We [1], along with Guangming Jing, recently confirmed this conjecture, which in turn 
implies Δ(G) > n/2 + 1, where n = |V (G)| is the order of G. In this paper, by imposing 
a condition on the maximum degree of G, we relax the condition Δ(GΔ) ≤ 2, and show 
a result analogous to the Hilton-Zhao Conjecture as follows.

Theorem 1.1. Let G be a Δ-critical graph of order n. If δ(GΔ) ≤ 2 and Δ(G) > n/2 + 1, 
then G is overfull.

By the proof of the Hilton-Zhao Conjecture [1], for Δ ≥ 4, the connected class 2 
graphs with maximum degree Δ and Δ(GΔ) ≤ 2 are Δ-critical with Δ(G) > n/2 + 1. 
Thus, implicitly, Theorem 1.1 is much stronger than the Hilton-Zhao Conjecture, but 
we don’t have a direct proof for that. A graph G is said to be just overfull if |E(G)| =
Δ(G)� 1

2 |V (G)|	 + 1. We hope that the new edge coloring techniques we introduced in 
our proof may shed some light on attacking the Just Overfull Conjecture – Conjecture 
4.23 (page 72) in [13].
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Conjecture 1.2. Let G be a Δ-critical graph of order n. If Δ(G) ≥ n/2, then G is just 
overfull.

Chetwynd and Hilton in 1986 [2,3] made a much stronger conjecture, commonly re-
ferred to as the Overfull Conjecture that for a Δ-critical graph of order n, if Δ(G) > n/3
then G is overfull. Except some very special results [3,8,11], the Overfull Conjecture 
seems untouchable with current edge coloring techniques.

Let G be a graph and H ⊆ G be a subgraph. For v ∈ V (G), N(v) is the set of 
neighbors of v in G and d(v) = |N(v)| is the degree of v in G. Let NH(v) = N(v) ∩V (H)
and dH(v) = |NH(v)|. More generally, for a subset S ⊆ V (G), let NH(S) = ∪v∈SNH(v)
be the neighborhood of S in G that is contained in V (H). For two vertices u and v, we 
write u ∼ v if they are adjacent, and write u � v if otherwise. For a nonnegative integer 
k, a k-vertex is a vertex of degree k. We denote by Vk and Nk(v) the set of all k-vertices, 
repetitively, in V (G) and N(v). Let N [v] = N(v) ∪ {v} and Nk[v] = Nk(v) ∪ {v}. For 
convenience, for any nonnegative integers p and q, let [p, q] = {i ∈ Z : p ≤ i ≤ q}.

A vertex v of a graph G is called light if it is adjacent to at most two Δ(G)-vertices, 
i.e., dGΔ(v) ≤ 2. An edge e of G is critical if χ′(G −e) < χ′(G). Clearly, if G is Δ-critical 
then every edge of G is critical. In a Δ-critical graph, for a light vertex, what can we say 
about its neighbors? The following lemma reveals some of their properties.

Lemma 1.3 (Vizing’s Adjacency Lemma (VAL)). Let G be a class 2 graph with maximum 
degree Δ. If e = xy is a critical edge of G, then x is adjacent to at least Δ − d(y) + 1
Δ-vertices from V (G) \ {y}.

Let G be a Δ-critical graph and r be a light vertex of G. We claim d(s) ≥ Δ − 1 for 
every s ∈ N(r). Otherwise, by VAL, r is adjacent to at least Δ − d(s) + 1 ≥ 3 vertices 
of degree Δ, giving a contradiction. Consequently, we have d(s) = Δ − 1 or d(s) = Δ. 
As Δ ≥ 3 and r is light, we have N(r) = NΔ(r) ∪ NΔ−1(r). We also see that r must 
be adjacent to exactly two Δ-vertices if r is light. These facts will be frequently used 
throughout this paper.

Theorem 1.1 is a consequence of the following three technical results.

Theorem 1.4. Let G be a class 2 graph with maximum degree Δ, r ∈ VΔ be light, and 
s ∈ NΔ−1(r). If rs is a critical edge of G, then all vertices in N(s) \N(r) are Δ-vertices.

Theorem 1.5. Let G be a class 2 graph with maximum degree Δ, r ∈ V (G) be a light 
Δ-vertex and s ∈ NΔ−1(r) such that rs is a critical edge. For every x ∈ V (G) \ N [r], if 
d(x) ≤ Δ − 3, then N(x) ∩ N(s) ⊆ N(r) \ NΔ(r).

Theorem 1.6. Let G be a Δ-critical graph of order n. If Δ > n/2 + 1 and δ(GΔ) ≤ 2, 
then n is odd.



148 Y. Cao et al. / Journal of Combinatorial Theory, Series B 156 (2022) 145–173
Proof of Theorem 1.1. Let G be a Δ-critical graph of order n such that δ(GΔ) ≤ 2
and Δ > n/2 + 1. By Theorem 1.6, n is odd. Let r be a light Δ-vertex of G. Since 
|NΔ−1(r)| = Δ −2, we have 2|E(G)| ≤ nΔ −(Δ −2). Thus to show 2|E(G)| ≥ (n −1)Δ +2
(i.e., G is overfull), we only need to show that all vertices in V (G) \ NΔ−1(r) are Δ-
vertices.

Assume to the contrary that there exists x ∈ V (G) \NΔ−1(r) such that d(x) ≤ Δ −1. 
Since every vertex in N [r] \ NΔ−1(r) is a Δ-vertex, we have x /∈ N [r]. Since n is odd, 
Δ > n/2 + 1 implies Δ ≥ (n + 1)/2 + 1. We first suppose that d(x) ≥ Δ − 2, i.e., 
|N(x)| ≥ (n − 1)/2. Since |NΔ−1(r)| = Δ − 2 ≥ (n − 1)/2 and r /∈ N(x), we conclude 
that N(x) ∩ NΔ−1(r) �= ∅. Let s ∈ N(x) ∩ NΔ−1(r). Since G is Δ-critical, rs is a critical 
edge of G. Applying Theorem 1.4, we get d(x) = Δ, a contradiction. Thus d(x) ≤ Δ − 3. 
Since G is Δ-critical, x has a neighbor u with degree Δ. As Δ ≥ (n + 1)/2 + 1 and 
|NΔ−1(r)| = Δ − 2, we find a vertex s ∈ N(u) ∩ NΔ−1(r). Thus u ∈ N(x) ∩ N(s). Since 
d(u) = Δ and d(x) ≤ Δ − 3, u /∈ N(r) \ NΔ(r). Again, rs is a critical edge of G as G is 
Δ-critical. Applying the contrapositive statement of Theorem 1.5, we get d(x) ≥ Δ − 2, 
which gives a contradiction. �

Theorems 1.4 to 1.6 study some structural properties of vertices outside the neigh-
borhood of a light vertex. The study of structural properties of vertices beyond a given 
neighborhood plays a key role in our proof, and we believe that the technique may be 
useful on tackling other edge coloring problems involving overfull properties.

2. Preliminaries

This section is divided into three subsections. We first give some basic notation and 
terminologies, then define a slightly modified and specific Vizing fan centering at a light 
vertex, and finally we investigate some properties of a Δ-edge-coloring around a light 
vertex.

2.1. Basic notation and terminologies

Let G be a graph with maximum degree Δ, and let e ∈ E(G) and ϕ ∈ CΔ(G − e). 
When we apply some definitions later, we may drop the phrase “w.r.t. ϕ” or surpass the 
coloring symbol ϕ whenever the coloring ϕ is clearly understood.

For a vertex v ∈ V (G), define the two color sets

ϕ(v) = {ϕ(f) : f �= e is incident to v} and ϕ(v) = [1, Δ] \ ϕ(v).

We call ϕ(v) the set of colors present at v and ϕ(v) the set of colors missing at v. If 
|ϕ(v)| = 1, we will also use ϕ(v) to denote the color missing at v.

For a vertex set X ⊆ V (G), define ϕ(X) =
⋃

v∈X ϕ(v) to be the set of missing colors 
of X. The set X is elementary w.r.t. ϕ or simply ϕ-elementary if ϕ(u) ∩ ϕ(v) = ∅ for 
any two distinct vertices u, v ∈ X.
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For a color α, the edge set Eα = {f ∈ E(G) | ϕ(f) = α} is called a color class. Clearly, 
Eα is a matching of G (possibly empty). For two distinct colors α, β, the subgraph of G
induced by Eα ∪ Eβ is a union of disjoint paths and even cycles, which are referred to as 
(α, β)-chains of G w.r.t. ϕ. These chains are also called Kempe-chain. For x, y ∈ V (G), 
if x and y are contained in the same (α, β)-chain with respect to ϕ, we say x and y are 
(α, β)-linked. Otherwise, they are (α, β)-unlinked.

For a vertex v, let Cv(α, β, ϕ) denote the unique (α, β)-chain containing v. If 
Cv(α, β, ϕ) is a path, we just write it as Pv(α, β, ϕ) and simply as Pv(α, β) is ϕ is un-
derstood. The notation Pv(α, β, ϕ) is commonly used when we know |ϕ(v) ∩ {α, β}| = 1. 
If we interchange the colors α and β on an (α, β)-chain C of G, we briefly say that the 
new coloring is obtained from ϕ by an (α, β)-swap on C, and we write it as ϕ/C. This 
operation is called a Kempe change. If C = uv is just an edge, the notation uv : α → β

means to recolor the edge uv that is colored by α using the color β.
Suppose that α, β, γ are three colors such that α ∈ ϕ(x) and β, γ ∈ ϕ(x). An 

(α, β) − (β, γ) swap at x consists of two operations: first swaps colors on Px(α, β, ϕ)
to get a new coloring ϕ′, and then swaps colors on Px(β, γ, ϕ′). When β = α, an (α, α)-
swap is just a vacuous recoloring operation.

For a given path P , a vertex u and an edge uv, we write u ∈ P and uv ∈ P for u ∈ V (P )
and uv ∈ E(P ), respectively. Suppose x ∈ P . For two vertices u, v ∈ Px(α, β, ϕ), if u lies 
between x and v, then we say that Px(α, β, ϕ) meets u before v.

2.2. Modified Vizing fans and Kierstead paths

The fan argument was introduced by Vizing [14,15] in his classic results on the upper 
bounds of chromatic indices. We will use multifans, a generalized version of Vizing fans, 
given by Stiebitz et al. [13], in our proof. To simplify the arguments, we will not include 
maximum degree vertices in our fans except the center vertex.

Definition 2.1. Let G be a graph with maximum degree Δ. For an edge e = rs1 ∈ E(G)
and a coloring ϕ ∈ CΔ(G − e), a multifan centered at r w.r.t. e and ϕ is a sequence 
Fϕ(r, s1 : sp) = (r, rs1, s1, rs2, s2, . . . , rsp, sp) with p ≥ 1 consisting of distinct vertices 
r, s1, s2, . . . , sp and edges rs1, rs2, . . . , rsp satisfying the following condition:

(F1) For every edge rsi with i ∈ [2, p], there exists j ∈ [1, i −1] such that ϕ(rsi) ∈ ϕ(sj),

and none of s1, . . . , sp is a Δ-vertex.

We will simply denote a multifan Fϕ(r, s1 : sp) by F if we do not need to emphasize 
the center r, and the non-center starting and ending vertices. We also notice that if 
Fϕ(r, s1 : sp) is a multifan, then for any integer p∗ ∈ [1, p], Fϕ(r, s1 : sp∗) is also a 
multifan. The following result regarding a multifan can be found in [13, Theorem 2.1].
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Lemma 2.2. Let G be a class 2 graph, e = rs1 be a critical edge and ϕ ∈ CΔ(G − e). If 
Fϕ(r, s1 : sp) is a multifan w.r.t. e and ϕ, then V (F ) is ϕ-elementary.

Suppose that e = rs1 is a critical edge of a class 2 graph G and Fϕ(r, s1 : sp) is a 
multifan w.r.t. e and a coloring ϕ ∈ CΔ(G − e). Given a color α ∈ ϕ(s1), we call a vertex 
s� with � ∈ [2, p] an α-inducing vertex if there exists a subsequence (s�1 , s�2 , . . . , s�k

)
terminated at s�k

= s� such that ϕ(rs�1) = α ∈ ϕ(s1) and for each i ∈ [2, k], ϕ(rs�i
) ∈

ϕ(s�i−1). We also call the above sequence an α-inducing sequence, and a color β ∈ ϕ(s�)
an α-inducing color or a color induced by α. For convention, α itself is also called an 
α-inducing color. Since V (F ) is elementary, every color in ϕ(V (F )\{r}) is induced by a 
color in ϕ(s1).

As a consequence of Lemma 2.2, we have the following linkage properties of vertices 
in a multifan.

Lemma 2.3. Let G be a class 2 graph, e = rs1 be a critical edge and ϕ ∈ CΔ(G − e). 
Then, for every multifan Fϕ(r, s1 : sp), the following three statements hold.

(a) For any color γ ∈ ϕ(r) and any color δ ∈ ϕ(si) with i ∈ [1, p], vertices r and si are 
(γ, δ)-linked w.r.t. ϕ.

