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Abstract. Finite time blow up vs global regularity question for 3D Euler equation of fluid me-
chanics is a major open problem. Several years ago, Luo and Hou [16] proposed a new finite time
blow up scenario based on extensive numerical simulations. The scenario is axi-symmetric and
features fast growth of vorticity near a ring of hyperbolic points of the flow located at the boundary
of a cylinder containing the fluid. An important role is played by a small boundary layer where
intense growth is observed. Several simplified models of the scenario have been considered, all
leading to finite time blow up [3, 2, 9, 13, 11, 15]. In this paper, we propose two models that are
designed specifically to gain insight in the evolution of fluid near the hyperbolic stagnation point
of the flow located at the boundary. One model focuses on analysis of the depletion of nonlinearity
effect present in the problem. Solutions to this model are shown to be globally regular. The second
model can be seen as an attempt to capture the velocity field near the boundary to the next order
of accuracy compared with the one-dimensional models such as [3, 2]. Solutions to this model blow
up in finite time.

1. Introduction

The problem of finite time blow vs global regularity in solutions of the 3D Euler equation of fluid
mechanics is one of the major open questions of applied analysis. Several years ago, Hou and Luo
[16] produced a very careful and convincing numerical simulation proposing a new scenario for finite
time blow up. The simulation is axi-symmetric, and takes place in an infinite vertical cylinder with
rigid boundary. The boundary conditions are no penetration; the solution is periodic in vertical
direction and obeys additional symmetries with respect to z = 0 plane. Although the symmetries
make the Hou-Luo scenario look special, a recent experimental paper classifying the structure of
regions of “extreme dissipation” in turbulent fluid [19] has found that most of these are formed by
colliding masses of fluid with a hyperbolic point of the flow in between - geometry related to the
Hou-Luo scenario. Thus the Hou-Luo scenario can be thought of as an idealized blueprint for a
fairly robust small scale creation and energy dissipation mechanism present in turbulence.

It is well-known [17] that the 2D Boussinesq system is a good proxy for the 3D axi-symmetric
Euler equation away from the axis, and it has a bit more compact form. Hence our starting point
for the derivation of the models will be the 2D inviscid Boussinesq system set in a half-plane R2

+ :
∂tω + (u · ∇)ω =∂x1ρ;
∂tρ+ (u · ∇)ρ =0;

u = ∇⊥(−∆D)−1ω;
ω(t = 0, ·) = ω0(·), ρ(t = 0, ·) = ρ0(·),

(1.1)

where ∇⊥ = (−∂x2 , ∂x1),and ∆D stands for the Laplacian operator with Dirichlet boundary con-
dition on the boundary x2 = 0. The Biot-Savart law in (1.1) corresponds to the no penetration
boundary condition u2(x1, 0) = 0. The finite time blow-up versus global regularity problem for (1.1)
subject to smooth initial data is, naturally, open, and has been listed among Yudovich’s eleven great
problems of mathematical hydrodynamics [22]. In the Boussinesq setting, to arrive at an analog of
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the Hou-Luo scenario, one takes the initial data ρ0 even and ω0 odd with respect to the x1 variable.
The support of the initial data lies away from the x2 axis but contains some part of the x1 axis.

In the recent years, there has been much work on analyzing the Hou-Luo scenario and similar
settings. Kiselev and Sverak [12] deployed this geometry of the initial data on the unit disk to
construct a solution of the 2D Euler equation whose gradient grows at a double exponential rate
in time. The 2D Euler equation in vorticity form can be obtained from (1.1) by setting ρ0(x) = 0.
The 2D Euler equation is well known to be globally regular - but the double exponential rate is
also known as the fastest possible growth rate of derivatives [17, 18, 20]. This result confirms the
proclivity of the Hou-Luo initial data set up to lead to extreme small scale creation. One of the key
discoveries of [12] has been an efficient formula for the Biot-Savart law in the neighborhood of the
origin - a hyperbolic point on the boundary near which explosive growth of derivatives happens.
The formula takes form

(1.2) ui(x, t) =
xi(−1)i

4π

∫
Q(x)

y1y2

|y|4
ω(y, t) dy + xiBi(x, t), ‖Bi‖∞ ≤ C‖ω0‖∞,

where Q(x) is a region y1 ≥ x1, y2 ≥ x2 in the half-disk D+ where x1 ≥ 0; the origin is located
at the lowest point of the disk. The formula isolates the “main term” that has, asymptotically,
log-Lipshitz behavior in the distance from vorticity support to the origin. It is this behavior that
saturates bounds of the Yudovitch theory [21, 18] and makes double exponential growth possible.

In attempting to pass from the analysis of 2D Euler solutions [12] to Boussinesq (1.1), one
encounters several difficulties. Perhaps the main issue is that the vorticity is uniformly bounded
for the 2D Euler solutions, while for Boussinesq system vorticity may grow. This makes the error
terms in the fluid velocity representation (1.2) potentially large and competitive with the main
term. Sufficient control of the fluid velocity, on the other hand, appears to be crucial in achieving
understanding of dynamics necessary to prove finite time blow up. A number of simplified models
have been considered [3, 2, 4, 9, 13, 11, 15]; in all these models the Biot-Savart law is replaced by a
version that is simpler to control. Some of these models also feature the forcing term ∂x1ρ replaced
by sign definite mean field expression ρ/x1.

There is an exciting recent series of works by Elgindi and Elgindi and Jeong [7, 5, 6] that is
also related to Hou-Luo scenario. In papers [5, 6], the authors consider 2D Boussinesq system and
3D axi-symmetric Euler equation respectively in domains with corners or wedges; they prove local
well-posedness theorem for a class of rough initial data, and then show finite time blow up in a
sense that a stronger singularity forms. The geometry of the construction features a hyperbolic
point of the flow similar to the Hou-Luo scenario. In a recent work [7], Elgindi carries out a similar
construction in the whole space, without a boundary. The initial vorticity data is Hölder regular,
with just one point where it is not smooth. The Hölder exponent α that tracks regularity of the
initial data plays a role of a small parameter which essentially allows one to identify the “main term”
with the blow up dynamics accessible to analysis. Chen and Hou ([1]) applied similar analytical
tools to rigorously establish finite time blow-up of Hölder regular solutions to 2D Boussinesq and
3D Euler equations in the context of the original Hou-Luo scenario with boundary. A related idea
has been used in [14] to construct blowing up solutions of modified SQG equation. The geometry
considered in [14] is also a half-plane with a fixed hyperbolic point on the boundary created by
symmetries. The Biot-Savart terms conducive to and opposing blow up appear to have the same
order, and the exponent α modulating singularity of the Biot-Savart law plays a role of the small
parameter that allows to establish dominance of the blow up term.

