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Abstract
We construct natural operators connecting the cohomology of the moduli spaces of stable Higgs bundles with
different ranks and genera which, after numerical specialisation, recover the topological mirror symmetry conjecture
of Hausel and Thaddeus concerning SL,,- and PGL,,-Higgs bundles. This provides a complete description of the
cohomology of the moduli space of stable SL;,,-Higgs bundles in terms of the tautological classes, and gives a new
proof of the Hausel-Thaddeus conjecture, which was also proven recently by Grochenig, Wyss and Ziegler via
p-adic integration.

Our method is to relate the decomposition theorem for the Hitchin fibration, using vanishing cycle functors, to
the decomposition theorem for the twisted Hitchin fibration, whose supports are simpler.

0.1. Overview

Throughout, we work over the complex numbers C. Let C be a nonsingular projective curve of genus
g > 2. Let n,d be integers with n > 0 and gcd(n, d) = 1.
The cohomology of the moduli space N, 4 of rank n, degree d stable vector bundles on C has been

studied intensively for decades. By [1, 2], the cohomology H* (X/n,d, C) is generated by the tautological

classes — the Kiinneth factors of the Chern characters of a universal family. Relations between the
tautological classes were explored in [14, 27].
A natural moduli space closely related to A, 4 is the moduli of stable SL,,-bundles

Nn,L C Nn,d,

which parameterises rank n stable vector bundles with fixed determinant L € Pic?(C). The finite abelian
group

I = Pic’(0)[n]
acts on NV, 1, via the tensor product, which induces a I'-action on the cohomology H* (./\/,,, L C). The

[-invariant part H* (N, 1, C)F recovers the cohomology of the quotient A, ; /T, which can be viewed
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as the moduli space of stable PGL,,-bundles. The tautological classes associated with a universal family
generate the I'-invariant cohomology H* (N, 1, C)r.

The following theorem by Harder and Narasimhan [19] shows that every class in H* (N, 1, C) is
I'-invariant:

Theorem 0.1 (Harder and Narasimhan [19]). The I'-action on H* (Nn Lo C) is trivial.

As a consequence of Theorem 0.1, we obtain immediately that the tautological classes generate the
total cohomology H* (N, 1, C).

The purpose of this paper is to study the I'-action on the cohomology of the moduli space of stable
SL,-Higgs bundles from the viewpoint of the Hausel-Thaddeus conjecture [22]. We denote by M, .
the (coarse) moduli space parameterising stable Higgs bundles

(£,0: &> E@Q¢) - det(&) ~ L, trace(d) =0,

on the curve C. It is a nonsingular quasi-projective variety admitting a natural hyper-Kéhler structure
[25, 34]. As in the case of vector bundles, the group I" acts on M,, ;. via the tensor product

L-(£60)=(L&0), LeT.

The induced I'action on H* (M, 1, C) yields the following canonical decomposition:

H* (Mo1,C) = H* (M /T, C) & (D H* (My.1,C),, M)

k#0

where k € I' = Hom(T",C*) runs through all nontrivial characters of I' and H* (M, ., C), denotes
the k-isotypic component. By [30] (and [9, (70)]), the tautological classes associated with a universal
family of M,, . generate the I'-invariant cohomology

H* (M,,.../T.C) = H (M,,.1,C)" .

However, contrary to Theorem 0.1, the I'-variant part of equation (1) is nontrivial and carries a rich
structure, predicted by topological mirror symmetry [22].

In this paper, we focus on the structure of H* (M, 1, C)K for k # 0. We introduce natural operators
which determine H* (M, ., C)K in terms of the cohomology of the moduli space of stable GL,-Higgs
bundles on a certain curve for some r < n. These operators respect the perverse and Hodge filtrations,
and upon specialisation to Hodge polynomials, they recover the Hausel-Thaddeus conjecture [22]. In
particular, this gives a new proof using perverse sheaves of the topological mirror symmetry conjecture
of Hausel and Thaddeus, which was recently proven using p-adic integration [17].

0.2. Hitchin fibrations
The moduli space M,, 1, carries a Lagrangian fibration
h:/\/ln,L—nA:@Ho (€.Qg), ()
i>2

given by Hitchin’s integrable system, which is now referred to as the Hitchin fibration. The I'-action on
M., 1, is fibrewise with respect to equation (2). There are two types of moduli spaces closely related to
the cohomological study of M,, 1, from the perspectives of mirror symmetry [22] and representation
theory [32, 33].
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The moduli spaces of the first type are the fixed loci of an element y € I'. For any vy € I', we denote
by M, ¢ M, 1 the y-fixed subvariety, which maps to the Hitchin base via

by

My 25 Ay =1m (hla,) > A

The I'-action on M,, 1 induces a I'-action on M,,.

Moduli spaces of the second type are associated with a cyclic Galois cover 7 : C’ — C of the original
curve given by y € I'. We assume deg(n) = ord(y) = m and n = mr. Let M, 1 (7r) be the moduli space
parameterising rank r stable Higgs bundles (&, ) on C” such that

det(n.£) =~ L, trace(m.0) =0.
It admits a Hitchin fibration
h7r : Mr,L(ﬂ) - A(ﬂ)

with a fibrewise I'-action; see Section | for more details on these moduli spaces. From the viewpoint
of representation theory, the moduli spaces M, 1 () are related to the study of the corresponding
endoscopic groups for SL,, over C [33]. They are nonsingular but disconnected. The Galois group

Gy = Aut(n) ~ Z/mZ

acts on both the source M, ; () and the target A(x), whose quotients recover M, and A, respectively.
We denote by

ga: Alm) = Ay

the quotient map of the base A (). We also consider the largest open subset A (7)* c A(7r) upon which
the G r-action is free, and set A, := A(7)"/Gr C Ay.

0.3. Endoscopic decompositions

In order to understand the decomposition (1) sheaf-theoretically, we consider the canonical decomposi-
tions of the direct image complexes

Rh.C € DZ(A), Rh,,CeD?(A,)), RhrCeDZ(A(n)),

into eigen-subcomplexes with respect to the I"-actions. We first clarify some notation before stating the
main theorems. Throughout, we use D% (-) to denote the bounded derived category of constructible

sheaves. We say that /C 5 K isan isomorphism for two objects in a derived category if it is a quasi-
isomorphism between the complexes X and ’. Given a complex with a I'-action and a character € [,
we denote by (—). the k-isotypic component. We call (=) = (=)ocr its stable part, which is the
subcomplex fixed by the I'-action. The Weil pairing identifies canonically the group I and its dual,

r=r 3)

(see Section 1.3).

Our first result is the following theorem, which relates the stable part of the endoscopic cohomology
with the pullback of the k-isotypic contribution for SL,,. This extends the endoscopic decomposition of
[39] in the case of SL,, from the elliptic locus to a much larger open subset on the Hitchin base.
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Theorem 0.2 (Theorem 3.1). Let k € I and y € T be identified by equation (3), let 7 : C' — C
be the cyclic Galois cover associated with 'y and let d,, = codimy4 (A, ). There are isomorphisms in
DY (A(r)*) which are canonical up to scaling (see Definition 2.9):

= RheQ), |, - [-2dy] = Rhr.Q) [-24,]. “)

st

¢4 (Rh.Q), |

A(m)* A(m)* A(m)*

with the first isomorphism G r-equivariant.

In formula (4), the G ,-equivariant structure for the first term is given by the pullback map along the
G z-quotient g 4 : A(m)* — A),. The G r-equivariant structure for the second term is induced by the
G r-action on M, ; (7).

The following theorem is a further extension of Theorem 0.2, which provides a complete description
of the k-isotypic component of Rh,.C in terms of the y-fixed subvariety M, c M, ;.

Theorem 0.3 (Theorem 3.2). Let k € [ and y € T be identified by equation (3) and let dy, =
codim 4 (A, ). We have an isomorphism

cxt (RhC), = iy, (Rhy,C), [-2d,] € DZ(A). ®)

which is canonical up to scaling.

The construction of the operator
ce : (RRC), = iy, (Rh,,C), [-24,] € D2(A)

realising the isomorphism of Theorem 0.3 is the main theme of this paper. It is of a geometric nature,
given by a combination of algebraic correspondences and vanishing cycle functors. Since it induces a
correspondence between the «-part of the cohomology of an SL,-Hitchin fibre and the «-part of the
cohomology of the corresponding endoscopic Hitchin fibre, we call Theorems 0.2 and 0.3 the endoscopic
decomposition associated with SL,, and the character k. A major difference between Theorem 0.3 and
the work of Ngo6 [33] and Yun [39] is that they mainly work with D-twisted Hitchin fibrations with
deg(D) > 2g — 2 or with just the elliptic locus of the K¢-twisted Hitchin fibration, whereas we are
interested in entire space in the latter setting. The structure of the supports of the direct image complexes
is much more complicated in the Kc-case over the total Hitchin base; see [8].
In the following, we give some applications of Theorem 0.3.

