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1. Introduction

All graphs considered in this paper are finite and may contain multiple edges, but no 
loops. We will generally follow the notation and terminology used by Bondy and Murty 
in [1].

Let G be a graph with vertex set V and edge set E. For any X ⊆ V , let NG(X) be 
the set of vertices of V − X which are adjacent to vertices of X and let X = V − X be 
the complement of X in V . The set of coboundary edges of X in G, denoted by ∂G(X), 
is the set of edges with exact one end in X and one end in X. For notational simplicity, 
we denote ∂G(X) by ∂(X) whenever G is understood. A cut is a coboundary edge set. 
We call X and X the shores of ∂(X). A cut ∂(X) is trivial if |X| = 1 or |X| = 1.

Let C := ∂(X) be a cut of G. We denote by G/(X → x) the graph obtained from G
by contracting X to a single vertex x (and removing any resulting loops). The graphs 
G/(X → x) and G/(X → x) are the two C-contractions of G. Let H := G/(X → x)
and let e be an edge of ∂G(X). We shall denote by e, with a mild abuse of language, the 
corresponding edge in ∂H(x) and regard e as a label of the edge. Thus, we shall use the 
equality ∂G(X) = C = ∂H(x).

Let C := ∂(X) and D := ∂(Y ) be two cuts of G. We say that C and D cross if all 
the four sets X ∩ Y, X ∩ Y, X ∩ Y and X ∩ Y are nonempty, and are laminar otherwise. 
So, two cuts C and D are laminar if and only if one of the two shores of C is a subset 
of one of the shores of D. A collection of cuts is laminar if no two of its cuts cross.

A graph is called matching covered if it is connected, has at least one edge and each of 
its edges is contained in some perfect matching. Suppose that our graph G is matching 
covered. A cut C of G is tight if |C ∩ M | = 1 for every perfect matching M of G. 
Clearly, every trivial cut is a tight cut. We call a matching covered graph which is free 
of nontrivial tight cuts a brace if it is bipartite, and a brick otherwise.

Let S be a set of vertices of G. A component of G − S is odd if it consists of an odd 
number of vertices, is even if it consists of an even number of vertices, and is trivial if 
it consists of only one vertex. We denote by o(G − S) the number of odd components of 
G − S.

We shall make use of the following known facts about matching covered graphs and 
tight cuts.

Theorem 1.1 (Tutte [8]). A graph G has a perfect matching if and only if o(G − S) ≤ |S|
for every subset S of V (G).

A barrier of G is a nonempty set B of vertices of G such that o(G − B) = |B|. 
Moreover, B is a trivial barrier if |B| = 1. The graph G is bicritical if G − S has a 
perfect matching, for each pair S of vertices of G. If G is bicritical, then, by Tutte’s 
theorem, every barrier of G is trivial.
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Corollary 1.2. Let G be a matching covered graph and let S be a subset of V (G). Then, 
o(G −S) ≤ |S|, with equality only if S is independent and G −S has no even components.

Proof. A matching covered graph has perfect matchings, hence the asserted inequality 
holds, by Theorem 1.1. Suppose that S is not independent, let e := vw be an edge 
of G having both ends in S. As G is matching covered, it has a perfect matching, M , 
that contains the edge e. Let T := S − {v, w}. Then, M − e is a perfect matching of 
H := G − {v, w}. By Theorem 1.1, o(G − S) = o(H − T ) ≤ |T | = |S| − 2. The inequality 
is thus strict in this case. Now suppose that G − S has an even component, K. As G
is connected, K has a vertex, x, which is adjacent to a vertex, y of S. Let U := S + x. 
Every odd component of G − S is an odd component of G − U . In addition, K − x has 
at least one odd component which is not a component of G − S. Moreover, the set U is 
not independent, hence o(G − S) ≤ o(G − U) − 1 ≤ |U | − 3 = |S| − 2. �
Proposition 1.3 ([4]). Let G be a matching covered graph and let ∂(X) and ∂(Y ) be two 
tight cuts such that |X ∩ Y | is odd. Then, ∂(X ∩ Y ) and ∂(X ∪ Y ) are also tight in G. 
Furthermore, no edge connects X ∩ Y to X ∩ Y . �
Proposition 1.4 ([6]). Every matching covered graph on four or more vertices is 2-
connected. �
Proposition 1.5 ([5]). Let G be a matching covered graph, and let C be a tight cut of G. 
Then, both C-contractions are matching covered. Moreover, if G′ is a C-contraction of 
G, then a tight cut of G′ is also a tight cut of G. Conversely, if a tight cut of G is a cut 
of G′, then it is also tight in G′. �
Corollary 1.6. Let G be a matching covered graph, and let C = ∂(X) be a tight cut of G. 
Then, both shores X and X of C induce connected graphs.