In the problem of smooth data for the 2D inviscid Boussinesq system (and 3D axi-symmetric
Euler), there is no obvious small parameter that can be leveraged in a similar way. Hence the
problem of blow up vs global regularity for smooth solutions remains open. The purpose of this
paper is to analyze two models aimed at the improved understanding of the Biot-Savart law in
the smooth case. In the first model, the goal is to gain further insight into mechanisms driving
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nonlinearity depletion in the geometry of Hou-Luo scenario. In this model, we discard part of the
blow up-conducive terms in the Biot-Savart law and show that the resulting dynamics is, in fact,
globally regular. The mechanism behind this effect is thinning of the filament of vorticity due to
shear as the support of vorticity approaches the origin. This effect is definitely present in the real
equation, even though the balance of terms may be different - so understanding the workings of
this phenomena is useful. The model is obtained by retaining only the core of the nonlinearity
depletion effect and is given by a family of coupled ODE

∂tG(x, t) =

∫ 1

0

(y −K−1x)e−G(y,t)

(y2 + e−2G(y,t))2
dy, G(x, 0) = 0.(1.3)

Here e−G(x,t) can be thought of as an x1 location of the front of vorticity region (with x = x2)
advancing towards the origin at time t, and K is a universal constant near 1. We will sketch the
derivation of (1.3) in Section 2.1 below. Finite time blow up then corresponds to G(x, t) becoming
infinite in finite time - this would indicate collision of vorticity masses of different sign in the original
system. Observe that due to the structure of the model (1.3), G(x, t) is a linear function of x, and
we can set G(x, t) = A(t)−B(t)x. Our main result is the following:

Theorem 1.1. Consider the model (1.3). If 1 ≤ K ≤ 1.3, the solution to the system (1.3) is global
in time. For large times, the following asymptotic behavior holds:

eA(t) ≈B(t)
K
3 ,(1.4)

B(t) ≈t1/(2−K)(1.5)

for t ≥ 1.

Remark 1.1. 1. The K = 1 case corresponds to the original Biot-Savart law in the Boussinesq
equation (1.1). We extend the range of K upward to study the stability of the suppression effect
under perturbation of the equation.
2. The following notational convention will be used in the paper. Assume that A,B are two positive
quantities. We use the notation A . B or A & B if there exists a universal constant C such
that A ≤ CB or A ≥ 1

CB, respectively. The notation A ≈ B is applied if there exists a universal

constant C such that 1
CB ≤ A ≤ CB.

The picture described by Theorem 1.1 is that of a filament of vorticity reaching towards the
origin - if it ever arrives there, this would signify blow up. But the filament gets thinned by shear,
which is reflected in growth of B(t), and due to this fact it only gets to the origin in an infinite
time and not at a particularly high power rate in time.

The second model that we consider here can be thought of as a variation of the original Hou-Luo
model described already in [16] and shown to lead to singularity formation in [2]. The Hou-Luo
model is derived under the assumption that vorticity remains constant in a thin boundary layer and
zero elsewhere: ω(x1, x2, t) = ω(x1, 0, t)χ[0,a](x2), where χS is the characteristic function of the set
S. Assuming such ansatz one can derive an effective Biot-Savart law that reduces the system (1.1) to
one dimension (essentially, to the boundary x2 = 0). The assumption of vorticity that is constant in
a boundary layer, while a reasonable initial model, does not really fit with the numerical simulations
[16], and misses the effect of the shear near the boundary that is likely crucial to understand in
order to analyze the problem rigorously. We introduce a “next order” model where we discard u2

component of the velocity, but do keep two dimensions and retain dependence of the u1 component
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on x2, though restricting it to be linear. The model system that we analyze takes form

∂tω + u1∂x1ω =
ρ

x1
,(1.6a)

∂tρ+ u1∂x1ρ = 0,(1.6b)

u1(x1, x2, t) = −x1

∫∫
[0,∞)2

y1y2ω(y)

|y|4
dy + x2ω(x1, 0, t).(1.6c)

Here we replace the derivative ∂x1ρ with the mean field approximation, similarly to [9, 13]. In
the Biot-Savart law (1.6c), the first term on the right hand side gives the approximate value of
u(x1, 0, t) : here we use the explicit but simplified form of the full Biot-Savart law, in the spirit of
[12, 3]. The second term on the right hand side of (1.6c) takes advantage of a simple observation.
Namely, on the boundary x2 = 0 we have u2(x1, 0, t) = 0 due to the no-penetration boundary
condition. Hence also ∂x1u2(x1, 0, t) = 0, and therefore ∂x2u1(x1, 0, t) = ω(x1, 0, t) for all x1, t.
Thus the equation (1.6c) becomes a linear in x2 approximation of u1 near boundary. This is a
natural first next order model that can be used to gain insight into the effect of the shear near
boundary on singularity formation in the Hou-Luo scenario.

The main results we obtain concerning the model (1.6) are summarized in the following theorem.

Theorem 1.2. Consider the model (1.6). There exist smooth initial data (ω0, ρ0) such that the
solution blows up in finite time.

Remark 1.2. A similar result holds for the model with the original forcing term ∂x1ρ. However,
in this case one has to control the contribution of the negative vorticity. Due to the approximation
(1.6c), and specifically the global nature of the first term, this control is rather artificially technical.
Other than that, the treatment of the model involving the original forcing term is quite close to the
mean field one considered here.

The remaining part of the paper is organized as follows: in Section 2, we motivate and prove the
well-posedness problem of the nonlocal ODE model (1.3); in Section 3, we show finite time blow
up for (1.6).

2. The ODE Model

2.1. Derivation and idea of the proof. In this section, we explain the origin of the ODE model
(1.3) and outline the proof of its global well-posedness. To derive the model (1.3), we will make
several simplifications, including some basic assumptions on the initial data. Assume that the
initial vorticity ω0 is odd (in fact, we will take ω0(x) = 0 for simplicity) and density ρ0 is even in
x1. These symmetries are preserved by the Boussinesq dynamics (1.1). Under this assumption, the
Biot-Savart law, which determines velocity in terms of the vorticity, can be explicitly written as
follows:

u(x1, x2) =
(∂x2 ,−∂x1)

