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The 2-dimensional motion of a particle subject to Brownian motion and ambient
shear flow transportation is considered. Numerical experiments are carried out
to explore the relation between the shear strength, box size, and the particle’s
expected first hitting time of a given target. The simulation is motivated by
biological settings such as reproduction processes and the workings of the immune
system. As the shear strength grows, the expected first hitting time converges
to the expected first hitting time of the 1-dimensional Brownian motion. The
dependence of the hitting time on the shearing rate is monotone, and only the
form of the shear flow close to the target appears to play a role. Numerical
experiments also show that the expected hitting time drops significantly even for
quite small values of shear rate near the target.

1. Introduction

We consider the following stochastic differential equation (SDE) subject to the
initial condition X t=0 = x0 on the torus T2

= [0, L)2:(
d(X1)t

d(X2)t

)
=

(
Au((X2)t)

0

)
dt +

√
ν

(
d(B1)t

d(B2)t

)
, (1-1)

where B1,2 are independent standard Brownian motions. This SDE models a single
diffusing agent advected by shear flow. The vector X t = ((X1)t , (X2)t) denotes
the position of the agent. The ambient fluid stream is assumed to be shear flow
(Au((X2)t), 0) with the amplitude coupling constant A. We are interested in the
expected hitting time of a target located at the center of the torus

( L
2 , L

2

)
when the

random swimmer starts at (0, 0). Our motivation for this study originates in biology,
in particular reproduction processes where sperm are searching for eggs, immune
system workings where killer T-cells are looking for invading bacteria or viruses,
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or pollinators foraging for nectar. One can also envision a microrobot seeking some
target. In all these situations, the search happens in the ambient fluid, and often the
relevant spatial scales are such that the fluid flow can be regarded as shear. In many
of the described settings, there is another factor present — chemotaxis. For example,
eggs secrete pheromones that are attractive for sperm. The chemotaxis effect will
not be part of our analysis here and will be addressed elsewhere. Our analysis is set
in two dimensions due to computing power limitations, but also because some of
the relevant processes take place effectively in two dimensions (like, for example,
reproduction for marine animals which happens on the surface of the ocean).

This work has been especially influenced by the detailed experiment by Riffell
and Zimmer on fertilization success rates of marine species such as abalone and its
dependence on the ambient flow shear rates and presence vs. absence of chemotaxis.
Marine animals such as abalones, corals, and shrimp release their eggs and sperm
into the fluid stream. The gametes are positively buoyant and rise to the surface of
the ocean. The eggs are not mobile but release attractive chemicals. Simultaneously,
the sperm aggregate towards the eggs by a combination of random Brownian motion,
ambient flow, and chemotaxis-aided directed transport. In [Riffell et al. 2004; Riffell
and Zimmer 2007; 2011] the researchers put well-mixed abalone sperm and eggs
into a Taylor–Couette tank. They observed that the effect of shear flow is two-fold.
If the shear flow speed is moderately slow, the shear enhanced fertilization success
rates. On the other hand, if the shear flow speed is faster than a certain threshold, the
shear overwhelms the gametes’ motility. It looks likely that even though the sperm
approach the eggs, they cannot stay close and attach to them, and the failure in
attachment results in a dropping fertilization rate. The sperm are evenly distributed
in the seawater in the biological experiment, and the experimental time is quite
limited (≈ 15 seconds). The eggs are introduced into the mixture through specific
openings in the tank. Hence only the group of sperm surrounding the eggs have
access to the egg zone. As a result, the microflow environment described by shear
flow plays a dominant role during the fertilization process under this setup.

In this paper, we explore the fluid-fertilization interaction from a different point of
view, an idealized situation where there is just a single agent searching a single target.
Thus in the context of the fertilization process, we focus on the searching success of
an individual sperm, whose initial position may be distant from the egg. To quantify
the success of the fertilization, we consider the first hitting time of the target, i.e.,

Tx0(ω) = min{τ | Xτ (ω) ∈ Eδ}. (1-2)

Here Xτ (ω) is the realization of the solution to the stochastic differential equa-
tion (1-1). In particular, we are interested in the dependence of the hitting time on
the parameters of the problem such as A and L . Notice that two of the parameters —
such as for example ν and the size of the target — can be normalized by rescaling
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Figure 1. Shear strength multiplied by dt = 0.01s.

space and time. Our study is primarily numerical: we implement a numerical
scheme to characterize the relative importance of each factor.