(b) For i, j ∈ [1, p], if two colors δ ∈ ϕ(si) and λ ∈ ϕ(sj) are induced by two different 
colors in ϕ(s1), then the corresponding vertices si and sj are (δ, λ)-linked.

(c) For i, j ∈ [1, p], suppose two colors δ ∈ ϕ(si) and λ ∈ ϕ(sj) are induced by the same 
color in ϕ(s1). If si and sj are not (δ, λ)-linked and j > i, then r ∈ Psj

(δ, λ, ϕ).

The proof of Lemma 2.3(a) can be found in [13, Theorem 2.1], and the proof of 
Lemma 2.3(b) and (c) can be found in [1, Lemma 3.2]. All the three proofs go by 
contradiction and argue in the similar way. Suppose the desired linkage does not exist. 
Then we will be able to find a Kempe-chain starting at a vertex of F , containing no 
edges of F , and ending at a vertex outside of V (F ). Swapping the two colors on the 
Kempe-chain gives a new edge coloring ϕ1. A subsequence of F is still a multifan with 
respect to ϕ1 but its vertex set is not ϕ1-elementary, which contradicts Lemma 2.2.

Let G be a class 2 graph, r ∈ V (G) be a light vertex, rs1 ∈ E(G) be a critical edge and 
ϕ ∈ CΔ(G − rs1). Let Fϕ(r, s1 : sp) be a multifan w.r.t. rs1 and ϕ. By VAL, except two 
Δ-vertices, all other neighbors of r are (Δ − 1)-vertices. In particular, d(si) = Δ − 1 for 
all i ∈ [1, p]. Hence, |ϕ(s1)| = 2 and |ϕ(si)| = 1 for each i ∈ [2, p]. Assume without loss 
of generality ϕ(s1) = {2, Δ}. Then, all 2-inducing vertices form a 2-inducing sequence 
and all Δ-inducing vertices form a Δ-inducing sequence. By relabeling if necessary, we 
assume (s2, . . . , sα) is a 2-inducing sequence and (sα+1, . . . , sp) is a Δ-inducing sequence 
for some α ∈ [1, p], where we define (s2, . . . , sα) to be the empty sequence if α < 2. We 
call a multifan typical at a light vertex r, denoted by Fϕ(r, s1 : sα : sβ), if 1 ∈ ϕ(r), 
ϕ(s1) = {2, Δ} and either |V (F )| = 2 or |V (F )| ≥ 3 with the following two conditions.
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r

s1

s2

sα
sα+1

sβ

u1 u2

2
α Δ

β

α + 1 β + 1

Fig. 1. A typical multifan Fϕ(r, s1 : sα : sβ) at a light vertex r, where ϕ(r) = 1 and ϕ(s1) = {2, Δ}.

(1) (s2, . . . , sα) is a 2-inducing sequence and (sα+1, . . . , sβ) is a Δ-inducing sequence of 
F .

(2) For each i ∈ [2, β], ϕ(rsi) = i and ϕ(si) = i + 1 except when i = α + 1 ∈ [3, β]. In 
this case, ϕ(rsα+1) = Δ and ϕ(sα+1) = α + 2.

A typical multifan at a light vertex r is depicted in Fig. 1.
By relabeling vertices and colors if necessary, every multifan centered at a light vertex 

r is corresponding to a typical multifan at r on the same vertex set. Thus in this paper, 
we assume all multifans at r are typical.

We close this subsection with Kierstead paths, which were introduced by Kierstead [10]
in his work on edge colorings of multigraphs.

Definition 2.4. Let G be a graph, e = v0v1 ∈ E(G), and ϕ ∈ CΔ(G −e). A Kierstead path
w.r.t. e and ϕ is a sequence K = (v0, v0v1, v1, v1v2, v2, . . . , vp−1, vp−1vp, vp) with p ≥ 1
consisting of distinct vertices v0, v1, . . . , vp and edges v0v1, v1v2, . . . , vp−1vp satisfying the 
following condition:

(K1) For every edge vi−1vi with i ∈ [2, p], there exists j ∈ [0, i −2] such that ϕ(vi−1vi) ∈
ϕ(vj).

Clearly a Kierstead path with at most three vertices is a multifan. So we consider 
Kierstead paths with four vertices and restrict on its simple graph version. The following 
lemma was proved in Theorem 3.3 from [13].

Lemma 2.5. Let G be a class 2 graph, e = v0v1 ∈ E(G) be a critical edge, and K =
(v0, v0v1, v1, v1v2, v2, v2v3, v3) be a Kierstead path w.r.t. e and a coloring ϕ ∈ CΔ(G − e). 
If min{dG(v1), dG(v2)} < Δ, then V (K) is ϕ-elementary.
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Let G be a class 2 graph of maximum degree Δ, e be a critical edge and ϕ ∈ CΔ(G −e). 
Let T be a sequence of vertices and edges of G. We denote by V (T ) and E(T ) the set 
of vertices and the set of edges that are contained in T , respectively. For simplicity, we 
write ϕ(T ) for ϕ(V (T )). If V (T ) is ϕ-elementary, then for a color τ ∈ ϕ(T ), we denote 
by ϕ−1

T (τ) the unique vertex in V (T ) at which τ is missing. A coloring ϕ′ ∈ CΔ(G − e)
is called T -stable w.r.t. ϕ if ϕ′(x) = ϕ(x) for every vertex x ∈ V (T ) and ϕ′(f) = ϕ(f)
for every edge f ∈ E(T ). Clearly, ϕ is T -stable w.r.t. itself.

Let F = Fϕ(r, s1 : sα : sβ) be a typical multifan w.r.t. e = rs1 and ϕ ∈ CΔ(G − rs1). 
By the definition above, if ϕ′ is F -stable, then F is also a typical multifan w.r.t. e and 
ϕ′. Let γ, δ ∈ [1, Δ] be two colors and P be a (γ, δ)-path. If E(P ) ∩ E(F ) = ∅ and 
neither endvertices of P is in V (F ), then Kempe change ϕ/P gives an F -stable coloring. 
Applying Lemma 2.3, we have the following results on stable coloring, which will be used 
heavily in our proofs.

Lemma 2.6. Let G be a class 2 graph and F = Fϕ(r, s1 : sα : sβ) be a typical multifan 
w.r.t. a light vertex r, critical edge rs1, and a coloring ϕ ∈ CΔ(G − rs1). For any color 
γ ∈ ϕ(F ) and x /∈ V (F ), the following statements hold.

• the Kempe change ϕ/Px(1, γ, ϕ) gives an F -stable coloring provided ϕ(x) ∩{1, γ} �= ∅.
• if γ is 2-inducing, then the Kempe change ϕ/Px(γ, Δ, ϕ) gives an F -stable coloring 

provided r /∈ Px(γ, Δ, ϕ) and ϕ(x) ∩ {γ, Δ} �= ∅; and
• if γ is Δ-inducing, then the Kempe change ϕ/Px(2, γ, ϕ) gives an F -stable coloring 

provided r /∈ Px(γ, 2, ϕ) and ϕ(x) ∩ {γ, 2} �= ∅.

2.3. τ -sequence, rotation, and shifting

Throughout this subsection, we assume that G is a class 2 graph, r ∈ V (G) is a light 
vertex, e = rs1 ∈ E(G) is a critical edge of G and ϕ ∈ CΔ(G − e). We also assume that 
NΔ(r) = {u1, u2} and NΔ−1(r) = {s1, . . . , sq}, where q = d(r) − 2. Furthermore, we 
assume that F = Fϕ(r, s1 : sα : sβ) is a typical multifan at r. Since |ϕ(si)| = 1 for each 
i ∈ [2, q], for notation convenience, we also use ϕ(si) to denote the color that is missing 
at si.

We call F a maximum multifan at r if |V (F )| is maximum over all colorings in CΔ(G −
e) and all multifans centered at r. Clearly, if F is maximum, then colors α + 1 and β + 1
are assigned to edges ru1 and ru2, respectively, i.e., α+1, β +1 /∈ {ϕ(rsβ+1), . . . , ϕ(rsq)}
(see Fig. 1).

Definition 2.7. For a color τ /∈ ϕ(F ), a τ -sequence is a sequence of distinct vertices 
(v1, v2, . . . , vt) with vi ∈ {sβ+1, . . . , sq} such that ϕ(rv1) = τ , and the following three 
conditions are satisfied.

(i) {v1, . . . , vt−1} is elementary and ϕ(vi) /∈ ϕ(F ) for each i ∈ [1, t − 1];
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Fig. 2. A rotation in the neighborhood of r.

(ii) ϕ(rvi) = ϕ(vi−1) for each i ∈ [2, t]; and
(iii) There are three possibilities for ϕ(vt): (A) ϕ(vt) = τ , (B) ϕ(vt) ∈ ϕ(F ), or (C) 

ϕ(vt) = ϕ(vi) for some i ∈ [1, t − 1]. Accordingly, we name the τ -sequence type A, 
type B, and type C, respectively, where a type A sequence is also called a rotation.

An example of a rotation is given in Fig. 2, where τi = ϕ(vi−1) for each i ∈ [2, t].

Lemma 2.8. If F is maximum, then for any color τ /∈ ϕ(F ), there is a unique τ -sequence.

Proof. Since τ /∈ ϕ(r), there is a vertex s ∈ N(r) such that ϕ(rs) = τ . Since F is 
maximum, we have α + 1, β + 1 ∈ {ϕ(ru1), ϕ(ru2)}, and so s /∈ {u1, u2} =: NΔ(r). Since 
ϕ(rsi) ∈ ϕ(F ) for all i ∈ [2, β], s = v1 for some v1 ∈ {sβ+1, . . . , sq}, where we recall 
q = d(r) − 2.

Starting with a singleton sequence (v1), let (v1, . . . , vt−1) be a longest sequence of 
vertices in N(r) \ V (F ) satisfying the following two conditions:

(i) {v1, . . . , vt−1} is elementary and ϕ(vi) /∈ ϕ(F ) for each i ∈ [1, t − 1]; and
(ii) ϕ(rvi) = ϕ(vi−1) for each i ∈ [2, t − 1].

Let vt be a vertex in N(r) such that ϕ(rvt) = ϕ(vt−1). Since ϕ(vt−1) /∈ ϕ(F ), 
vt ∈ {sβ+1, . . . , sq}. If vt = v1, then (v1, . . . , vt−1) is a τ -sequence of type A. Thus we 
assume that vt �= v1, i.e., ϕ(vt−1) �= τ . Since ϕ(vt−1) �= ϕ(vi) for all i ∈ [1, t − 2], 
vt /∈ {v2, . . . , vt−1}. Hence vt �= vi for each i ∈ [1, t − 1]. By the maximality of 
(v1, . . . , vt−1), ϕ(vt) can only have three possibilities, (A), (B) or (C), as listed in condi-
tion (iii) of Definition 2.7.

Moreover, since each |ϕ(si)| = 1 for all i ∈ [β +1, q], the sequence above is unique. �
Lemma 2.9. If F is maximum, then for any color τ /∈ ϕ(F ), r ∈ Ps1(τ, Δ) and r ∈
Ps1(2, τ).
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Proof. We only show r ∈ Ps1(τ, Δ) since the proof for the other case is symmetric. 
Suppose to the contrary that r /∈ Ps1(τ, Δ). Let ϕ(rv1) = τ for v1 ∈ {sβ+1, . . . , sq}
and (v1, . . . , vt) be the τ -sequence by Lemma 2.8. Let ϕ′ = ϕ/Cr(τ, Δ). Notice that 
under the coloring ϕ′, ϕ′(rv1) = Δ and ϕ′(rsα+1) = τ , and the color on each edge 
from E(F ) \ {rsα+1} and the missing color on each vertex of F are the same as the 
corresponding colors under ϕ. Hence, F ′ = (r, rs1, s1, . . . , rsα, sα, rv1, v1, . . . , rvt, vt) is a 
multifan w.r.t. e and ϕ′.

We consider three cases according to the type of this τ -sequence: type A, type B, 
or type C with respect to the coloring ϕ. We note that if ϕ′(vt) = τ , then, due to 
ϕ′(rsα+1) = τ , F ′ can be extended to a larger multifan:

F ∗ = (r, rs1, s1, . . . , rsα, sα, rv1, v1, . . . , rvt, vt, rsα+1, sα+1, . . . , rsβ , sβ)

which is also larger than F , giving a contradiction to the maximality of F . We will use 
F ′ and F ∗ to lead a contradiction in our proof.

Type A: In this case ϕ(vt) = τ . If Cr(τ, Δ, ϕ) �= Pvt
(τ, Δ, ϕ), then ϕ′(vt) = τ , and so 

F ∗ is a multifan w.r.t. e and ϕ′, giving a contradiction. Thus Cr(τ, Δ, ϕ) = Pvt
(τ, Δ, ϕ), 

which in turn gives ϕ′(vt) = Δ. In this case, Δ ∈ ϕ′(s1) ∩ ϕ′(vt), and so F ′ is not 
elementary, giving a contradiction.

Type B: In this case ϕ(vt), denoted by γ, is in ϕ(F ). If γ ∈ ϕ({r, s1, . . . , sα}) and 
γ �= Δ, then F ′ is not elementary, giving a contradiction. Thus, we have either γ = Δ
or γ ∈ ϕ({sα+1, . . . , sβ}).