0.4. Structure of the cohomology of M,, ;.

Let k € 'and y € I be identified by equation (3). Let 7 : C’ — C be the degree m cyclic Galois cover
associated with y. Assume n = mr. We denote by M, , the moduli space of stable ( GL,-)Higgs bundles

(&,0) :rank(E) =r, deg(€) =d,

on the curve C’.
Recall decomposition (1). The following theorem is a structural result for H* (M, ., (C)K:

Theorem 0.4 (Theorem 5.4). The operator (5) induces a surjective morphism

o H (/T/t;,d,c) > H*4 (M,1,C). .
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Moreover, let P H* (/\7;’4,@) and Py H* (Mn,L,C)K be the perverse filtrations defined via the
Hitchin fibrations; then

pi (PeH' (M) 4:C)) = Praa, H*2 (My,1.,C),,.

We refer to [11, 7] for perverse filtrations; see also Section 5.1 for a brief review.
If k = 0, we have 7 = id : C — C. The operator p,—o in this special case recovers the restriction map

J L H (ﬂn,d,c) > H (My1.C)

—_—

associated with the embedding j : M, | — T/lmd =M, 4.
By Markman’s theorem [30], the cohomology H* (.;\71; d C) is generated by the tautological classes

associated with a universal family on /W; 4 Hence Theorem 0.4 shows that each isotypic component
H* (M., C)K for « # 0 is governed by the tautological classes of a different moduli space of Higgs
bundles through the operator p,. More discussions concerning Theorem 0.4 and the P=W conjecture
[7] are given in Section 5.

0.5. The Hausel-Thaddeus conjecture

In [22], Hausel and Thaddeus showed that the moduli spaces of stable SL,- and PGL,,-Higgs bundles
are mirror partners in the sense of the Strominger—Yau—Zaslow mirror symmetry. As a consequence,
these two moduli spaces should have identical Hodge numbers.

As explained in [22], the moduli space of degree d stable PGL,,-Higgs bundles can be realised as
the quotient M,, . /T", which is naturally a Deligne-Mumford stack. Therefore, Hausel and Thaddeus
conjectured that for any two line bundles L, L’ with

deg(L) =d, deg(L’)=d’', gcd(d,n)=ged(d’,n)=1,

the Hodge numbers of M, ; are the same as the stringy Hodge numbers of the stack [M,,,LI /F]
(twisted by a certain gerbe a):

W9 (Ma1) = b ([Ma,1/T] @) (6)

(see [22, Section 4] for precise definitions of the gerbe a and the stringy Hodge numbers). Later, Hausel
further conjectured a refinement of equation (6): the Hodge numbers of H* (M, 1., C) . coincide with the

Hodge numbers of the gerby sector [(Mn ) ,/ F]. Here (M) ) © My, 1 is the y-fixed subvariety,
and « and y are matched via equation (3). We refer to [20, Conjecture 4.5] concerning Hodge numbers
and [20, Conjecture 5.9] for a further refinement involving perverse filtrations.

The following theorem is a direct consequence of Theorem 0.3 which proves the Hausel-Thaddeus
conjecture and a refinement of it; see [29] for an explanation of how the right-hand side is equivalent to
the gerby description just given:

Theorem 0.5. Assume that e is a multiplicative inverse of d’ modulo n. Let y and k be matched via
equation (3). The following identity holds in the Grothendieck group of complex Hodge structures
Ko(HS):

[PcH' (My,1.C), | = [Pk—dyHi_Zdy ((Mn,L')y’C) (_dy)] : ™)

dek
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Here (o) stands for the Tate twist,’ and each piece of the perverse filtrations admits a natural Hodge
structure by the theory of mixed Hodge modules. In particular, for any q € Z coprime to n, we have

[PeH' (M1, ©)] = ) [Pk_dyH"‘z“’ ((Mn,u)y ,C)

(—dy)] € Ko(HS). 8)
yell

qK

Remark 0.6. By the last paragraph of [22, Proof of Proposition 8.2], the shift
. |
d, = codimy4 (A,) = Scodimg, (M,)

in equation (7) coincides with the ‘fermionic shift’ F(7y) in the formulation of Hausel and Thaddeus.

A refined version of the Hausel-Thaddeus conjecture was previously proven by Grochenig, Wyss and
Ziegler [17, Theorem 7.24] by p-adic integration, and was generalised by Loeser and Wyss [29, Remark
5.3.4] by motivic integration. Note that our refined version in equation (7) is slightly different from the
versions of [17, 29], since the right-hand side of equation (7) depends on the degree of L, whereas the
corresponding term in [17, 29] is independent of this degree. Instead, our refined version is closer to
the conjectures formulated by Hausel [20, Conjectures 4.5 and 5.9]. Motivated by the Hausel-Thaddeus
conjecture, connections between the moduli of Higgs bundles and the y-fixed locus with y € T" were
discussed in [15] via the Fourier—Mukai transform.

0.6. Idea of the proof

Our approach proceeds in two steps. We first show analogus of Theorems 0.2 and 0.3 for the moduli space
M,? ;. of D-twisted SL,,-Higgs bundles with deg(D) > 2g — 2 (see Section | for precise definitions).
As mentioned earlier, one expects this case to be simpler than the original setting, due to work of
Chaudouard and Laumon [5] and of de Cataldo [6], which determines the supports appearing in the
decomposition theorem for the twisted Hitchin map. After proving the corresponding support theorem
for endoscopic moduli, we study the endoscopic decomposition of Ngd [33] and Yun [39] over the
elliptic locus and extend it over the full twisted Hitchin base.

Unfortunately, this approach is not sufficient when D = K¢, since the supports of the Hitchin map
remain mysterious [8]. Moreover, although M,, ;, embeds inside /\/lnD, ;. for a certain effective divisor D
with deg(D) > 2g — 2, we cannot simply pull back formula (5).

Instead, we realise M,, 1, as the critical locus of a regular function

Ham s M — Al ©))

(see Theorem 4.5). This allows us to express the cohomology of M, 1 as the vanishing cohomology
of this function. In addition, since the function u, a4 factors through the Hitchin base, we can use the
vanishing cycles functor to relate the decomposition theorem for M,, 1, in terms of that for /\/lfi .- By
applying this technique to the twisted version of formula (5), we obtain the full result.

0.7. Relation to other work

As discussed in Section 0.5, the Hausel-Thaddeus conjecture and its refinements have been proven by
Grochenig, Wyss and Ziegler [17] via p-adic integration. Using a similar approach, they have also given
a new proof of Ng6’s geometric stabilisation theorem [ 18], which plays a crucial role in Ngd’s proof of
the fundamental lemma of the Langlands program [33]. Our approach goes in the inverse direction — we
prove the Hausel-Thaddeus conjecture by extending Ngd’s method [33, 39] in the proof the geometric
stabilisation theorem via perverse sheaves and the support theorems. This carries out Hausel’s proposal

1Recall that for V € K (HS), we have ht>J (V (o)) = hi**J*+* (V).

https://doi.org/10.1017/fmp.2021.7 Published online by Cambridge University Press


https://doi.org/10.1017/fmp.2021.7

Forum of Mathematics, Pi 7

in [20, Section 5.4]. A benefit of the sheaf-theoretic approach is that it allows us to construct concrete
geometric operators which realise the Hausel-Thaddeus conjecture (Theorems 0.2 and 0.3) and provide
a better understanding of H* (M, 1., C), for each nontrivial «.

In the case of D-twisted Higgs bundles, our result (Theorem 3.2) removes a technical condition of
[17, Theorems 7.21] on the parity of deg(D).

1. Hitchin-type moduli spaces

Throughout, we work over the complex numbers C. In this section, we fix the curve C of genus g > 2,
the rank n and the line bundle L € Pic?(C), which serves as the determinant of the Higgs bundles as in
Section 0.1. We study several Hitchin-type moduli spaces relevant to Theorems 0.2 and 0.3.

1.1. D-Higgs bundles

For our purpose, it is important to consider generalised Higgs bundles (&, 6) with the Higgs field 6
twisted by a divisor D that is not necessarily the canonical divisor K¢. This flexibility also plays a
crucial role in the proof of the fundamental lemma [32, 33].

Let D be either an effective divisor of degree deg(D) > 2¢g —2 or D = K¢. A D-Higgs bundle is a
pair (&, 6), where £ is a vector bundle and 6 is a D-twisted Higgs field

0:&—> EQR0Oc(D).
We denote by char(6) the tuple of the coefficients for the characteristic polynomial associated with (&, 6):
char() = (ay,...,a,), a;=trace (A'4) € H'(C,Oc¢(iD)).

Parallel to the case of Kc-Higgs bundles, the stability condition for D-Higgs bundles is with respect
to the slope u(€) = deg(€)/rank(E). By [34], there is a nonsingular quasi-projective moduli space
~—D

M,, , parameterising stable D-Higgs bundles of rank n and degree d, with the Hitchin map
D . P ~D n 0 .
e M, g — A =& H'(C,Oc(iD)), (&,6)+ char(d), (10)

which is proper and surjective.
The moduli space of stable SL,, D-Higgs bundles is defined to be the subvariety

MP, = {(5, 0) € Moy 4: det(€) = L, trace(6) = 0} c My, (11)

It is nonsingular and irreducible by [6, Section 2.1], which has a Hitchin map induced from the Hitchin
map of the ambient space (10),

hP ME, — AP = e ,H(C,Oc(iD)). (12)

It is clear that the variety ./\/lf, ., is the fibre over the closed point (L, 0) of the smooth map

q: My y— My g =Pic?(C) x H'(C,0c(D)), (£6) — (det(£), trace(9)).  (13)

A major difference between the cases D = K¢ and deg(D) > 2g — 2 is that the Hitchin fibration
for either GL,, or SL,, is Lagrangian with respect to the canonical hyper-Kéhler structure for D = K¢,
but the dimension of the Hitchin base is always larger than the dimension of a fibre in the case of
deg(D) > 2g — 2. In view of the support theorems (Section 2.2), such a difference will substantially
influence the study of the topology of Hitchin fibrations.