The first hitting/exit time of the Brownian motion is a traditional topic in sto-
chastic analysis. It is closely related to the study of elliptic equations on bounded
domains, as we will recall below. We also refer to the classical books, e.g., [Durrett
1996; Øksendal 1989]. In the case of the fast ambient shear flow A(u(x2), 0), see
Figure 1, one expects that as the shear rate A approaches infinity, it serves as a
dimension-reduction mechanism. Namely, the 2-dimensional SDE dynamics get ho-
mogenized in the shear direction, and the effective dynamics become 1-dimensional
Brownian motions. This expectation is rigorously confirmed in a variety of settings
by Freidlin–Wentzell theory [2012]. In the case of the general ambient stream u,
the vector fields’ influence on the first exit time on a bounded domain in R2 was
explored in [Iyer et al. 2010]. Our experiments confirm the dimension-reduction
phenomena and provide a detailed picture of the transition from fully 2-dimensional
hitting time to 1-dimensional as the amplitude A increases (with fixed box size L).
In particular, the dependence of the hitting time on A is monotone decreasing. One
aspect that we found surprising is the significant reduction in expected hitting time
already at quite low values of the shear rate. We also experimented with varying
the shear profile away from the horizontal strip containing the target and noted that
the expected hitting time did not change as a result.

We focus on the following geometric configuration in our numerical exploration.
The domain T2 has dimension [0, L)2. The target is stationary and is described by
a disk Eδ = B

(( L
2 , L

2

)
; δ

)
. In all our simulation we will have L ≫ δ. The shear

profile is adapted to the size of the torus

u(x2) = sin
(

2π
(
x2 −

L
2

)
L

)
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and to the location of the target at x2 =
L
2 — we can think of the fluid flow as

measured relative with respect to the target. The agent starts its search at the
point (0, 0), which is distance ∼

L
2 away from the target in both directions. In

the numerical experiment, we ran multiple simulations and calculated the average
hitting time. The Euler–Maruyama method (see, e.g., [Kloeden and Pearson 1977])
is applied to simulate the motion of the agent.

2. Mathematical analysis

2.1. Expected first hitting times. In this section, we consider some analytic esti-
mates of the expected time for the particle to hit the egg. We begin with the computa-
tion of one-dimensional hitting time that will serve as the limit of the 2-dimensional
hitting time as A → ∞. In the 1-dimensional analog of our problem, the agent starts
at x0 = 0 and performs a Brownian motion

√
νd Bt on [0, L) with periodic boundary

conditions until it hits the interval
[ L

2 − δ, − L
2 + δ

]
. We can recast this problem

equivalently as the exit time from
[
−

L
2 + δ, L

2 − δ
]

for a Brownian particle starting
at 0. The expectation of such an exit time is well known and can be computed
explicitly; we provide a brief sketch of the argument. First recall the Dynkin formula
[Øksendal 1989]: For f ∈ C2

0 , suppose τ is a stopping time, Ex
[τ ] < ∞. Then

Ex
[ f (Xτ )] = f (x) + Ex

[∫ τ

0
H f (Xs) ds

]
, (2-1)

where in our case
d X t =

√
νd Bt , H f =

1
2ν∂xx f. (2-2)

To apply the formula, we consider the solution f to the partial differential
equation

1
2ν∂xx f = −1, f

(
±

L
2 ∓ δ

)
= 0. (2-3)

Combining the equation and the formula (2-1), we obtain the relation

0 = f (Xτ ) = f (x) + Ex
[∫ τ

0
H f (Xs) ds

]
= f (x) − Ex

[τ ], (2-4)

which in turn yields that
f (x) = Ex

[τ ]. (2-5)

Directly solving the equation yields that

f (x0) = −
1
ν

x2
0 +

1
ν

( L
2

− δ
)2

. (2-6)

By plugging x0 = 0 in the formula (2-6), we obtain that the average first hitting
time is

Ex0[T1D] =
1
ν

( L
2

− δ
)2

≈
1
ν

L2

4
. (2-7)
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Figure 2. Upper and lower bounds of first hitting time using in-
scribed and circumscribed circles.

