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The eukaryotic cell’s cytoskeleton is a prototypical example of an active material: objects embedded
within it are driven by molecular motors acting on the cytoskeleton, leading to anomalous diffusive be-
havior. Experiments tracking the behavior of cell-attached objects have observed anomalous diffusion
with a distribution of displacements that is non-Gaussian, with heavy tails. This has been attributed to
“cytoquakes" or other spatially extended collective effects. We show, using simulations and analytical
theory, that a simple continuum active gel model driven by fluctuating force dipoles naturally creates
heavy power-law tails in cytoskeletal displacements. We predict that this power law exponent should
depend on the geometry and dimensionality of where force dipoles are distributed through the cell; we
find qualitatively different results for force dipoles in a 3D cytoskeleton and a quasi-two-dimensional
cortex. We then discuss potential applications of this model both in cells and in synthetic active gels.

1 Introduction
The cytoskeleton of the eukaryotic cell is a complex material,
whose dynamics can to some extent be understood in terms of
a gel of semiflexible filaments1–3. However, the dynamics of ob-
jects embedded within the cell is not solely controlled by thermal
fluctuations, as in a passive gel – the cell is fundamentally ac-
tive and out-of-equilibrium, and transport arises from forces ex-
erted by molecular motors, driving deformations of the cytoskele-
ton4–8, complex fluid flows, and surprising changes in transport
from equilibrium expectations9,10. Many of these properties have
been recapitulated in minimal “active gel" experiments, in which
a synthetic gel is mixed with molecular motors and ATP11–13.
One central observation arising from this work is that even ob-
jects embedded in an elastic material can develop a diffusive be-
havior when active forces are applied to the medium by molec-
ular motors4–6,8,14,15. Recent works studying dynamics of cell-
attached beads and cell cortex attached to an elastic substrate
have identified that these active diffusive movements are charac-
terized by “heavy tails," i.e. a step size distribution (van Hove
distribution) P(∆x) ∼ ∆x−µ that is power-law at large ∆x16–18.
Other groups have, in synthetic active gels, observed tails that
are heavier than Gaussian, but compatible with exponential tails
in P(∆x)12, or even heavier-than-exponential tails13. While Gaus-
sian step distributions are a natural expectation due to the Central
Limit Theorem, even normal thermal materials may have “anoma-
lous yet Brownian” exponential step size distributions19 arising
from a mechanism of diffusing diffusivity20,21. By contrast, heavy
power-law tails have been interpreted in the sense of cytoquakes
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Fig. 1 Illustration of geometry. a: Three-dimensional geometry. b: Quasi-
two-dimensional cortex geometry used in Section 7.

– that they reflect some rare, coordinated collective movement of
the cytoskeleton16,17, and simulations provide some support for
this idea22.

In this paper, we show with stochastic simulations and ana-
lytical calculations that a minimal active gel model, essentially
the one established by Levine and MacKintosh5,6, naturally cre-
ates heavy tails. This arises for a straightforward reason: force
dipoles, randomly distributed in the gel, will have a broad range
of distances to a tracer point, leading to rare events when force
dipoles come close to the tracer, leading to large displacements.
Because force dipoles lead to long-range, power law displace-
ments, this range of distances naturally generates a P(∆x) with
a heavy power law tail, converging to a Lévy stable distribution.
The emergence of Lévy-like distributions from long-range interac-
tions was classically found in the context of electrical dipoles by
Holtsmark23,24, but is also recognized in the statistics of wireless
interference25,26, and more recently also found in the statistics of
fluids driven by active force dipoles from swimmers27–30 and the
mean field theory of plasticity of amorphous solids31–33. The key
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new ideas we show in this paper are that 1) these ideas generalize
naturally to viscoelastic materials driven by active force dipoles,
2) we provide explicit formulas for the van Hove distributions,
and 3) we show that the expected tail exponent depends strongly
on the geometry of the active material – we expect qualitatively
different results in experiments on three-dimensional active gels
in vitro and the quasi-two-dimensional cortices in cells.

2 Model: Active Gel Driven by Force Dipoles

We initially describe the cytoskeleton as a three-dimensional
isotropic incompressible linear viscoelastic material. The dis-
placement u at a position r1 in response to a point force F(t) at a
position r2 is then given by, in Fourier space,

ui(r1,ω) = Ti j(r1 − r2,ω)F j(ω), (1)

where the effective Green’s function (“Oseen tensor” in the con-
text of fluid dynamics34) at frequency ω is:

Ti j(r,ω) =
1

8πG(ω)
1
r

(
r̂ir̂ j +δi j

)
(2)

≡
1

G(ω)
T̃i j(r) (3)

where r̂ = r/r is the unit vector in direction r and δi j is the Kro-
necker delta. We’ve written the Oseen tensor Ti j(r,ω) in frequency
space in order to use the mapping between viscous and viscoelas-
tic systems35,36; this equation can be transformed back into the
time domain to find ui(t) written as a convolution. We describe
our cytoskeleton as being acted on by force dipoles, to represent
myosin minifilaments6,37 (Fig. 1a). We will begin by treating our
force dipoles as two forces with amplitude F(t), separated by a
finite distance d along a vector b̂; we assume the forces are par-
allel to b̂. We measure the displacement field at a tracer point,
which we will set without loss of generality to be the origin. If
the dipoles are located at positions rn, the displacement at the
origin u(0,ω) is then given by

ui(0,ω) = −
∑

n

[
Ti j

(
rn +

bn

2

)

−Ti j

(
rn −

bn

2

)]
Fn(ω)b̂ j

(4)

where bn = db̂n is the separation of the two point forces in the nth

dipole and we have assumed Einstein summation. The displace-
ment can also be written as

ui(0,ω) =
1

G(ω)
Hi(ω) (5)

where

Hi(ω) = −
∑

n

[
T̃i j

(
rn +

bn

2

)
− T̃i j

(
rn −

bn

2

)]
Fn(ω)b̂ j (6)

This is particularly useful because Eq. 6 no longer has a depen-
dence on G(ω) and H(t) may be computed in the time domain,
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Fig. 2 A sample trajectory of the x-axis projection of a dipole-induced ran-
dom walk, obtained via simulation. Parameters are our default parameter set
(Table S1).

and then transformed into H(ω):

Hi(t) = −
∑

n

[
T̃i j

(
rn +

bn

2

)
− T̃i j

(
rn −

bn

2

)]
Fn(t)b̂ j. (7)

2.1 Time dynamics
We assume that force dipoles from a population ρbulk bind and
initiate contraction with a rate konρbulk per unit volume, i.e. that
in a system of volume L3 in a time ∆t, there will be on average
konρbulkL3∆t force dipoles activated. We simulate this by draw-
ing a random number of force dipoles from a Poisson distribu-
tion with mean konρbulkL3∆t, then generating this number of force
dipoles uniformly distributed over the system. Force dipoles that
are active have a constant amplitude F0, and turn off immedi-
ately once they reach their lifetime – they have a rectangular pulse
shape. This lifetime is exponentially distributed with mean τ. The
average density of active force dipoles is then ρavg = konτρbulk. We
initialize the system with ρavgL3 force dipoles active. The force
dipole separations are given by bn = db̂n, with the unit vector ori-
entation b̂n chosen to be distributed uniformly over the sphere.
We have also performed simulations with a fixed total number
of dipoles, switching on and off, and have noticed no important
qualitative differences.