From now on, all D-Higgs bundles will be uniformly called Higgs bundles for convenience.
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1.2. Relative Hitchin moduli spaces

In this section, we study the relative Hitchin moduli space associated with a Galois cover 7 : C’ — C.
This parameterises stable Higgs bundles with respect to the endoscopic group of SL,, over C attached
to a character x € I [32, 33].

Let C’ be a nonsingular curve with a cyclic Galois cover

n:C"'—-C

whose Galois group is G, = Z/mZ. We denote the divisor 7*D by D’. For an element o €
H(C’,Oc¢/(D")), the push-forward along 7 gives an element

n.0 € H(C,m,0¢(D")).
The trace of 7.0 recovers its projection to the direct summand component:

trace(r.0) € H(C, Oc (D)) ¢ H(C, 1.0c (D).
The moduli space Mﬁ;(c’) of rank r, degree d stable Higgs bundles on C’ admits a map
Gr : ML (C) = M1 (O), (14)
which is the composition of equation (13) for the curve C’ and the push-forward
Kot Myg(C) > My a(C),  (L,0) > (det(r.L), trace(m,cr)) > (15)

Since both formulas (13) and (15) are smooth, the composition g is also smooth.
We define the relative Hitchin moduli space of rank r and degree d associated with 7 as the subvariety

of Mﬁ;,(c ’) given as a fibre of formula (14):
_ ~D
MP, (1) = q;' (L,0) € M, 4(C").

The variety MVD’ 1. (m), which recovers the SL,-Hitchin moduli space (11) when 7 = id, is nonsingular
due to the smoothness of g .
Next we describe the Hitchin fibration associated with Mf)’ 1. () which generalises equation (12).

Recall from equation (10) the GL,-Hitchin fibration h?" : /ng(C ) — ZlD (C’) associated with the
curve C’. The restriction of AP to MQ 1. () induces the Hitchin map

h2 - MP, (1) — AP (n), (16)

which fits into the commutative diagram

—~D’
ML (1) — M, 4(C")

lhf lh”' a7

AP () —— A7 ().

2When we wish to be specific regarding the dependence of the moduli spaces on the underlying curve C or C’, we add (C) or
(C”) after the corresponding moduli spaces.
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The Hitchin base AP () can be concretely described as
AP (1) = HO(C', Oc: (D))var ® (@], H'(C', Oc/(iD"))), (18)

where HO(C’, O¢/(D’))yar is the variant part with respect to the natural Galois group G ,-action
induced by the G -action on C’ [21, Section 5]. Since the line bundles Q¢ (iD”) have canonical G ,-
linearisations, there is a natural G ;-action on the Hitchin base (18).

Proposition 1.1. We have the following properties:

(a) The moduli space MFD’ 1 () is a disjoint union of m nonsingular isomorphic components:
m
MP, (n) = I_IM,». (19)
i=1

(b) The restrictions of h2 to all components h; : M; — AP () are AP (r)-isomorphic. More precisely,

for each pair 1 < i, j < m, there exists an isomorphism ¢;; : M; — M induced by tensoring with
a line bundle L;; € I satisfying the commutative diagram

M — s M

\h; M (20)

AP (7).
Proof. Recall that ME 1. () is the fibre of
qn = (1) o q
(see formula (14)) over the point (L, 0) € Mﬁd(C ). The map ¢ is surjective and smooth, and its fibres
are isomorphic to the moduli of stable SL,-Higgs bundles of degree d on the curve C’. In particular,

each fibre of g is nonsingular and irreducible.
The morphism x.. given in formula (15) respects the product structures

7, : Pict(C") x HY(C’, O¢/ (D)) — Pic?(C) x H(C, O (D)), (21)
where the morphism between the second factors form a trivial affine bundle. For the first factors, a fibre
of m, : Pic?(C’) — Pic?(C) is isomorphic to the degree d Prym variety associated with the Galois

cover 7 : C’ — C, which is the disjoint union of m isomorphic abelian varieties [22, Section 7]. Hence
the moduli space /\/er 1 () has m nonsingular connected components.

Assume n = mr. Tensoring with a line bundle £ € T" = Pic®(C)[n] induces an AP (rr)-automorphism
¢ MP (1) S MP (1), $.(£,6)=(LBEO). (22)
Moreover, for a general point a € AP (7) corresponding to a degree n = rm spectral cover
’ r
84:C,—>C" — C,
the fibre (h2) ' (a) is identical to a fibre of the morphism
8as  Pic? (C) — Pic?(C), L det(g4,L),
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where I acts transitively on the set of its connected components (compare [21, Lemmas 2.1 and 2,2]).
This ensures that " acts transitively on {M;};<;j<m. In particular, for any pair 1 < i,j < m, there
exists a line bundle £;; € I' such that the isomorphism ¢;; = ¢ c;; given in formula (22) satisfies the
commutative diagram (20). Thus (a) and (b) are proved. O

1.3. Weil pairing and cyclic covers

Recall from Section 0.1 that the group I' = Pic’(C)[n] acts on the SL,-moduli space /\/lnD’ ;. via the
tensor product. For y € T, the y-fixed subvariety ./\/l)l,) C Mﬁ ;. carries an induced Hitchin map

h? iD
M2 L5 AP = 1m (WP, ) 5 AP,

As indicated by Theorem 0.3, the cohomology of M? is related to a k-isotypic component of the

cohomology of M fl” . With respect to the I'-action.

In order to describe this connection, we need a correspondence (3) between an element y € I" and a
character k € I, which we review in the following.

Let u,, ¢ C* denote the finite group of the nth roots of unity. We have the Weil pairing on the group
of n-torsion points of Pic’(C),

Gors DX = py.
Under the identification
Pic’(C)[n] = H\(C,Z/nZ),

the Weil pairing coincides with the intersection pairing on H|(C,Z/nZ). In particular, it is nondegen-
erate, which induces a character

k=(y, )r: - pu, cC

for each y € I'. This gives the identification (3).

We also note that an element y € I' naturally corresponds to a cyclic Galois cover of C whose degree
is the order of y € I'. In fact, for fixed y € I', we denote by L,, the n-torsion line bundle associated with
v, and let m be its order which divides n. Taking the mth roots of unity fibrewise inside the total space
of L, with respect to the zero section C, we obtain a cyclic Galois cover

n:C"'—>C

with the Galois group G , ~ Z/mZ. Conversely, every degree m étale cyclic Galois cover arises this way.

1.4. Characters

In this section we give a concrete description of the character « in terms of the Prym variety associated
with the corresponding Galois cover 7 : C’ — C.

As before, we assume that 7 : C’ — C is a degree m cyclic Galois cover associated with x € I" as in
Section 1.3, and we assume that n = mr. The character k € I matches with y € I' via equation (3). We
consider the Prym variety

Prym(C’/C) = Ker (det(n*—) - Picd(C') — PicO(C)) (23)
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with the component group
mo(Prym(C’/C)) ~ Z/mZ.
For an n-torsion line bundle £ € T, the projection formula yields
det(m,n*L) = LE™ € Pic’(C)[r].

In particular, the line bundle 7*£®" € Pic?(C’) represents a point in Prym(C’/C)), which yields a
natural group homomorphism

I' = mo(Prym(C’/C)), L+ [n*L®"] € mo(Prym(C’/C)). (24)

The morphism (24) admits a factorisation

T = Pic(C) [n] -2 Pic®(C) [m] — 7o(Prym(C’/C)).
The first map is multiplication by r, which is clearly surjective. The second map sends £ € Pic®(C)[m]
to the equivalent class of the line bundle 7*L € Prym(C’/C), and its surjectivity is given by the proof
of [21, Theorem 1.1 (2)]. Hence formula (24) is surjective.
Recall that y € T is of order m, so

y € Pic’(C)[m] c T.

The following lemma is obtained by viewing the Weil pairing on Pic?(C)[i] for any i € N, via Poincaré
duality, as the intersection pairing

Hi(C,Z/iZ) x H\(C,Z/iZ) — Z/iZ ~ ;.

Lemma 1.2. Assumey’ € I'. We let {, >Pic"(C)[m] denote the Weil pairing on Pic’(C)[m], and we view

ry’ naturally as an element in Pic’(C)[m]. We have
Y =Y Wi () [m)-

Proposition 1.3. The character k € I (corresponding to n : C' — C) factors through a character of
7o (Prym(C’/C)) of order m via the morphism (24):

k: T — mo(Prym(C’/C)) (= Z/mZ) — C*.