2π

∫ ∞
0

dy1

∫ ∞
0

dy2(log |x− y| − log |x− y| − log |x− ỹ|+ log |x+ y|)ω(y),

(2.1)

where y = (y1,−y2), ỹ = (−y1, y2) denote the reflections of a point y with respect to the axes. We
expect that singularity formation in solutions of the equation (1.1) is induced by the compression
effect in the horizontal direction, so we simplify the model (1.1) by setting the vertical component
of the velocity to be zero, i.e., u2 ≡ 0. It is known (see e.g. [10, 8]) that advection can in some
instances suppress singularity formation, so removing the u2 component may be viewed as focusing
on regularization mechanisms that are limited to the effect of the shear created by the u1 component.
On the other hand, in the current context it is not known if u2 provides additional smoothing effects
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and moreover its presence is to some extent encoded in the lack of incompressibility for our model.
The horizontal component u1 can be expressed as follows:

u1(x1, x2) =
1

2π

∫ ∞
0

∫ ∞
0

dy

(
x2 − y2

|x− y|2
− x2 + y2

|x− y|2
− x2 − y2

|x− ỹ|2
+
x2 + y2

|x+ y|2

)
ω(y)

=
1

2π

∫ ∞
0

∫ ∞
0

dy

(
4x1y1(x2 − y2)ω(y)

((x1 − y1)2 + (x2 − y2)2)((x1 + y1)2 + (x2 − y2)2)

− 4x1y1(x2 + y2)ω(y)

((x1 − y1)2 + (x2 + y2)2)((x1 + y1)2 + (x2 + y2)2)

)
= : −x1I(x, t).(2.2)

Later we will choose the initial data such that the vorticity will be supported in a compact set close
to but away from the origin, and it will be safe to replace the integral domain to Q = [0, 1]2. Next
we simplify the model (1.1) further by changing the buoyancy term from ∂x1ρ to the mean field
version ρ

x1
, i.e., the first equation in (1.1) becomes

∂tω + (u · ∇)ω =
ρ

x1
.(2.3)

The intuition behind this change is that since the vorticity is assumed to be supported away from
the x2 axis, the x1-derivative can be approximated by the difference quotient ρ

x1
[9, 13]. With this

modification, the vorticity in the first quadrant will stay positive under dynamics (2.3).
Now let us track the evolution of the vorticity in the model (2.2), (2.3). Observe that flow map

Φt(x) associated to (2.2) satisfies

∂tΦt(x0) = u(Φt(x0), x2;0, t) = (−Φ
(1)
t (x0)I(Φt(x0), t), 0), Φt=0(x0) = (x1;0, x2;0).

Note that since we set u2 = 0, the second component of the flow map does not change (but the
change in the first component does depend on the second one). Integration in time yields the exact
form of the flow map

Φt(x0) = (x1;0 exp

{
−
∫ t

0
I(Φs(x0), s)ds

}
, x2;0) =: (x1;0 exp {−G(x0, t)}, x2;0).(2.4)

Later we call the function G the profile of the solution since e−G tracks the position of the front of
the vorticity. Rewriting the equation (2.3) in the Lagrangian coordinates (2.4) and using the fact
that the density is transported by the flow, i.e., ρ(Φt(x0), t) ≡ ρ0(x0), we obtain

d

dt
ω(Φt(x0), t) =

ρ(Φt(x0), t)

Φt(x0)
=
ρ0(x0)

x1;0
exp

{∫ t

0
I(Φs(x0), s)ds

}
.(2.5)

Integrating the equation (2.5) and applying the inverse flow map the expression (2.4) yields

ω(x, t) =ω0(Φ−1
t (x)) +

ρ0(Φ−1
t (x))

Φ−1
t (x)

∫ t

0
exp

{∫ s

0
I(Φr(Φ

−1
t (x)), r)dr

}
ds

=ω0(Φ−1
t (x)) +

ρ0(Φ−1
t (x))

x1

∫ t

0
exp

{
−
∫ t

0
I(Φr(Φ

−1
t (x)), r)dr +

∫ s

0
I(Φr(Φ

−1
t (x)), r)dr

}
ds

=ω0(Φ−1
t (x)) +

ρ0(Φ−1
t (x))

x1

∫ t

0
exp

{
−
∫ t

s
I(Φr(Φ

−1
t (x)), r)dr

}
ds.(2.6)

To clarify the possible blow-up suppression mechanism of the model, we make further simplifi-
cations. Since the last term under the integral in the final form of the Biot-Savart law (2.2) is
always negative, its net effect is to enhance the drive towards the origin and therefore blow-up. We
drop this last term in (2.2). Moreover, following the intuition of [12] we drop the x1 variable in
the denominator of the Biot-Savart law. Furthermore, we set the initial vorticity term in (2.6) to
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zero as it is not essential for the phenomena that we would like to study. Substituting (2.6) into
the Biot-Savart law (2.2) and using all the simplifications we mentioned above yields the following
velocity law:

u1(x1, x2, t) = −x1

∫ 1

0

∫ 1

0

(y2 − x2)ρ0(y1 exp{
∫ t

0 I(y2, s)ds}, y2)

(y2
1 + (x2 − y2)2)2

∫ t

0
exp

{
−
∫ t

s
I(y2, r)dr

}
dsdy1dy2.

(2.7)

Note that in the simplified velocity law, the function I(·, t) no longer depends on the first variable:

I(x2, t) =
1

2π

∫ ∞
0

∫ ∞
0

4y1(x2 − y2)ω(y, t)

(y2
1 + (x2 − y2)2)2

dy1dy2.

Suppose that initially, for 0 ≤ x2 ≤ 1, the density is close to the characteristic function of an
interval [a, b], i.e., ρ0(x) ∼ χ[a,b](x1). Let us first integrate the y1 variable in (2.7) and use the
definition of the profile in (2.4) to obtain∫ b exp{−

∫ t
0 I(y2,s)ds}

a exp{−
∫ t
0 I(y2,s)ds}

1

((x2 − y2)2 + y2
1)2

dy1 ∼a,b
e−G

((x2 − y2)2 + e−2G)2
.

To get a model amenable to precise analysis, we will discard the nonlocal in time factor
∫ t

0 exp
{
−
∫ t
s I(y2, r)dr

}
ds

from (2.7) - numerical simulations suggest that this factor does not play a crucial role. Finally, we
further simplify the model by dropping the x2 variable in the denominator. We end up with the
following self-contained equation

∂tG(x2, t) = I(x2, t) =

∫ 1

0

(y2 − x2)e−G

(y2
2 + e−2G)2

dy2, G(x2, 0) = 0.(2.8)

Since there is no x1 variable in the G equation (2.8) anymore, we use x to denote x2 and end up
with the ODE model (1.3) with K = 1. Noting that the right hand side of the model (2.8) is linear
with respect to x2, we define the ansatz

G(x, t) =: A(t)−B(t)x,

and rewrite the model as follows

A′(t) =

∫ 1

0

y2e
−G

(y2
2 + e−2G)2

dy2;(2.9)

B′(t) =

∫ 1

0

e−G

(y2
2 + e−2G)2

dy2.(2.10)

Here the growth of function A encodes the potential blow-up while the growth of function B
suppresses it by thinning the vorticity filament. To study the stability of the blow-up suppression
mechanics, we put parameter 1