2.2 Viscoelasticity
We compute the values H(t) by determining the force Fn(t) and
dipole separations bn(t) as described above, then using Eq. 7. The
displacement is then computed by using Eq. 5. If the material is
viscoelastic *, we Fast Fourier transform Hi(t) to Hi(ω), multiply by
1/G(ω) and reverse transform to real space to find ui(0, t). Because
our model for G(ω) ∼ (iω)β has vanishing shear viscosity at ω→ 0,
we suppress the ω = 0 mode, assuming that the net force over the

* If the material is not viscoelastic, there is no need to compute Hi(ω) because ui(0, t)
is just equal to G−1Hi(t).
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whole simulation trajectory will average to zero. An alternative
regularization would be to assume G(ω→ 0) = G0; we have not
noticed important distinctions in the heavy tails in selected tests
with this approach.

An example trajectory is shown in Fig. 2.

2.3 Parameters

We choose the strength of the dipoles as F = 10 pN, following7,
and also take our densities to be on the order of 1µm−3, as esti-
mated there; ρavg = 0.5µm−3 is our default value. We choose our
minifilament size to be d = 0.4 microns based on37. Unless other-
wise stated, we use a power-law rheology of G(ω)=Gscale(iω/ω0)β

with Gscale = 38 Pa, and ω0 = 10rad/s38, and β = 0.17 as a typ-
ical example of a weak power-law consistent with previous re-
sults7,17,38,39. Our mean minifilament activity lifetime τ is 5 s7.
We use a system size of L= 80µm. Unless otherwise stated, we use
a time step of ∆t = 0.025s, and a total run time of 50,000s. These
parameters are also summarized in Table S1.

3 Simulations show diffusive or superdiffu-
sive dynamics with heavy tails
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Fig. 3 Mean squared displacement of displacement trajectory as a function
of the lag time. a: For an elastic material G(ω)=G0, we see ordinary diffusion
for times less than τ (dotted line), while b: with G(ω) ∼ (iω)β (β = 0.17), we
see superdiffusion for times less than τ (dotted line). Other parameters are
as in Table S1, except Tsim = 2.5×105 s.

We find that, as expected from the results of4–6, that in a purely
elastic medium G(ω) = G0, the corresponding mean-squared dis-
placement of ux, MSDu ≡ ⟨|ux(t)−ux(0)|2⟩, is diffusive with MSDu ∼

t1 for times shorter than the force dipole correlation time τ, but
saturates for t≫ τ (Fig. 3a). For a viscoelastic material, we ob-
serve superdiffusion at short times, with MSDu ∼ t∆ with ∆ > 1
(Fig. 3b). The expectation for a model like this is that in a
material with G(ω) ∼ (iω)β, we should observe MSDu ∼ t∆ with
∆= 1+2β4,7; this is generally consistent with experimental results
for cells measured with small values of β ∼ 0.157,17. However, we
instead observe that ∆ saturates as the power-law exponent is in-
creased (Fig. 4), reaching a maximum of ∆= 2, and showing devi-
ations from 1+2β even at smaller β. When the active gel becomes
purely viscous at β = 1, we observe effectively ballistic motion for
t≪ τ – as would be expected for an object in a viscous fluid driven
by a constant pulling force. We can roughly understand the de-
viations from t1+2β by analyzing a simplified version of the active
gel model (Appendix B). These deviations arise for a subtle rea-
son: to derive t1+2β, Refs.4,7 assume that the force fluctuations of

0 0.5 1

Rheology exponent 

1

1.5

2

2.5

3

M
S

D
 e

xp
on

en
t 

Simulation
Toy model
1+2

Fig. 4 Diffusive exponent ∆ of MSDu ∼ t∆ as a function of rheology exponent
β. Dashed line arises from the simplified model calculation of Appendix B.
Other parameters are as in Table S1 except Tsim = 2.5×105 s.
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Fig. 5 Van Hove correlation plot of the displacement trajectory at time 10
s, along with a a Lévy stable distribution, fit via MLE. Parameters are as in
Table S1 except Tsim = 2.5×105 s.

minifilaments with processivity time τ, which are ∼
(
τ−2 +ω2

)
, can

be treated as ∼ ω−2 for times shorter than the processivity time.
However, as β increases, this approximation fails, as the presence
of the processivity becomes a singular perturbation (Appendix B).

From our simulated trajectory ux(t), we can calculate the dis-
tribution of jump sizes at a fixed lag time P(∆ux), with ∆ux =

ux(t + T )− ux(t), the results of which are shown in Fig. 5. This
van Hove distribution is fit excellently by a Lévy stable distribu-
tion. Lévy stable distributions are characterized by an exponent
α, which controls the tail of the distribution: P(z) ∼ z−α−1 at large
z if z has a Lévy stable distribution. We find α ≈ 1.68. We note
that here, and throughout the paper, we fit to the Lévy stable
form using the maximum likelihood estimation method (matlab’s
fitdist). Using the maximum likelihood estimator is the best prac-
tice for fitting power-law probability distributions, as many al-
ternatives lead to biases40. We compute P(∆ux) from all data
with separation of time T – i.e. we include ux(t+ T )− ux(t) and
ux(t+ T +∆t)− ux(t+∆t), though these are correlated. We found
similar, though noisier, results using non-overlapping windows.
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4 Intuition for why force dipoles generate
Lévy stable distributions

Our simulations, which have essentially the same assumptions as
the classical Levine and MacKintosh theory, include no coupling
between force dipoles, and no collective effects. They nonethe-
less generate a van Hove distribution with heavy tails. Because
the displacement of the origin can be written as a sum of inde-
pendent contributions from our force dipoles, we would naturally
expect that the Central Limit theorem would apply and the end
result would be Gaussian. Why is this not the case? The an-
swer is that the contribution from each force dipole has a heavy
tail and the standard central limit theorem, which assumes that
the variance of each individual random variable is finite, does
not apply24. Instead, the sum of many independent heavy-tailed
random distributions is a Lévy stable distribution. A symmetric
Lévy stable distribution is characterized by two parameters: the
stability parameter α, which controls the tail of the distribution
P(u) ∼ u−α−1 at u ≫ 1, and a scale parameter γ; its probability
density function cannot be written explicitly but its characteris-
tic function is simple, ⟨e−iku⟩ =

∫
duP(u)e−iku = exp[−|γk|α]. The

details of the limit distribution depend strongly on the dimen-
sion over which force dipoles are distributed, D, and the type of
power-law response that a dipole creates, which we will charac-
terize by an exponent m. Here is a rough scaling argument: sup-
pose we have force dipoles distributed uniformly in a spherical
volume with radius R. The probability density of an event being
a distance r from the origin is given by integrating over all the
possible orientations for this distance, Pr(r) =

∫
dDr δ(|r| − r)P(r)

where P(r) = 1
VDRD for |r| < R and zero otherwise. VD here is the

volume of the unit sphere in D dimensions. Then Pr(r) = S DrD−1

VDRD

where S D is the surface area of the unit sphere in D dimensions.
Now, suppose that a dipole at distance r from the origin creates a
displacement field at the origin with magnitude u ∼ r−m. To find
the distribution of the response Pu(u), we change variables, us-
ing Pu(u)du = Pr(r)dr, giving Pu(u) = Pr(r)

∣∣∣∣ dr
du

∣∣∣∣ = S DrD−1

VDRD ×
1
m u−1− 1

m =

S Du
1−D

m

VDRD ×
1
m u−1− 1

m =
S D

mVDRD u−(1+ D
m ). We see that the response from a

single event is distributed with a power law tail Pu(u) ∼ u−(1+D/m).
This means that the sum of a collection of ui will converge to a
Lévy-stable distribution with stability parameter α = D/m24. (If
D/m ≥ 2, the variance ⟨u2⟩ is finite and the sum will converge to a
Gaussian.)