Proof. Recall from Section 1.3 that the character « is given by the Weil pairing (y, )r, where y € I
corresponds to 1. We have that vy is of order m — that is,

y € Pic®(C)[m] c T.
Therefore Lemma 1.2 implies for any element y’ € I" that
k(y") =y Y = VY Dpicd (€) m)- (25)
We consider the subgroup
K = Ker {71* : Pic®(C) — PicO(C’)} c Pic®(C).
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It is the cyclic finite subgroup (y) of Pic’(C) generated by y. Since y is of order m, we have K C
Pic’(C)[m]. By the proof of [21, Theorem 1.1 (1)], there is a canonical isomorphism

mo(Prym(C’/C)) = K, (26)

which, for any £ € Pic®(C)[m], identifies [7*L] € mo(Prym(C’/C)) with the character of K sending
the generator y € K to

¥ Lopico ()] € Hm € C".

Comparing with equation (25), this implies that x : ' — C* is the composition of formula (24) and the
order m character of 7o(Prym(C’/C)) given by

y € K = Hom(mo(Prym(C’/C)), C").
Here we dualise equation (26) in the last identity. This completes the proof. O

Since o (Prym(C’/C)) = Z/mZ, its character group is also cyclic. We obtain the following corollary
of Proposition 1.3:

Corollary 1.4. A character p : T' — C* lies in the cyclic subgroup (k) C I if and only if p is induced
by a character of no(Prym(C’/C)) factoring through formula (24).

Now we consider the kernel of the morphism (24), which we denote by
QcT. 27)

The subgroup Q acts on the moduli space MrD’ ;. () via the tensor product.
Lemma 1.5. The Q-action on /\/12 () preserves each connected component M; of equation (19).

Proof. Recall that M?’ 1 () is a fibre of

—~D , —~D' N T —D
Gr=(m)og: My 4(C) S M 4(C) 55 M, 4(0).

The fibres of the first map are connected. The second map respects the product structure (21). Both
the maps ¢ and . are I'-equivariant. Hence the m connected components of equation (19) match the
connected components of the degree d Prym variety

Prym?(C’/C) = ()" (L), 7. :Pic?(C") — Pic?(C).

Since Prym?(C’/C) is a torsor of Prym(C’/C) (defined in equation (23)), and by definition the group
Q acts trivially on the component group 7o (Prym(C’/C)), we obtain that the action of Q preserves each
connected component of Prym?(C’/C). The proposition then follows from the fact that the restriction

of g to ./\/er’d(n),
al iy (r.0) P MPL(T) = ()7 (L,0) = Prym?(C"/C) x H(C', O/ (D) Jvar

is Q-equivariant. O

1.5. Endoscopic moduli spaces and y-fixed loci

In this section, we connect the y-fixed subvariety ./\/lly) to the relative Hitchin moduli spaces introduced
in Section 1.2.
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We fix y € " of order m. Let 7 : C’ — C be the cyclic Galois cover with the Galois group
G, =~ Z/mZ corresponding to 7y, as in Section 1.3. Assume n = mr. We consider the relative Hitchin
moduli space ME 1. () with the Hitchin fibration

hY : M2, (m) — AP (). (28)

By [22, Proposition 7.1], the Galois group G, acts freely on the relative moduli space ./\/lf, ()

whose quotient recovers the y-fixed subvariety ./\/lfy) . The group G also acts on the base AP () with
the Hitchin map (28) G ,-equivariant. In summary, we have the following commutative diagram:

MP () 5 MDD —— MP,

| I Iz (29)

D g4 D b D
AP () s AD <y AP,

where g o4 and g 4 are the quotient maps with respect to the natural actions of the Galois group G .. Let
AP (7)* be the largest open subset of A” (7) upon which the G ,-action is free. Then the left diagram
is Cartesian after restricting to

AP ()"~ AD™ = AP ()" Gy
Remark 1.6. We see from the description (equation (18)) that AP (7)* is nonempty. In fact, it suffices
to find vectors in the affine space .A” (1) that are not fixed by any nontrivial element of the cyclic group
G . We consider the push-forward of the structure sheaf O¢- along the Galois cover 7 : C’ — C, which
admits a splitting 7.O¢» = @, L, where y runs through all characters of G and L, is a degree O line

bundle corresponding to y. The projection formula yields

1.0c(iD’) = n.7* Oc(iD) = @oc(u)) ®L,, Vi>l.
X

In particular, for any character y of G ., we have
H°(C’,0¢(iD")), = H(C,Oc(iD)® L, ) # 0, (30)

where we used the Riemann—Roch formula. The nonemptiness of A (r)* follows from equations (30)
and (18).

Lemma 1.7. The direct image complex
RK2.C e D! (AP(m))
is G r-equivariant, and we have a canonical isomorphism
D ~\%" = oD b( 4D
(qA*Rh,, *Q) 5 Rh? Ce D! (A7 ) :

Proof. Since the trivial local system on ME () is G r-equivariant, the push-forward g ¢, C along the
quotient map g o4 admits a natural G ,-action with a canonical isomorphism

(4r0.0)°" 5 Ce D (MP). (31)
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The map 12 is G ,-equivalent, and therefore we obtain in D% (.A? ) that

(Cil,at*RhB*Q)Gir = (RhB*QM*Q)G” =Rh}), (grm.0) %" > Rh C,

where the last isomorphism is induced by formula (31). O

2. Support theorems for Hitchin moduli spaces
2.1. Supports

Let f : X — Y be aproper morphism between nonsingular quasi-projective varieties. The decomposition
theorem of Bernstein, Beilinson, Deligne and Gabber [3] implies that the direct image complex Rf,C is
(noncanonically) isomorphic to a direct sum of shifted simple perverse sheaves:

Rf,C = (HICz (L) [di] € DL(Y), (32)
Z;

where d; € Z, Z; C Y is an irreducible subvariety and L; is a local system on an open subset U; of Z;.
Every Z; here is called a support of f : X — Y. We say that a direct summand F of the object

Rf.C=Fo F

has full support if each perverse constituent IC, (L;)[d;] of F has support Z; =Y.
In this section, we analyse the supports of various Hitchin fibrations introduced in Section | when
deg(D) > 2g — 2.

2.2. Support theorems

For the Hitchin fibration AP (resp., h? ), we define the elliptic locus of the Hitchin bases AP (resp.,
AP (7)), denoted by AP (resp., APl (), to be the open subset consisting of integral spectral curves.

Following the methods of Ngb [33] and Chaudouard and Laumon [5], de Cataldo showed in [6] that
all the supports for the SL,,-Hitchin fibration (12) are governed by the elliptic locus AP-¢!' ¢ AP when
deg(D) > 2g - 2.

Theorem 2.1 ([6, Theorem 1.0.2]). Let D be an effective divisor on C of degree deg(D) > 2g —2. Then
the generic points of the supports of

D .\ 4D D
h" ./\/ln’L - A
are contained in AP ¢ AP.

Now we consider the I"-action on the moduli space /\/lnD 1.~ This action is fibrewise with respect to
the Hitchin map 4, which induces a canonical decomposition of the direct image complex

RhPC = @ (RhEQ)K e D’ (AD) (33)

kel’

(see [28, Lemma 3.2.5]). We define the stable part (Rh',?@) as the component in equation (33)
st

corresponding to the trivial character k = 0 € [,
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Combining Theorem 2.1 with Ng6’s support theorems over the elliptic loci [33, Theorems 7.8.3 and
7.8.5], we obtain the following complete description of the supports for every «-part of equation (33):

Corollary 2.2. The only support of (Rh?@) is Af , Where y corresponds to k via equation (3).
K

The trivial character 0 € T corresponds to 0 € I', and .AOD = AP. Hence as a special case of
Corollary 2.2, the stable part (Rh]*)C) has full support AP.
st
We fix a character k € I" of order m. Let 7 : C’ — C be the cyclic Galois cover associated with , as
in Section 1.3. Assume n = mr. By the projection formula, we have

det (m (7" L ® £)) = det (L ® 7.E) = LB @ det(r.E) = det(n.E),

for £ € T' = Pic’(C)[n] and £ a rank r vector bundle on C’. Therefore, the group I' acts on the moduli
space ./\/er, ; () via the tensor product:

L-(£0)=("LREEG), LeT.

We have a similar k-decomposition to equation (33) for the Hitchin fibration (16) associated with
./\/lf) ()

Rh?.C = (P (Rn2.C) €Dl (4P(m).

kel

The main result of this section is to prove a support theorem for the Hitchin map (16) associated with
n:C"—C:

Theorem 2.3. Let D be an effective divisor on C of degree deg(D) > 2g — 2. Assume that the degree m
Galois cover 1 : C' — C is associated with k € 1" via equation (3). Assume n = mr. Then we have the
following concerning the supports of the Hitchin map h? - MEL (7) = AP (n):

(a) The generic points of the supports of Rh2 C are contained in the elliptic locus AP-*"(r).
(b) The stable part (Rhlz*@) has full support AP (7).
st

The validity of the support theorems (Theorems 2.1 and 2.3) is the main ingredient in the proof of
the endoscopic decomposition in the twisted case of deg(D) > 2g — 2 when deg(D) is even (see the
proof of Theorem 3.3).

2.3. Weak abelian fibrations

We recall the notion of weak abelian fibration introduced in [33], which is modelled on the properties
of Hitchin fibrations.