Assume first that γ �= Δ. Let γ = ϕ(sj) for some j ∈ [α + 1, β]. Since Pr(1, γ, ϕ) =
Psj

(1, γ, ϕ) and 1, γ /∈ {τ, Δ}, we still have Pr(1, γ, ϕ′) = Pr(1, γ, ϕ) = Psj
(1, γ, ϕ′). 

Let ϕ′′ = ϕ′/Pvt
(1, γ, ϕ′). Under ϕ′′, F ′ is also a multifan. However, color 1 ∈ ϕ′′(r) ∩

ϕ′′(vt), giving a contradiction to V (F ′) being elementary. Thus γ = Δ. If Cr(τ, Δ, ϕ) =
Pvt

(τ, Δ, ϕ), then ϕ′(vt) = τ , which in turn shows that F ∗ is a multifan w.r.t. e and ϕ′, 
a contradiction. Thus Cr(τ, Δ, ϕ) �= Pvt

(τ, Δ, ϕ). So ϕ′(vt) = Δ, which in turn shows 
that F ′ is not elementary since Δ is also in ϕ′(s1), a contradiction.

Type C: Suppose ϕ(vt) = ϕ(vi−1) = τi for some i ∈ [2, t] and some τi ∈ [1, Δ] \ ϕ(F ). 
Note that one of vi−1 and vt is (1, τi)-unlinked with r. By doing a (1, τi)-swap at a vertex 
in {vi−1, vt} that is (1, τi)-unlinked with r, we convert this case to the Type B case. �

Note that under the condition of Lemma 2.9, if P is a (2, τ)- or (τ, Δ)-chain disjoint 
from Ps1(2, τ) or Ps1(τ, Δ), then we also have r /∈ P , and so the Kempe change ϕ/P

gives an F -stable coloring.

Definition 2.10. Let h, � ∈ [1, q]. The shifting from sh to s� is a recoloring operation 
rsi : ϕ(rsi) → ϕ(si) for all i ∈ [h, �], i.e., replacing the current color on the edge rsi

with the missing color at si for all i ∈ [h, �].
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We apply shiftings when the sequence (sh, . . . , s�) forms a rotation or is a type B 
τ -sequence, where τ = ϕ(rsh), such that ϕ(s�) = 1. Since 1 ∈ ϕ(r), we obtain another Δ-
edge coloring in both cases. We do not know whether a shifting can be achieved through a 
sequence of Kempe changes. So, in this paper, “Kempe changes” do not include “shifting”. 
In the proof, we sometimes use the following weaker version of “stable” coloring.

Definition 2.11. A coloring ϕ′ ∈ CΔ(G − rs1) is V (F − r)-stable (w.r.t. F and ϕ) if V (F )
is the vertex set of a multifan Fϕ′ at r w.r.t. rs1 and ϕ′, ϕ′(s1) = ϕ(s1) = {2, Δ}, and 
ϕ′(V (Fϕ′) \ {r}) = ϕ(V (F ) \ {r}). Moreover, a V (F − r)-stable coloring ϕ′ is called 
V (F )-stable if ϕ′(r) = ϕ(r).

Lemma 2.12. For any color γ ∈ ϕ(F ) and a vertex x ∈ V (G) \ V (F ), the following two 
statements hold.

• if γ is 2-inducing, then the Kempe change ϕ/Px(γ, Δ, ϕ) gives a V (F )-stable coloring 
provided ϕ(x) ∩ {γ, Δ} �= ∅, and

• if γ is Δ-inducing, then the Kempe change ϕ/Px(2, γ, ϕ) gives a V (F )-stable coloring 
provided ϕ(x) ∩ {γ, 2} �= ∅.

Proof. By symmetry, we only prove the first statement. If r /∈ Px(γ, Δ, ϕ), we are done 
by Lemma 2.6. Assume r ∈ Px(γ, Δ, ϕ). Since ϕ(x) ∩ {γ, Δ} �= ∅, Px(γ, Δ, ϕ) is disjoint 
from Ps1(γ, Δ, ϕ) = Pϕ−1

F (γ)(γ, Δ, ϕ). Let ϕ′ = ϕ/Px(γ, Δ, ϕ). Note that ϕ(rsα+1) = Δ. 
Let si = ϕ−1

F (γ) for some i ∈ [1, α]. We have ϕ′(rsα+1) = γ and ϕ′(rsi) = Δ. So,

F ′ = (r, rs1, s1, rs2, . . . , rsi−1, si−1, rsα+1, sα+1, . . . , sβ , rsi, . . . , sα)

is a multifan w.r.t. rs1 and ϕ′. Clearly, ϕ′(s1) = ϕ(s1) = {2, Δ} and ϕ′(V (F ′)) =
ϕ(V (F )). Hence, ϕ′ is V (F )-stable. �

Let τ ∈ [1, Δ] \ ϕ(F ) and (v1, v2, . . . , vt) be the τ -sequence at r. If the τ -sequence is 
of type A, the shifting of this sequence yields a coloring in CΔ(G − e), which is F -stable. 
We call such an operation an A-shifting. If the τ -sequence is of type B and satisfies 
ϕ(vt) = 1, the shifting of this sequence yields a coloring ϕ′ ∈ CΔ(G − e) with ϕ′(r) = τ , 
which is V (F − r)-stable. We call such an operation a B-shifting.

Let P be a (τ, ∗)-chain with endvertices x and y, where ∗ represents any color from 
[1, Δ] \ {τ}. Suppose that rv1 ∈ E(P ) and x, y /∈ {v1, . . . , vt}. If either the A-shifting or 
the B-shifting is eligible, we do it and obtain a new coloring ϕ′. Notice that ϕ′(v1) = τ . 
So, either Px(τ, ∗, ϕ′) = Pv1(τ, ∗, ϕ′) or Py(τ, ∗, ϕ′) = Pv1(τ, ∗, ϕ′) but not both. Conse-
quently, x and y are (τ, ∗)-unlinked w.r.t. coloring ϕ′. We will use this “unlink” technique 
in the following lemma. In the proofs, we may need to preserve some colors at a vertex, 
which leads to the following definition.
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Definition 2.13. Given a set S of colors, a coloring ϕ′ is called S-avoiding (w.r.t. ϕ) if 
every Kempe change applied in obtaining ϕ′ from coloring ϕ does not involve any color 
from S.

In the following lemma, whenever Px(τ, Δ) or Px(2, τ) is used, it implicitly implies 
that one of the two colors from τ and Δ or from 2 and τ is missing at x.

Lemma 2.14. Suppose F is a maximum multifan, N [r] �= V (G) and ϕ(F ) �= [1, Δ]. For 
any vertex x ∈ V (G) \ N [r] and any color τ ∈ [1, Δ] \ ϕ(F ) with ϕ(x) ∩ {τ, Δ} �= ∅, the 
following statements hold.

(i) If τ ∈ ϕ(x), then there is an F -stable coloring ϕ′ ∈ CΔ(G −rs1) such that 1 ∈ ϕ′(x).
(ii) If τ ∈ ϕ(x), then there exists an F -stable and {Δ}-avoiding coloring ϕ′ such that 

1 ∈ ϕ′(x) unless the τ -sequence (v1, . . . , vt) with respect to ϕ is of type B and 
ϕ(vt) = Δ.

(iii) Suppose r ∈ Ps1(τ, Δ, ϕ′) = Px(τ, Δ, ϕ′) for every F -stable and {τ, Δ}-avoiding 
coloring ϕ′. Then the τ -sequence (v1, . . . , vt) with respect to ϕ is of type B with 
ϕ(vt) = Δ.

(iv) Suppose r ∈ Ps1(τ, Δ, ϕ′) = Px(τ, Δ, ϕ′) for every F -stable and {2, τ, Δ}-avoiding 
coloring ϕ′. Then the τ -sequence (v1, . . . , vt) with respect to ϕ is of type B with 
ϕ′(vt) ∈ {2, Δ}.

(v) Suppose r ∈ Ps1(τ, Δ, ϕ′) = Px(τ, Δ, ϕ′) and r ∈ Ps1(2, τ, ϕ′) = Px(2, τ, ϕ′) for 
every V (F )-stable coloring ϕ′ with 1, τ ∈ ϕ′(x). Then the τ -sequence (v1, . . . , vt)
with respect to ϕ is of type B with ϕ(vt) = 1.

(vi) Suppose r ∈ Ps1(τ, Δ, ϕ′) = Px(τ, Δ, ϕ′) for every V (F )-stable and {1, τ, Δ}-
avoiding coloring ϕ′. Then we can modify ϕ into a V (F )-stable and {1, τ, Δ}-
avoiding coloring ϕ∗ such that the τ -sequence (v1, . . . , vt) with respect to ϕ∗ is of 
type B in which ϕ∗(vt) is in {1, Δ} or is 2-inducing.

(vii) Suppose r ∈ Ps1(2, τ, ϕ′) = Px(2, τ, ϕ′) for every V (F )-stable and {1, τ, Δ}-avoiding 
coloring ϕ′. Then we can modify ϕ into a V (F )-stable and {1, τ, Δ}-avoiding color-
ing ϕ∗ such that the τ -sequence (v1, . . . , vt) with respect to ϕ∗ is of type B in which 
ϕ∗(vt) is in {1, Δ} or is 2-inducing.

Proof. Let (v1, . . . , vt) be the τ -sequence with respect to ϕ. We will apply either an 
A-shifting or a B-shifting on (v1, . . . , vt) to cutoff the linkage between either x and r or 
x and s1 by the remark prior to Definition 2.13. We show the statements by considering 
the type of the τ -sequence (v1, . . . , vt) one by one.

Assume first that (v1, . . . , vt) is of type A. We prove (i) and (ii) together. For (i), we 
may assume that x and r are (1, τ)-linked for every F -stable ϕ′, since otherwise we just 
apply a (1, τ)-swap at x to get a desired coloring. For (ii), we may assume that x and r
are (1, τ)-linked for every F -stable and {Δ}-avoiding ϕ′, since otherwise we just apply 
a (1, τ)-swap at x to get a desired coloring. Thus vt and r are (1, τ)-unlinked and so we 
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apply a (1, τ)-swap at vt, and then apply a B-shifting from v1 to vt to obtain a coloring 
ϕ′. Let ϕ′′ be obtained from ϕ′ by renaming τ as 1 and vice versa. Then ϕ′′ is F -stable 
and it is a desired coloring for both (i) and (ii). For each of (iii) to (vii), by applying 
the A-shifting on (v1, . . . , vt), we cutoff the linkage between x and s1 and so obtain a 
contradiction to the assumptions of the statements.

Assume now that (v1, . . . , vt) is of type B. Let ϕ(vt) = γ ∈ ϕ(F ). Recall that r and 
ϕ−1

F (γ) are (1, γ)-linked by Lemma 2.3(a). For (i), we simply apply a (1, γ)-swap at vt

and then apply a shifting from v1 to vt. Then by renaming τ as 1 and vice versa, we 
obtain an F -stable coloring ϕ′ such that color 1 is missing at x. For (ii), we repeat 
exactly the same argument as for (i) unless γ = Δ. For Statements (iii) and (iv), we 
suppose by contradiction that the corresponding conclusion does not hold. We simply 
apply a (1, γ)-swap at vt, apply a shifting from v1 to vt, and then rename τ as 1 and vice 
versa. Denote the resulting coloring by ϕ′. For (iii), ϕ′ is F -stable and {τ, Δ}-avoiding 
but Ps1(τ, Δ, ϕ′) �= Px(τ, Δ, ϕ′), a contradiction. For (iv), ϕ′ is F -stable and {2, τ, Δ}-
avoiding but Ps1(τ, Δ, ϕ′) �= Px(τ, Δ, ϕ′), a contradiction. We show (v) now. We may 
assume that γ �= 1 and γ is 2-inducing by the symmetry between 2 and Δ. Since s1

and ϕ−1
F (γ) are (γ, Δ)-linked by Lemma 2.3(b), we first apply a (γ, Δ)-swap at vt. The 

resulting coloring ϕ′ is V (F )-stable and 1, τ ∈ ϕ′(x), so we still have r ∈ Ps1(τ, Δ, ϕ′) =
Px(τ, Δ, ϕ′). Now we apply a (τ, Δ)-swap at vt to get a new coloring ϕ′′. The coloring ϕ′′

is still V (F )-stable satisfying 1, τ ∈ ϕ′′(x). However, the sequence (v1, . . . , vt) is of type 
A with respect to ϕ′′, and so we can reach a contradiction as in the first case. For (vi) and 
(vii), we are done if γ is 1 or Δ or 2-inducing. If γ is Δ-inducing, we apply a (2, γ)-swap 
at vt. The resulting coloring is V (F )-stable by Lemma 2.12 and is {1, τ, Δ}-avoiding. 
Now the missing color of vt is a 2-inducing color, as desired.