As a point force leads to a displacement field that falls off as
1/r in an elastic material, force dipoles will lead to displacement
fields that fall off with 1/r2. For our D = 3 simulations, we see
m = 2 and predict α = 3/2. Our best fit to a Lévy stable distribu-

tion to the data shown in Fig. 5, though, is α ≈ 1.68. There are
many possible reasons that our simulation could be in disagree-
ment with this basic estimate. First, we have not accounted for
the vector nature of the displacement field – force dipoles create
anisotropic displacements. Second, this basic argument does not
address the viscoelasticity of the material. Thirdly, in calculating
a van Hove distribution, the displacements ux(t) and ux(0) are not
necessarily composed of a sum of independent heavy-tailed dis-
tributions, because the same force dipole may be bound in both
cases, leading to correlations. Finally, we have assumed that the
dipoles have a finite size d, so the displacement field u will not
be perfectly 1/r2 at length scales close to d. In the next section,
we show explicitly that the first three objections do not change the
predicted value of α = 3/2.
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Fig. 6 Illustration of response u(1) to a step force with tstart = 15 and ton = 5;
the β = 1 curve has been rescaled so the curves are easy to compare.

5 Analytical calculation of van Hove functions
We can explicitly show that the van Hove function for a three-
dimensional viscoelastic material driven by ideal force dipoles is
Lévy stable, and compute its properties as a function of lag time.
The full calculation is straightforward, following24, but some-
what lengthy, and we defer it to Appendix C.

We calculate the probability of observing a displacement
∆ux(T ) = ux(t + T )− ux(t) at lag time T , and find that for a sys-
tem with our assumed time dynamics, viscoelasticity, and ideal
point dipoles that this probability density p(∆ux) is Lévy stable.
The Lévy stable distribution’s probability density function does
not have an explicit representation, but its characteristic function
is simple. For a symmetric Lévy stable distribution, this charac-
teristic function is

f∆(k) = ⟨e−ik∆ux ⟩ = exp
[
− (γk)α

]
(8)

Here, α controls the tail exponent of the Lévy distribution
p(∆ux) ∼ ∆u−(α+1)

x , and γ sets the scale.
We find that the characteristic function for a vis-

coelastic material driven by ideal point dipoles is

f∆(k) = exp(−konρbulkψ∆(k))

ψ∆(k) =
B
60
|k|3/2d3/2

∫ ∞

0
dtonτ

−1e−ton/τ
∫ ∞

−∞

dtstart |u(1)(t+T ; tstart, ton)−u(1)(t; tstart, ton)|3/2
(9)
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Fig. 7 Distribution of displacement ux at different lag times, rescaled by a
lag-time dependent factor ξ(T ) = exp(⟨log |∆ux |⟩). Parameters are as in Table
S1 except Tsim = 2.5×105 s.

where u(1)(t; tstart, ton) is the viscoelastic response at a time
t to a a force event of duration ton starting at a time tstart,
i.e. u(1)(t; tstart, ton) =

∫
dt′ν(t − t′)F(t′; tstart, ton) where ν(t) is

the inverse Fourier transform of 1/G(ω) (Fig. 6). B =
1
8

[
2
√

2+
√

3π+2
√

3arctanh(
√

2/3)
]
.

Eq. 9 shows that the van Hove distribution is Lévy stable with
α = 3/2 for any lag time, and for any linear viscoelastic material
where the integral in Eq. 9 converges. The scale of the distribu-
tion, γ, will change with the lag time T , in a complicated way that
depends on the rheology.

We can compute the integral in Eq. 9 explicitly for the simplest
case of an elastic material, G(ω) = G0. Then, we find ψ∆(k) =
B
60 |k|

3/2d3/2
( F0

G0

)3/2
× 2τ

(
1− e−T/τ

)
. This means that, for an elastic

material, we explicitly find:

α = 3/2

γ(T ) =
F0d
G0

[ B
30

konρbulkτ
]2/3
×

(
1− e−T/τ

)2/3
(10)

Eq. 10 is the generalization of computing a mean-squared dis-
placement for a stable distribution: while there is no explicit MSD
for a point dipole, because the variance of the stable distribution
diverges, γ(T ) characterizes the scale of the response. At short
lag times, we see γ(T ) ∼ T 2/3, while at times long relative to the
motor on time T ≫ τ, γ(T ) saturates; this is akin to the saturation
of the MSD observed in our simulations and in earlier work6,7.

There are also some simple generalizations of the results Eq. 9
and Eq. 10. For instance, if the dipole size d varies between force
dipoles, but this is independent of the dipole’s location, the for-
mulas that depend on d3/2 will then depend on ⟨|d|3/2⟩ (Appendix
C).

6 Numerical simulations: density effects and
finite force dipole size

Our analytical theory predicts that, given an ideal (point) force
dipole, the Lévy exponent α = 3/2, robustly to essentially all fac-
tors in the model – cytoskeletal rheology, density of force dipoles,
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Fig. 8 Time dependence of the Lévy stability parameter α at different dipole
sizes. We see at large dipole sizes α grows and becomes dependent on lag
time, while at smaller dipole sizes both the tail exponent and scale parameter
are given by Eq. 10. In these simulations, G(ω) = G0 = 10 Pa, and we hold
Fd = 4pNµm constant while varying d, so the prediction for γ is unchanged.
Other parameters are as in Table S1.
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Fig. 9 Time dependence of the Lévy stability parameter α at different densi-
ties. Other parameters are as in Table S1 except Tsim = 2.5×105 s.

motor lifetime, etc., contingent on the convergence of the inte-
grals in Eq. 9. This would predict that the heavy tails should have
the exponent ∆u−2.5, relatively universally in many active gels and
many cells, and would be robust to many perturbations, as the
only crucial elements are the scaling of the response to a dipole
and the cell’s dimension. However, when we provide reasonable
values for the finite force dipole size in our simulations, we see
systematic deviations from α = 3/2. This is not surprising: when a
tracer point is close enough to a force dipole that it sees the indi-
vidual monopoles, the characteristic displacement changes from
u ∼ 1/r2 to u ∼ 1/r – suggesting that we should see eventual con-
vergence to a Gaussian, as the variance of our individual forces
is finite for D/m ≥ 2. Nonetheless, we still see heavy tails in our
observed van Hove distributions, though we expect them to even-
tually be cut off at large enough ∆u. (These tails may also be
affected if probe or force dipole size leads to force dipoles being
excluded from a region near the probe; see Appendix E.)

We show our simulations for a realistic value of d = 400nm (a
typical minifilament size37) in Fig. 7. If these distributions were
all Lévy stable with the same α, it would be possible to rescale
the van Hove distributions by the scale parameter γ, and all of
P(∆ux;T ) would collapse onto a single curve. We choose a slightly
different approach, rescaling by ξ(T ) = exp(⟨log(|∆ux|)⟩). If P(∆ux)
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is Lévy stable, ξ will be proportional to γ, but using this approach
is more neutral to the choice of distributions. The collapse in Fig.
7 is clear, but not perfect. The van Hove distribution at short
times has a heavier tail than that at long lag times.