We follow closely the exposition of [6, Section 2.6]. Let A be an irreducible nonsingular variety.
Assume that

h:M—>Aandg:P— A

are morphisms of the same relative dimensions dim(/) = dim(g) satisfying the following properties:

(a) The map g : P — A is a smooth commutative group scheme with connected fibres.
(b) The map 4 is proper and M is nonsingular.
(c) The group scheme P acts on M fibrewise with affine stabilisers for every geometric point of M.

https://doi.org/10.1017/fmp.2021.7 Published online by Cambridge University Press


https://doi.org/10.1017/fmp.2021.7

16 Davesh Maulik and Junliang Shen

We call a triple (M, A, P) a weak abelian fibration if the Tate module
T5,(P) = R0y (dy)

as an [-adic sheaf is polarisable [6, Section 2.6].
Over a closed point a € A, we consider the Chevalley decomposition for the restricted group
scheme P,

0 PT 5 p, PP 0,

where P;‘Iff is the maximal connected affine linear subgroup of P, and sz is an abelian variety.
We recall in the following the support inequality of Ngo [33]:

Theorem 2.4 ([33, Theorem 7.2.2]). Let (M, A, P) be a weak abelian fibration. Assume the irreducible
subvariety Z C A is a support of h : M — A; then

dim(f) — dim(A) +dim(Z) > d2®(P). (34)

Here d}b(P) =dim (sz), with a € Z a general point.

2.4. Hitchin fibrations

Following [5, 6], we show that the Hitchin fibration
hY - MP, (1) — AP (n) (35)

associated with 7 : C” — C admits the structure of a weak abel})@n fibration.
Recall commutative diagram (17). The GL,-Hitchin base A~ (C’) parameterises spectral curves in
the total space V(D’) of the line bundle O¢- (D). We assume that

c— A7) (36)

~D'
is the universal spectral curve. Let g¢ : Picg — A (C’) be the relative degree 0 Picard scheme

~D’
associated with formula (36), which acts on M,. ,(C’) via the tensor product. The following result is
obtained in [5]; see also [6, Section 3] for a detailed review:

Proposition 2.5 ([5]). The triple
(Mra(e), A% (@), Picd), 7P M, 4(C) —» A7 (), ge:Pict—> A7 (C) (D)

is a weak abelian fibration.

In order to study formula (35), we ‘fix the determinant’ after pushing forward along 7 : C* — C.
Since the relative Hitchin moduli space ME () is a closed fibre of formula (14), we consider the

morphism of A (rr)-group schemes

Ny : Picg X AP (1) - Pic’(C) x AP (n),

e
given by composition of the A (rr)-morphisms
Png X.:\D,

© AP (1) = Pic®(C") x AP (7) — Pic’(C) x AP (n).

https://doi.org/10.1017/fmp.2021.7 Published online by Cambridge University Press


https://doi.org/10.1017/fmp.2021.7

Forum of Mathematics, Pi 17

Here the first map is the restriction of the norm map N, ([6, (42)]) to AP (n), and the second map is
(L,a) — (det(n.L),a).
By the discussion of [6, Section 4.1], the map N, is smooth. We let
gr: P> AP(n) (38)
be the kernel of N, and we let the group scheme g% : P — AP () be the identity component of P.

The nonsingular group schemes P and P° act on Mf), ; () induced by the Picg-action on M?d(C ).

Proposition 2.6. The triple
(MPL(0), AP (), P°), B2 - MP, () = AP (), g5+ PO = AP(x) (39)

is a weak abelian fibration.

Proof. The weak abelian fibration structure for formula (39) is essentially inherited from that for formula
(37). The proof is parallel to [6, Section 4]. Here we summarise some necessary minor modifications.

It is clear that Section 2.3(a) and (c) follow from the construction. We need to verify (b), and show
that the Tate module associated with g : P — AP (n) is polarisable.

—~D
(i) Affine stabilisers. For a closed point in MrD p(m) € M, 4(C’), its stabiliser with respect to the
PP-action on ./\/lf’ ; () is a subgroup of the corresponding stabiliser with respect the Picg-action on

~ D'
M, 4(C’), whose affineness follows from the fact that formula (37) is a weak abelian fibration.

(ii) Polarisability of the Tate module. This follows from the proof of [6, Theorem 4.7.2]. In fact, for
a closed point a € AP (), the Tate module of the abelian part P is an orthogonal direct summand

component of T@I (Picg’if’) with respect to the nondegenerate Tate—Weil pairing on T@l (Picg’ ";b). Hence

the restriction of the Tate-Weil pairing on T, (Picg’flb) to Tg, (P2) is nondegenerate. i

By [5, Section 9] (see also [6, Section 5.2]), the GL,-Hitchin base admits a stratification
~D’ , ~
‘A (C ) = Am,ﬂy
m,n

with m = (my,ma, ..., mg), n = (ny,ny, ..., ny) satisfying

(a) n; > niy for any i;
(b) m; > m;,; whenever n; = nj;
(c) Xioymin; =r.

Each :Zlm,ﬂ is a locally closed subset formed by spectral curves of the topological type (m, n):

Ay = {E cV(D):E= Z miE;, E; C V(D’)} , (40)

where V(D’) is the total space of O¢/(D’) and E; is an integral spectral curve of degree n; over C’.
The stratification (40) induces a stratification on A? (1) c AP (C”),

AP(7) = | | A@mn: A = AP (1) 0 Ay
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We have the following multivariable inequality:

Proposition 2.7 (compare [6, Corollary 5.4.4]). Let Z ¢ AP (n) be an irreducible subvariety whose
general points are of the type (m, n). Then we have

a2 (Picg) > Z (d;lg(c,) ~dpr (C/)) +dim(Z) + (deg(D) —g +1). 41)
i i

Here djr» o) and d]l” are the dimensions of a fibre and the base, respectively, of the GL,,,-Hitchin

. (C)
fibration (10) associated with the curve C’ and the divisor D' = n*D, and

@2 (pict) = aim (Pict, ).

with a € Z a general point.

Proof. When r = id, the subspace
AP (id) = {Char(G) € :ZlD : trace(0) = 0} C :ZlD (42)

coincides with the SL,-Hitchin base, and the inequality (41) is the d-inequality for SL, proven in
[6, Corollary 5.4.4 (76)]. As explained in the last paragraph of [6, Proof of Corollary 5.4.4], the main
ingredient in the proof of enhancing the §-inequality for GL,, to that for SL,, is [6, Theorem 5.4.2], which
asserts that the restriction of the §-regular weak abelian fibrations to their elliptic loci in the sub-Hitchin
base (42) remains d-regular. This follows from the product structure [6, (74)] for the group schemes
associated with the spectral curves, which says that the variations of the group schemes associated with
the spectral curves are trivial along the H%(C, O¢ (D))-direction.

Now for a general 7 : C’ — C with D’ = n*D’ as we consider here, we have the canonical
decomposition for the Hitchin base

A’meH=2", (43)

with H = H(C, O¢ (D)) a direct summand component of H’(C’, O¢/(D’)). Applying the product
structure [6, (74)] to the curve C’ and the divisor D’, we obtain an analogous product structure for
equation (43), that the variations of the group schemes associated with the spectral curves are trivial
along the H-direction. Hence formula (4 1) holds in the relative case 7 : C’ — C, by the same reason as
for SL,,. ]

2.5. Proof of Theorem 2.3(a)

The proof of Theorem 2.3(a) is parallel to the proofs of the main theorems in [5, 6], which we provide in
the following for the reader’s convenience. The crucial ingredient is to combine Ng6’s support inequality
(34) and the multivariable inequality (41).

We assume Z c AP (n) is an irreducible support of formula (35) whose general points have types
(m,n). By Theorem 2.4 and Propositions 2.6 and 2.7, we have

dim (h’,?) _ dim (AD(n)) +dim(Z) > 42 (Picg) _g
> Z (dﬁ,ﬁ’(C') - dj‘nDi/(C’)) +dim(Z) + (deg(D) —g+1) — g,
1
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where we use d®° (P%) = d® (Picg a) — g. Hence

dim (h2) - dim (AP (7)) > Z (dgg(c,) ~dor (C,)) + (deg(D) — 2g + 1). (44)
i=1 "

Here we recall that s is the number of irreducible components of the spectral curve. We now apply the
dimension formulas for GL.-Hitchin fibrations [6, Section 6.1] to compute both sides of formula (44).
The left-hand side is equal to

0
(dE,P’(C') — d}\f)'(c')) + (dlmH (C,0c(D)) - g)
= (-rdeg(D’) +2r(g’ = 1) + 1) + (deg(D) —2g +1),

where g’ is the genus of C’ and we used the last formula of [6, (77)]. Similarly, the right-hand side is
equal to

D (~nideg(D’) +2n;(g" = 1) + 1) + (deg(D) - 2g + 1)
i=1

= ((— Z ni) ((deg(D") —=2(g"' - 1)) + s) + (deg(D) —2g+1).

i=1

In particular, formula (44) implies that

12

l-s> (r—Zni) (deg(D’) - (28’ - 2)). (45)
Since

deg(D’) — (28" - 2) = deg(m)(deg(D) - (2g -2)) > 0

by the assumption on D, inequality (45) forces s = 1 and m| = 1. This implies that the generic point of
Z lies in AP ’el](ﬂ'), which completes the proof of Theorem 2.3(a).