Assume finally that (v1, . . . , vt) is of type C. That is, ϕ(vt) = ϕ(vi−1) = τi for some 
i ∈ [2, t] and some τi ∈ [1, Δ] \ ϕ(F ). We show that under the assumption of each 
statement, we can reduce this sequence into a type B τ -sequence with respect to an F -
stable coloring. For each of (i) to (iv), since one of vi−1 and vt is (1, τi)-unlinked with r, 
we apply a (1, τi) swap at a vertex in {vi−1, vt} that is (1, τi)-unlinked with r, resulting 
in a type B τ -sequence (v1, . . . , vi−1) or (v1, . . . , vt) such that the color 1 is missing at 
the last vertex of the sequence. For (i) and (ii), we can find a desired coloring as in type 
B case; and for (iii) and (iv), we obtain a contradiction as in type B case. For (v), since 
τi ∈ [1, Δ] \ ϕ(F ), by Lemma 2.9, r ∈ Ps1(τi, Δ). Since one of vi−1 and vt is (τi, Δ)-
unlinked with r, we apply a (τi, Δ)-swap at a vertex in {vi−1, vt} that is (τi, Δ)-unlinked 
with r, resulting in a type B τ -sequence (v1, . . . , vi−1) or (v1, . . . , vt) such that the color 
Δ is missing at the last vertex of the sequence. Then we can obtain a contradiction as in 
the type B case. For (vi) and (vii), since τi ∈ [1, Δ] \ ϕ(F ), by Lemma 2.9, r ∈ Ps1(2, τi). 
Since one of vi−1 and vt is (2, τi)-unlinked with r, we apply a (2, τi)-swap at a vertex in 
{vi−1, vt} that is (2, τi)-unlinked with r, resulting in a type B τ -sequence (v1, . . . , vi−1)
or (v1, . . . , vt). �
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3. Proof of Theorem 1.4

Theorem 1.4. Let G be a class 2 graph with maximum degree Δ, r ∈ VΔ be light, and 
s ∈ NΔ−1(r). If rs is a critical edge of G, then all vertices in N(s) \N(r) are Δ-vertices.

Proof. Assume to the contrary that there exists x ∈ N(s) \N(r) with d(x) < Δ. Clearly, 
x �= r. Denote s by s1. Let ϕ ∈ CΔ(G − rs1) and assume the corresponding multifan F
w.r.t. rs1 is maximum and typical.

We claim that there is an F -stable coloring such that color 1 is missing at x. To see 
this, let τ ∈ ϕ(x). If τ ∈ ϕ(F ), then ϕ−1

F (τ) and r are (1, τ)-linked by Lemma 2.3(a). 
So, Px(1, τ) does not contain any edge of F and does not end at any vertex in F . Hence 
ϕ/Px(1, τ) is F -stable such that color 1 is missing at x. We assume that τ /∈ ϕ(F ). By 
Lemma 2.14(i), there is an F -stable coloring such that color 1 is missing at x. So the 
claim is true and we may assume 1 ∈ ϕ(x).

Let ϕ(s1x) = τ . If τ ∈ ϕ(F ), we may assume it is 2-inducing. Since ϕ−1
F (τ) and r are 

(1, τ)-linked by Lemma 2.3(a), we apply a (1, τ)-swap at x and get an F -stable coloring. 
We then apply a (τ, Δ)-swap at x and get a new coloring ϕ′. Since τ is 2-inducing, it 
follows that s1 and ϕ−1

F (τ) are (τ, Δ)-linked, and Δ is still missing at s1. We see that 
F ∗ = (r, rs1, s1, s1x, x) is a multifan w.r.t. ϕ′. However, we have Δ ∈ ϕ′(s1) ∩ ϕ′(x), 
contradicting V (F ∗) being elementary. Thus we assume that τ /∈ ϕ(F ). We apply a 
(1, Δ)-swap at x and get an F -stable coloring ϕ′. Then Ps1(τ, Δ, ϕ′) = s1x does not 
contain vertex r, showing a contradiction to Lemma 2.9. �
4. Proof of Theorem 1.5

In this section, we let G be a class 2 graph with maximum degree Δ, rs1 ∈ E(G) be 
a critical edge with r being a light vertex and s1 ∈ NΔ−1(r), and let x ∈ V (G) \ N [r]
with d(x) ≤ Δ − 2.

Theorem 1.5. If d(r) = Δ and d(x) ≤ Δ − 3, then N(x) ∩ N(s1) ⊆ N(r) \ NΔ(r).

The proof of Theorem 1.5 is based on the following three lemmas whose proofs will 
be given in the following three subsections, respectively. Let ϕ ∈ CΔ(G − rs1) and F
be a typical multifan w.r.t. rs1 and ϕ. We additionally assume that F is a maximum 
multifan w.r.t. edge rs1.

Lemma 4.1. Suppose that r is a Δ-vertex and u ∈ N(s1) ∩ N(x) with u /∈ N(r) \ NΔ(r). 
Then there is no V (F )-stable coloring ϕ1 such that ϕ1(ux) = Δ and {1, 2} ⊆ ϕ1(x) or 
ϕ1(ux) = 2 and {1, Δ} ⊆ ϕ1(x).

Lemma 4.2. Suppose that r is a Δ-vertex and u ∈ N(s1) ∩ N(x) with u /∈ N(r) \ NΔ(r). 
Then there is no V (F )-stable coloring ϕ1 such that ϕ1(s1u) = 1 and {2, Δ} ⊆ ϕ1(x).
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By relaxing the condition d(r) = Δ to d(r) ≥ Δ − 1, we have the following results.

Lemma 4.3. Under the assumption d(r) ≥ Δ − 1, the following statements hold.

(i) Assume dG(x) ≤ Δ − 3. If there is a V (F )-stable coloring ϕ such that 1 ∈ ϕ(x), 
then there is a V (F )-stable coloring ϕ1 such that {2, Δ} ⊆ ϕ1(x).

(ii) If there is a V (F )-stable coloring ϕ such that {2, Δ} ⊆ ϕ(x), then there is a V (F )-
stable coloring ϕ1 such that ϕ1(ux) ∈ {2, Δ} and 1 ∈ ϕ1(x). Furthermore, we can 
choose ϕ1 such that if ϕ1(s1u) is 2-inducing, then ϕ1(ux) = Δ; and if ϕ1(s1u) is 
Δ-inducing, then ϕ1(ux) = 2.

(iii) If there is a V (F )-stable coloring ϕ such that ϕ(ux) ∈ {2, Δ} and 1 ∈ ϕ(x), where 
ϕ(ux) = Δ if ϕ(s1u) is 2-inducing, and ϕ(ux) = 2 if ϕ(s1u) is Δ-inducing, then 
there is a V (F )-stable coloring ϕ1 such that ϕ1(s1u) = 1 and {2, Δ} ∩ ϕ1(x) �= ∅.

(iv) Assume dG(x) ≤ Δ − 3. If there is a V (F )-stable coloring ϕ such that ϕ(s1u) = 1
and {2, Δ} ∩ϕ(x) �= ∅, then there is a V (F )-stable coloring ϕ1 such that ϕ1(s1u) = 1
and {2, Δ} ⊆ ϕ1(x).

Lemma 4.3 describes a process of modifying ϕ into a V (F )-stable coloring ϕ1 such that 
ϕ1(s1u) = 1 and {2, Δ} ⊆ ϕ1(x), which in turn gives a contradiction to Lemma 4.2. We 
list the processes as separate statements as some of them will be applied independently 
in the last section also.

Proof of Theorem 1.5. Let NΔ−1(r) = {s1, s2, . . . , sΔ−2}. Suppose to the contrary that 
there is a vertex u ∈ V (G) such that u /∈ N(r) \ NΔ(r) and u is adjacent to both x

and s1. Then u /∈ {r, s1, . . . , sΔ−2} since x /∈ N(r). Following the notation given at the 
beginning of this section, we let ϕ ∈ CΔ(G − rs1), and F be a typical multifan w.r.t. rs1
and ϕ. We also assume that F is a maximum multifan w.r.t. rs1.

We claim that there exists a V (F )-stable coloring ϕ′ such that 1 ∈ ϕ′(x). Let τ ∈ ϕ(x). 
If τ ∈ ϕ(F ), then by Lemma 2.6, the Kempe change ϕ/Px(1, τ, ϕ) gives an F -stable 
coloring ϕ′. Clearly, 1 ∈ ϕ′(x). Thus, we assume that τ ∈ [1, Δ] \ϕ(F ). By Lemma 2.14(i), 
there is an F -stable coloring ϕ′ such that 1 ∈ ϕ′(x). Now applying Lemma 4.3(i)-(iv), we 
can modify ϕ′ into a V (F )-stable coloring ϕ1 such that ϕ1(s1u) = 1 and {2, Δ} ⊆ ϕ1(x). 
This gives a contradiction to Lemma 4.2. �
4.1. Proof of Lemma 4.1

By symmetry, we only prove the first part of the conclusion. Suppose to the contrary 
that there is a V (F )-stable coloring ϕ1 such that ϕ1(ux) = Δ and {1, 2} ⊆ ϕ1(x). Notice 
that 1 ∈ ϕ1(r) ∩ ϕ1(x) and 2 ∈ ϕ1(s1) ∩ ϕ1(x). Let τ = ϕ1(s1u).

Consider first that τ ∈ ϕ1(F ). If τ = 1, then ϕ1(s1u) ∈ ϕ1(r) and ϕ1(ux) = Δ ∈
ϕ1(s1), and so K = (r, rs1, s1, s1u, u, ux, x) is a Kierstead path. Since d(s1) = Δ − 1, 
V (K) is elementary by Lemma 2.5, showing a contradiction to 2 ∈ ϕ1(x) ∩ ϕ1(s1). So, 
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τ �= 1. We claim that τ is Δ-inducing. Suppose to the contrary that τ is 2-inducing. 
We let ψ = ϕ1/Px(1, τ, ϕ1). By Lemma 2.6, ψ is F -stable. If s1u /∈ Px(1, τ, ϕ1), then 

ψ(s1u) = τ , and so Ps1(τ, Δ, ψ) = s1ux, contradicting that s1 and ψ
−1
F (τ) are (τ, Δ)-

linked (Lemma 2.3(b)). If s1u ∈ Px(1, γ, ϕ1), then ψ(s1u) = 1 ∈ ψ(r) and ψ(ux) =
Δ ∈ ψ(s1), so under ψ, K = (r, rs1, s1, s1u, u, ux, x) is a Kierstead path with d(s1) =
Δ − 1 < Δ, but 2 is missing at both s1 and x, showing a contradiction to V (K) being 
elementary (Lemma 2.5). Thus τ is Δ-inducing. We apply (Δ, 1) − (1, 2)-swaps at x and 
get an F -stable coloring ϕ′ (Lemma 2.6). Notice that ϕ′(ux) = 2 and {1, Δ} ⊆ ϕ′(x). 
This gives back to the previous case by the symmetry between 2 and Δ, which leads to 
a contradiction. Thus, τ ∈ [1, Δ] \ ϕ1(F ).

Since F is a maximum multifan, by Lemma 2.8 there is a unique τ -sequence 
(v1, . . . , vt). We claim that s1u ∈ Px(1, τ, ϕ1) = Pr(1, τ, ϕ1). Otherwise, let ϕ′ =
ϕ1/Px(1, τ, ϕ1). Clearly, τ ∈ ϕ′(x). If s1u /∈ Px(1, τ, ϕ1), then Ps1(τ, Δ, ϕ′) = s1ux. 
In this case, if Px(1, τ, ϕ1) did not end at r, then ϕ′ is F -stable, which in turn gives 
r ∈ Ps1(τ, Δ, ϕ′) = s1ux by Lemma 2.9, a contradiction; if Px(1, τ, ϕ1) ended at r, then 
ϕ′ is V (F − r)-stable and ϕ′(r) = τ , which in turn gives Ps1(τ, Δ, ϕ′) = s1ux, which 
should contain r and end at r by Lemma 2.3(a), giving a contradiction. Then we assume 
that Px(1, τ, ϕ1) contains edge s1u and does not end at r. In this case, ϕ′(s1u) = 1 ∈ ϕ′(r)
and ϕ′(ux) = ϕ1(ux) = Δ ∈ ϕ′(s1), and so K ′ = (r, rs1, s1, s1u, u, ux, x) is a Kierstead 
path. But, 2 ∈ ϕ′(s1) ∩ ϕ′(x) shows that V (K ′) is not elementary, a contradiction.

We consider below the τ -sequence (v1, . . . , vt) according to its type, but deal with the 
situation in the following claim first.

Claim 4.1. There does not exist a V (F )-stable coloring ϕ′ with ϕ′(s1u) = τ , ϕ′(ux) = Δ, 
2 ∈ ϕ′(x), and the τ -sequence w.r.t. ϕ′ is of type B with ϕ′(vt) = 1.

Proof. Suppose to the contrary that there is such a V (F )-stable coloring. We also assume 
that under coloring ϕ′, the τ -sequence is also (v1, . . . , vt). We do the B-shifting from v1 to 
vt to get a new coloring ϕ∗. Note that ϕ∗ is a V (F −r)-stable coloring, and ϕ∗(s1u) = τ =
ϕ∗(r) and ϕ∗(ux) = Δ ∈ ϕ∗(s1), which in turn shows that K = (r, rs1, s1, s1u, u, ux, x)
is a Kierstead path. But, 2 ∈ ϕ∗(s1) ∩ ϕ∗(x) shows that V (K) is not elementary, a 
contradiction. �

If the τ -sequence is of type A, i.e., ϕ1(vt) = τ , we apply a (1, τ)-swap at vt to get a 
coloring ϕ′. Since s1u ∈ Px(1, τ, ϕ1) = Pr(1, τ, ϕ1), ϕ′ is F -stable. We also notice that 
ϕ′(ux) = ϕ1(ux) = Δ and 2 ∈ ϕ′(x), which gives a contradiction to Claim 4.1.