K in front of the time evolution of the B quantity and end up with:

A′(t) =

∫ 1

0

ye−G(y,t)

(y2 + e−2G(y,t))2
dy,(2.11a)

B′(t) =
1

K

∫ 1

0

e−G(y,t)

(y2 + e−2G(y,t))2
dy; A(0) = B(0) = 0.(2.11b)

Notice that increasing K weakens the nonlinearity depletion effect provided by growth of B. This
is equivalent to the model (1.3).
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Here is an outline of our approach to analysis of (2.11). We will consider two regimes in the
phase space (A,B) ∈ {A ≤ 1

KB}:

a) Initial Configuration: I :=

{
0 ≤ A ≤ 1, B ≥ 2

K

}
∪
{

0 ≤ B ≤ 2

K

}
;(2.12)

b) Final Configuration: F :=

{
A > 1, A ≤ K

2
B

}
.(2.13)

Since A(0) = B(0) = 0, the point (A,B) initiates in the regime I. Our first goal will be to show
that from regime I, the solution will necessarily transition to the regime F . A key observation
is that the minimum min{y, e−G(y,t)} plays the key role in the magnitude of the growth of the
solutions. As a result, to understand the long time behavior of the solutions, we will propagate the
bound on the profile G:

y ≤ e−G(y,t), ∀t ≥ 0, ∀y ∈ [0, 1].(2.14)

Once the profile estimate (2.14) is established, the behavior of the denominator near potential
singularity y = 0 will be controlled, and this will lead to sufficiently strong estimates on the
solution to show global regularity. In fact, we will need a similar but stronger than (2.14) bound
to establish the asymptotic behavior of the solution.

The remaining part of the section is organized as follows: in Section 2.2, we will propagate the
profile bound (2.14) under the initial configuration I; in Section 2.3, we focus on the final configu-
ration and prove the global well-posedness of the equation (2.11) and the asymptotic behavior.

2.2. Initial configuration I. In this section, we focus on the initial configuration

(A,B) ∈ I.(2.15)

As we discussed in the last section, the goal is to propagate the bound (2.14) while (A,B) ∈ I,
as well as show that solution will have to transition into the F regime. First of all, the local
existence of solutions follows from the classical ODE theorems, as the right hand side of the system
is Lipschitz in A and B in the neighborhood of the initial data. The resulting local solution is
smooth in t.

Lemma 2.1. Suppose that K in (2.11b) satisfies 1 ≤ K ≤ 1.3. Then for all times t > 0 that the
solution (A,B) remains in I, we have

e−G(y,t) >y, ∀y ∈ [0, 1],(2.16)

A(t) <
K

2
B(t).(2.17)

Proof. Let us first show that (2.16) and (2.17) hold on some small initial time interval. Indeed,
direct computation shows that A′(0) = 1

4 and B′(0) = 1
4K + π

8K . Therefore

lim
t→0

A(t)

B(t)
=
A′(0)

B′(0)
=

2K

2 + π
.

This directly implies (2.17) for t ∈ (0, δ0) for some small δ0 > 0. Next, note that (2.16) holds for
t = 0, with strict inequality for all 0 ≤ y < 1. On the other hand, ∂tG(1, t) = A′(t) − B′(t) < 0.

By continuity, the last two observations imply that e−G(y,t) > y for all y ∈ [0, 1] and t ∈ (0, δ0) for
some δ0 > 0.

Now suppose that t0 is the supremum of times t such that (2.16) and A(s), B(s) ∈ I holds for
all 0 < s ≤ t. First let us show that (2.17) also holds for 0 < t ≤ t0 in this case. Consider

F (y, t) :=
e−G(y,t)

(y2 + e−2G(y,t))2
.(2.18)
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Recalling that ∂yG(y, t) = −B(t) < 0 for all t > 0 and y ∈ [0, 1] and taking spacial derivative yields
that

∂yF (y, t) =

e−G(y,t)

(
− ∂yG(y, t)(y2 − 3e−2G(y,t))− 4y

)
(y2 + e−2G(y,t))3

< 0, ∀y ∈ [0, 1],

provided that e−G(y,t) ≥ y. As a result of the monotonicity of F and a symmetrization argument,
we have that

A′(t)− K

2
B′(t) =

∫ 1

0

(
y − 1

2

)
F (y, t)dy < 0, ∀t0 ≥ t > 0,

which yields the estimate (2.17).

Now we aim to show that e−G(y,t0) > y for all y ∈ [0, 1], hereby contradicting the definition of
t0 unless A(t), B(t) /∈ I for t > t0 (notice that since A(t), B(t) are monotone increasing, once the
trajectory leaves I it never comes back). The inequality (2.16) is true for every y > A/B, ∀t > 0
thanks to the following argument:

e−G(y,t) = e−A(t)+B(t)y = e
B(t)(−A(t)

B(t)
+y)

> e0 ≥ y, y >
A

B
.

Next we prove the strict inequality e−G(y) > y for y ≤ A/B. In fact, we will prove the following
stronger version

L(y, t) := e−G(y,t) − 2

K
y ≥ 0(2.19)

(it is stronger except for y = 0 where we have (2.16) simply because A(t) < ∞ while we are in
I). When proving the inequality (2.19), we distinguish between two cases - either {B ≤ 2

K }, or

{A ≤ 1, B ≥ 2
K }. Direct computation of ∂yL(y, t) yields the minimum point ymin

ymin =
A

B
+

1

B
log

2

KB
.(2.20)

If B ≤ 2
K , ymin is always to the right of A

B . Therefore it is enough to check the inequality at the
point y = A/B. Applying the assumption (2.17), which we know holds up to and including t0, we
have that

e−A+B A
B − 2

K

A

B
≥ 0.

This completes the proof in the case B ≤ 2
K . Next, we show that inequality (2.19) holds when

{A ≤ 1, B ≥ 2
K }. Plugging (2.20) this into the function L and applying the assumption (2.17) and

{A ≤ 1, B ≥ 2/K} yields

e−A+B(A
B

+ 1
B

log 2
KB

) − 2

K

(
A

B
+

1

B
log

2

KB

)
=

2

KB
− 2A

KB
− 2

KB
log

2

KB
≥ 2

KB
(1−A) ≥ 0.

This concludes the proof of the lemma. �

To understand the long time behavior, we need to first show that the solution (A,B) initiating
from the initial regime I must end up in the final regime F in a finite time. The following lemma
addresses this issue.