Proof. The C-contraction G′ := G/(X → x) of G is matching covered, hence it is 2-
connected, by Proposition 1.4. Thus, G′ − x is connected. In other words, X induces a 
connected subgraph of G. Likewise, X also induces a connected subgraph of G. �

If C is a tight cut of G, then both C-contractions of G are matching covered. A 
nontrivial tight cut may help us to reduce a matching covered graph to smaller matching 
covered graphs. We may apply to G a procedure, called a tight cut decomposition of G, 
which produces a list of bricks and braces. If G itself is a brick or a brace, then the list 
consists of just G. Otherwise, G has a nontrivial tight cut, C. Then, both C-contractions 
of G are matching covered. One may recursively apply the tight cut decomposition 
procedure to each C-contraction of G, and then combine the resulting lists to produce a 
tight cut decomposition of G itself.
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Theorem 1.7 (Lovász [5]). Any two applications of the tight cut decomposition procedure 
to G produce the same list of bricks and braces, up to multiple edges. �

In particular, any two applications of the tight cut decomposition procedure yield the 
same number of bricks, which is called the brick number of G and denoted by b(G).

1.1. ELP-cuts

There are two types of tight cuts that play a critical role in studying matching theory. 
Let G be a matching covered graph. By Tutte’s theorem, each barrier B of G is an 
independent set, and all components of G − B are odd components. A cut C is called 
a barrier-cut if there exists a barrier B and a component H of G − B such that C =
∂(V (H)). Clearly, a barrier-cut is a tight cut.

A 2-separation of G is a pair S of vertices of G such that G − S is not connected and 
each of the components of G − S is even. Let {u, v} be a 2-separation of G, and let us 
divide the components of G − {u, v} into two nonempty subgraphs G1 and G2. Each of 
the two cuts C ′ := ∂(V (G1) + u) and C ′′ := ∂(V (G1) + v) is a 2-separation cut of G and 
the pair {C ′, C ′′} is a 2-separation cut pair of G.

Barrier-cuts and 2-separation cuts are particular types of tight cuts and are called 
ELP-cuts, named after Edmonds, Lovász, and Pulleyblank, who proved the following 
fundamental result.

Theorem 1.8 (The ELP Theorem [4]). Every matching covered graph that has a nontrivial 
tight cut has a nontrivial barrier or a 2-separation. �

Their proof is based on linear programming techniques. Szigeti [7] gave a purely graph 
theoretical proof. Carvalho, Lucchesi and Murty [3] provided an alternative proof.

1.2. Ultimate ELP-cuts

We now define a special type of tight cut decomposition procedure. We may apply to 
G a procedure, called an ELP-cut decomposition of G, which produces a list of bricks 
and braces. If G itself is a brick or a brace, then the list consists of just G. Otherwise, 
by the ELP Theorem, G has a nontrivial ELP-cut, C. Then, both C-contractions of G
are matching covered. One may recursively apply the ELP-cut decomposition procedure 
to each C-contraction of G, and then combine the resulting lists to produce an ELP-cut 
decomposition of G itself. Each cut used in an ELP-cut decomposition procedure is said 
to be an ultimate ELP-cut. It is easy to see that the following conjecture implies that 
every nontrivial tight cut of G is an ultimate ELP-cut.

Conjecture 1.9. [Carvalho, Lucchesi and Murty [3]] Let C be a nontrivial tight cut of a 
matching covered graph G. Then, G has a nontrivial ELP-cut which is laminar with C.
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In 2002, the three authors proved a particular and very important case of the Con-
jecture, in which G is a brick and e is an edge of G such that G − e is matching covered 
and b(G − e) = 2 [2]. In [3] they also proved the validity of the Conjecture for bicritical 
graphs.

In this paper we present a proof of a result, our Main Theorem, that implies Conjec-
ture 1.9. To state the Main Theorem we need one more definition and a simple result.

Let G be a matching covered graph, let C be a tight cut of G and let S be a set of 
vertices of G which is either a barrier or a 2-separation. The set S is C-sheltered if S is 
a subset of a shore of C, and is C-avoiding if each ELP-cut associated with S is laminar 
with C. If S is C-sheltered, then, as each shore of C induces a connected subgraph of 
G (Corollary 1.6), one of the components of G − S is a supergraph of H, where H the 
subgraph of G that induced by the shore, containing no vertices of S, of C. It follows 
that if S is C-sheltered, then S is C-avoiding. We record this result for later reference.

Proposition 1.10. Let S be either a 2-separation or a barrier of a matching covered graph 
G and let C be a tight cut of G. If S is C-sheltered, then some cut associated with S

has a shore that is a superset of a shore of C, say, X, and all the other cuts associated 
with S have a shore that is a subset of X. Consequently, if S is C-sheltered, then it is 
C-avoiding. �

We now state our result, which, in view of the proposition above, implies Conjec-
ture 1.9.

Theorem 1.11 (Main Theorem). Let C be a nontrivial tight cut of a matching covered 
graph G. Then, G has a C-sheltered nontrivial barrier or a 2-separation cut which is 
laminar with C (see Example 1.12).

Example 1.12. Consider the graph depicted in Fig. 1. The tight cut C is laminar with 
the cut D, which is a 2-separation cut associated with the pair {u1, u2}. The cut C

is also laminar with the 2-separation cut F , which is associated with the pair {1, b3}. 
The barriers {b1, b2, b3} and {2, 3} are C-sheltered, whereas the barrier {1, 2, 3} is not 
C-avoiding.

The proof of the Main Theorem will be given in Section 3, after we present some 
necessary results in Section 2.

2. Ingredients

In this section, we prove three lemmas, which play a crucial role in the proof of the 
Main Theorem.
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Fig. 1. The graph of Example 1.12.

Fig. 2. Illustration for Lemma 2.1.