Suppose that the τ -sequence is of type C, more specifically, ϕ1(vt) = ϕ1(vi−1) = τi for 
some i ∈ [2, t]. Since one of vi−1 and vt is (1, τi)-unlinked with r, we apply a (1, τi)-swap 
at a vertex in {vi−1, vt} that is (1, τi)-unlinked with r to get an F -stable coloring ϕ′. 
Clearly, 1 ∈ ϕ′(vi−1) or 1 ∈ ϕ′(vt). In either case, the resulting τ -sequence is of type B 
with color 1 missing at the last vertex, which gives a contradiction to Claim 4.1.
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Fig. 3. Three steps of Kempe changes.

Suppose now that the τ -sequence is of type B and let ϕ1(vt) = γ for some γ ∈ ϕ1(F ). 
By Claim 4.1, γ �= 1. If γ �= Δ, we first apply a (1, γ)-swap at vt and get an F -stable 
coloring ϕ′. Note that 1 /∈ ϕ′(x) may occur. Under coloring ϕ′, the τ -sequence is of type 
B and 1 ∈ ϕ′(vt), giving a contradiction to Claim 4.1. Thus, γ = Δ. We consider two 
cases regarding whether t = 1.

Case 1. t = 1.

We first do three Kempe changes as below. Step 1: (1, Δ)-swap(s) at both v1 and x
(s1 and r are (1, Δ)-linked); Step 2: a (1, τ)-swap at v1 (only changes the color on the 
edge rv1); and Step 3: (2, τ)-swap(s) at both x and v1 (s1 and r are (2, τ)-linked). See 
Fig. 3 for this sequence of changes.

Note that Step 1 gives an F -stable coloring, Step 2 gives a V (F − r)-stable coloring, 
and Step 3 gives a stable coloring w.r.t. the new multifan obtained in Step 2.

We then color rs1 by τ and uncolor s1u to give a coloring ϕ′, which is followed by 5 
Kempe changes as follows. Step 1: ux: 1 → τ ; Step 2: (1, 2)-swap(s) at both x and v1 (s1
and u are (1, 2)-linked); Step 3: (1, Δ)-swap(s) at both x and v1 (s1 and u are (1, Δ)-
linked); Step 4: a (1, τ)-swap on the (1, τ)-chain containing s1r; Step 5: (1, Δ)-swap(s) 
at both x and v1 (s1 and u are (1, Δ)-linked). Since every recoloring is a Kempe change, 
the final coloring is in CΔ(G − s1u). See Fig. 4 for this sequence of changes.

Under the current coloring, we have Ps1(1, 2) = s1rv1. On the other hand, since s1u

is uncolored and 1 and 2 are missing at u and s1 respectively, Ps1(1, 2) = Pu(1, 2), giving 
a contradiction.

Case 2. t ≥ 2.

Let ϕ1(rvt) = ϕ1(vt−1) = τt. As the τ -sequence (v1, . . . , vt) is of type B, we have 
τt �= τ . We may assume that vt−1 and r are (1, τt)-linked. Otherwise, the (1, τt)-swap 
at vt−1 gives an F -stable coloring that contradicts Claim 4.1. We apply a (1, τt)-swap 
at x and get an F -stable coloring. By Lemma 2.9, r ∈ Ps1(τt, Δ). As ϕ1(rvt) = τt

and ϕ1(vt) = Δ, we then have r ∈ Ps1(τt, Δ) = Pvt
(τt, Δ). We thus apply (τt, Δ)-

swaps at both x and vt−1 and get an F -stable coloring ϕ′. Note that ϕ′(ux) = τt and 
Δ ∈ ϕ′(x) ∩ ϕ′(vt−1) ∩ ϕ′(vt).



162 Y. Cao et al. / Journal of Combinatorial Theory, Series B 156 (2022) 145–173
s1

u

x

r

v1

τ

1

1

2 Δ

τ

2

Δ τ

Step 1====⇒

s1

u

x

r

v1

τ

τ

1

2 Δ

1

2

Δ 1

Step 2====⇒

s1

u

x

r

v1

τ

τ

2

2 Δ

1

1

Δ 2

Step 3====⇒

s1

u

x

r

v1

τ

τ

2

2 Δ

1

Δ

1 2

Step 4====⇒

s1

u

x

r

v1

1

τ

2

2 Δ

1

Δ

1 2

Step 5====⇒

s1

u

x

r

v1

1

τ

2

2 Δ

1

1

Δ 2

Fig. 4. Five steps of Kempe changes.

By Lemma 2.9, r ∈ Ps1(τ, Δ). We claim that Ps1(τ, Δ, ϕ′) = Px(τ, Δ, ϕ′). Suppose to 
the contrary that Ps1(τ, Δ, ϕ′) �= Px(τ, Δ, ϕ′). If Px(τ, Δ, ϕ′) �= Pvt

(τ, Δ, ϕ′), we do the 
following sequence of five Kempe changes: the (τ, Δ)-swap at x, the (1, Δ)-swap at vt (s1

and r are (1, Δ)-linked), the (1, τt)-swap on the (1, τ)-chain containing ux, the (2, Δ)-
swap at x, and the (1, Δ)-swap at x. Except the Kempe change that the (2, Δ)-swap at 
x may possibly change the colors on two edges of F , all other changes are F -stable. Thus 
the final resulting coloring is V (F )-stable. Under the current coloring, Ps1(τ, Δ) = s1ux

that does not contain vertex r, giving a contradiction to Lemma 2.9.
Under the assumption that Ps1(τ, Δ, ϕ′) �= Px(τ, Δ, ϕ′), by the argument above, we 

assume then that Px(τ, Δ, ϕ′) = Pvt
(τ, Δ, ϕ′). We do the (τ, Δ)-swap at x that is also the 

(τ, Δ)-swap at vt to get an F -stable coloring. Note that Δ is no longer missing at x unless 
τ is also previously missing at x. Since s1 and r are (1, Δ)-linked, we apply a (1, Δ)-swap 
at vt−1 to get an F -stable coloring, and apply a shifting from v1 to vt−1, which give a 
V (F − r)-stable coloring. Denote the corresponding new multifan by F ∗. Since s1 and r
are (τ, Δ)-linked, we apply a (τ, Δ)-swap at both x and vt to get an F ∗-stable coloring 
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such that Δ is missing at x. Since r ∈ Ps1(τt, Δ) = Pvt
(τt, Δ) by Lemma 2.9, we do 

the (Δ, τt)-swap at x, which does not affect the multifan. Denote the resulting coloring 
by ϕ∗. Since ϕ∗(s1u) = τ = ϕ∗(r) and ϕ∗(ux) = Δ ∈ ϕ∗(s1), (r, rs1, s1, s1u, u, ux, x)
is a Kierstead path. But, 2 ∈ ϕ∗(s1) ∩ ϕ∗(x), giving a contradiction. Therefore r ∈
Ps1(τ, Δ, ϕ′) = Px(τ, Δ, ϕ′).

Recall that ϕ′(s1u) = τ , ϕ′(ux) = τt, Δ ∈ ϕ′(x) ∩ϕ′(vt−1) ∩ϕ′(vt), and 2 ∈ ϕ′(x). We 
apply a (τ, Δ)-swap at both vt−1 and vt. Under the new coloring, τ is missing at both 
vt−1 and vt. We may assume that vt and r are (1, τ)-unlinked by doing the A-shifting 
from v1 to vt−1 if necessary. Thus we apply a (1, τ)-swap at vt. Denote the new coloring 
by ϕ∗. If ϕ∗(s1u) = τ , we apply a (1, τt)-swap on the (1, τt)-chain containing ux and then 
apply a (1, Δ)-swap at x. This gives a type A τ -sequence (v1, . . . , vt−1), which we have 
dealt with previously. Thus ϕ∗(s1u) = 1. We apply a (1, τt)-swap on the (1, τt)-chain 
containing ux and then apply a (1, Δ)-swap at both x and vt. This leads back to Case 1 
with vt in the place of v1 and τt in the place of τ . �
4.2. Proof of Lemma 4.2

Let u ∈ N(s1) ∩ N(x) with u /∈ N(r) \ NΔ(r). Suppose to the contrary that there 
is a V (F )-stable coloring ϕ1 such that ϕ1(s1u) = 1 and {2, Δ} ⊆ ϕ1(x). Note that 
u �= r, as every neighbor of r has degree at least Δ − 1 in G while d(x) ≤ Δ − 3. Thus 
u /∈ N [r] \ NΔ(r). Let ϕ1(ux) = τ . Clearly, τ �= 1.

Since F is a maximum multifan, r ∈ Ps1(τ, Δ) and r ∈ Ps1(2, τ) by Lemma 2.9. We 
claim that Ps1(τ, Δ) = Px(τ, Δ) and Ps1(2, τ) = Px(2, τ). Otherwise, say Px(τ, Δ) and 
Ps1(τ, Δ) are disjoint. We apply a (τ, Δ)-swap at x and get an F -stable coloring ϕ′. Since 
ϕ′(s1u) = ϕ1(s1u) = 1 ∈ ϕ′(r) and ϕ′(ux) = Δ ∈ ϕ′(s1), K = (r, rs1, s1, s1u, u, ux, x)
is a Kierstead path and 2 ∈ ϕ′(s1) ∩ ϕ′(x), contradicting V (K) being elementary 
(Lemma 2.5).

We claim that τ /∈ ϕ1(F ). Otherwise, Ps1(τ, Δ) = Pϕ1
−1
F (τ)(τ, Δ) if τ is 2-inducing 

and Ps1(2, τ) = Pϕ1
−1
F (τ)(2, τ) if τ is Δ-inducing. In either case, we get a contradiction

to the previous claim. Since the multifan F is maximum, there is a unique τ -sequence 
(v1, . . . , vt) by Lemma 2.8. Since r ∈ Ps1(2, τ) = Px(2, τ) and r ∈ Ps1(τ, Δ) = Px(τ, Δ), 
rv1 ∈ Px(2, τ) and rv1 ∈ Px(τ, Δ).

If the τ -sequence is of type A, we do the A-shifting and get an F -stable coloring ϕ′, 
and under this coloring Px(Δ, τ, ϕ′) �= Ps1(Δ, τ, ϕ′). But, ϕ′(x) = ϕ1(x) ⊇ {2, Δ} and 
ϕ′(s1u) = ϕ1(s1u) = 1, giving a contradiction.

Suppose then that the τ -sequence is of type B: ϕ1(vt) = γ for some γ ∈ ϕ1(F ). If 
γ = 1, we do the B-shifting and get a V (F − r)-stable coloring. Note that F is also a 
multifan w.r.t. the new coloring and that τ and Δ are missing at r and s1, respectively. 
We then apply a (τ, Δ)-swap at x and get an F -stable coloring ϕ′ w.r.t. the previous 
coloring. Note that F is a multifan w.r.t. rs1 and ϕ′, ϕ′(r) = τ , {2, τ} ⊆ ϕ′(x) and 
ϕ′(ux) = Δ, showing a contradiction to Lemma 4.1. So, γ �= 1, say γ is 2-inducing. Let 
ϕ′ = ϕ/Pvt

(1, γ, ϕ). If s1u /∈ Pvt
(1, γ, ϕ), the argument turns back to ϕ1(vt) = γ = 1
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case, which we just settled. Thus we assume ϕ′(s1u) = γ. We apply a shifting from 
v1 to vt. Then as s1 and r are (τ, Δ)-linked, we apply a (τ, Δ)-swap at x. Now up to 
exchanging the role of 1 and τ , we have a V (F )-stable coloring ϕ′′ such that ϕ′′(r) = 1, 
ϕ′′(ux) = Δ and {1, 2} ⊆ ϕ′′(x). This again gives a contradiction to Lemma 4.1.