2.6. Proof of Theorem 2.3(b)

Due to Theorem 2.3(a), it suffices to prove (b) over the elliptic locus with respect to the restricted Hitchin
map

ell _ 1D
hﬂ'_ T

. aqDell D.ell

AI),ell(ﬂ.) : Mr,l;c (ﬂ) - A ¢ (”) (46)
Recall the group scheme (38) of the relative Prym variety. By the support theorem [33, Propositions

7.2.2 and 7.2.3], we only need to show that the constructible sheaf of the top degree cohomology

(RZdh,D,h;l‘*Q) . dyp =dim (hf?) @7)

st
is the trivial local system on the elliptic locus A" (7).

It is clear that formula (47) contains the trivial local system given by the sum of point classes for all
irreducible components of the fibres of equation (46). Hence it suffices to prove that the stable part of
the degree 2d;,» cohomology group is 1-dimensional for each fibre of equation (46).
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Assume a € AP*(x). Let C 7, be the corresponding integral spectral curve with the spectral cover

c o5l (48)

a

The Hitchin fibre /\/lf 4(7m)a contains a Zariski dense open subset
MGE c MP [ (m)a

parameterising line bundles on the spectral curve C/,, which is a torsor of the group scheme P,. Hence
ME 1. (m)q has |mo(P,)| irreducible components.

We fix a base point in x € My*. Since M4* is a torsor of the group scheme P, the base point x
trivialises the torsor, and therefore the 7o(P,)-action on x yields an isomorphism

[x] : mo (M5E) = mo(Pa).
which further induces

2 (MQL(n)a,c)z P o (49)

veny(Pa)

The action of P, on the cohomology H* (Mf) 1. (TM)a, C) factors through the group 7o (P,) of connected

components, which acts naturally on the right-hand side of equation (49). In particular, the action of the
discrete subgroup I' € P, on equation (49) factors through the natural action of 7y(P,). By the proof
of [21, Theorem 1.1 (2)], the morphism

I = Pic’(C)[n] » no(Py)

induced by the pullback p}, o 7* along formula (48) is a surjection. Therefore we obtain

r 70(Pa)
WP (MQL(;T)Q,@)St = B> (MQL(n)a,C) c HWp (MEL(n)a,C) o,
where the last equality is given by the (P, )-equivariant isomorphism (49). This implies
(dehg h?:l*g) — Q (50)
st

and completes the proof of Theorem 2.3(b).

Remark 2.8. The vector space
2d 2d r
%% (MPy ()0, C) = B9 (MP, (), €)

may fail to be 1-dimensional when a € AP (x) \ AP**"(x). In particular, the constructible sheaf
(RZth hD"*Q) is not a rank 1 local system over the total Hitchin base A” (). Hence the proof of

t
Theorem 2.3(b) relies heavily on the support theorem — Theorem 2.3(a).

2.7. Transfer from the k-part to the stable part

In this section, we assume that D is an effective divisor of degree deg(D) > 2¢g —2 or D = K¢. Our
main purpose is to prove Proposition 2.10, which allows us to transfer naturally from the x-part to the
stable part of the complex Rhg*g. This extends [39, Proposition 2.3.2] to the total Hitchin base for
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certain endoscopic Hitchin moduli spaces associated with SL,,. We note that this transfer does not rely
on the support theorem.

Recall the decomposition (19) of Proposition 1.1(a). By Lemma 1.5, the group Q (introduced in
formula (27)) acts on each direct image complex Rh;,.C, and we consider its Q-invariant part

(Rh;,C)® € D (.AD(ﬂ)) :
For any pair 1 < i, j < m, the isomorphism of Proposition 1.1(b),
$ij= b, Mi > M, (E,¢) - (E® Lij,6)
induced by a line bundle £;; € I, yields an isomorphism
¢;; :Rh; C > Rh;,C.
It preserves the Q-invariant parts:
)Q

¢;;* (Rh; ©)% = (Rh;,C)°. (51)

We note that the isomorphism (51) depends only on the class of the line bundle £;; € I" in the quotient
group

mo(Prym(C’/C)) =T/Q.
Hence the I-action on @;.":1 (Rh j*Q)Q passes through 7o(Prym(C’/C)). Since the group Q pre-
serves each component M;, it follows from Proposition 1.1(b) that the elements of the cyclic group
mo(Prym(C’/C)) = I'/Q act transitively on the set {M;},. We may view 7o(Prym(C’/C)) as the
group of connected components of /\/er’ 1 (). For any fixed 1 < iy < m, the isomorphism (51) yields a
canonical 7o(Prym(C’/C))-equivariant isomorphism

D rn 0% =Ry, 0% D o (52)
Jj=1 vem(Prym(C’/C))

where the action on the right-hand side is the natural one.
Before stating Proposition 2.10, we introduce the following definition for convenience:

Definition 2.9. Let X be an algebraic variety, and let 7y, 7> € D2(X) be two objects. We say that two
morphisms

A Fi—-Frand fr: F1 — F

are equivalent up to scaling if there exists A € C* such that f; = A f>. We say that there is an isomorphism
between two objects F; and F>,

f . .7:1 i fz,
which is canonical up to scaling if our construction induces a set of isomorphisms f; : F| = F, which
are all equivalent up to scaling.

Proposition 2.10. Let D be an effective divisor on C of degree deg(D) > 2g — 2 or D = K¢. Assume
that t : C' — C is the degree m Galois cover associated with y € I', which corresponds to the character
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« € I via equation (3). Assume n = mr. Then for any two elements k1, k3 in the cyclic group (k) c T’
generated by «k, there is an isomorphism for the corresponding isotypic components,

(Rhﬁ*g) - (Rhl;*g) , (53)

K1 K2

which is canonical up to scaling. In particular, equation (53) induces an isomorphism which is canonical
up to scaling:

(Rn2.c) = (rn2.c)

st

Proof. We consider the Q-invariant part
Q
(Ro2.C) " € D (AP (m) (54)
of the direct image complex Rhg*C. On one hand, the group £ acts on each complex Rh;,C, and we have
b\ T Q
(Re2.) = P (R0, 0% (55)
j=1

On the other hand, by Corollary 1.4, an isotypic component (RhB*Q) ) contributes to formula (54) if
K

and only if «’ lies in (x). Hence

D~ _ D _
(Rhmg) @?) (Rhmg)” (56)

Combining equations (52), (55) and (56), we obtain a natural 7o (Prym(C’/C))-equivariant isomorphism

D (R2g) -wocte| @ o

K’ €{k) venry(Prym(C’/C))

In particular, if we take the x’-parts on both sides, since the «’-part of the regular representation is
1-dimensional, this yields a natural isomorphism up to scaling

fuouw : (RH2.C) = (Rny,0)°. (57)

i() *

This gives isomorphism (53) up to scaling, which a priori still depends on the choice of 1 < iy < m.
Different choices of iy influence the isomorphism (53) via the action of an element

g €T/Q = no(Prym(C’/C))

on both objects of formula (57). After isolating the x’-isotypic component, we conclude that this changes
the isomorphism (53) by only a possible scalar ambiguity. O

2.8. Changing the degree

Assume deg(D) > 2g — 2. As another application of Ng6’s support theorem, we analyse the G ,-
equivariant complex

(Rh?,*g)K e Dt (AD(ﬂ)) (58)

when the degree of the line bundle L € Pic?(C) is changed.
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Due to Theorem 2.3(b) and Proposition 2.10, the object (58) has full support A” (xr), and hence is
completely determined by its restriction to the open subset U™ c AP () where the spectral curves are
nonsingular.

Ngd’s analysis of supports for direct image complexes [33, Section 7] works for each «-part (see [33,
Proposition 7.2.3]). In particular, as a corollary of ‘freeness’ [33, Proposition 7.4.10], the isomorphism
class of the restriction of formula (58) to U™ is determined by the group scheme P°|ysm of formula
(39) and the constructible sheaf

(RZthhB*Q) | € Sh, (U™™), (59)
K USm

which are both equipped with the G ,-actions. See [12, Appendix] for a precise form expressing formula
(58) in terms of the direct image complex associated with

. P0|Usm d Usm
ysm

g

and formula (59).
The following proposition will be used only in Section 5.5:

Proposition 2.11. Assume deg(D) > 2g — 2. Let q be an integer coprime to n. We have an isomorphism
of the G r-equivariant objects

(RhQ’L*Q)qK ~ (Rn2 ., C) D! (4P(m). (60)

Here hP : ./\/lﬁ)’ Leq () — AP () stands for the Hitchin fibration associated with the line bundle

n, L%
L®4,

Proof. For notational convenience, we use e to denote 2d hD- After restricting to U™ we have

(Rehimq*@) L =C VK e, 61)
by Proposition 2.10 and equation (50). We need to analyse the G ,-equivariant structure on the rank 1
trivial local systems (61).

Now we consider the constructible sheaf
RS o, €| € She(@™) (62)
with the G ,-equivariant structure.

By Proposition 1.1(b), the sheaf (62) is a trivial local system of rank m (corresponding to the m
connected components of Mf Leq (7). We may view it as an m-dimensional vector space V,; ~ C"™ on
which the cyclic groups G, and I" act. Therefore, to prove formula (60) we only need to show that the
isotypic component (Vq)K is G r-equivariantly isomorphic to (V})gx.