Lemma 2.1. Let C := ∂(X) be a 2-separation cut of a matching covered graph G, asso-
ciated with a 2-separation {u1, u2}, where u1 ∈ X and u2 ∈ X. Let SH denote either a 
2-separation or a barrier of the C-contraction H := G/(X → x) of G and let

S :=
{

SH , if x /∈ SH ,

(SH − x) + u2, if x ∈ SH .

Then, the following properties hold (see Fig. 2):

(i) every component of H −SH that does not contain vertices in {u1, x} is a component 
of G − S,

(ii) at most one component of H − SH contains vertices in {u1, x}, and
(iii) if SH is a barrier of H, then S is a barrier of G and if SH is a 2-separation of H, 

then S is a 2-separation of G.

Proof. Let H denote the collection of components of H − SH and let H0 denote the 
collection of components of H − SH that contain at least one vertex in {u1, x}.

(i): Let H[Y ] be a component in H − H0. (As indicated in Section 1, we shall make the 
abuse of language and identify edges in ∂G(X) with the corresponding edges in ∂H(x).) 
By the definition of H0, Y ⊆ X − u1, hence ∂G(Y ) = ∂H(Y ). For convenience, denote 
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it by ∂(Y ). We shall now prove that H[Y ] is a component of G − S. It suffices to show 
that every edge of ∂(Y ) is incident with a vertex of S.

Let e be an edge of ∂(Y ). Then, e joins a vertex u in Y to a vertex v in SH . If v �= x, 
then v ∈ S, by the definition of S. We may thus assume that x ∈ SH and v = x, which 
implies that e ∈ C. Every edge of C is incident in G with a vertex in {u1, u2}. Thus, 
either u1 is an end of e in X or u2 is an end of e in X. As Y ⊆ X − u1, the end of e in 
Y is not u1. It follows that e is not incident with u1, hence e is incident with u2 in G. 
By the definition of S, u2 is a vertex of S. Hence, we conclude that e is incident with a 
vertex of S in both alternatives. This conclusion holds for each edge e ∈ ∂(Y ).

(ii): The graph G is 2-connected (Proposition 1.4), hence the vertices u1 and x are 
adjacent in the graph H. (ii) follows from the following stronger statement.

2.1.1. |H0| ≤ 1, with equality if SH is a barrier of H.

Proof. If neither u1 nor x is in SH , then, as u1 and x are adjacent, it follows that 
|H0| = 1. Assume thus that at least one of u1 and x is in SH . In this case, the asserted 
inequality holds. Moreover, suppose that SH is a barrier, then, by Corollary 1.2, SH is 
independent. It follows that precisely one of the vertices in {u1, x} is in SH , hence the 
equality holds. �
(iii): By (i), all the components in H−H0 are components of G −S. By (2.1.1), |H0| ≤ 1, 
with equality if SH is a barrier of H.

Consider first the case in which SH is a barrier of H. Each of the |S| − 1 (odd) 
components in H − H0 is a component of G − S by (i). By parity, G − S has at least |S|
odd components. By Corollary 1.2, G − S has precisely |S| components, all of which are 
odd. Indeed, S is a barrier of G.

Finally, suppose that SH is a 2-separation. Then, H − SH has only even components, 
one of which does not contain any vertex from {u1, x}, denoted by K. Thus, K is an 
even component of G − S by (i). Moreover, K is a subgraph of G[X − u1], the subgraph 
of G induced by X − u1, hence G − S has two or more components. As K is even and 
G is matching covered, it follows that G − S has only even components (Corollary 1.2). 
Indeed, S is a 2-separation of G. �

Let G be a matching covered graph, let C := ∂(X) be a tight cut of G, let B denote a 
barrier of G and let H denote the set of components of G −B. For each shore Z of C, let 
HZ be the set of those components H ∈ H such that |V (H) ∩Z| is odd. As G is matching 
covered and B is a barrier of G, every component in H is odd. Thus, for each H ∈ H, 
precisely one of |V (H) ∩X| and |V (H) ∩X| is odd. Therefore, |HX | + |HX | = |H| = |B|. 
See Fig. 3.
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Fig. 3. A barrier B := {b1, b2, b3}, where |HX | = 2 and |HX | = 1.

Lemma 2.2. Let G be a matching covered graph, let C := ∂(X) be a tight cut of G, let B
denote a barrier of G and let K be a component of HX that contains a vertex adjacent 
to a vertex in B ∩ X. The following properties hold:

(i) |B ∩ X| = |HX | − 1 and |B ∩ X| = |HX | + 1,
(ii) each component in HX is a subgraph of G[X] and has no vertex adjacent to a vertex 

of B ∩ X,
(iii) B ∩ X is a (C-sheltered, possibly trivial) barrier of G, and
(iv) if C is nontrivial and B is C-avoiding and nontrivial, then B ∩X is a (C-sheltered) 

nontrivial barrier of G.

Proof. The following simple statement is important in the proof of the lemma.

2.2.1. Let Z be a shore of C, let H ∈ HZ , let e be an edge in ∂(V (H)) incident with a 
vertex of B ∩ Z and let M be a perfect matching of G that contains edge e. Then, the 
edge of M ∩ C has at least one end in H.