Because the van Hove distributions fail to perfectly collapse
over all lag times, we expect that the effective tail exponents dif-
fer from one lag time to another. We see that this is true in Fig. 8,
finding that α increases systematically over increasing lag time.
We also see that our simulations for a perfectly elastic material
converge to Eq. 10 as the finite dipole size becomes smaller (Fig.
8).

Our analytical model for ideal force dipoles (Eq. 9) predicts
that the scale parameter γ depends on density ρavg – but the pa-
rameter α, which controls the heaviness of the tail, should be

independent of ρavg. However, the presence of a finite dipole
size alters this dynamic significantly (Fig. 9). We observe that
increasing density systematically increases the best-fit α toward
its maximum value (α = 2, a Gaussian distribution). This would
naturally be expected: at larger densities, the typical distance to
a nearest force dipole is much smaller, and the displacement in-
duced by this force dipole deviates more strongly from the ideal
dipole form.

The ideal-dipole calculation (Eq. 9) suggests that the param-
eter α should be independent of any details of the viscoelastic
response, as long as it is linear. In particular, we predict that
it is independent of the exponent β of the power-law rheology,
G(ω)∼ (iω)β. We find, in our simulations, that α is essentially com-
pletely independent of β for small dipole sizes of d = 10−3µm, but
has a weak dependence on on β for finite dipole sizes (Fig. 10).
This weak effect is nonetheless larger than the statistical errors in
these simulations. The relatively weak dependence on material
rheology even for d = 0.4µm remains if we move to a qualitatively
different type of linear rheology, like a Maxwell model (Appendix
G).
7 Effects of quasi-two-dimensional cortex ge-

ometry
Until now, we have treated the case of a three-dimensional linear
viscoelastic material - appropriate to understanding the dynamics
of tracers embedded within gels in vitro. However, both exper-
iments that show heavy power-law tails are measuring the dis-
placement of tracers at the cell surface16,17. The cortex cannot
be treated as a three-dimensional material – typical cortex thick-
nesses are ∼ 200 nm41,42, while typical minifilament sizes are on
the order of 400 nm. We instead move to an opposite extreme,
treating the cortex as quasi-two-dimensional (Fig. 1b). In this
case, we assume that the force dipoles are within the cortex, and
planar. If this is the case, we can use the quasi-two-dimensional
(“Saffman-Delbrück") Oseen tensor43–48. This Oseen tensor is:

T S D
i j (r) =

1
4G2D


H0

(
r

LS D

)
−

H1
(

r
LS D

)
r/LS D

−
1
2

(
Y0

(
r

LS D

)
−Y2

(
r

LS D

))
+

2
π(r/LS D)2

δi j

−

H0

(
r

LS D

)
−

2H1
(

r
LS D

)
r/LS D

+Y2

(
r

LS D

)
+

4
π(r/LS D)2

 rir j

r2


(11)

where Yn is the Bessel function of the second kind and Hn

the Struve functions. G2D is the 2D shear modulus of the cor-
tex (G2D ≈ Gcortex,3Dh, where h is the cortex thickness), LS D =

G2D/Gint is the characteristic (Saffman-Delbrück) length, and Gint

is the cell interior shear modulus.

The form of Eq. 11 is complex, but can be easily understood
in two limits: at distances r≪ LS D, it describes an essentially 2D

material, and has a logarithmic dependence on distance,

T S D
i j (r) ≈

1
4πG2D

{
−

[
ln

(
r

2LS D

)
+γE +

1
2

]
δi j +

rir j

r2

}
(12)

while for r≫ LS D, the effect of the cortex can be neglected, and
the response is 1/r, similar to that of a three-dimensional mate-
rial:

T S D
i j (r) ≈

1
2πGint

1
r

rir j

r2 (13)

Ideal force dipoles then generate a displacement field that
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Fig. 11 Van Hove correlation plots P(∆ux) at lag time 2τ (10s) for different values of the cortex stiffness (and hence Saffman-Delbrück length) and force dipole
density. Blue dots are simulation, red dashed lines are best fit to Lévy stable form, yellow solid lines best fit to a Gaussian (α = 2). Gint = 10 Pa, and other
parameters are set to the values of Table S1.

drops off like u ∼ 1/r for r ≪ LS D but u ∼ 1/r2 for r ≫ LS D. Our
intuition that we should expect α = D/m, then, suggests that if we
are primarily seeing dipoles within LS D of our tracer particle, we
should expect α = 2 – i.e. Gaussian van Hoves, but if tracers are
primarily separated from force dipoles by distances r≫ LS D, we
would expect α→ 1 – i.e. a Cauchy distribution.

Two-particle microrheology suggests a reasonable range for the
cell interior is ∼ 10 Pa38, but there is a great deal of range in
reported values for cortical stiffness49– and both exhibit power-
law rheology.

Unfortunately, our approach for the pure three-dimensional
materials will not allow us to study viscoelasticity in the quasi-
two-dimensional material. This is because in quasi-2D, the depen-
dence on the shear viscosity can no longer be scaled out as in Eq.
5 above – T S D

i j depends on G(ω) both through an overall scaling
and through LS D. This dependence leads to significant complex-
ities, as a viscoelastic quasi-two-dimensional material will have
a spatial dependence in its response to force that qualitatively
changes depending on the frequency of applied force50. In prin-
ciple, it would be possible to directly determine T S D

i j (ω) for each
force event, and add them up to determine u(ω) and hence u(t).
However, this means that for each event, we must compute T S D

i j
for the whole range of frequencies ω in our problem. Both the
number of frequencies needed to capture this response and the
number of events scale linearly with simulation time – leading to
a problem that scales quadratically with the total amount of sim-
ulation time. We have found that this is intractable for the times

required to understand the long tails of our distributions.

For these reasons, we take the somewhat oversimplified view
of representing the cortex and cell interior G values as constant,
and show how the distribution P(∆ux) depends on varying the
Saffman-Delbrück length by changing Gcortex,3D over plausible
values, which range from 10s of Pa to kPa49 (Fig. 11). We thus
range G2D = hGcortex,3D from 10Paµm to 1000Paµm, and choose
Gint = 10 Pa as a rough order of magnitude.