Recall the degree dg Prym variety Prym??(C’/C) associated with the line bundle L®7, whose m
connected components are identified with the m connected components of MrD e (7). To connect V,
and V), we consider the ‘multiplication by ¢° map

mult,, : Prym?(C’/C) — Prym?4(C’/C), L+ L%, (63)

which is clearly G ,-equivariant.
We note that mult, induces an identification of the m connected components for the Prym varieties
on both sides of formula (63). In fact, choosing base points x € Prym?(C’/C) and gx € Prymdq (c’/0)
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trivialises both Prym(C’/C)-torsors, and the map mult, induces a ‘multiplication by ¢’ map on the
cyclic group 7o (Prym(C’/C)) =~ Z/mZ. The claim follows from the fact that gcd(m, q) = 1.
In conclusion, formula (63) induces a G -equivariant isomorphism

[multq] % > Vy

whose I'-action on the right-hand side is given by the I'-action on the left-hand side composed with the

‘multiplication by ¢’ I L. In particular, we have a G ,-equivariant isomorphism between (Vq)K and
(Vi)g«- This completes the proof of the proposition. ]

The constraint deg(D) > 2g — 2 will be removed by Remark 4.9, despite the fact that we no longer
have full supports in that case.

3. Endoscopic decompositions
3.1. Overview: Main results

In Sections 3 and 4, we establish a generalised version of Theorem 0.3 for any effective divisor D with
deg(D) >2¢g—-2or D =Kc.

Let D be as before, and let 7 : C” — C be a degree m cyclic Galois cover with n = mr. Recall the
Hitchin fibrations

WP M — AP ] MP () - AP (n),

the fibrewise I'-actions and the corresponding x-decompositions. The Galois group G , acts naturally on
M B 4(m) and AP () such that the Hitchin map 4% is G ,-equivariant (see Section 1.5). By Lemma 1.7,

the direct image complex RhE*C is G r-equivariant, and so is each k-isotypic part
(RR2.C), < DL(AP (m).
due to the commutativity of the I'- and the G ,-actions. We also note that
¢4 (RnPC) e Dl (AP (m)
is naturally G ,-equivariant, induced by the pullback map from the G ,-quotient
qA:AD(Jr)—>A$.
Recall the open subsets A” ()* and Afy) * for the Hitchin bases and the free G ,-quotient map between

them from Section 1.5.
The following theorem is a generalisation of Theorem 0.2:

Theorem 3.1. Let k € I and y € T be identified by equation (3), let & : C' — C be the Galois cover
associated with y and let d$ = codim 4» (A)[,) ) There are isomorphisms in D" (.AD (m)*) which are
canonical up to scaling:

—24P] 5 (Rhl;*g)s[

* D = D D
q.A (Rh* Q)K ‘AD(ﬂ')* - (Rhﬂ*g)’( |_AD(7I')* [ .AD(ﬂ')* [_2d7 ] ’ (64)

with the first isomorphism G r-equivariant.
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The second isomorphism of formula (64) is obtained immediately from Proposition 2.10, which
actually holds over the total space AP (r):

(RhB*Q)K [-247] 5 (Rh],?*@)st [-242].

The following theorem is a sheaf-theoretic enhancement of the Hausel-Thaddeus conjecture:

Theorem 3.2. Let i)? : A? — AP be the closed embedding. With the same notation as in Theorem

3.1, there is an isomorphism which is canonical up to scaling:

D (RhEQ)K 2D (Rhfy’*g)

7 [-247] € D2 (A”). (65)

K

We first observe that formula (65) induces the first isomorphism of formula (64). So Theorem 3.1 is
recovered by Theorem 3.2. In fact, we restrict c2 to the open subset A$ e Af and pull it back along
the free G -quotient map

qa: AP (n)* — AP (66)

Since the left diagram in diagram (29) is Cartesian restricting to formula (66), we recover the first map
of formula (64) via proper base change.

Theorems 3.1 and 3.2 recover Theorems 0.2 and 0.3 when D = K¢. When deg(D) > 2g — 2,
Theorem 3.2 provides a concrete description of the contribution of each support .Af to

RhPC € D? (AD) .

This enhances the main theorem of de Cataldo [6].
As already discussed, to prove Theorems 3.1 and 3.2, we only need to construct G ,-equivariant
isomorphisms

c?: (R0PC) 52 (Rub.C) [-242] € D (AP),

*

which we treat in this section for the following special cases.
Theorem 3.3. Theorems 3.1 and 3.2 hold when deg(D) is even and greater than 2g — 2.

In Section 4, we reduce the other cases of Theorem 3.2 — including possibly the most interesting
case, D = K¢ —to Theorem 3.3.

3.2. Spectral curves and line bundles

Recall the universal spectral curve (36) for GL,-Higgs bundles over the curve C’. We denote its
restriction to the subspace AP (7) ¢ A (C”) by

Crx — AP (7). (67)

This is G -equivariant with respect to the natural Galois group G , actions on both the base AP () and
the universal curve C.
‘We consider the largest Zariski open subset

A%(n) c AP (n)
such that?

3We note that our notation A% (1) has a different meaning from the similar notation used in [33].
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(a) the action of G is free on A% () and
(b) the restriction

¢y — A% (n) (68)
of the spectral curves (67) is smooth.

Taking the G ,-quotients, the family (68) descends to a family of nonsingular curves
Ci - .Ai, (69)
where Ai = A%(n)/G , is an open dense subset of Ag = AP (1)/G . We denote by
C, — A (70)
the restriction of the universal SL,-spectral curves over AP to Az. The families (69) and (70) are
connected by the following lemma:

Lemma 3.4. There is a natural Ag—morphism

u

C, ———C;

\ / (71)
Ay

whose restriction to each closed fibre

. Q0 o
ug 1€y 4 = C5 4

<
a e .Ay,
is a normalisation of curves.

Proof. We first recall the construction in [21, Section 5.1] that, for a given degree r spectral curve
C,, — C’ lying in V(D’), there is a natural birational morphism

Cl, — Cq,
with C,, a degree n spectral curve over C lying in the total space V(D). In fact, given C,, — C’, let
g°Ce— C

be another degree r spectral cover over C’ obtained as the pullback of C,, — C’ along the Galois
automorphism

g:C’"S5C, geG,.
The G -invariant curve
Co=J gci
g8€Gp

is a degree n(= mr) spectral cover over C’, which descends to a degree n spectral cover C, — C via
taking the G ,-quotient. Moreover, we see from the construction of ®r in [21, Section 5.1] that the point
[Cl,] € A?() maps to [C,] € A via the natural quotient map ¢ : A” () — AS. The composition

C! < C! — Cq

7’

is birational, hence it is a normalisation by the smoothness of C,,.
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This construction works for families of spectral curves over the Hitchin bases. Hence we obtain a
commutative diagram

¢, ——C

A% () —25 AT,
where the left vertical morphism is G ,-equivariant and the horizontal morphisms are G ,-quotient
maps. The lemma follows from descending the left vertical arrow. O

For a closed point a € A, we denote the corresponding spectral curves over C” and C by C/, and
C,, respectively, with the morphism

ug, :Cl, - C,

given by Lemma 3.4. We consider the commutative diagram

c L}Ca

C.

Here s, : C, — C is the spectral cover over C, and s, : C,, — C is the composition of the spectral
cover C, — C’ and the cyclic Galois cover 7 : C’ — C. Both s/, and s, are finite of degree n.
We also consider the line bundles

Wr,a = det (s, Oc,) € Pic(C) and w, = det (54.Oc,) € Pic(C).

The line bundle w, 4 is defined for every spectral curve over AP (r), which gives a family of line
bundles over the affine space AP (). Hence it is constant over A” () and does not depend on the
choice of the spectral curve. Similarly, the line bundle w,, is also independent of the spectral curve over
C. So we may write

Wr =Wn,a, W=Wg.

The following lemma is obtained via a direct calculation:
Lemma 3.5. We have

deg(D)
2 9

deg(w) = n(1 — n) 3&L2).

deg(wz) =n(l-r) >

In particular, if deg(D) is even, both line bundles w, and w have degrees divisible by n.

Proof. Since the second equality is a special case of the first one, we only prove the degree formula for
deg(wy).

By the discussion before Lemma 3.5, the line bundle w, does not depend on the choice of the spectral
curve. Let

st Ch»C5cC
be the spectral cover where C}, is a nonsingular curve lying in V(D’) of genus

deg(D’)

g(Cl)=r(r- 1)T +r(g(CH-1+1
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(see the formula for dp,,, in [6, Section 6.1]). Then applying the Riemann—Roch formula to y (C . Oc, ) =
¥(C,wy), we obtain

1-¢(C;) = deg(wq) + (1 - g),
which implies the lemma. O

The following lemma concerns pushing forward a line bundle N € Pic(C,) and its pullback
ui, N € Pic (CJ,)
to the curve C):
Lemma 3.6. With the same notation as in diagram (72), we have
det (sq.N) = det (s),,uiN) ® 0 ® Wy,
Proof. Recall the norm maps

Nm : Pic (C,,

) — Pic(C) and Nm : Pic(C,) — Pic(C)
from [21, Section 3]. By [21, Lemma 3.4], we have

Nm(N) = Nm (uN) .
Then [21, Corollary 3.12] implies that

det (s4.N) ® w™' = Nm(N) = Nm (u,N) = det (s, uiN) ® wy' .