Proof. Let e := vw, v ∈ V (H), w ∈ B ∩ Z. If v ∈ Z, then clearly e is the edge of M ∩ C. 
Assume thus that v ∈ Z. As W := V (H) ∩ Z is even, it follows that M ∩ ∂(W ) has 
another edge, f . The edge f cannot have an end in B, because H is matched by M to 
the end w of e. Thus, f has an end in V (H) ∩ Z, hence f has both ends in H and is the 
edge of M ∩ C. �

(i): By hypothesis, K has a vertex, v, which is adjacent to a vertex, w, of B ∩ X. Let M
be a perfect matching of G that contains edge vw. By (2.2.1), the edge of M ∩ C, say, f , 
has at least one end in K. Clearly, either f has both ends in K or it is incident with a 
vertex of B. It follows that except for K, all the other components of HX are matched 
by M to vertices of B ∩ X and every component of HX is matched by M to a vertex of 
B ∩ X. The asserted equality holds.
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(ii): Assume, to the contrary, that HX has a component that contains a vertex adjacent 
to a vertex in B ∩ X. From (i), with the roles of X and X interchanged, we deduce that

|B ∩ X| = |HX | − 1 and |B ∩ X| = |HX | + 1.

This is a contradiction to property (i). Let H be a component in HX and assume, to the 
contrary, that H has vertices in X. As H has an odd number of vertices in X, it has an 
even number of vertices in X, hence V (H) ∩ X is a proper subset of X. The subgraph 
G[X] of G is connected (Corollary 1.6), hence some vertex of V (H) ∩ X is adjacent to a 
vertex of B ∩ X, a contradiction.

(iii): Let H be a component in HX . From (ii), we deduce that H is a subgraph of G[X]. 
Moreover, every edge of ∂(V (H)) is incident with a vertex of B ∩ X. We conclude that 
H is a component of G − (B ∩ X). This conclusion holds for each H ∈ HX . From (i), we 
infer that the |B ∩ X| − 1 components in HX are (odd) components of G − (B ∩ X). By 
parity and Corollary 1.2, B ∩ X is a barrier of G.

(iv): From (iii), we infer that B ∩ X is a (C-sheltered) barrier of G. Suppose that C is 
nontrivial and B is C-avoiding and nontrivial. Assume, to the contrary, that B ∩ X is 
trivial, let v denote the only vertex of B ∩ X. By (i), H = HX .

By hypothesis, C is nontrivial, thus X−v is not empty. Consequently, some component 
of G −B, H, contains vertices of X−v. Moreover, as H = HX , the component H contains 
vertices in X. In sum, V (H) contains vertices in both shores of C.

By hypothesis, B is nontrivial. As v is the only vertex of B in X, it follows that B has 
vertices in X. Thus, V (H) is not a superset of X. As v, a vertex of X, is in B, it follows 
that V (H) is not a superset of X. Therefore, V (H) is neither a subset nor a superset 
of any shore of C. Consequently, the cuts C and ∂(V (H)) cross, a contradiction to the 
hypothesis that B is C-avoiding. We conclude that B ∩ X is nontrivial. �
Lemma 2.3. Let C := ∂(X) be a nontrivial tight cut of a matching covered graph G and 
let t be a vertex of X. Suppose that the assertion of the Main Theorem holds for every 
graph having |V (G)| or fewer vertices. Then, at least one of the following properties 
holds:

(i) the graph G has a 2-separation that does not contain the vertex t, and
(ii) G has a 2-separation, S, that contains the vertex t, associated with a cut D := ∂(Y ), 

such that Y ⊆ X, and
(iii) the graph G has a C-sheltered nontrivial barrier.

Proof. By induction on |V (G)|. Since G contains a nontrivial tight cut C, |V (G)| ≥ 6. 
We first prove the following claim.

Claim 2.3.1. If |V (G)| = 6, then C is an ELP-cut.
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Proof. Assume, to the contrary, that C is not an ELP-cut. Then, G has an ELP-cut 
D := ∂(Y ), by Theorem 1.8. The cuts C and D cross, as |V (G)| = 6. Adjust notation, 
by interchanging X with X if necessary, so that both |X ∩ Y | and |X ∩ Y | are odd. 
Then, both X ∩ Y and X ∩ Y contain exactly one vertex, say u and v respectively, since 
both X ∩ Y and X ∩ Y are non-empty sets and each of them contains an even number 
of vertices. No edge of G joins a vertex of X ∩ Y to a vertex in X ∩ Y (Proposition 1.3). 
Hence, C is a 2-separation cut of G associated with {u, v}, a contradiction. �

If |V (G)| = 6, then C is either a barrier cut or a 2-separation cut of G, by Claim 2.3.1. 
If C is a barrier cut, then alternative (iii) of the statement of the lemma holds. If C is 
a 2-separation cut, then either alternative (i) or alternative (ii) of the statement of the 
lemma holds.

Assume now, that |V (G)| > 6. By hypothesis, the assertion of the Main Theorem holds 
for G. If G has a C-sheltered nontrivial barrier, then alternative (iii) of the statement of 
the lemma holds. We may thus assume that G has a 2-separation T and its associated 
cut F := ∂(Z), such that Z is a subset of a shore of C. If t /∈ T , then the alternative (i) of 
the assertion holds. We may thus assume that t ∈ T . If Z ⊆ X, then the alternative (ii) 
holds, with Y := Z and D := F . If Z = X, then the alternative (ii) holds, with Y := Z

and D := F . It now remains the case in which Z ⊂ X and t ∈ T .
Let u be the vertex of T − t. One of u and t is in Z. As t /∈ X, it follows that u ∈ Z. 