The range of fit α values is consistent with our scaling intuition,
with α varying from 1 to 2 (Fig. 11, Appendix D). However, over
the physically reasonable range of G2D (corresponding to LS D =

1− 100µm), we find α from 1.56 to 2. This is also mediated by
the density, as would be expected. The typical distance from our
tracer at the origin to a force dipole is ρ−1/2

avg . At the largest density

we show (ρavg = 5µm−2) ρ−1/2
avg = 0.4µm < LS D, and we see that α

approaches 2. (We note that this convergence to α = 2 reflects
both the finite dipole size and the scaling T S D

i j ∼ lnr; for smaller
dipole sizes, an interesting finite size effect appears; see Appendix
D). However, at the smallest density studied in Fig. 11, ρ−1/2

avg is
on the order of 3.2µm, which is in the range of our LS D, allowing
α to take on intermediate values. (We also see that α does reach 1
if we choose the cortex stiffness G2D unphysically small, making
ρ−1/2

avg ≫ LS D). We note that in Fig. 11, our van Hove distributions
are not perfectly fit by Lévy stable distributions. This is to be
expected, given the two-scale dependence on separation as well
as the finite dipole size.
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8 Discussion

We have developed a simple theory showing that, for a 3D vis-
coelastic incompressible material driven by ideal force dipoles,
that the distribution of step sizes of a tracer embedded in that
material are Lévy stable-distributed, with α = 3/2, and a straight-
forward formula for the dependence of the distribution scale γ

on the lag time. However, our further simulations show several
complications to this basic picture – showing that the finite physi-
cal size of force dipoles alter the effective α and create deviations
from the Lévy stable picture in the far end of the tails. This finite
size can play a significant role in the tails of the van Hove dis-
tributions, because these heavy tails inherently probe the short-
distance response of the material – as nicely highlighted by earlier
work by Zaid and Mizuno studying the effects of imposing a hard
cutoff to power-law responses28. (See also Appendix E). Our re-
sults show how the universal regime of α = 3/2 may be reached
by looking at smaller densities of force dipoles (Fig. 9). We have
assumed that our force dipoles are composed of a pair of force
monopoles – but it is likely that there are also higher-order force
multipoles that could arise from the details of minifilament struc-
ture. If α = 3/2 can be systematically measured in an in vitro or
in vivo experiment, how corrections arise to this universal value
at large densities (and at larger values of ∆ux, deeper into the
tail) may be an interesting way to probe both minifilament force
generation and the response of the active gel to force. We have
not, for instance, included nonlinear effects of the cytoskeletal
network, or how motors may act to stiffen the material51,52 –
our theory is solely within the framework of linear viscoelasticity.
The interaction of motor-induced stiffening and the high degree
of heterogeneity implied by the heavy tails may have interesting
interactions: would we expect a heavy-tailed distribution of effec-
tive stiffnesses throughout an active material? This might suggest
that the difficult problem of sensing stiffness in a disordered fiber
network53,54 would become yet more difficult due to the heavy
tails in force-dipole-driven displacements.

We have also ignored in the main text the role of additional
sources of noise, such as thermal noise and positional error in
tracking. These may potentially alter the van Hove distribution,
and if these noises are Gaussian, they will make the van Hove
distribution more Gaussian, potentially masking the heavy tails
predicted here. However, at long lag times, we expect the active
contribution to be dominant over these other noise sources. We
address a simple example of this larger problem in Appendix F.

Experimental active gels and cell tracking show a variety of
different types of tails. These range from exponential12 to heav-
ier than exponential13 and explicitly power-law16,17.Our work is
largely inspired by the work of Shi et al.17,18, who have found
evidence that van Hove distributions may be described as Lévy
stable with α ≈ 1.65−1.7618. This is roughly compatible with our
results for quasi-two-dimensional cell cortices – but only if the
cortex stiffness is on the lower end of the reported range. Within
our framework, why would these different experiments have dif-
ferent results? We highlight the roles of geometry, motor density,
and the force dipole size. For in vitro gels, the three-dimensional
geometry would naively predict α = 1.5, but Toyota et al. observe

exponential tails12. For finite-sized dipoles, we predict a tran-
sition to Gaussian tails at large densities and large dipole sizes
– when the short-range properties of the force dipoles becomes
increasingly relevant. The exponential tails commonly observed
may arise from a “diffusing diffusivity”-type mechanism or local
heterogeneity if the mechanism studied here is in the Gaussian
regime. By contrast, Alencar et al. observe a power-law tail –
but with an exponent P(∆ux) ∼ ∆u−3.62

x – though with a different
rescaling analysis than the one we use here. This exponent cannot
be explained within the framework of a Lévy stable distribution,
as the variance of this distribution is finite. However, we do see
that in our quasi-two-dimensional calculations, we see tails that
deviate from a simple Lévy stable distribution, and fall off faster
than the best-fit Lévy stable – the result of16 could be interpreted
in this sense.

We emphasize that our results do not preclude the existence
of cytoquakes. While we may explain the heavy tail in van Hove
displacements without invoking any criticality or avalanche-like
behavior, we note that there are many independent lines of ev-
idence pointing to a cytoquake-like behavior, including the tim-
ing of events and recurrence seen in16 and the spatially-extended
correlations observed in17. Understanding the origin of these fea-
tures and how they can be altered by the heavy tails generated by
a simple active gel mechanism studied here is an important open
question.

One striking result of our work is that three-dimensional ac-
tive gels should have tail exponents that are largely independent
of the rheology of the gel (Fig. 10, Eq. 9), while in the quasi-
two-dimensional geometry, it is possible to completely change the
tail structure from Gaussian to an extreme value of α = 1 simply
by changing the shear modulus of the cortex. This result may
be testable within the context of reconstituted actin cortices55,56,
though since these cortices have a larger thickness of ∼ 1 micron,
finite thickness effects may also be important57. In addition, work
studying the hydrodynamics of membrane flow have shown that
the presence of nearby solid supports, internal friction, and em-
bedded immobile proteins may play a large role in altering the
Oseen tensor scaling with distance47,58–61. Other factors, such as
local heterogeneity, could also affect long-range responses, as has
been measured in the membrane context62. Dynamics in quasi-
2D systems may be even more complicated than what we have
addressed here: because the Saffman-Delbrück length scale will,
in a viscoelastic system, depend on frequency, it is possible that a
material may act as effectively two-dimensional at some frequen-
cies – but three-dimensional at others50. As a consequence, we
might observe α ranging from 1 to 2 as a function of the lag time,
with different lag times probing different time scales and hence
different values of LS D. We also have not addressed recently ob-
served thickness fluctuations arising from activity within the cor-
tex42. Altogether, we view the quasi-two-dimensional geometry
as one giving a huge amount of control over the scaling of the
Oseen tensor Ti j(r) – and therefore the predicted tails, making it
an ideal testbed for finding a rich zoo of different types of rare
events in active gels.

Similarly to the quasi-2D results, within three-dimensional gels,
the presence of a boundary will affect the effective elastic re-
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sponse – significantly altering the tails. This is important in in-
terpreting experiments, like those of Bertrand et al.13, where
measurements are at the surface of an active gel. Our ini-
tial tests of this idea show that the surface effects will create
both an anisotropy in tails and alter the overall scaling expo-
nent of the tails, consistent with the observation of anisotropy
in tail structure by13. Other deviations from our results here
may arise from short-range deviations from linear elasticity63,64,
which can change the appropriate power law exponent of T (r).
Cortex turnover and dynamic thickness variations may also be
relevant42.