Lemma 2.2. Consider the solutions to the equation (2.11) subject to the initial configuration. Then
the solutions must reach the state A = 1, B > 2

K at some time ∞ > t0 > 0.
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Proof. Since A′(t) and B′(t) > 0 for every t ≥ 0 while the solutions are finite, the functions
A(t), B(t) are strictly positive and increasing for every t > 0. Therefore, for every δ > 0, there
exists a positive constant c1(δ) > 0 such that the following inequalities are satisfied for t ≥ δ:

A′(t) ≥1

4

∫ 1

0
ye3A−3Bydy =

e3A

36B2
(1− 3Be−3B − e−3B) ≥ c1

e3A

B2
;

c1e
3A

B
≤ B′(t) ≤ e3A

3B
.

Direct manipulation yields that

A′(t) ≥ c1

2
(logB2)′, (B2)′(t) ≥ c1e

3A/2 ≥ c1/2.

Therefore, we have that A(t) & log t + C, which in turn implies that A(t) reaches 1 at some time
t0 > 0. Since A(0) = B(0) = 0 and by the previous lemma A′(t) < K

2 B
′(t) for all t ≤ t0, we have

that if A(t0) = 1, then B(t0) > 2/K. �

2.3. Final configuration F . In this section, we consider the long-time configuration, i.e.,

(A,B) ∈ F .(2.21)

Thanks to the Lemma 2.2, the solution (A,B) of the model (2.11) must end up in the final state
F . Therefore, it is enough to consider the following equations:

A′(t) =

∫ 1

0

ye−G(y,t)

(y2 + e−2G(y,t))2
dy,

B′(t) =
1

K

∫ 1

0

e−G(y,t)

(y2 + e−2G(y,t))2
dy,

A(t0) =1, B(t0) > 2/K, K ∈ [1, 1.3].(2.22)

It is easy to see that the solutions to (2.22) always continue in F . We prove the following lemma:

Lemma 2.3. Let t0 be as in (2.22). Consider the equation (2.22).The following two inequalities
hold for all t ≥ t0 :

1) 1−A(t) + log
KB(t)

2
≥ 0;(2.23a)

2) 1− kA(t) + log(kB(t)) ≥ 0, for 1 < k <
48(1− e−6/K)

K(K2 + 4)2
.(2.23b)

Remark 2.1. If K = 1, then 1 < k < 48(1−e−6)
25 . Moreover, for K ≤ 1.3, a simple computation

shows that the constraint on k in (2.23) is non-vacuous.

Remark 2.2. Explicit calculation yields that the parameter k is always strictly less than 2 for any
K ∈ [1, 1.3].

Before proving Lemma 2.3, we make the following observation.

Lemma 2.4. If the inequalities (2.23) are satisfied at some time t, then the following profile bounds
hold for all y ∈ [0, 1]:

1) y ≤ K

2
e−G(y,t);(2.24a)

2) y ≤ e−kG(y,t).(2.24b)

Proof. First, we prove inequality (2.24a). Recalling that G(y, t) = A(t)−B(t)y, we need to show

K

2
e−A+By − y ≥ 0.
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Evaluating at the minimal point ymin = A
B + 1

B log 2
KB , we have that the following estimate implies

the inequality (2.24a)

K

2

2

KB
− A

B
+

1

B
log

KB

2
≥ 0.

After simplification, this is the same as the inequality (2.23a). The inequality (2.24b) is equivalent
to

e−kA+kBy − y ≥ 0.(2.25)

The expression in (2.25) has minimizer ymin = A
B + 1

kB log 1
kB . If we substitute this value into the

expression, we obtain

1

kB
− A

B
− 1

kB
log

1

kB
≥ 0⇔ 1− kA+ log(kB) ≥ 0,

which is the same as (2.23b). This concludes the proof of the lemma. �

Proof of Lemma 2.3. Direct calculation yields that the inequalities (2.23) hold at the initial time t0.
To propagate the inequalities (2.23) for all time, it is enough to prove the following strict derivative
upper bounds for all t ≥ t0 assuming the estimates (2.23) for ∀s ∈ [t0, t] :

A′(t) <(logB)′(t),(2.26a)

kA′(t) <(logB)′(t).(2.26b)

Since k > 1, it suffices to prove the stronger bound (2.26b).
To prove the inequality (2.26b), we provide an upper bound of A′ and a lower bound of B′. The

estimate of A′ is carried out as follows:

A′(t) ≤
∫ 1

0
ye3G(y,t)dy =

∫ 1

0
ye3A−3Bydy =

e3A

9B2

(
1− 3Be−3B − e−3B

)
≤ e3A

9B2
.(2.27)

Applying the assumption that (2.23) holds for all s ∈ [t0, t] (and so, in particular, for s = t),
(2.24a), and the initial data A(t0) = 1, B(t0) > 2/K, we estimate B′(t) as follows:

B′(t) =
1

K

∫ 1

0

e−G(t)

(y2 + e−2G(t))2
dy ≥ 1

K

∫ 1

0

e−G

(K
2

4 e
−2G + e−2G)2

dy ≥ 1

K(K2/4 + 1)2

e3A

3B
(1− e−3B).

(2.28)

We summarize the bounds (2.27) and (2.28) as follows:

A′(t) ≤ e
3A

9B2
;(2.29a)

e3A

3B

1

K(K2/4 + 1)2

(
1− e−6/K

)
≤ B′(t).(2.29b)

Direct calculation yields that

A′(t) ≤ e3A

9B2
≤ (logB)′

K(K2 + 4)2

48(1− e−6/K)
< (logB)′

for 1 ≤ K ≤ 1.3. Therefore the inequalities (2.26a) and (2.26b) hold true for 1 < k < 48(1−e−6/K)
K(K2+4)2

.

This completes the proof of the lemma. �

Now we are ready to prove Theorem 1.1.
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Proof of Theorem 1.1. Let us denote by p(t) the point where the function G(y, t) = A(t) − B(t)y
achieves the value A(t)/2. Note that p(t) is unique and (2.23a) implies that 0 < p(t) < 1. We
estimate B′(t) from below using (2.24b):

B′(t) =
1

K

(∫ p

0
+

∫ 1

p

)
e−G(y,t)

(y2 + e−2G(y,t))2
dy ≥ 1

K

∫ p

0

e−G

(e−2kG + e−2G)2
dy +

1

K

∫ 1

p

e−G

(y2 + e−2G)2
dy

=
1

K

∫ p

0

e3G

(e−2(k−1)G + 1)2
dy +

1

K

∫ 1

p

e−G

(y2 + e−2G)2
dy

≥ 1

K(1 + e−(k−1)A)2

∫ p

0
e3Gdy ≥ 1

K(1 + e−(k−1)A)2

e3A

3B
− 1

K(1 + e−(k−1)A)2

e3A/2

3B
.