Let Z ′ := (Z − u) + t. The cuts F and F ′ := ∂(Z ′) are members of a 2-separation cut 
pair of G. Let H be the F ′-contraction G/(Z ′ → z′) of G, let XH := (X − Z) + u and 
let CH := ∂(XH). See Fig. 4.

We plan now to apply the induction hypothesis, with H, XH , CH and z′ playing 
respectively the roles of G, X, C and t. The cuts C and F ′ cross, the intersection of 
the shores X and Z ′ is odd and equal to the shore XH of CH . The cut CH is tight in 
G (Proposition 1.3). As CH and F ′ are laminar, CH is tight in H (Proposition 1.5). 
Moreover, as Z ⊂ X, it follows that CH is a nontrivial tight cut of H. As |V (H)| <

|V (G)|, we may infer, by hypothesis, that the assertion of the Main Theorem holds for 
every graph having |V (H)| or fewer vertices. Moreover, z′ ∈ XH . We now apply the 
induction hypothesis to H, XH , CH and z′ playing respectively the roles of G, X, C and 
t. We consider separately the three possible cases.

Case 1. The graph H has a 2-separation which does not contain the vertex z′.

Let S be a 2-separation of H that does not contain the vertex z′. By Lemma 2.1, S is 
a 2-separation of G. Clearly, S does not contain the vertex t. The alternative (i) of the 
assertion holds.

Case 2. The graph H has a 2-separation SH that contains the vertex z′, associated with 
a 2-separation cut DH := ∂(YH), such that YH ⊆ XH .
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Fig. 4. The cut CH in G and in H.

Let WH := YH −SH . As z′ ∈ SH , the vertex z′ is not in WH . As YH ⊆ XH , the vertex 
u is not in WH . In sum, WH and {u, z′} are disjoint and WH ⊂ X. Let S := (SH −z′) + t

and let Y := WH + t = (YH − SH) + t. Thus, Y ⊆ X. By Lemma 2.1, every (even) 
component of H[WH ] is a component of G − S and S is a 2-separation of G. Moreover, 
the vertex t is in S, the cut D := ∂(Y ) is a 2-separation cut of G associated with S and 
its shore Y is a subset of X. The alternative (ii) of the assertion holds.

Case 3. The graph H has a CH -sheltered nontrivial barrier.

Let SH be a CH -sheltered nontrivial barrier of H. We now apply Lemma 2.1. Let S
be the set as defined in the statement of Lemma 2.1. Then, S is a (nontrivial) barrier 
of G. If SH is a subset of XH , then S = SH and S is a subset of X. If SH is a subset 
of XH − z′, then S = SH and S is a subset of X. Finally, if SH is a subset of X and 
z′ ∈ SH , then S is equal to (SH − z′) + t and is a subset of X. In all alternatives, S is a 
C-sheltered nontrivial barrier of G, hence alternative (iii) of the assertion of the lemma 
holds.

The proof of the lemma is complete. �
3. Proof of the main theorem

Proof. Let G be a matching covered graph and let C := ∂(X) be a nontrivial tight cut of 
G := (V, E). If |V | = 6, then each nontrivial tight cut of G is an ELP-cut by Claim 2.3.1. 
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Clearly, the assertion holds. Thus, we may assume, as the induction hypothesis, that 
the assertion holds for every matching covered graph having fewer than |V | vertices. We 
shall now prove that G has a 2-separation cut having a shore that is a subset of a shore 
of C or G has a C-sheltered nontrivial barrier.

As C is nontrivial and tight, it follows from Theorem 1.8 that G either has a 2-
separation or a nontrivial barrier. We consider these possibilities separately.

Case 1. The graph G does not have 2-separations.

In this case, the graph G has a nontrivial barrier B, by Theorem 1.8. If B is C-
avoiding, then, by Lemma 2.2(iv), one of B ∩ X and B ∩ X is a nontrivial (C-sheltered) 
barrier of G. We may thus assume that G − B has a component, G[Y ], such that ∂(Y )
and C cross. Let H := G/(Y → y) and let D := ∂(Y ). Adjust notation, by interchanging 
X with X if necessary, so that |X ∩ Y | is odd.

Let I := ∂(X ∩Y ), let U := ∂(X ∩Y ). The cuts I and U are both tight in G. Moreover, 
no edge of G joins a vertex of X ∩ Y to a vertex in X ∩ Y (Proposition 1.3). As |X ∩ Y |
is odd, H has an odd number of vertices in X. Moreover, Y is neither a subset of X
nor a superset of X. The subgraph of G induced by X is connected. Thus, G has an 
edge joining a vertex of X ∩ Y to a vertex in B ∩ X. Therefore, H has an odd number 
of vertices in X and has a vertex adjacent to a vertex in B ∩ X. By Lemma 2.2(iii), 
B ∩ X is a (possibly trivial) C-sheltered barrier of G. If B ∩ X is not a singleton, then 
the assertion of the theorem holds. We may thus assume that |B ∩ X| = 1. Let u be the 
only vertex of B ∩ X. By Lemma 2.2(i), every component of G − B has an odd number 
of vertices in X.