For the two-dimensional case, we will derive formally lower and upper bounds
on the expected hitting time in the case A = 0. These bounds will serve as a
calibrating tool for our numerical scheme to ensure that we are not under-resolving
our computation. We are deriving analytic bounds since we are not aware of a
compact analytical formula for the expected hitting time in the case of the torus.
Recall that our 2-dimensional setting is an agent starting at (0, 0) and performing a
2-dimensional Brownian motion

√
νBt until hitting a disk of radius δ located at the

origin (0, 0). Thus we need bounds on

E(0,0)
[T2D], T2D := inf

{
t
∣∣ ∣∣√νBt −

( L
2 , L

2

)∣∣ = δ
}
,

where the Brownian motion is happening on [0, L)2 with periodic boundary condi-
tions. To get lower and upper bounds on this expectation, we will use two annuli
centered at

( L
2 , L

2

)
with inner radius δ and outer radii L

2 and L
√

2
, respectively.

The boundary condition on the outer boundaries of the annuli will be reflective.
Since the smaller annulus is inscribed into the torus and the larger one encompasses
it (see Figure 2), we anticipate that our expected hitting time is sandwiched between
the expected hitting times for the two annuli. We use the reflective boundary
condition since it is a better proxy for the periodic wrap-around that happens on the
torus. The connection with the PDE that we described in the previous calculation
holds in the 2-dimensional setting, and the reflective Brownian motion is known
to correspond to the Neumann boundary condition; see, e.g., [Bass 1998]. Thus
for the smaller annuli Aδ,L/2 case, the expected hitting time g(x) of a Brownian
motion starting at x ∈ Aδ,L/2 satisfies

1
2ν1g(x1, x2) = −1, (x1, x2) ∈ Aδ,L/2, r =

√(
x1−

L
2

)2
+

(
x2−

L
2

)2
, (2-8a)

g|∂ B((L/2,L/2);δ) = 0, ∂r g|∂ B((L/2,L/2);L/2) = 0. (2-8b)

Here B(x; R) denotes the ball centered at x and with radius R. The Dirichlet bound-
ary condition for r = δ describes the fact that the particle gets absorbed at the inner
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boundary. Since the particle is assumed to be reflected at the outer boundary, the Neu-
mann boundary condition is imposed at r =

L
2 . As the equation is radially symmetric,

we can change to polar coordinates and solve it explicitly. The solution is given by

g(r) =
δ2

2ν
−

r2

2ν
+

L2

4ν
log

r
δ
. (2-9)

To estimate the lower bound for the expected first hitting time, we first ignore the
time it takes for the particle to reach the circle ∂ B

(( L
2 , L

2

)
;

L
2

)
. Once the particle

reaches the circle ∂ B
(( L

2 , L
2

)
;

L
2

)
, we estimate the lower bound of the expected first

hitting time by picking r =
L
2 in the formula above. Hence, we obtain

Ex0[T2D] ≥
δ2

2ν
−

L2

8ν
+

L2

4ν
log

L
2δ

.

Then we perform similar calculations as in (2-8)
(
with L

2 replaced by L
√

2

)
to obtain

the heuristic upper bound

Ex0[T2D] ≤
δ2

2ν
−

L2

4ν
+

L2

2ν
log

L
√

2δ
.

3. Numerical result

3.1. Numeric scheme. To simulate the solution to the stochastic differential equation

d Xt =

(
Au((X2)t)

0

)
+

√
νd Bt , (3-1)

we use the Euler–Maruyama method. We take

u(x2) = sin
(

2π
(
x2 −

L
2

)
L

)
;

recall that the target is located at x2 =
L
2 , so the fluid flow can be thought of as

taken relative to the target. For very large amplitudes of A (specifically we took
800 as threshold in the simulation), we saturate the value of the shear replacing
Au((X2)t) with 800Au((X2)t)/|Au((X2)t)| if |Au((X2)t)| > 800. We do this in
order not to take the time step excessively small. We ran several simulations to
check that this cutoff procedure has no effect on the expected hitting time. In any
case, only structure (mostly, the shear rate) of u near the egg should affect the
result, and the cutoff only applies some distance away from the egg. The numerical
experiments confirmed this heuristic.

3.2. Parameters. Table 1 gives the list of parameters used in the simulation in the
natural units (the numerical values differ for two parameters — that is discussed
below).
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parameters value/range in biology value/range in simulation

diffusion coeff. ∼ 600 (µm)2/s 0.25(0.1mm)2/(4s) = 625 (µm)2/s
egg radius 100(µm) 1(0.1mm) = 100(µm)

box size ∼ 8000(µm) 50−1000(0.1mm) = 5000−100000(µm)

shear rate 0−12(s−1) 0−100(4s)−1
= 0−25(s−1)

Table 1. Parameters used in the simulation.