(2.30)

Applying a similar argument yields that

A′(t) ≥
∫ p

0

ye3G

(e−(k−1)A + 1)2
dy =

e3A

(e−(k−1)A + 1)2(3B)2
(1− 3Bpe−3A/2 − e−3A/2).(2.31)

An upper bound for B′ is derived as follows:

B′(t) =
1

K

∫ 1

0

e−G(y,t)

(y2 + e−2G(y,t))2
dy ≤ 1

K

∫ 1

0
e3Gdy ≤ e3A

3KB
.(2.32)

Summarizing the estimates (2.30), (2.31), (2.32) as well as the estimates (2.29a), (2.29b), we have
the bounds

e3A

(e−(k−1)A + 1)2(3B)2
(1− 3Bpe−3A/2 − e−3A/2) ≤ A′(t) ≤ e3A

9B2
;(2.33a)

1− e−3A/2

(1 + e−(k−1)A)2

e3A

3KB
≤ B′(t) ≤ e3A

3KB
.(2.33b)

It follows that (
1− 2e−(k−1)A + e−2(k−1)A + e−3A/2

(1 + e−(k−1)A)2

)
A′(t) ≤ KB′

3B
,

which in turn yields that (
A− 4

(k − 1)(1 + e−(k−1)A)

)′
≤ K(logB)′

3
.

Direct integration yields that there exists a constant C depending only on K such that

A ≤ K

3
logB + C,

leading to

eA ≤ eCB
K
3 .(2.34)

Combining it with the B′ estimate (2.33b) yields

B′(t) ≤ BK

3KB
e2C ,

so B(t) satisfies the upper bound

B(t) . t1/(2−K), ∀t ≥ 1.(2.35)

Combining this and A′(t) ≤ KB′(t), we obtain that A(t) cannot blow up in finite time. We conclude
that the solution to the equation (2.22) is bounded for any finite time. This completes the proof
of the global boundedness of the solution.
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To derive the long time asymptotic behavior, we estimate the lower bound of A and B. From
(2.33a) and (2.33b) we obtain that

A′(t) ≥ e3A

(3B)2(1 + e−(k−1)A)2

(
1− 3

2
Ae−3A/2 − e−3A/2

)
≥ K(logB)′

3

1− 3
2Ae

−3A/2 − e−3A/2

(1 + e−(k−1)A)2
.

A calculation shows that for all A large enough (say A ≥ 2
k−1), we have(

A+
1

k − 1
2 log(1− 5e−(k−1)A)

)′
≥ K(logB)′

3
.

Here the the fact that k ∈ [1, 2) (2.23b) is used. Therefore there exists a universal constant C such
that

A(t) ≥ K

3
logB − C,

which is equivalent to

eA ≥ e−CB
K
3 .(2.36)

Plugging this into the lower bound for B′ (2.33b), we obtain that for all B big enough, there exists
universal constants C1, C2, C3, C4 such that

B′(t) ≥ 1− C1e
−K/2 logB

(1 + C2e
−(k−1)K

3
logB)2

BK−1C3 =
1− C1B

−K/2

(1 + C2B−(k−1)K/3)2
BK−1C3 ≥ C4B

K−1.

Therefore, we have that for all t ≥ 1,

B & t1/(2−K).(2.37)

Combining (2.35), (2.37), (2.36) and (2.34), we obtain the long time asymptotic behavior of (A,B).
This concludes the proof. �

3. A Higher Order Boundary Layer Model of the Hou-Luo Scenario

3.1. The Setting. Recall that here we will consider the following model:

∂tω + u1∂x1ω =
ρ

x1
,(3.1a)

∂tρ+ u1∂x1ρ = 0,(3.1b)

u1(x1, x2, t) = −x1

∫∫
[0,∞)2

y1y2ω(y)

|y|4
dy + x2ω(x1, 0, t).(3.1c)

Local well-posedness for (1.6) for the compactly supported away from the origin initial data
(ω0, ρ0) ∈ Hs × Hs is not hard to show - the argument is standard and will be omitted. A
very similar argument can be found, for instance, in [13].

We begin by writing the system (3.1) in Lagrangian coordinates. Define the flow map Φt(x
0
1, x2)

by

dΦ1
t (x

0
1, x2)

dt
= u1(Φ1

t (x
0
1, x2), x2, t),

d

dt
Φ2
t (x

0
1, x2) ≡ 0, Φt=0(x0

1, x2) = (x0
1, x2).(3.2)
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We apply (x0
1, x2) to denote the initial point of the flow-map Φt, and (x1, x2) to denote the current lo-

cation, respectively. To simplify the notation, we define the following quantities J(t), D(t), Q(t), H(t):

J(t) :=

∫∫
[0,∞)2

y1y2ω(y, t)

|y|4
dy;(3.3)

D(t) :=e
∫ t
0 J(s)ds;(3.4)

Q(t) :=

∫ t

0
D(s)ds =

√
H(t);(3.5)

H(t) :=

(∫ t

0
D(s)ds

)2

.(3.6)

Here the Q(t) is the blow-up variable that, as we will see, reflects growth of vorticity. The strictly
increasing quantity H(t) can be viewed as an adapted time variable before the blow-up. The
equation (3.2) can be explicitly written as

d

dt
Φt(x

0
1, x2) = (−Φ1

t (x
0
1, x2)J(t) + x2ω(Φ1

t (x
0
1, x2), 0, t), 0), Φt=0(x0

1, x2) = (x0
1, x2).(3.7)

The mass transport equation (3.1b) implies that the density ρ is conserved along the flow charac-
teristics Φt(x

0
1, x2) before the blow-up time T? :

ρ(Φ1
t (x

0
1, x2), x2, t) = ρ0(x0

1, x2), ∀t ∈ [0, T?).

On the other hand, by the vorticity equation (3.1a), the vorticity evolves along the trajectories as
follows:

dω(Φ1
t (x

0
1, x2), x2, t)

dt
=
ρ(Φ1

t (x
0
1, x2), x2)

Φ1
t (x

0
1, x2)

=
ρ0(x0

1, x2)

Φ1
t (x

0
1, x2)

.

Collecting all the equations above, we obtain the model (3.1) in Lagrangian coordinate:

d

dt
Φ1
t (x

0
1, x2) = −Φ1

t (x
0
1, x2)

∫∫
[0,∞)2

y1y2ω(y, t)

|y|4
dy + x2ω(Φ1

t (x
0
1, x2), 0, t),

dω(Φ1
t (x

0
1, x2), x2, t)

dt
=
ρ0(x0

1, x2)

Φ1
t (x

0
1, x2)

, ρ(Φ1
t (x

0
1, x2), x2, t) = ρ0(x0

1, x2),

ω0 ≡ 0,
ρ0(x0

1, x2)

x0
1

= ϕδ(x
0
1)η(x2).