Proposition 3.1. The cut I is nontrivial.

Proof. Assume, to the contrary, that X ∩ Y is a singleton, {v}. No edge of G joins a 
vertex of X ∩ Y to a vertex of X ∩ Y . Thus, every edge of ∂(X ∩ Y ) is incident with 
a vertex in {u, v}. We conclude that {u, v} is a 2-separation of G, a contradiction to 
the hypothesis that G is free of 2-separations. (In fact, the cut ∂((X ∩ Y ) + u) is a 
2-separation cut of G associated with {u, v}.) �

We now apply Lemma 2.3, with H, X ∩ Y , I and y playing, respectively, the roles of 
G, X, C and t. We then deduce that one of the following possibilities holds:

(i) the graph H has a 2-separation that does not contain the vertex y, and
(ii) H has a 2-separation, SH , that contains the vertex y, associated with a cut DH :=

∂(YH), such that YH ⊆ (X ∩ Y ) + y, and
(iii) the graph H has a nontrivial I-sheltered barrier, BH .

We shall now eliminate the two first possibilities. Assume, to the contrary, that H has 
a 2-separation, S1, that does not contain the vertex y. One of the (even) components of 
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H − S1, K1, does not contain the vertex y and is a proper subgraph of H. In this case, 
K1 is an even component of G − S1. By Corollary 1.2, G − S1 has no odd components, 
hence S1 is a 2-separation of G. This is a contradiction to the hypothesis that G is free 
of 2-separations.

Assume, to the contrary, that H has a 2-separation, SH , that contains the vertex y, 
associated with the cut DH := ∂(YH), where YH ⊆ (X ∩ Y ) + y. Let v denote the vertex 
of SH − y and let K be a component of H[YH − SH ]. Necessarily, K is even. The set 
V (K) is a subset of X ∩ Y , hence ∂H(V (K)) = ∂G(V (K)). Let e be an edge of ∂(V (K))
that is not incident with v. Then, e is incident with y in H, hence, in G, e joins a vertex 
of X ∩ Y to a vertex, w, of Y . Necessarily w = u, hence K is an even component of 
G − {u, v}. By Corollary 1.2, {u, v} is a 2-separation of G, again a contradiction to the 
hypothesis that G is free of 2-separations.

We deduce that H has a nontrivial I-sheltered barrier, BH . If BH is a subset of X ∩Y

or of X ∩ Y , then BH is C-sheltered, and the assertion of the theorem holds. We may 
thus assume that BH is a subset of (X ∩ Y ) + y that contains the vertex y. In this case, 
the set BG := (BH − y) ∪ B is a barrier of G. One of the components of H − BH , say, K, 
contains all the vertices of X ∩Y , by Proposition 1.10. As y ∈ BH , K is also a component 
of G − BG and V (K) ∩ X = X ∩ Y , hence K contains an odd number of vertices in X. 
Moreover, as H is 2-connected, K has vertices adjacent to at least one vertex of BH − y, 
which is a vertex of BG ∩ X. Finally, BG ∩ X is nontrivial. By Lemma 2.2(iii), BG ∩ X

is a nontrivial C-sheltered barrier of G.
The analysis of Case 1 is complete.

Case 2. The graph G has 2-separations.

If G has a C-sheltered 2-separation, then the assertion holds, by Proposition 1.10. We 
may thus assume that

each 2-separation of G contains a vertex in each shore of C.

Let S be a 2-separation of G and let K be a component of G −S. As K is even, it follows 
that |X ∩ V (K)| ≡ |X ∩ V (K)| (mod 2). We say that K is balanced if |X ∩ V (K)| is 
even and unbalanced, otherwise.

Proposition 3.2. Let S be a 2-separation of G such that G − S has an unbalanced compo-
nent. Then, G −S has precisely two components, both of which are unbalanced. Moreover, 
every edge of C has both ends in a component of G − S (see Fig. 5).

Proof. Suppose that G − S has an unbalanced component, K1 := G[L1]. The shore X of 
C is odd and it contains precisely one vertex of S. Moreover, |L1 ∩ X| is also odd. Thus, 
|X − L1 − S| is odd. It follows that G − S has an unbalanced component, K2 := G[L2], 
distinct from K1.
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Fig. 5. The components G[L1] and G[L2] of G − {u1, u2} are unbalanced.

Assume, to the contrary, that G − S contains a component, K3 := G[L3], not nec-
essarily unbalanced, but distinct from both K1 and K2. Let e be an edge of ∂(L3) and 
let M be a perfect matching of G that contains edge e. Necessarily, e is incident with a 
vertex of S. As L3 is even, M contains also an edge in ∂(L3) which is incident with the 
other vertex of S. For i = 1, 2, as |X ∩ Li| is odd, the cut ∂(X ∩ Li) contains an edge 
in M and that edge is not incident with a vertex of S, hence it is an edge having both 
ends in Li, therefore it is an edge of C. We conclude that M contains more than one 
edge in C, a contradiction to the hypothesis that C is tight. Indeed, K1 and K2 are the 
only two components of G − S and they are both unbalanced.