Thus the τ -sequence is of type C: ϕ1(vt) = ϕ1(vi−1) = τi for some i ∈ [2, t] and some 
τi ∈ [1, Δ] \ϕ(F ). We first apply a (1, Δ)-swap at x. One of vi−1 and vt is (τi, Δ)-unlinked 
with s1. We may assume that vt and s1 are (τi, Δ)-unlinked (the proof for the other case 
is similar). By Lemma 2.9, we have r /∈ Pvt

(τi, Δ). We first apply a (τi, Δ)-swap at vt

and then a (1, Δ)-swap at both x and vt. This converts the problem back to the type B 
τ -sequence case. �
4.3. Proof of Lemma 4.3

For (i), we assume that 1 ∈ ϕ(x). Let τ ∈ ϕ(x) \ {1}. If τ ∈ ϕ(F ), we apply a 
(1, 2)-swap at x, and then apply (τ, 1) − (1, Δ)-swaps at x to get a desired coloring 
ϕ1. Thus τ ∈ [1, Δ] \ ϕ(F ). By Lemma 2.9, for any V (F )-stable coloring ϕ′ such that 
1, τ ∈ ϕ′(x), we have r ∈ Ps1(2, τ, ϕ′) and r ∈ Ps1(τ, Δ, ϕ′). We may further assume that 
r ∈ Ps1(2, τ, ϕ′) = Px(2, τ, ϕ′) and r ∈ Ps1(τ, Δ, ϕ′) = Px(τ, Δ, ϕ′). For otherwise, say 
there is a V (F )-stable coloring ϕ′ such that 1, τ ∈ ϕ′(x) and Ps1(2, τ, ϕ′) �= Px(2, τ, ϕ′), 
then under ϕ′, we apply a (2, τ)-swap at x and then a (1, Δ)-swap at x in getting a 
desired coloring ϕ1. Applying Lemma 2.14(v), we know that the τ -sequence (v1, . . . , vt)
is of type B with ϕ(vt) = 1. Let λ ∈ ϕ(x) \ {1, τ}. Following a same argument as 
above, we may assume that λ ∈ [1, Δ] \ ϕ(F ), and r ∈ Ps1(2, λ, ϕ′) = Px(2, λ, ϕ′) and 
r ∈ Ps1(λ, Δ, ϕ′) = Px(λ, Δ, ϕ′) for any V (F )-stable coloring ϕ′ such that 1, λ ∈ ϕ′(x). 
Applying Lemma 2.14(v) again, we know that the λ-sequence (w1, . . . , wk) is of type B
with ϕ(wk) = 1.

If the two sequences are disjoint, then x is (1, 2)-linked with at most one of vt and 
wk. Assume, without loss of generality, that x and vt are (1, 2)-unlinked. We apply a 
(1, 2)-swap at x and then apply a shifting from v1 to vt. Now τ is missing at r and r and 
s1 are (τ, Δ)-linked. We apply a (τ, Δ)-swap at x. This gives a desired coloring ϕ1 up to 
exchanging the role of 1 and τ . Therefore, the τ -sequence and the λ-sequence intersect. 
Assume that vi = wj is the first common vertex of the two sequences. Then, the two 
sequences are identical after this vertex.

If both i, j are at least two, then ϕ(vi−1) = ϕ(wj−1), name it γ. By the definition 
of τ -sequence, γ ∈ [1, Δ] \ ϕ(F ). Since F is maximum, r ∈ Ps1(γ, Δ) by Lemma 2.9. 
One of vi−1 and wj−1, say vi−1, is not on Ps1(γ, Δ). We apply a (γ, Δ)-swap at vi−1
and get an F -stable coloring ϕ′. But, the τ -sequence ends with a vertex missing color 
Δ rather than 1 but the color 1 and τ are still missing at x, giving a contradiction to 
Lemma 2.14(v). Assume then that one of i and j is 1. Assume, without loss of generality, 
that j = 1, i.e., λ = ϕ(vi−1) and w1, . . . , wk is the same as vi, . . . , vt. We first apply a 
(1, 2)-swap at both x and vt. One of x and vi−1 is (1, λ)-unlinked with r. If x and r are 
(1, λ)-unlinked, we apply (λ, 1) − (1, Δ)-swaps at x to get a desired coloring. If vi−1 and 
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r are (1, λ)-unlinked, we apply a (1, λ)-swap at vi−1 and then apply a shifting from v1 to 
vi−1. Next, we apply a (τ, Δ)-swap at x and get a V (F − r)-coloring ϕ′. Switching colors 
1 and τ for the entire graph, we get a V (F )-stable coloring ϕ1 with {2, Δ} ⊆ ϕ1(x).

For (ii), let ϕ(ux) = τ . If τ ∈ ϕ(F ), we may assume that either τ = 1 or τ is 2-
inducing. We apply (Δ, τ) − (τ, 1)-swaps at x. This gives a V (F )-stable coloring ϕ1 such 
that ϕ1(ux) = Δ and {1, 2} ⊆ ϕ1(x), showing a contradiction to Lemma 4.1. Thus 
τ ∈ [1, Δ] \ ϕ(F ). If there is an F -stable and {2, τ, Δ}-avoiding coloring ϕ′ such that 
r /∈ Px(τ, Δ, ϕ′), then as r ∈ Ps1(τ, Δ, ϕ′) by Lemma 2.9, we apply a (τ, Δ)-swap at x to 
get a V (F )-stable coloring ϕ′. If ϕ′(s1u) is not Δ-inducing, then we apply a (1, 2)-swap 
at x to get a desired coloring ϕ1. If ϕ′(s1u) is Δ-inducing, we then apply (2, Δ) − (Δ, 1)-
swaps at x to get a desired coloring ϕ1. Thus r ∈ Px(τ, Δ, ϕ′) for every F -stable and 
{2, τ, Δ}-avoiding coloring ϕ′, and thus r ∈ Ps1(τ, Δ, ϕ′) = Px(τ, Δ, ϕ′) by Lemma 2.9. 
Applying Lemma 2.14(iv), the τ -sequence (v1, . . . , vt) is of type B with ϕ(vt) ∈ {2, Δ}. 
Let ϕ(s1u) = γ. Note that γ /∈ {2, τ, Δ}. By symmetry, we may assume that either γ is 
2-inducing or γ ∈ [1, Δ] \ (ϕ(F ) \ {1}). We may assume that ϕ(vt) = 2. As otherwise, 
if ϕ(vt) = Δ, we apply a (1, Δ)-swap at both x and vt and then apply a (1, 2)-swap at 
vt and a (1, Δ)-swap at x, which converts back to the case when ϕ(vt) = 2. We apply a 
(1, 2)-swap at vt and then apply a shifting from v1 to vt. Next, we apply a (τ, Δ)-swap 
at x. Since γ /∈ {2, τ, Δ} and s1 and r are both (1, 2)- and (1, Δ)-linked, the color on s1u

is still γ. Up to exchanging the role of 1 and τ , we get a desired coloring ϕ1.
For (iii), by symmetry, we let ϕ(ux) = Δ and 1 ∈ ϕ(x) and show that there is a 

V (F )-stable coloring ϕ1 such that ϕ1(s1u) = 1 and {2, Δ} ∩ ϕ1(x) �= ∅. Let ϕ(s1u) = τ . 
Assume first that τ ∈ ϕ(F ). Clearly, τ �= 1. As otherwise, K = (r, rs1, s1, s1u, u, ux, x)
is a Kierstead path, but 1 ∈ ϕ(s1) ∩ ϕ(x), showing a contradiction to Lemma 2.5. Since 
ϕ(ux) = Δ, the assumption of (iii) implies that τ is 2-inducing. We apply a (1, τ)-swap at 
x. Denote the new coloring by ϕ∗. If ϕ∗(s1u) = τ , then Ps1(τ, Δ) = s1ux, contradicting 
Lemma 2.3(b). Thus, ϕ∗(s1u) = 1. As s1 and ϕ1

−1
F (τ) are (τ, Δ)-linked, we apply a 

(τ, Δ)-swap at x, which gives a desired coloring ϕ1.
Thus τ ∈ [1, Δ] \ ϕ(F ). We first apply a (1, 2)-swap at x and still denote the resulting 

coloring by ϕ. We have ϕ(ux) = Δ and 2 ∈ ϕ(x). Let (v1, . . . , vt) be the τ -sequence 
guaranteed by Lemma 2.8. For any V (F )-stable and {2, τ, Δ}-avoiding coloring ϕ′, as 
the multifan corresponding to F under ϕ′ is still maximum, by Lemma 2.9, we have 
r ∈ Ps1(2, τ, ϕ′). Thus it must be the case that r ∈ Ps1(2, τ, ϕ′) = Px(2, τ, ϕ′). (As if x
and s1 were (2, τ)-unlinked with respect to ϕ′, we apply a (2, τ)-swap at x to get a coloring 
ϕ′′. Then Ps1(τ, Δ, ϕ′′) = s1ux, which does not contain r, showing a contradiction to 
Lemma 2.9.) By Lemma 2.14(iv) (the symmetric version with the roles of 2 and Δ
exchanged), the τ -sequence (v1, . . . , vt) is of type B and ϕ(vt) ∈ {2, Δ}. If ϕ(vt) = 2, 
since r ∈ Ps1(2, τ) = Px(2, τ), we apply a (2, τ)-swap at vt and then apply a shifting 
from v1 to vt. This gives a type A τ -sequence. We then apply a shifting from v1 to vt. 
Denote the new coloring by ϕ∗. Then Ps1(2, τ, ϕ∗) �= Px(2, τ, ϕ∗). Still r ∈ Ps1(2, τ, ϕ∗)
by Lemma 2.9. We apply a (2, τ)-swap at x to get ϕ∗∗. Then Ps1(τ, Δ, ϕ∗∗) = s1ux, 
showing a contradiction to Lemma 2.9. If ϕ(vt) = Δ, since s1 and r are (1, Δ)-linked, we 
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apply a (1, Δ)-swap at vt. Then we apply a shifting from v1 to vt and swap the colors 1 
and τ in the entire graph. Denote the new coloring by ϕ1 (note that ϕ1(ux) could be Δ
or τ and has to be τ , as otherwise K = (r, rs1, s1, s1u, u, ux, x) is a Kierstead path with 
2 ∈ ϕ1(s1) ∩ϕ1(x)). We have ϕ1(s1u) = 1 and 2 ∈ ϕ1(x), and so ϕ1 is a desired coloring.

For (iv), by symmetry, we let ϕ(s1u) = 1 and 2 ∈ ϕ(x) and show that there is a 
V (F )-stable coloring ϕ1 such that ϕ1(s1u) = 1 and {2, Δ} ⊆ ϕ1(x). Let τ ∈ ϕ(x) \ {2}. 
If τ = 1 or is 2-inducing, we simply apply a (τ, Δ)-swap at x. Thus we may assume that 
τ is Δ-inducing. We apply (2, 1) − (1, Δ)-swaps at x and then apply a (2, τ)-swap at x
to get a desired V (F )-stable coloring ϕ1.

Thus τ ∈ [1, Δ] \ ϕ(F ). We first apply a (1, 2)-swap at x to get an F -stable coloring 
ϕ∗. Since s1 and r are (1, 2)-linked, we still have ϕ∗(s1u) = 1. Now {1, τ} ⊆ ϕ∗(x). By 
Lemma 2.9, r ∈ Ps1(2, τ, ϕ′) and r ∈ Ps1(τ, Δ, ϕ′) for every V (F )-stable coloring ϕ′. 
Thus we may assume that Px(τ, Δ, ϕ′) = Ps1(τ, Δ, ϕ′) and Px(2, τ, ϕ′) = Ps1(2, τ, ϕ′) for 
every V (F )-stable coloring ϕ′ with {1, τ} ⊆ ϕ′(x). As otherwise, we can simply apply 
either a (2, τ)-swap and then a (1, Δ)-swap at x or a (τ, Δ)-swap and then a (1, 2)-swap 
at x to get a desired coloring ϕ1. By Lemma 2.14(v), the τ -sequence (v1, . . . , vt) is of type 
B such that ϕ∗(vt) = 1. Since dG(x) ≤ Δ − 3, we let λ ∈ ϕ∗(x) \ {1, τ}. Using the same 
arguments as above, we may assume that λ ∈ [1, Δ] \ ϕ∗(F ) and that the λ-sequence 
(w1, . . . , wk) is of type B such that ϕ∗(wk) = 1.

If the two sequences are disjoint, then x is (1, 2)-linked with at most one of vt and wk. 
Assume, without loss of generality, that x and vt are (1, 2)-unlinked. We apply a (1, 2)-
swap at vt. Denote the new coloring by ϕ∗∗. The coloring ϕ∗∗ is V (F )-stable with {1, τ} ⊆
ϕ∗∗(x). Furthermore, we may still assume that r ∈ Ps1(τ, Δ, ϕ∗∗) = Px(τ, Δ, ϕ∗∗) and 
r ∈ Ps1(2, τ, ϕ∗∗) = Px(2, τ, ϕ∗∗). However, the τ -sequence (v1, . . . , vt) is of type B such 
that ϕ∗(vt) = 2 now, showing a contradiction to Lemma 2.14(v). Therefore, the τ -
sequence and the λ-sequence intersect. Assume that vi = wj is the first common vertex 
of the two sequences. Then, the two sequences are identical after this vertex.