(3.8)

As pointed out above, our initial data will have ω0 ≡ 0, while the initial density ρ0(x1, x2) will
be compactly supported and equal to the product of x1ϕ(x1) and η(x2). Each factor is defined as
follows. For the x1 component, we have that

ϕδ(x1) :=


1/δ, x1 ∈ [δ, Lδ < 1],

0, x1 ∈ [0, δ/2] ∪ [(L+ 1)δ,∞),
C∞, x1 in other regions.

(3.9)

The parameter L is a large parameter and δ � 1 is a small parameter that will be chosen later. It
is convenient for us to have Lδ < 1, and any choice of L, δ we make will be done to ensure that.
The smooth decreasing x2-factor η(x2) ∈ C∞c (R+) is defined as follows:

η(x2) =

 1, x2 ∈ [0, 1];
0, x2 ≥ 2;

C∞, x2 ∈ [1, 2].
(3.10)
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Remark 3.1. To understand the role of shear, it is instructive to first consider the case where the
boundary vorticity induced shear flow correction x2ω(x1, 0, t) is not present in the Biot-Savart law
(3.1c). In this case the blow-up of the solution to (3.8) can be derived in a straightforward manner.
Indeed, the vorticity in bulk is determined by a formula similar to (3.15) below. Hence there is no
need to use complicated new variables to identify regions where the vorticity is significant. Following
the argument in the proof of Lemma 3.1, one can then obtain that the quantity D(t) blows up in
a finite time. The role of the shear term is not only to weaken u1, but it also thins out the patch
of vorticity traveling towards the origin, in a manner similar to the first model considered in this
paper. Nevertheless, in the context of the model (3.1), this depletion turns out to be insufficient to
prevent finite time blow up.

3.2. Preliminary Calculations. Now we prepare the necessary estimates for the blow-up argu-
ment, deriving an effective formula for the flow map Φ1

t (x
0
1, x2) and a sufficiently strong lower bound

for the vorticity ω(x0
1, x2, t).

First we calculate the flow map Φ1
t (x

0
1, 0) on the x1-axis, i.e., x2 ≡ 0. Solving the flow-map ODE

(3.7) and simplifying the result by adopting the notation of D (3.4) yield that

Φ1
t (x

0
1, 0) =x0

1e
−

∫ t
0 J(s)ds = x0

1D(t)−1,
Φ1
t (x

0
1, 0, t)

x0
1

= D(t)−1, ∀ x0
1 ∈ R+.(3.11)

Calculation of the flow map Φ1
t (x

0
1, x2) for general x2 6= 0 involves the boundary vorticity

ω(Φ1
t (x

0
1, x2), 0, t). It is worth mentioning that the second coordinate of the boundary vorticity,

i.e., 0, and the second coordinate of the flow-map involved, i.e., x2 6= 0, do not match. Hence
to determine the boundary vorticity ω(Φ1

t (x
0
1, x2), 0, t), we track the preimage of the current po-

sition Φ1
t (x

0
1, x2) under the flow-map along the x1-axis. We combine the equation for

Φ1
t (x

0
1,0,t)

x01
(3.11) and the second equation and the fourth equation in (3.8) to calculate the vorticity along the
characteristic initiated from the position (x?1, 0):

ω(Φ1
t (x

?
1, 0), 0, t) =

∫ t

0

ρ0(x?1, 0)

Φ1
s(x

?
1, 0)

ds =
ρ0(x?1, 0)

x?1

∫ t

0
D(s)ds = ϕδ(x

?
1)

∫ t

0
D(s)ds.(3.12)

Here the notation x?1 is introduced to avoid confusion later. Next we determine the preimage of
the current x1-projection (Φ1

t (x
0
1, x2), 0) under the flow-map on the x1-axis. Direct application of

the relation (3.11) yields that the inverse Φ−1
t of the flow-map on the x1-axis can be expressed as

Φ−1
t

(
Φ1
t (x

0
1, x2), 0

)
=
(
D(t)Φ1

t (x
0
1, x2), 0

)
=:
(
U(t, x0

1, x2), 0
)
.(3.13)

We call U(t, x0
1, x2) the “back-to-label map”. Combining the equation of the boundary vorticity

(3.12) and the ‘back-to-label map’ (3.13), we obtain the explicit expression of the boundary vortcity
ω(Φ1

t (x
0
1, x2), 0, t):

ω(Φ1
t (x

0
1, x2), 0, t) =ω

(
Φ1
t

(
Φ−1
t (Φ1

t (x
0
1, x2), 0), 0

)
, 0, t

)
(3.14)

=
ρ0

(
Φ1
t (x

0
1, x2)D(t), 0

)
Φ1
t (x

0
1, x2)D(t)

∫ t

0
D(s)ds.(3.15)

Combining the explicit form of the boundary vorticity (3.15), the definition of U (3.13) and the
basic model (3.8) yields that

d

dt
Φ1
t (x

0
1, x2) = −Φ1

t (x
0
1, x2)J(t) + x2

ρ0(D(t)Φ1
t (x

0
1, x2), 0)

D(t)Φ1
t (x

0
1, x2)

∫ t

0
D(s)ds.
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This equation can be simplified with the definitions of U (3.13) and of D,H (3.4), (3.6):

d

dt

(
Φ1
t (x

0
1, x2)D(t)

)
= x2

ρ0(D(t)Φ1
t (x

0
1, x2), 0)

D(t)Φ1
t (x

0
1, x2)

1

2

d

dt

(∫ t

0
D(s)ds

)2

⇔
d

dt
U(t, x0

1, x2) =
x2

2

ρ0(U(t, x0
1, x2), 0)

U(t, x0
1, x2)

d

dt
H(t).(3.16)

Since by (3.9), we have that ρ0(x0
1, 0)/x0

1 = 1
δ on the interval [δ, Lδ], it follows that if U(s, x0

1, x2) ∈
[δ, Lδ] for all 0 ≤ s ≤ t then

U(t, x0
1, x2) = x0

1 +
x2

2δ
H(t).(3.17)

Thus if y0
1 ∈ [δ, Lδ] and while U(s, y0

1, y2) remains in this interval, we can integrate the vorticity
equation in (3.8) and obtain that

ω(Φ1
t (y

0
1, y2), y2, t) = ρ0(y0

1, y2)

∫ t

0

D(s)

y0
1 + y2

2δH(s)
ds.(3.18)

To obtain a useful lower bound on the vorticity, we will initially make the following assumption on
the range of the original labels to watch, to be refined later:

δ ≤ y0
1 ≤ Lδ/2, y2 ≤

δ2L

H(t)
.(3.19)

Using (3.17) we find that if (3.19) holds, then δ ≤ y0
1 ≤ U(s, y0

1, y2) ≤ Lδ for all 0 ≤ s ≤ t. Under

this range constraint, we calculate that (recall that Q(t) =
√
H(t) =

∫ t
0 D(s) ds):

ω(Φ1
t (y

0
1, y2), y2, t) =

ρ0(y0
1, y2)

y0
1

∫ Q(t)

0

1

1 + (y0
1)−1 y2

2δQ
2(s)

d Q(s)︸︷︷︸∫ s
0 D(τ)dτ

=

ρ0(y0
1, y2)

y0
1

√
2δy0

1

y2
arctan

(√
y2

2δy0
1

∫ t

0
D(s)ds

)
.