Lévy statistics are often invoked in questions of foraging and
animal travel, in order to explain efficient search65 though this
optimality of search is sensitive to many assumptions and the hy-
pothesis remains controversial66, and even the central optimality
results have been challenged67. It is possible that heavy tails in
cytoskeletal systems may similarly play a role in accelerating rare
encounters of cytoskeleton-attached objects with binding targets.
However, we argue that our results, combined with the earlier
work of28 in particular, suggest a different view: heavy tails are
generic within our current understanding of active gels. This has
important implications for many works studying tracer dynam-
ics, coupling of motors to the matrix, trap escape, etc. in active
gels68–72: are these results qualitatively changed by the heavy
tails in the noise?
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Appendix

A Table of default parameters

Parameter Name Value
F Dipole strength 10 pN
τ Minifilament lifetime 5 s
d Minifilament size 0.4 µm

ρavg = konτρbulk Mean dipole density 0.5µm−3

L System size 80 µm
G0 Shear modulus for elastic systems 10 Pa

G(ω) =Gscale(iω/ω0)β Power law rheology form
Gscale Shear modulus scale 38 Pa
ω0 Frequency at which |G(ω)| =Gscale 10rad/s
β Rheology exponent 0.17
∆t Time step 0.025 s

Tsim Total simulation time 50,000 s
Gint Interior shear modulus for quasi-2D system 10 Pa

Table S1 Default parameters

B Deviations from t1+2β

We can understand the deviations from t1+2β by looking at a simplified, zero-dimensional version of the model. If we have a displacement
x(t) that is driven by a stochastic motor-driven force f (t), in a material with shear modulus G(ω), we expect x(ω) ∼ f (ω)/G(ω). Then,
MSDx = ⟨|x(t)− x(0)|2⟩ can be computed as, given x(t) =

∫
dω
2π eiωt x(ω)

⟨[x(t)− x(0)]2⟩ =

〈∣∣∣∣∣∫ dω
2π

x(ω)(eiωt − eiω×0)
∣∣∣∣∣2〉 (S14)

=

∫
dω
2π

∫
dω′

2π
⟨x(ω)x(ω′)⟩

[
eiωteiω′t − eiωt − eiω′t +1

]
(S15)

=

∫
dω
2π

∫
dω′

2π
⟨F(ω)F(ω′)⟩
G(ω)G(ω′)

[
eiωteiω′t − eiωt − eiω′t +1

]
(S16)

The correlation of a step-function force of amplitude F0, averaged over its possible durations is ⟨F(ω)F(ω′)⟩ = 2πδ(ω+ω′)
2F2

0τ
2

1+(ωτ)2
5, so we

find

⟨[x(t)− x(0)]2⟩ =

∫
dω
2π

1
|G(ω)|2

[
1− eiωt − e−iωt +1

] 2F2
0τ

2

1+ (ωτ)2 (S17)

∼

∫
dω |ω|−2β (1− cosωt)

1+ (ωτ)2 (S18)

where we have assumed G(ω) ∼ ωβ in the last line. If we change variables to w = ωt, we find

⟨[x(t)− x(0)]2⟩ ∼ t−1t−2β
∫

dw|w|−2β 1− cosw
1+w2(τ/t)2 (S19)

∼ t1+2β
∫ ∞

−∞

dw|w|−2β 1− cosw
(t/τ)2 +w2 (S20)

For t≪ τ we could neglect the term t/τ in the denominator of the integrand: this predicts that MSDx ∼ t1+2β, as noted by4. However, as β
becomes larger, the resulting integral no longer converges. As w→ 0, the integrand with t= 0 behaves as ∼w−2β

[
1− (1−w2/2)

]
/w2 ∼w−2β,

so the integral will diverge at t = 0 if β ≥ 1/2; similarly, the presence of a small but finite t can lead to significant errors even for β < 1/2.
We calculate the integral for finite t numerically using Gauss-Kronrod quadrature (matlab’s quadgk), and use this to determine the
scaling of MSDx; this is shown in Fig. 4.
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C Computing distributions of displacements analytically

We have defined above the sum:

Hi(t) = −
∑

n

[
T̃i j

(
rn +

bn

2

)
− T̃i j

(
rn −

bn

2

)]
Fn(t)b̂ j (S21)

We can extend the results of24 to show explicitly that in the limit of ideal (point) dipoles, Hi has a Lévy stable distribution. We can
also determine its parameters. To construct a point-like dipole field, we treat Eq. S21 in the limit where dipole size is small relative to
separations, i.e. |bn| ≪ r. In this limit,

T̃i j

(
rn +

bn

2

)
− T̃i j

(
rn −

bn

2

)
≈ bn,k∂kT̃i j(rn) (S22)

where bn,k is the kth component of the vector bn and

8π∂kT̃i j(r) =
1
r2

[
−r̂kδi j −3r̂ir̂ jr̂k + r̂ jδik + r̂iδ jk

]
≡

1
r2 Di jk(r̂) (S23)

where r̂ = r/|r|. Then

Hi(t) ≈ −
1

8π

∑
n

1
r2

n
dFn(t)Di jk(r̂n)b̂ jb̂k (S24)

where d = |bn| is the magnitude of the force dipole separation. When we discuss a “point-like” dipole, which would be d→ 0, we mean
the limit where the field is given by the simple form above in Eq. S24, and the amplitude of the force dipole Fd is constant. Let us
then compute the distribution of Hi(t) by computing its characteristic function, f (k) = ⟨e−ikHi ⟩. This average is over – independently –
the positions rn, the orientations b̂, and the force strength Fn(t). Assuming that these are all independent of one another, and have the
same distribution for each n, we find

f (k) =
〈
exp

ik N∑
n=1

dFn

8π
r−2
n Di jk(r̂n)b̂i,nb̂ j,n

〉 (S25)

=

〈
exp

(
ik

dF(t)
8π

r−2Di jk(r̂)b̂ib̂ j

)〉N

(S26)

If we treat the location of the point dipoles as uniformly distributed over a sphere with radius R, then let R→∞, we can give an explicit
form for the average over position, writing

f (k) =
〈

1
VR

∫
d3r exp

(
ik

dF(t)
8π

r−2Di jk(r̂)b̂ib̂ j

)〉ρVR

(S27)

where we have defined the density of point dipoles so that ρVR = N. We can then, noting 1
VR

∫
d3r = 1, write

f (k) =
[
1−

〈
1

VR

∫
d3r

{
1− exp

(
ik

dF(t)
8π

r−2Di jk(r̂)b̂ib̂ j

)}〉]ρVR

(S28)

Taking the limit of VR→∞, holding ρ constant, noting limN→∞(1+ x/N)N = ex, we see

f (k) = exp(−ρψ(k)) (S29)

with

ψ(k) =
〈∫

d3r
[
1− exp

(
ik

dF(t)
8π

r−2Di jk(r̂)b̂ib̂ j

)]〉
(S30)

where the average is over the orientations b̂, the magnitudes |b| = d, and the values of F(t), all assumed to be independent of one
another. Note that because f (k) is a Fourier transform of a real function, f (k) = f ∗(−k); in addition, because of the symmetry of the
problem, f (k) = f (−k) and f (k) is real. This means that ψ(k) must also be real, so we may preemptively take the real part:

ψ(k) =
〈∫

d3r
[
1− cos

(
k
r2

dF(t)
8π

Di jk(r̂)b̂ib̂ j

)]〉
(S31)

Now we can get the primary scaling of the Lévy stable distribution by changing variables in the integral from r to w = r
√
|g(k)| where

g(k) = k dF
8π Di jk(r̂)b̂ib̂ j. We then get

ψ(k) =
∫

d3w⟨|g(k)|3/2⟩
[
1− cos

(
±w−2

)]
(S32)
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where the ± arises from the sign of g(k), but will be irrelevant because cos(x) = cos(−x). We can break the integral into an angular part
and a radial part, which can be evaluated:

ψ(k) =
∫

dΩw⟨|g(k)|3/2⟩
∫

dww2
[
1− cos

(
w−2

)]
(S33)

=

√
2π
3

∫
dΩw⟨|g(k)|3/2⟩ (S34)

Now, we have to be a little careful about defining the types of averages involved. We have an orientational average over the dipole
orientation b̂ (i.e. an integral 1