If both i, j are at least two, then ϕ∗(vi−1) = ϕ∗(wj−1), name it γ. By the definition 
of τ -sequence, γ ∈ [1, Δ] \ ϕ∗(F ). Since F is maximum, r ∈ Ps1(γ, Δ) by Lemma 2.9. 
One of vi−1 and wj−1, say vi−1, is not on Ps1(γ, Δ). We apply a (γ, Δ)-swap at vi−1 and 
get a coloring ϕ∗∗. The condition of Lemma 2.14(v) is satisfied by ϕ∗∗, but the current 
τ -sequence (v1, . . . , vi−1) ends with a vertex missing color Δ rather than 1, giving a 
contradiction to Lemma 2.14(v). Therefore one of i and j is 1. Assume, without loss of 
generality, that j = 1, i.e., λ = ϕ∗(vi−1) and w1, . . . , wk is the same as vi, . . . , vt. We first 
apply a (1, 2)-swap at both x and vt. Since r ∈ Ps1(λ, Δ, ϕ∗) = Px(λ, Δ, ϕ∗), we apply a 
(λ, Δ)-swap at vi−1 to get a new coloring ϕ∗∗. Again, the condition of Lemma 2.14(v) is 
satisfied by ϕ∗∗, but the current τ -sequence (v1, . . . , vi−1) ends at a vertex missing color 
Δ rather than 1, giving a contradiction to Lemma 2.14(v). �
5. Proof of Theorem 1.6

We introduce some new concepts in order to prove Theorem 1.6.
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5.1. Pseudo-fan

Let G be a class 2 graph and rs1 be a critical edge. A pseudo-fan (P-fan) at r w.r.t. 
rs1 and a coloring ϕ ∈ CΔ(G − rs1) is a sequence

S = Sϕ(r, s1 : st : sp) = (r, rs1, s1, rs2, s2, . . . , rst, st, rst+1, st+1, . . . , sp−1, rsp, sp)

such that all s1, . . . , sp are distinct vertices in NΔ−1(r) and the following conditions hold:

(P1) (r, rs1, s1, rs2, s2, . . . , rst, st), denoted by Fϕ(r, s1 : st), is a maximum multifan at 
r.

(P2) The vertex set V (S) is ϕ′-elementary for every F -stable ϕ′ w.r.t. ϕ.

Clearly every maximum multifan is a P-fan, and if S is a P-fan w.r.t. ϕ and F = Fϕ(r, s1 :
st), then by the definition above, S is also a P-fan w.r.t. every F -stable coloring ϕ′. The 
result below is a modification of Lemma 3.6 from [1].

Lemma 5.1. Let G be a class 2 graph with maximum degree Δ, r ∈ VΔ be light, and 
S = Sϕ(r, s1 : sp : sq) be a P-fan w.r.t. rs1 and a coloring ϕ ∈ CΔ(G − rs1). Then the 
following two statements hold, where F = Fϕ(r, s1 : sp).

(a) For every v1 ∈ V (S) \ V (F ), the ϕ(rv1)-sequence (v1, . . . , vt) is a rotation at r, and 
vi and r are (1, ϕ(vi))-linked for each i ∈ [1, t].

(b) For any i, j with i ∈ [1, p] and j ∈ [p + 1, q] and colors γ ∈ ϕ(si) and δ ∈ ϕ(sj), 
r ∈ Psi

(γ, δ) = Psj
(γ, δ). Moreover, if ϕ(rz) = γ for some z ∈ N(r), then Psi

(γ, δ)
meets z before r.

Proof. By relabeling colors and vertices, we assume F is typical. Let F = Fϕ(r, s1 : sα :
sβ) be a typical multifan, where β = p.

For Statement (a), we let v1 ∈ V (S) \V (F ), and let ϕ(rv1) = τ . Since F is maximum, 
by Lemma 2.8, we let (v1, . . . , vt) be the τ -sequence at r. We show first that the sequence 
is a rotation or a type A sequence. We may assume the sequence is of type B or C. If 
(v1, . . . , vt) is of type B, i.e., ϕ(vt) = γ ∈ ϕ(F ), since ϕ−1

F (γ) and r are (1, γ)-linked, 
we apply a (1, γ)-swap at vt to get ϕ′. Then we apply the B-shifting from v1 to vt and 
exchange the role of 1 and τ in the entire graph. This results in an F -stable coloring, 
yet V (S) is not elementary, contradicting (P2) of the definition of a P-fan. If (v1, . . . , vt)
is of type C, i.e., ϕ(vt) = ϕ(vi−1) = τi for some i ∈ [2, t] and some τi ∈ [1, Δ] \ ϕ(F ), 
since one of vi−1 and vt is (1, τi)-unlinked with r, we apply a (1, τi)-swap at a vertex in 
{vi−1, vt} that is (1, τi)-unlinked with r. This gives an F -stable coloring such that the 
corresponding τ -sequence is of type B, converting the problem to the previous case. Thus 
the τ -sequence (v1, . . . , vt) is a rotation. Moreover, vi and r are (1, ϕ(vi))-linked for each 
i ∈ [1, t]. As otherwise, a (1, ϕ(vi))-swap at vi would give rise to a type B τ -sequence, 
contradicting what was proved above. The proof of Statement (a) is now complete.
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By Statement (a), we let (v1, . . . , vt) be the rotation containing sj, where v1 = sj . For 
the first part of Statement (b), suppose to the contrary that r ∈ Psi

(γ, δ) = Pv1(γ, δ)
does not hold. Assume without loss of generality that i ∈ [1, α]. Then we have the 
following three cases: r /∈ Psi

(γ, δ) and r /∈ Pv1(γ, δ); r /∈ Psi
(γ, δ) and r ∈ Pv1(γ, δ); and 

r ∈ Psi
(γ, δ) and r /∈ Pv1(γ, δ).

Suppose first that r /∈ Psi
(γ, δ) and r /∈ Pv1(γ, δ). Then let ϕ′ = ϕ/Q, where Q is the 

(γ, δ)-chain containing r. Note that ϕ′ and ϕ agree on every edge incident to r except two 
edges rv2 and rz where z is the vertex in N(r) such that ϕ(rz) = γ. Since r /∈ Psi

(γ, δ), 
r /∈ Pv1(γ, δ) and V (S) is ϕ-elementary, ϕ′(si) = ϕ(si) for all si ∈ V (S). Thus under the 
new coloring ϕ′, F ∗ = (r, rs1, s1, . . . , si, rv2, v2, . . . , rvt, vt, rv1, v1, rsi+1, si+1, . . . , sβ) is a 
multifan. This is because, if i < α, then ϕ′(si) = γ = ϕ′(rv2) and ϕ′(v1) = δ = ϕ′(rsi+1); 
and if i = α, then ϕ′(si+1) = Δ ∈ ϕ′(s1). As |V (F )| < |V (F ∗)|, we obtain a contradiction 
to the maximality assumption of F . Suppose then that r /∈ Psi

(γ, δ) and r ∈ Pv1(γ, δ). 
Then let ϕ′ = ϕ/Pv1(γ, δ). Similar to the case above, one can easily check that F ∗ =
(r, rs1, s1, . . . , si, rv2, v2, . . . , rvt, vt, rv1, v1) is a multifan. Since ϕ′(si) = ϕ′(v1) = γ, we 
obtain a contradiction to Lemma 2.2 that V (F ∗) is ϕ′-elementary. Suppose lastly that 
r ∈ Psi

(γ, δ) and r /∈ Pv1(γ, δ). Then let ϕ′ = ϕ/Pv1(γ, δ). Note that ϕ′ is F -stable w.r.t. 
ϕ, thus by the definition of a P-fan, V (S) is ϕ′-elementary. But ϕ′(si) = ϕ′(v1) = γ, a 
contradiction. This completes the proof of the first part of Statement (b).

For the second part of Statement (b), assume to the contrary that Psi
(γ, δ) meets r be-

fore z. Then Psi
(γ, δ) meets v2 before r. Let ϕ′ be obtained from ϕ by shifting from v1 to 

vt. Then r /∈ Psi
(δ, γ, ϕ′), showing a contradiction to the first part of Statement (b). �

5.2. Two structural lemmas

Lemma 5.2. Let G be a class 2 graph with maximum degree Δ ≥ 3, r ∈ VΔ be light, 
and rs1 be a critical edge. If S = S(r, s1 : sp : sq) is a P-fan w.r.t. rs1 and a coloring 
ϕ ∈ CΔ(G − rs1), then for any x ∈ N(V (S)) \ N [r], d(x) �= Δ − 1.

Proof. Suppose to the contrary that there is a degree (Δ − 1) vertex x /∈ N [r] and a 
vertex s∗ ∈ S such that x ∼ s∗. Let F = F (r, s1 : sα : sβ) be the maximum multifan 
contained in S. We further assume that F is typical. Since rs1 is a critical edge of G, 
every edge of F is a critical edge of G. Thus by Theorem 1.4, s∗ ∈ V (S) \ V (F ).

We may first assume 1 ∈ ϕ(x). To see this, let τ ∈ ϕ(x). If τ ∈ ϕ(F ), since ϕ−1
F (τ)

and r are (1, τ)-linked by Lemma 2.3(a), we simply apply a (1, τ)-swap at x. Thus we 
assume that τ ∈ [1, Δ] \ ϕ(F ). By Lemma 2.14(i), there is an F -stable coloring such that 
1 is missing at x. We then apply a (1, Δ)-swap at x, still call the resulting coloring ϕ. 
We now have Δ ∈ ϕ(x).

We claim that there is a V (F )-stable coloring, still call it ϕ, such that ϕ(s∗x) ∈ {2, Δ}. 
Let ϕ(s∗x) = τ . Assume first that τ ∈ ϕ(F ). If τ is not Δ-inducing, we simply apply a 
(τ, Δ)-swap at x. Otherwise, we do (Δ, 1) − (1, 2) − (2, τ)-swaps at x, and get a desired 
V (F )-stable coloring. Thus, we may assume τ ∈ [1, Δ] \ϕ(F ). For every V (F )-stable and 
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{τ, Δ}-avoiding coloring ϕ′, since F is maximum, r ∈ Ps1(τ, Δ, ϕ′) (by Lemma 2.9). We 
claim Px(τ, Δ, ϕ′) = Ps1(τ, Δ, ϕ′). Otherwise, a (τ, Δ)-swap at x gives a desired coloring. 
Applying Lemma 2.14(iii), the τ -sequence (v1, . . . , vt) is of type B and ϕ(vt) = Δ. Since 
r ∈ Ps1(τ, Δ, ϕ) = Px(τ, Δ, ϕ), we apply a (τ, Δ)-swap at vt to get an F -stable coloring, 
and then do the A-shifting from v1 to vt. Under the new coloring, Ps1(τ, Δ) �= Px(τ, Δ). 
Since still r ∈ Ps1(τ, Δ) by Lemma 2.9, we apply a (τ, Δ)-swap at x to get a desired 
V (F )-stable coloring. So we may assume ϕ(s∗x) = Δ.

We then show that there is a V (F )-stable coloring, still call it ϕ, such that ϕ(s∗x) = Δ
and 1 ∈ ϕ(x). Let τ ∈ ϕ(x). If τ ∈ ϕ(V (S)), by Lemma 2.3(a) and Lemma 5.1(a), we 
simply apply a (1, τ)-swap at x. Thus τ ∈ [1, Δ] \ ϕ(S). We may further assume that 
there is no F -stable and {Δ}-avoiding coloring ϕ′ such that 1 ∈ ϕ′(x). In particular, we 
have Px(1, τ, ϕ) = Pr(1, τ, ϕ). By Lemma 2.14(ii), the τ -sequence (v1, . . . , vt) at r is of 
type B such that ϕ(vt) = Δ. Let ϕ(s∗) = δ. As V (S) is elementary and Δ ∈ ϕ(s1), we 
have vt /∈ V (S), and so s∗ �= vt. We also note that δ �= τ . Otherwise, by Lemma 5.1(a), 
Ps∗(1, τ, ϕ) = Pr(1, τ, ϕ), which gives a contradiction to Px(1, τ, ϕ) = Pr(1, τ, ϕ). By 
Lemma 5.1(b), r ∈ Ps1(δ, Δ, ϕ) = Ps∗(δ, Δ, ϕ). We apply a (δ, Δ)-swap at vt and get an 
F -stable coloring ϕ∗ with δ missing at vt. Applying Lemma 5.1(a) to s∗ ∈ V (S), we get 
Pr(1, δ, ϕ∗) = Ps∗(1, δ, ϕ∗). We apply a (1, δ)-swap at vt. Note that by Lemma 5.1(a), 
the ϕ(rs∗)-sequence containing s∗ at r is a rotation, thus s∗ /∈ {v1, . . . , vt}. We apply 
the B-shifting from v1 to vt followed by switching color 1 and τ for the entire graph, 
which results in a desired V (F )-stable coloring.

Hence, we may assume that ϕ(s∗x) = Δ, 1 ∈ ϕ(x), and ϕ(s∗) = δ. By Lemma 5.1(a)
that Pr(1, δ, ϕ) = Ps∗(1, δ, ϕ), we apply a (1, δ)-swap at x. Under the new coloring, 
Ps∗(δ, Δ) = s1x, showing a contradiction to the fact that s∗ and s1 are (δ, Δ)-linked 
(Lemma 5.1(b)). �
Lemma 5.3. Let G be a class 2 graph with maximum degree Δ ≥ 3, r ∈ VΔ−1 be light, and 
F be a multifan at r w.r.t. edge rs1 and a coloring ϕ ∈ CΔ(G − rs1). If F is maximum, 
then ϕ(r) � ϕ(x) for any x ∈ V (G) \ N [r] with (N(x) ∩ N(s1)) \ NΔ−1[r] �= ∅.