Let u1 and u2 be the two vertices of S. Let Y := L1 + u1 be the shore of a cut 
associated with S such that |X ∩ Y | is odd. We have assumed that S has one vertex in 
each shore of C, hence u1 ∈ X and u2 ∈ X. Let D := ∂(Y ) (see Fig. 5). The cuts C
and D are tight and cross. No edge of G joins a vertex in (X ∩ L1) + u1 to a vertex in 
(X ∩L2) +u2 (Proposition 1.3). By symmetry, no edge of G joins a vertex in (X ∩L1) +u2
to a vertex in (X ∩L2) +u1. Therefore, each edge of C has both ends in some component 
of G − S. �

Let S be a 2-separation of G. A component K of G − S is good if K is balanced or 
each vertex of S is adjacent to two or more vertices of K. Let S be the collection of 
2-separations of G. For each S ∈ S, let F(S) be the set of good components of G − S. 
Let

F :=
⋃

S∈S
F(S).

Case 2.1. The collection F is empty.

Let S be a 2-separation of G. The hypothesis of the case implies that the components 
of G −S are unbalanced. By Proposition 3.2, G −S consists of precisely two components, 
Ki := G[Li], i = 1, 2. We have assumed that each shore of C contains a vertex of S. Let 
u1 be the vertex of S in X and let u2 be the vertex of S in X (Fig. 5).
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The hypothesis of the case also implies that for i = 1, 2, one of u1 and u2 is adjacent 
only to one vertex of Li. Adjust notation so that u1 is adjacent to only one vertex of L1, 
says v1.

Proposition 3.3. The vertex u1 is adjacent only to one vertex of L2.

Proof. Suppose, to the contrary, that u1 is adjacent to more than one vertex in L2. 
By the hypothesis of the case, u2 is adjacent only to one vertex in L2, say, v2. Let 
T := {v1, v2}. No edge of G − T joins a vertex of Z1 := (L1 − v1) + u2 to a vertex of 
Z2 := (L2 − v2) + u1. Thus, G − T has two or more components.

Let us now prove that each component of G −T is even. If G −T has an odd component, 
then, by parity, it has at least two odd components. In this case, by Corollary 1.2, G −T

has precisely two components, both odd. But if G − T has only two components, then 
they are G[Z1] and G[Z2], both even. We conclude that each component of G − T is 
even.

Let us now prove that each component of G − T has an even number of vertices in 
each shore of C. If G − T has only two components, then they are G[Z1] and G[Z2], and 
both have an even number of vertices in each shore of C. Alternatively, if G − T has 
more than two components, then again each of these components has an even number 
of vertices in each shore of C, by Proposition 3.2.

As each component of G −T is even, the pair T is a 2-separation of G. Each component 
of G − T has an even number of vertices in each shore of C. We conclude that F is 
nonempty, a contradiction to the hypothesis of the case. �

In sum, for i = 1, 2, the vertex u1 is adjacent to only one vertex of Li, say, vi. Clearly, 
{v1, v2} is a C-sheltered nontrivial barrier of G.

Case 2.2. The collection F is nonempty.

Let K1 be a minimal component in F , let L1 := V (K1) and let S be the associated 
2-separation of G. Let u1 and u2 be two vertices of S. Let Y := L1 + u1 be the shore of 
a cut associated with S such that |X ∩ Y | is odd and let D := ∂(Y ). We have assumed 
that S has one vertex in each shore of C. If K1 is unbalanced, then u1 ∈ X and u2 ∈ X

(see Fig. 5). Alternatively, if K1 is balanced, then u1 ∈ X and u2 ∈ X (see Fig. 6). Let 
H := G/(Y → y) and let I := ∂(X ∩ Y ). The cuts C and D cross. By Proposition 1.3, 
the cut I is tight and no edge joins a vertex of X ∩ Y to a vertex of X ∩ Y .

Case 2.2.1. The cut I is trivial.

Suppose that I is trivial. If K1 is unbalanced, then, as K1 is good, it has two or more 
vertices adjacent to vertices of S, hence I is nontrivial, a contradiction to the hypothesis 
of the case. We deduce that K1 is balanced. In this case, X ∩ Y = {u1} and every edge 
of ∂(X ∩ Y ) is incident with a vertex in S. It follows that the shore Y ′ := (X ∩ Y ) + u2
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Fig. 6. The component G[L1] of G − {u1, u2} is balanced.

of the associated cut ∂(Y ′) is a subset of X. The assertion of the theorem holds in this 
case. We may thus assume that

The cut I is nontrivial.

The cuts D and I are laminar, hence I is tight in H (Proposition 1.5). We now apply 
the induction hypothesis, with H and I playing respectively the roles of G and C.

Case 2.2.2. The graph H has a nontrivial I-sheltered barrier.

Let SH be a nontrivial I-sheltered barrier of H. Let us now apply Lemma 2.1 to H, 
Y and y playing respectively the roles of G, X and x. Let S be the set as defined in the 
statement of Lemma 2.1. By the item (iii) of Lemma 2.1, S is a (nontrivial) barrier of 
G. If y /∈ SH , then S is equal to SH and is a subset of X ∩ Y or of X ∩ Y , hence S is 
C-sheltered. We may thus assume that y ∈ SH , in which case S = (SH − y) + u2 and SH

is a subset of (X ∩ Y ) + y. If K1 is balanced, then u2 ∈ X (Fig. 6), hence S is a subset 
of X. We may thus assume that K1 is unbalanced.