Now we define the rescaled spacial variable

Y2 :=
y2

δ2
H(t).(3.20)

With the Y2-variable, we represent the above expression for vorticity as

ω(Φ1
t (y

0
1, y2), y2, t) =

1

δ

∫ t

0
D(τ)dτ

arctan
(√

δY2/2y0
1

)
√
δY2/2y0

1

(3.21)

if (3.19) holds. To derive a suffucuently strong lower bound for vorticity, we will further restrict
the set of labels that we monitor. Namely, let us require in addition that

arctan
(√

δY2/2y0
1

)
√
δY2/2y0

1

≥ arctan(1)

1
=
π

4
.(3.22)

Since the function arctanx
x is monotone decreasing in x on [0,∞), for (3.22) to hold it suffices enhance

the first condition in (3.19) to

max

{
1

2
Y2δ, δ

}
≤ y0

1 ≤
Lδ

2
, 0 ≤ y2 ≤

δ2L

H(t)
.(3.23)
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Applying the equation (3.17), the definition of U (3.13), and the fact that U(s, y0
1, y2) ∈ [δ, Lδ] for

0 ≤ s ≤ t for the initial conditions satisfying (3.23), we find that

Φ1
t (y

0
1, y2) ∈

[
max

{
1

2
Y2δ, δ

}
D(t)−1 +

y2

2δ
H(t)D(t)−1,

Lδ

2
D(t)−1 +

y2

2δ
H(t)D(t)−1

]
= [Lo, Up].

(3.24)

Combining the above calculations with (3.21), we conclude that for y1 ∈ [Lo, Up], 0 ≤ y2 ≤ δ2L
H(t) ,

the vorticity satisfies

ω(t, y1, y2) ≥ π

4

∫ t
0 D(τ)dτ

δ
.(3.25)

3.3. Finite time blow up. Now we are ready to derive a differential inequality that will lead to
the finite time blow up argument.

Let us define

E(t) := δ−1D(t)−1H(t).(3.26)

Since D(0) = 1 while H(0) = 0, we have that for some initial time period E(t) ≤ 1. Our first goal
will be to show that we can choose δ and L so that

E(t) ≤ 2(3.27)

for all times while the solution remains regular. Specifically, we have the following

Lemma 3.1. Let us choose any L and δ such that

L > 5e
96
π , 0 < δL ≤ 1.(3.28)

Then E(t) ≤ 2 for all times t while the solution remains regular.

Proof. Suppose, on the contrary, that there exists t1 > 0 such that E(t1) = 2 while E(t) < 2 for all
0 ≤ t < t1. Our goal is to show that in this case

1

δ
H ′(t1) < D′(t1).(3.29)

This would imply that E(t) > 2 for some t < t1 furnishing a contradiction. Now to prove (3.29),
we calculate a lower bound for

D(t1)−1D′(t1) = J(t1) =

∫ ∞
y2=0

∫ ∞
y1=0

y1y2

|y|4
ω(t1, y)dy1dy2.(3.30)

First, we observe that

(3.31)
δ2L

H(t1)
≤ 1.

Indeed, if δ2L
H(t1) > 1 then δ−1H(t1) ≤ δL ≤ 1, while D(t) ≥ 1 for all t while solution exists (this

follows from positivity of vorticity in the first quadrant and the definition of D(t) (3.4)). Thus we
get E(t1) ≤ 1, a contradiction.

Since vorticity is non-negative, we have that

J(t1) ≥
∫ δ2L

H(t1)

0

∫ Up

Lo

y1y2

|y|4
ω(t1, y1, y2)dy1dy2.(3.32)
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Using (3.25), the definition of E(t) (3.26), and the definition of time t1, we estimate

J(t1) ≥ π

8

∫ δ2L
H(t1)

0

(
y2

Lo2 + y2
2

− y2

Up2 + y2
2

) ∫ t1
0 D(s)ds

δ
dy2

≥ π

16δ

∫ δ2L
H(t1)

0

∫ t1
0 D(s)ds

(
(L/2)2 −max

{
1
2Y2, 1

}2
)
δ2D(t1)−2y2 dy2

(max
{

1
2Y2, 1

}2
δ2D−2(t1) + y2

2(1 + 1
4E(t1)2)( δ

2L2

4 D(t1)−2 + y2
2(1 + 1

4E(t1)2)

=
π

16

∫ t1
0 D(s)ds

δ

∫ δ2L
H(t1)

0

(
1

max
{

1
2Y2, 1

}2
δ2D(t1)−2 + 2y2

2

− 1
δ2L2

4 D(t1)−2 + 2y2
2

)
y2dy2.

Now we apply the definition (3.26) of E(t) and of Y2-variable (3.20) to rewrite the integral, and
direct integration yields

J(t1) ≥ π

16

∫ t1
0 D(s)ds

δ

(∫ 2

0
+

∫ L

2

)(
1

4 max
{

1
2Y2, 1

}2
+ 2Y 2

2

− 1

L2 + 2Y 2
2

)
Y2dY2

≥ π

16

∫ t1
0 D(s)ds

δ

∫ L

Y2=2

(
1

3Y2
− Y2

L2 + 2Y 2
2

)
dY2

≥ π

16

∫ t1
0 D(s)ds

δ

(
1

3
log

L

2
+

1

4
log

(
L2 + 8

3L2

))
≥ π

48

∫ t1
0 D(s)ds

δ
log

L

5
.(3.33)

Due to the choice of the parameter L (3.28), it follows that

J(t1) >
2

δ

∫ t1

0
D(s)ds,

and this implies (3.29). �

Finally, we prove finite time blow up and thus Theorem 1.2.

Proof of Theorem 1.2. Let us apply the relation (3.27) to obtain the following differential inequality

for Q(t) =
√
H(t) :

Q′(t) = D(t) ≥ 1

2δ
H(t) =

1

2δ
Q(t)2.(3.34)

However, since Q(ε) =
∫ ε

0 D(s)ds and D(s) ≥ 1 for all s while solution exists, we have that Q(t) > 0
is positive for any small time t = ε > 0. Considering the differential inequality (3.34) for t ≥ ε,
we see that the solution Q(t) blows up at a finite time T? < ∞ which by (3.25) implies that
limt→T? ‖ω(·, t)‖L∞ =∞. �
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