4π

∫
dΩb) and an independent average over the force strength. So we get

ψ(k) =

√
2π

3(8π)3/2 |k|
3/2⟨|dF|3/2⟩

1
4π

∫
dΩb

∫
dΩw|Di jk(ŵ)b̂ jb̂k |

3/2 (S35)

The orientational factor can be simplified as

Di jk(r̂)b̂ jb̂k =
[
−r̂kδi j −3r̂ir̂ jr̂k + r̂ jδik + r̂iδ jk

]
b̂ jb̂k (S36)

=
[
−r̂ · b̂b̂i −3r̂i(r̂ · b̂)2 + r̂ · b̂b̂i + r̂i

]
(S37)

= ri
[
1−3(r̂ · b̂)2

]
(S38)

Because of the isotropy of the problem, we can evaluate the Ωb integral with the axis chosen so ŵ is along z, and ŵ · b̂ = cosθb:∫
dΩb

∣∣∣1−3(ŵ · b̂)2
∣∣∣3/2 = 2π

∫ 1

−1
d cosθb

∣∣∣1−3cos2 θb
∣∣∣3/2 (S39)

= 2π
1
8

[
2
√

2+
√

3π+2
√

3arctanh(
√

2/3)
]

(S40)

≡ 2πB (S41)

This leaves

ψ(k) =

√
2π

3(8π)3/2 |k|
3/2B⟨|dF|3/2⟩

1
2

∫
dΩw|wi|

3/2 (S42)

The integral
∫

dΩw|wi|
3/2 must, by symmetry, be independent of i, so we can evaluate it with i along z for simplicity,

∫
dΩw|wi|

3/2 =

2π
∫

d cosθw|cosθw|
3/2 = 2π×4/5. Put together and simplified, we get

ψ(k) =
B
60
⟨|dF|3/2⟩|k|3/2 (S43)

This shows that Hi is a Lévy stable distribution with parameters α = 3/2 and γ =
[

B
60 ⟨|dF|3/2⟩ρ

]2/3
. Note (B/60)2/3 ≈ 0.0866371.

We check this in Fig. S1. To study a slightly more general case than our main paper, we choose the force dipole strength Fd to vary
randomly, independently of the dipole orientation.

C.1 van Hoves and viscoelasticity

We have to generalize this calculation a little in order to look at the limit of viscoelastic materials. In particular, because of the long-
term effects of viscoelastic flow in response to a force, a force in the past leads to displacement at all times. This means that it is
essential that we gain a model for how force dipoles are distributed in both time and space. The previous model, with a fixed number
of dipoles, makes this a little difficult. However, it’s much easier to make this calculation in a model where we have a fixed spatial
concentration of dipoles ρbulk, and describe the rate at which they turn on as konρbulk, with kon as the rate of activation per unit time
per unit concentration in the bulk. In this model, the rate of turning on at a time t is constant over the experiment. Generalizing the
derivation from above to this case, we get that the characteristic function for Hi(t) is f (k) = exp(−ρbulkkonψ) with

ψ(k) =
〈∫ ∞

−∞

dtstart

∫
d3r

[
1− exp

(
ik

dF(t; tstart, ton)
8π

r−2Di jk(r̂)b̂ib̂ j

)]〉
(S44)
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dipoles with density ρ = 20 in a 10×10×10 cube. Here, Fd is chosen to be 1 with probability pon = 0.5 and 0 otherwise.

where tstart is the time that the force dipole first turns on, ton is its duration. t here is just the time at which H(t) is observed. All of the
earlier calculation then carries over, and we find

ψ(k) =
B
60
|k|3/2⟨|d|3/2⟩

〈∫ ∞

−∞

dtstart |F(t; tstart, ton)|3/2
〉

(S45)

where we’ve assumed that any variation in the dipole length |d| is independent of the strength of the force, dipole position, etc. If the
duration of forces has an exponential distribution, as we’ve assumed in our simulations, we get

ψ(k) =
B
60
|k|3/2⟨|d|3/2⟩

∫ ∞

0
dtonτ

−1e−ton/τ
∫ ∞

−∞

dtstart |F(t; tstart, ton)|3/2 (S46)

For a simple force that turns on at time tstart and lasts for a time ton, we have F(t) = F0θ(t − tstart)θ(tstart + ton − t), and∫
dtstart |F(t; tstart, ton|

3/2 = F3/2
0 ton. The integral over ton is then easy to evaluate – we get the mean on time to be τ, leading to

ψ(k) =
B
60
|k|3/2⟨|d|3/2⟩F3/2

0 τ (S47)

Crucially, this approach generalizes easily to describing the viscoelastic displacement. Viscoelastic displacement due to a force
F(t; tstart, ton) is given by the inverse Fourier transform of Eq. 5. The linearity of our problem means that

ui(t) = −
∑

n

[
T̃i j

(
rn +

bn

2

)
− T̃i j

(
rn −

bn

2

)]
u(1)(t; tstart,n, ton,n)b̂ j (S48)

where now the sum is over all force dipoles over all time, and

u(1)(t; tstart, ton) =
∫

dt′ν(t− t′)F(t′; tstart, ton) (S49)

and ν(t) is the Fourier transform of 1/G(ω). u(1) is related to the displacement arising from a single on-off event, and is shown in Fig. 6
for a power-law material.

By analogy with the earlier results, it is easy to see that the viscoelastic response ui has a characteristic function fu(k)= exp(−konρψu(k))
with

ψu(k) =
B
60
|k|3/2⟨|d|3/2⟩

∫ ∞

0
dtonτ

−1e−ton/τ
∫ ∞

−∞

dtstart |u(1)(t; tstart, ton)|3/2 (S50)

Again, we see that we will get α = 3/2 very robustly. However, the prefactor of k3/2 above, which controls the scale parameter γ, can
depend on β. Importantly, however, for our results to be applicable, the integral here must not diverge. This is a serious concern
for power-law responses. For times t≫ tstart + ton, the asymptotic response of u1(t) scales as tβ−1 – so this integral will only converge
if 3

2 (β− 1) < −1, or β < 1/3. In practice, this divergence may be regularized if we have G(ω) = G0 +Gscale(iω/ω0)β and the long-time
response is purely elastic. Within our simulations in the main paper, we are using a finite range of frequencies, so this divergence is also
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regularized to some extent there.

Within this language, where our sum in Eq. S48 is written over all of the force dipole events over all time, it is simple to compute the
displacements ui(t+T )−ui(t) as

ui(t+T )−ui(t) = −
∑

n

[
T̃i j

(
rn +

bn

2

)
− T̃i j

(
rn −

bn

2

)] [
u(1)(t+T ; tstart,n, ton,n)−u(1)(t; tstart,n, ton,n)

]
b̂ j

Which then directly shows that the van Hove distributions will have characteristic function f∆(k) = exp(−konρψ∆(k)) with

ψ∆(k) =
B
60
|k|3/2⟨|d|3/2⟩

∫ ∞

0
dtonτ

−1e−ton/τ
∫ ∞

−∞

dtstart |u(1)(t+T ; tstart, ton)−u(1)(t; tstart, ton)|3/2 (S51)

Again, contingent on the convergence of this integral, we should always see α = 3/2 for the ideal dipole response.