In H, some component of H − SH , say, W , contains all the vertices of X ∩ Y , by 
Proposition 1.10. By the 2-connectivity of H, W contains a vertex adjacent to a vertex 
of SH ∩X ∩Y . Moreover, by Lemma 2.1, W is a component of G −S. By Lemma 2.2(iii), 
the set S − u2, which is equal to S ∩ X, is a barrier of G. If S ∩ X is nontrivial, then the 
assertion of the theorem holds.

We may thus assume that S ∩ X is trivial, let v be its only vertex. Let L be a 
component of H − SH distinct from W . Then, V (L) ⊂ X ∩ Y . The only vertex of X ∩ Y

adjacent to y is the vertex u1, hence L contains u1. We deduce that L and W are the 
only two components of H −SH . As K1 is unbalanced and good, u1 is adjacent to two or 
more vertices of X ∩ L1, hence L is nontrivial. The graph L − u1 is a proper nonempty 
subgraph of G, hence the graph G − {u1, v} is not connected. By Corollary 1.2, {u1, v}
is either a barrier or a 2-separation of G. As {u1, v} is C-sheltered, the assertion of the 
theorem holds, by Proposition 1.10. The analysis of Case 2.2.2 is complete.
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Case 2.2.3. The graph H has a 2-separation cut which is laminar with I.

Let DH := ∂(ZH) be a 2-separation cut associated with a 2-separation SH , such that 
ZH is a subset of a shore of I and the subgraph, induced by the vertex set ZH − SH , 
contains exactly one (even) component of H − SH . Let us now apply Lemma 2.1 to H, 
Y and y playing respectively the roles of G, X and x. Let S be the set as defined in 
the statement of Lemma 2.1. By the item (iii) of Lemma 2.1, S is a 2-separation of G. 
We have assumed that one of the vertices of S is in X, the other is in X. Let w1 be the 
vertex of S in X, and let w2 be the vertex of S in X.

Let WH := ZH − SH . Then, WH is a nonempty proper subset, with an even number 
of vertices, of a shore of I as ZH is a subset of a shore of I. If y /∈ WH and u1 /∈ WH , 
then the component induced by WH is also a component of G − S, by the item (i) of 
Lemma 2.1. And since S meets both shores of C, it follows that one of the 2-separation 
cuts of G associated with S has a shore that is a subset of C. This implies that the 
assertion holds. If y /∈ WH and u1 ∈ WH , then, y ∈ SH since u1 and y are adjacent 
in H. So, the other vertex of SH is w1. If K1 is balanced, then WH ⊆ X ∩ Y . As each 
edge of ∂(WH − u1) is incident with a vertex of {u1, w1} and WH is a nonempty subset 
with an even number of vertices, {u1, w1} is a C-sheltered barrier of G, the assertion of 
the theorem holds. If K1 is unbalanced, then WH ⊆ X ∩ Y . Since G[X] is connected, 
G[X ∩ Y ] is also connected. This implies that WH = X ∩ Y . Thus, each component of 
H −SH , distinct from G[WH ], is a subgraph of G[X ∩Y ]. Hence, the graph G −{u2, w1}
is not connected. By Corollary 1.2, {u2, w1} is either a barrier or a 2-separation of G. 
As {u2, w1} is C-sheltered, the assertion of the theorem holds, by Proposition 1.10. We 
may thus assume that y ∈ WH . Then, S = SH . As WH is a subset of a shore of I, it 
follows that WH is a subset of the shore (X ∩ Y ) + y.

If K1 is unbalanced, then, by the definition of K1, the vertex u2 is adjacent to at 
least two vertices of X ∩ Y . Thus, y is adjacent to at least two vertices of X ∩ Y in H. 
Since y ∈ WH and WH ⊂ (X ∩ Y ) + y, both vertices of SH are in X ∩ Y , hence S is C-
sheltered. It is a contradiction as S = SH and both X and X contains one of the vertices 
of S. So, we may thus assume that K1 is balanced. The subgraph of G induced by Y is 
connected (Corollary 1.6). One of the components of G − S is the graph G[W ], where 
W = (WH −y) ∪Y . As WH is even, then so too is W . The vertices u1 and y are adjacent 
in H, therefore u1 ∈ SH ∪ WH , hence u1 ∈ S ∪ W . We conclude that every component of 
G − S distinct from G[W ] is a proper subgraph of K1. Moreover, the set T1 := WH − y

is an odd subset of X ∩ Y , and T2 := X ∩ Y is also odd. Clearly, W ∩ X = T1 ∪ T2, hence 
W ∩ X is even. That is, W is balanced. By Proposition 3.2, every component of G − S is 
balanced. In particular, the components of G − S distinct from W are proper subgraphs 
of K1, a contradiction to the minimality of K1.

The contradiction completes the proof of Case 2.2.3 and hence completes the proof of 
Case 2.2. So the proof of the main theorem is complete. �



194 G. Chen et al. / Journal of Combinatorial Theory, Series B 150 (2021) 177–194
Appendix A. Supplementary material

Supplementary material related to this article can be found online at https://doi .org /
10 .1016 /j .jctb .2021 .05 .003.
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