Proof. Suppose to the contrary that there exists a vertex x ∈ V (G) \ N [r] such that 
(N(x) ∩ N(s1)) \ NΔ−1[r] �= ∅ and ϕ(r) ⊆ ϕ(x). Let u ∈ (N(x) ∩ N(s1)) \ NΔ−1[r], 
ϕ(r) = {1, Δ − 1} and ϕ(s1) = {2, Δ}. So, {1, Δ − 1} ⊆ ϕ(x). Our goal is to modify ϕ in 
getting a V (F )-stable coloring ϕ′ such that K = (r, rs1, s1, s1u, u, ux, x) is a Kierstead 
path but ϕ′(x) ∩ (ϕ′(s1) ∪ ϕ′(r)) �= ∅, in achieving a contradiction to Lemma 2.5. Since 
r is light, we may assume that F = F (r, s1 : sα : sβ) is typical.

By applying (1, 2)- and (Δ −1, Δ)-swaps at x when it is necessary, we may assume that 
2, Δ ∈ ϕ(x). Applying Lemma 4.3(ii) and then Lemma 4.3(iii), we may assume that there 
is a V (F )-stable coloring, still denoted by ϕ, such that ϕ(s1u) = 1 and Δ ∈ ϕ(x). We 
show next that there is a V (F )-stable coloring, still denoted by ϕ, such that ϕ(s1u) = 1
and ϕ(ux) = Δ.
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Let ϕ(ux) = τ . Suppose first that τ ∈ ϕ(F ). If τ is not Δ-inducing, we apply a 
(τ, Δ)-swap at x in getting a desired V (F )-stable coloring. If τ is Δ-inducing, we apply 
(Δ, 1) − (1, 2) − (2, τ)-swaps at x in getting a desired V (F )-stable coloring. Suppose then 
that τ ∈ [1, Δ] \ ϕ(F ). We claim that for every V (F )-stable and {1, τ, Δ}-avoiding col-
oring ϕ′, Px(τ, Δ, ϕ′) = Ps1(τ, Δ, ϕ′). Otherwise, since F is maximum, r ∈ Ps1(τ, Δ, ϕ′)
by Lemma 2.9. Then the (τ, Δ)-swap at x gives a V (F )-stable coloring ϕ∗ such that 
ϕ∗(ux) = Δ and ϕ∗(s1u) = 1, which is what we want. By Lemma 2.14(vi), we may 
assume that the τ -sequence (v1, . . . , vt) is of type B such that ϕ(vt) ∈ {1, Δ} or is 2-
inducing. If ϕ(vt) = 1, we apply a (1, 2)-swap at vt, so the color missing at vt is 2-inducing. 
Thus we only need to consider two cases: either ϕ(vt) is 2-inducing or ϕ(vt) = Δ. If ϕ(vt)
is 2-inducing, let ϕ(vt) = γ for some γ ∈ ϕ(F ), we apply a (γ, Δ − 1)-swap at vt, where 
Δ −1 is another color missing at r. Then we apply the B-shifting from v1 to vt and get a 
V (F − r)-stable coloring ϕ′. In particular, we have τ ∈ ϕ′(r). Since ϕ′(s1u) = 1 ∈ ϕ′(r)
and ϕ′(ux) = τ ∈ ϕ′(r), K = (r, rs1, s1, s1u, u, ux, x) is a Kierstead path. But Δ is 
missing at both s1 and x, achieving a contradiction to Lemma 2.5. Thus ϕ(vt) = Δ. 
Since r ∈ Ps1(τ, Δ, ϕ) = Px(τ, Δ, ϕ), we apply a (τ, Δ)-swap at vt, resulting in a type 
A τ -sequence. Then the A-shifting from v1 to vt gives a V (F )-stable coloring ϕ′ such 
that x and s1 are (τ, Δ)-unlinked. Since still r ∈ Ps1(τ, Δ, ϕ′) by Lemma 2.9, we apply 
a (τ, Δ)-swap at x in getting a desired coloring.

Therefore we assume that ϕ(s1u) = 1 and ϕ(ux) = Δ. Since ϕ(s1u) = 1 ∈ ϕ(r) and 
ϕ(ux) = Δ ∈ ϕ(s1), K = (r, rs1, s1, s1u, u, ux, x) is a Kierstead path. We next show that 
there is a V (F )-stable coloring ϕ′ keeping the Kierstead path but ϕ′(x) ∩(ϕ′(s1) ∪ϕ′(r)) �=
∅, which gives a contradiction to Lemma 2.5.

Let τ ∈ ϕ(x). If τ ∈ ϕ(F ), we simply apply a (τ, Δ −1)-swap at x to get a contradiction. 
Thus, τ ∈ [1, Δ] \ϕ(F ). We claim that for any V (F )-stable and {1, τ, Δ}-avoiding coloring 
ϕ′, Px(2, τ, ϕ′) = Ps1(2, τ, ϕ′). Otherwise, since F is maximum, by Lemma 2.9 we have r ∈
Ps1(2, τ, ϕ′). Then the (2, τ)-swap at x gives a V (F )-stable coloring that maintains the 
Kierstead path, but 2 is missing at both x and s1, a contradiction. By Lemma 2.14(vii), 
we may assume that the τ -sequence (v1, . . . , vt) is of type B such that ϕ(vt) ∈ {1, Δ} or 
is 2-inducing. If ϕ(vt) = 1, we apply a (1, 2)-swap at vt. Thus we only need to consider 
two cases where ϕ(vt) �= 1. If ϕ(vt) is 2-inducing, let ϕ(vt) = γ for some γ ∈ ϕ(F ), we 
apply a (γ, Δ − 1)-swap at vt and then apply the B-shifting from v1 to vt. Now K =
(r, rs1, s1, s1u, u, ux, x) is a Kierstead path but τ is missing at both r and x, achieving a 
contradiction to Lemma 2.5. Thus ϕ(vt) = Δ. Now applying (Δ, 1) − (1, 2) − (2, Δ − 1)-
swaps at vt and then the B-shifting from v1 to vt gives the same contradiction as right 
before. �
5.3. Proof of Theorem 1.6

Since all vertices not missing a given color α are saturated by the matching that 
consists of all edges colored by α in G, we have the following result.
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Lemma 5.4 (Parity Lemma). Let G be an n-vertex graph and ϕ ∈ CΔ(G). Then for any 
color α ∈ [1, Δ], |{v ∈ V (G) : α ∈ ϕ(v)}| ≡ n (mod 2).

Theorem 2.5. Let G be a Δ-critical graph with n vertices. If G has a light Δ-vertex and 
Δ > n/2 + 1, then n is odd.

Proof. Let r be a light Δ-vertex of G. Recall that N(r) = NΔ(r) ∪ NΔ−1(r). We prove 
first that d(x) = Δ for every x ∈ V (G) \ N [r]. Assume to the contrary that there exists 
x ∈ V (G) \N [r] with d(x) ≤ Δ −1. If d(x) ≥ Δ −2 ≥ (n −1)/2, since d(r) = Δ ≥ (n +3)/2, 
we get |N(r) ∩ N(x)| ≥ d(r) + d(x) − |N(x) ∪ N(r)| ≥ (n + 1) − (n − 2) = 3. Since 
|NΔ(r)| = 2, there exists s ∈ NΔ−1(r) such that x ∼ s. Since G is Δ-critical, rs is a 
critical edge of G. But this gives a contradiction to Theorem 1.4. Thus d(x) ≤ Δ − 3. 
Then for any u ∈ NΔ(x), there exists s ∈ NΔ−1(r) such that u ∼ s. Since every neighbor 
of r from N(r) \ NΔ(r) has degree Δ − 1 and d(u) = Δ, we have u /∈ N(r) \ NΔ(r). 
Again, using that rs is a critical edge of G, we obtain a contradiction to Theorem 1.5.

Assume to the contrary that n is even. We first claim that |N(s) ∩ NΔ−1(r)| ≤ Δ−4
2

for any s ∈ NΔ−1(r). Let s ∈ NΔ−1(r), ϕ ∈ CΔ(G − rs), and X ⊆ NΔ−1[r] be a largest 
ϕ-elementary set that contains r and s. By the Parity Lemma, every color from ϕ(X)
is missing at another vertex from V (G) \ X. Since all vertices in V (G) \ NΔ−1(r) are of 
maximum degree, we have |NΔ−1(r) \ X| ≥ |ϕ(NΔ−1(r) \ X)| ≥ |ϕ(X)| = |X| + 1. On 
the other hand, we have |NΔ−1(r) \ X| + |X \ {r}| = Δ − 2. Combining the two formulas 
above, we get |X| ≤ Δ−2

2 . Thus |ϕ(X)| = |X| + 1 ≤ Δ
2 . Since ϕ is an edge coloring, 

in G − rs, all colors on edges incident with r are distinct and distinct from the color 
missing at r. Therefore, there are at most Δ−2

2 edges rs′ with s′ ∈ N(r) such that ϕ(rs′)
is missing at a vertex of G. Those edges include ru1, ru2 for u1, u1 ∈ NΔ(r), as ϕ(ru1)
and ϕ(ru2) are missed at vertices from a maximum multifan at r with respect to rs and 
ϕ. Let Y = {x ∈ N(r) : ϕ(rx) presents at every vertex of G}. Then Y ⊆ NΔ−1(r) and 
|Y | ≥ Δ − 1 − Δ−2

2 ≥ Δ
2 . Now to show |N(s) ∩ NΔ−1(r)| ≤ Δ−4

2 , it suffices to show that 
N(s) ∩Y = ∅. For otherwise, if there exists x ∈ N(s) ∩Y , let G1 be obtained from G −rs

by deleting all the edges colored by ϕ(rx). Then G1 is still a class 2 graph and r is a light 
Δ(G1)-vertex in G1, and ϕ ∈ CΔ−1(G1 − rs). However, we have dG1(x) = Δ(G1) − 1 but 
x ∈ NG1(s) \ NG1(r), contradicting Theorem 1.4.

Let NΔ−1(r) = {s1, . . . , sΔ−2}, ϕ ∈ CΔ(G −rs1), and let X be a largest ϕ-elementary 
set that contains r and s1 such that X ⊆ NΔ−1[r]. By the same argument as above, 
we have |X| ≤ Δ−4

2 . Since |NΔ−1(r)| = Δ − 2, there exists a vertex x ∈ NΔ−1(r) such 
that the color τ = ϕ(rx) is presented at every vertex of G. Let G1 be obtained from G
by deleting all the edges colored by τ . Then G1 is still a class 2 graph such that r is a 
light maximum degree vertex, and ϕ ∈ CΔ−1(G1 − rs1). As Δ(G1) = Δ − 1 ≥ n/2 + 1, 
there exists s∗ ∈ NG1(r) with dG1(s∗) = Δ(G1) − 1 such that x ∼ s∗ in G1. Note 
that G1 is still a class 2 graph, and ϕ, being restricted on G1, is a Δ(G1)-coloring of 
G1. Let Fϕ(r, s1 : sα : sβ) be a maximum typical multifan at r and S be a maximum 
P-fan containing F . If s∗ ∈ V (S), then we obtain a contradiction to Lemma 5.2. Thus 
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s∗ /∈ V (S). Since V (S) is a largest P-fan containing F , there is a V (F )-stable coloring ϕ
such that V (S) ∪ {s∗} is not ϕ-elementary. Since V (S) is ϕ-elementary by the definition 
of S, ϕ(s∗) ∈ ϕ(S). As for every γ ∈ ϕ(S) \ ϕ(r), ϕ−1

F (γ) and r are (1, γ)-linked by 
Lemma 2.3(a) and Lemma 5.1(a), we apply a (1, ϕ(s∗))-swap at s∗. Let ϕ(rs∗) = δ.

If rs∗ is a critical edge of G1, then we already reach a contradiction to Theorem 1.4. 
Thus, rs∗ is not a critical edge of G1. We let G2 = G1 − rs∗. Note that G2 is still a class 
2 graph with r ∈ VΔ(G2)−1 being a light vertex. The coloring ϕ, being restricted on G2, 
is a Δ(G2)-coloring of G2, and Fϕ(r, s1 : sα : sβ) is still a maximum typical multifan at 
r. By the choice of ϕ before, we have ϕ(r) = ϕ(s∗) = {1, δ}.

Since s1 is adjacent in G2 to at most Δ−4
2 vertices from {s1, . . . , sΔ−2}, and dG2(s1) ≥

Δ − 2, s1 is adjacent in G2 to at least Δ/2 − 1 vertices from V (G) \ {r, s1, . . . , sΔ−2}. 
Similarly, dG2(s∗) = Δ(G2) −2 = Δ −3, s∗ is adjacent in G2 to at most Δ−4

2 vertices from 
{s1, . . . , sΔ−2}, and s∗ � r, it follows that s∗ is adjacent in G2 to at least Δ/2 −1 vertices 
from V (G) \ {r, s1, . . . , sΔ−2}. Since Δ ≥ n/2 + 2, |V (G) \ {r, s1, . . . , sΔ−2}| ≤ n/2 − 1. 
As 2(Δ/2 − 1) ≥ n/2, there exists u ∈ (NG2(s1) ∩ NG2(s∗)) \ {r, s1, . . . , sΔ−2}. Since 
ϕ(r) = ϕ(s∗) = {1, δ}, we obtain a contradiction to Lemma 5.3. �
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