Here the shear rate is defined as the ratio A/L . The ranges of the parameters
are largely inspired by the biological experiments [Zimmer and Riffell 2011]. The
typical abalone egg size is 0.2 mm. The Taylor–Couette tank used in the experiment
has a distance of about 8 mm between concentric cylinders, and the shear rates tested
range between 0 and 10 s−1. Our simulation covers these ranges of parameters and
more. One parameter that is not immediate to estimate is the diffusion coefficient.
In the absence of chemical stimuli, sperm move in some direction for a while, then
change the direction randomly. The speed v0 of the sperm is about 0.05 mm/s. Let t
be the time that sperm maintains direction. Then over the larger time T = nt , the dis-
placement DT is given by DT =

∑n
i=1 X i , where X i are independent 2-dimensional

random variables with amplitude v0t and random direction uniformly distributed
over [0, 2π). We can estimate the expected displacement by

E(D2
T ) = E

( n∑
i=1

X i ·

n∑
j=1

X j

)
= nE(X2

i ) = nv2
0 t2

= T v2
0 t.

Now for a 2-dimensional Brownian motion, we have E(B2
T ) = 4νT , where ν is the

diffusion coefficient. Thus in two dimensions it is reasonable to adopt an estimate
ν =

1
4v2

0 t . The only parameter that we do not have readily available is t , but looking
at the trajectories of sperm motion provided in [Zimmer and Riffell 2011], taking
t ∼ 1 s appears to be reasonable. This leads to the estimate ν ≈ 0.06 (0.1 mm)2/s =

600 µm2/s. In the numerical simulation, we choose not to have a very small
diffusion coefficient and pick νnum = 0.25 (0.1 mm)2/(4s) = 625 (µm)2/s, which
is equivalent to changing time from one second to roughly 4 second effective units.
The only parameter in the table that gets affected is the shear rate, that in the new
units ranges between 0 and 100 in our simulation. Although the parameter ranges
are coordinated with the experiment [Zimmer and Riffell 2011], we find it likely
that they are relevant in a wider range of biological applications.

4. Discussion of the numerical results

In the 1-dimensional case (Figure 3, left), we calculate the expected first hitting
time of the Brownian motions

√
2

2 d Bt on the torus T numerically. Our numerical
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Figure 3. Comparison between the numerical result and the analytical
result in 1-dimensional (left) and 2-dimensional (right) Brownian
motion (ν = 0.25 (0.1 mm)2/(4 s) = 625 (µm)2/s).
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Figure 4. Convergence of the expected first hitting time of the 2-
dimensional searching agent (ν=0.25(0.1mm)2/(4s)=625(µm)2/s).

result matches the theoretical expected first hitting time in (2-7) with

ν = 0.25 (0.1 mm)2/(4 s) = 625 (µm)2/s.

In the 2-dimensional case (Figure 3, right), we calculate the expected first hitting
time of the Brownian motion

√
νd Bt =

1
2 d Bt on the torus numerically. Our result

is consistent with the upper and lower bounds obtained in Section 2.1.
In Figure 4, we observe that the expected first hitting time is a monotone decreas-

ing function of the shear rate (A/L). Moreover, significant decay of about 50%
happens at small shear rate of only ∼ 0.02 s−1 (0.1 when using 1/(4 s) units). A
similar effect was also observed in [Zimmer and Riffell 2011], where the increase
in fertilization success is quite dramatic for the low values of shear — however, it
peaks for the shear rate 0.1 − 0.5 s−1 and starts to decline gradually afterwards.
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Figure 5. Curve fitting for the hitting time decay as shear in-
creases. Box size: 50(0.1 mm)=5000 µm (top left), 80(0.1 mm)=

8000 µm (top right), 200(0.1 mm) = 20000 µm.

We also fit the data points of the expected first hitting time with the formula

y = exp
(

a
b + x

+ c
)

, a, b, c ∈ R, (4-1)

where x is the shear rate and y is the expected first hitting time. The results are
presented in Figure 5. We note that these graphs differ from fertilization success
rate graphs for the experiment [Zimmer and Riffell 2011] in that the expected time
is decaying monotonically — there is no optimal shear rate after which the graph
reverses. Indeed, the decrease of fertilization rate for large shears is likely not due
to the difficulty of finding the eggs, but the sperm’s inability to stay close for a
necessary period of time. It is an interesting question if a combination of shear flow
and chemotaxis can replicate some of this success deterioration for larger shears, or
it is entirely due to more detailed mechanics of fertilization. This question will be
considered elsewhere.
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