We can evaluate this integral explicitly in the case of a purely elastic system, in which case u(1)(t; tstart, ton) = F(t; tstart, ton)/G0. Then∫ ∞

−∞

dtstart |u(1)(t+T ; tstart, ton)−u(1)(t; tstart, ton)|3/2 =

(
F0

G0

)3/2 ∫ ∞

−∞

dtstart |θ(t+T − tstart)θ(tstart + ton − t−T )− θ(t− tstart)θ(tstart + ton − t)| (S52)

This integral essentially counts the amount of starting time for which the force dipole is on at only one of t and t+T . As T goes to zero,
it will vanish – but it will reach a maximum when T > ton. We can evaluate this as∫ ∞

−∞

dtstart |θ(t+T − tstart)θ(tstart + ton − t−T )− θ(t− tstart)θ(tstart + ton − t)| =

2T T < ton

2ton T ≥ ton
(S53)

Computing the average over ton is simple, and we get

ψ∆(k) =
B
60
|k|3/2⟨|d|3/2⟩

(
F0

G0

)3/2
×2τ

(
1− e−T/τ

)
(S54)

Note that the asymptotic limits of this are reasonable – for T ≪ τ, we have that the width of the distribution is vanishing. For T ≫ τ, we
have a value that is twice that given in Eq. S47. This is because we are effectively summing over twice the density – because there is no
correlation between force dipoles on at time t and at time t+T .

D Varying Saffman-Delbrück lengths and system size effects in the quasi-2D geometry

In the main text, we showed that it was possible by varying the two-dimension cortex shear modulus G2D over a reasonable physical
range of G2D = 10,100,1000Paµm that we found values of α from around 1.5 to 2. However, our scaling analysis suggests that we should
be able to reach values of α = 1 in the limit where LS D is small relative to typical spacings, and the Oseen tensor for a force monopole
becomes 1/r. We show that this is the case in Fig. S2. We could also reach this limit by increasing the interior shear modulus Gint. As
we see in the three-dimensional case, with a realistic-sized dipole, there are some small deviations from α = 1 which disappear in the
limit of d→ 0.

Though it is not as apparent, the results in Fig. 11 also depend on the finite size of the dipole. When the dipole size is smaller, we
tend to see α < 2 even when LS D becomes large (Fig. S3).

In principle, LS D becoming large should make the Oseen tensor logarithmic, and the response to an ideal dipole scale as 1/r, leading
to α = d/m = 2. The deviation in Fig. S3 likely comes from a finite size effect, and is not arising from a special feature of the Saffman-
Delbrück tensor, but arises even in a toy model with D = 2 dimensions and a dipole response function with m = 1. We simulate a
collection of “toy dipoles" that generate a field u(r) = c/r, with c a random number uniformly distributed between −1/2 and +1/2; we
then generate N random points over the L× L plane (N chosen from a Poisson distribution with mean ρL2, ρ = 0.1µm−2), and compute
the sum of the independent u(ri). This is then repeated Nits = 5× 104 times. The resulting distribution can be fit to a Lévy stable. We
see the results in Fig. S4. Though it might not be apparent from small changes in system size, α systematically increases toward 2 as
we increase the system size. We have been able to fit this form to α = α∞ − a/ ln L (Fig. S4, right), with a a constant. Extrapolating
to L = ∞ suggests that we should reach α = 2. In practice, we expect that in a physical system, the finite size may be quite relevant
if the cell’s Saffman-Delbrück length is long, and ideal dipoles might see α < 2. Interestingly, strong systematic effects of finite size
simulation boxes are also seen in diffusion coefficients of membrane proteins and lipids in molecular dynamics simulations73,74, where
these effects similarly arise from the long-range nature of the Oseen tensor.
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Fig. S2 We can capture the limit of α = 1 by moving to unphysically small values of G2D. As in Fig. 11 in the main paper, blue dots are simulation data, dashed
red line is the best Lévy stable fit, and the yellow solid line is the best fit to the Gaussian form. Van Hove plots at lag time 2τ (10s).
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Fig. S3 For small dipole sizes d = 10−3µm, even when G2D = 1000Paµm, we do not reach α = 2. Van Hove plots at lag time 2τ (10s).

E Effects of hard-core exclusion
In the main paper, we have assumed that force dipoles are uniformly distributed over the entire system, including coming arbitrarily
close to our tracer at the origin. This is an oversimplification that neglects the physical size of the force dipole. We show an extreme
case of this exclusion in this appendix, not permitting force dipoles to come within a distance d of the origin. (We reject these force
dipoles and relocate them to a different location). We find that these effects quantitatively, but not qualitatively change our conclusions.
We present Van Hove curves corresponding to Fig. 7 and 11 in the main text below as Fig. S5 and S6.

F Effects of added noise: thermal and localization noise
We have shown in the main text that the displacement ux(t) has a van Hove distribution that can have heavy tails. We have assumed
that the only source of noise that drives these fluctuations is the active driving by molecular motors, neglecting additional sources of
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Fig. S4 Our simple toy model with D = 2 and m = 1 has a systematic effect on α arising from the system size shows finite size effects compatible with
α = α∞ −a/ ln L.
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noise like thermal noise and measurement / localization noise. This is appropriate for thinking about systems at low frequency and long
times, where thermal noise is dominated by active contributions11. However, the presence of thermal or localization noise may alter
the van Hove distributions at short time. Within our linear framework, we expect that ux(t) = uactive

x +uthermal
x +ulocalization

x . uthermal
x will

depend on the rheology of the material, but also on the probe size, etc.36. We take a simple example – a purely elastic material. In this
case, we’d expect that uthermal

x will be Gaussian but also have little correlation from one time to another – similar to a localization noise.
In this case it is reasonable to combine both thermal and localization noise together, creating uadded

x (t), which we assume to be Gaussian
with an amplitude ⟨|uadded

x |2⟩ = ∆x2, and with no time correlations on the scale of our simulation. To simulate this added noise, we just
add an independent Gaussian random number with mean zero and standard deviation ∆x to each ux(t). We see in Fig. S7 that if the
amplitude is sufficiently large, this added noise alters the observed α at short times, bringing α closer to α = 2 – adding this Gaussian
noise tends to make the distribution observed more Gaussian and can mask the heavy tails. However, at longer times, because the noise
is uncorrelated from one time to another, the effect of the noise becomes much smaller. For more complicated rheologies, this effect
may become more complex, as the lag time required for the active component to dominate may be larger.

G Alternate rheology: the Maxwell model
In the main text, we have studied viscoelastic systems in three dimensions with power-law linear rheology, G(ω) ∼ (iω)β, motivated by
the experimental findings on cell cytoskeletal rheology. However, our results for ideal dipoles suggest that α = 1.5 should hold not only
independent of the parameter β but of the form of G(ω) entirely. We take a prototypical example here, and simulate a material with
the simple Maxwell model, G(ω) = G∞

1−iω0/ω
. At high frequencies, ω≫ ω0, this approaches an elastic behavior, G(ω)→G∞, while at low

frequencies, G(ω)→ iωG∞/ω0, i.e. a viscous fluid. We show the results for a three-dimensional simulation with this form in Fig. S8. We
see that, consistent with Fig. 10, for nanometer-sized dipoles, we see α ≈ 1.5 essentially independently of the parameter ω0. However,
when we use a physically-sized finite dipole, there is a weak but nonzero dependence on ω0. Consistent with Fig. 10, when the material
is more like a viscous fluid on the relevant timescales (i.e. ω0 large) we find that α is slightly larger – corresponding to the limit of β→ 1
in Fig. 10.
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