Forn > 1 and L € Pic(C), we consider the regular parts
D, D,
M TEC MY MTE(r) € M (n),

which are open subvarieties parameterising Higgs bundles obtained as the push-forward of line bundles
supported on the spectral curves. We define the line bundle

L'=L®w®w, €Pic(C). (73)

The following is a corollary of Lemma 3.6:

Corollary 3.7. The pullback u;, of diagram (71) induces a G -equivariant morphism of the regular
parts

Su: MnD,zeg X 40 A% (1) = MrD’i?g(ﬂ) X 4D (g A7 (1),

where L' is given by equation (73). The morphism A (r) — AP used in the base change of the left-hand
side is the composition

A%(m) 25 AT s AP
Remark 3.8. Since ged(n,deg(L)) =1 and
deg(L’) = deg(L) + deg(w) — deg(wx),
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Lemma 3.5 implies that
ged(r,deg(L")) = ged(n,deg(L”)) =1

when deg(D) is even.

Finally, we note that both varieties MD Lreg and MD reg(Jr) admit I'-actions induced by the tensor

product with n-torsion line bundles. The I'- actlons are clearly fibrewise with respect to the Hitchin maps

MPree AP, MP: T8 (1) — AP (7). (74)

n,L r L

Since the pullback u?, : Pic(C,) — Pic (C,) induced by diagram (72) is compatible with the I'-action
on both sides, we conclude the following lemma:

Lemma 3.9. The morphism g, given in Corollary 3.7 is I'-equivariant.

3.3. Proof of Theorem 3.3, step 1: Cohomological correspondences

Through Section 3.5, we assume that D is an effective divisor with deg(D) even and deg(D) > 2g — 2.

Our first step in the proof of Theorem 3.3 is to construct a correspondence between the direct image

complexes associated with the two Hitchin maps attached to formula (74). Then we show that this

correspondence induces an isomorphism for the «-parts following Ngb and Yun ([39, Appendix A]).
We consider the graph of g, in Corollary 3.7, which gives a subvariety

Graph(gy) C ( MR () X 4y A (n)) X% () (Mﬁfg X 4 A”(n)) .
Taking its Zariski closure, we obtain a closed subvariety
% = Graph(ga) € M2, () X 40 () (Mﬁ,{L X D Av(n)) :

which fits into the commutative diagram

/ ”
MP x4 AP (7) MP (7 (75)
h[)
AP ().
Here we use hg . to denote the Hitchin fibration
W2 =0 M2, (m) —> AP (),

indicating its dependence on the line bundle L’. All the morphisms in the diagram are proper.
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By Corollary 3.7 and Lemma 3.9, the morphism g, is equivariant under the actions of G, and I'.
Hence, as the Zariski closure of the graph of g,,, the subvariety X is invariant under the natural actions

of G and T on the ambient space ML}, (1) X 40 () (Mf’L X 40 AP (n)). Since the projections
MP L (7) X 4 () (MQL X 40 AD(ﬂ)) - MP,,
MP L (7) X 4 () (MfﬁL X 4b AD(n)) — MP, x40 AP (),

to both factors are G .- and I'-equivariant, the projections from the invariant subvariety X to both factors
are also G ;- and I'-equivariant.

Theorem 3.10. The correspondence (75) induces a morphism
(S : 4y (Rhfg) — Rh2,, C[-2d7], (76)

which is equivariant under the natural actions of G  and I'. Assume that the element y € I inducing
the Galois cover m : C' — C matches with k via equation (3). Then the G r-equivariant morphism for
the k-parts

[l : 4 (Rhf@) N (RhZ’L/*Q) [-247] 77
induced by formula (76) is an isomorphism after restricting to AP (r)*:

[Z]#,K

= D
> (Re2 )

.k D D

AP () 9 (Rh* Q)K AP (7)* AP (7)* [_Zdy ] : (78)
Proof. The first part follows from the general theory of cohomological correspondences. We refer to [38,
Appendix A] as a reference; see also the paragraph before [39, Proposition 3.3.1]. In particular, since the
variety X is invariant under the G .- and I'-actions, and both projections from X to Mﬁ 1 X0 AP (n)
and ME 1 (m) are G ;- and I"-equivariant, we conclude that the cohomological correspondence (76) is
also G - and I'-equivariant.

Now we restrict [Z]u . to the open subset AP (r)* and show that it is an isomorphism. It suffices to

prove that the restriction of [Z]4 , induces an isomorphism on every perverse cohomology — that is,

PH ([Zl4.4)

g M (RhEg)K

5 P47 (RR2 |, ©)
> *= K

. (79)
AP (7)* AP (70)* AP (7)*
Here we used the fact that g 4 is étale restricting to AP (m)*. By Corollary 2.2, the left-hand side has
AP ()* as the only support. Theorem 2.3(b) and Proposition 2.10 yield that the right-hand side also has
AP (m)* as the only support. Therefore, both sides are intermediate extensions of certain local systems
defined on an open subset of AP (7). As a consequence, in order to prove formula (79), we only need

to show that

szi ([Z]#,K)

oA (RS,

5 P47 (RRD |, ©)
k=)

E}

U U

with U ¢ AP (n)* a Zariski open subset. This reduces the proof to showing that, for a general point
a € AP (n)*, the correspondence between the Hitchin fibres

(5] : H ((MQL)a ©) = H (MP, (1), ) (80)
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induced by the fundamental class of 2, is an isomorphism between the k-parts. Here Z, is the restriction
of X over a. Let a be a general point lying in the open subset A% (7) ¢ AP (7). The pullback of the
diagram (71) along {a} — A$ is a normalisation

ug :Cl, - C,

of curves where C, has at worst nodal singularities. In this case, the description of the correspondence
(80) is concretely given in [39, Appendix A], and the isomorphism of the «-parts follows from a direct
calculation [39, Lemma 3.4.1].# This completes the proof. O

Corollary 3.11. With the same assumption as in Theorem 3.10, the G r-equivariant isomorphism (78)
induces an isomorphism

v, L' =

217« (RhPC) 52 (Rn2, ) [-2aP] € DL (AP).

Proof. We push forward the morphism (77) along the G ,-quotient map ¢ 4 : AP (1) — Afy) and take
the G ,-invariant parts on both sides. This gives a morphism

[Z177 : (RePe) =2 (R2,, ) [-242],

Y x

where both sides are semisimple with Aly) the only support, by Corollary 2.2, Theorem 2.3(b) and Propo-
sition 2.10. Hence, similar to the proof of Theorem 3.10, it suffices to check that it is an isomorphism
restricting to .Af/) * which is equivalent to formula (78). m}

Remark 3.12. We cannot conclude that formula (77) is an isomorphism over the total space A (r)
from the isomorphism (78), for the following reason. For a nonsmooth finite morphism f : X — Y and
a semisimple perverse sheaf K on Y, the pullback f*/C may fail to be semisimple. A typical example is
the case where

fAl 5 Al 2o 22

and K is the intermediate extension of a 2-torsion rank 1 local system on C* ¢ A'. The object f*K
is not determined by its restriction to the open subset C*. In particular, although the restriction of the
natural morphism f* — C to C* is an isomorphism, the morphism f*}C — C itself fails to be an
isomorphism on A!. The issue here is caused by the fact that f is not étale at 0 € A!.

3.4. Proof of Theorem 3.3, step 2: Changing from L’ to L
By Lemma 3.5, we have
deg(L’) —deg(L) =0 mod n. (81)

Hence there exists a line bundle

_ deg(L’) — deg(L) <7

n

Npy € Pick(C), &

) (82)

“For the correspondence (80), we are only concerned with Hitchin fibres over a general closed point a € AP (7). Since
tensoring with degree 1 line bundles on the spectral curves over a € AP (1) identifies the Hitchin fibres in the case of degree 0
and those in the case of coprime rank and degree, the result of [39, Lemma 3.4.1] concerning degree 0 Higgs bundles applies here.
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such that L’ = L ® /\/g’" . The line bundle Ay induces an AP (x)-isomorphism between the relative
Hitchin moduli spaces,

MP (1) —0 s MP,, ()

\h” % (83)

AP (m),

via the tensor product @ (€, 0) = (€ ® N, 0). It is clear that ¢y, is G - and [-equivariant.

Proposition 3.13. There is a G r-equivariant isomorphism
(Rn2,,C) = (Rn,.C) €Dk (AP(m) (84)

induced by diagram (83). Up to scaling, it is independent of the choice of line bundle (82). In particular,
equation (84) induces

(102,.), = (1¢,.5) <02 ().
Proof. The pullback along ¢, in the diagram (83) induces a G - and I'- equivariant isomorphism
Rh) |, C=Rh), C, (85)
which gives our desired isomorphism. For another choice JV; of the line bundle (82), we have
Ny'® N eT.

Hence the difference of the isomorphisms q)j\/o and ¢}, is induced by an automorphism of MrD 7 given
" ,

by an element g € I'. In particular, our choice of isomorphism is affected only by scaling.
The last claim follows from Lemma 1.7. O

Remark 3.14. In view of Lemma 3.5, equation (8 1) and the existence of the line bundle (82) rely heavily
on the assumption that deg(D) is even.

3.5. Completing the proof of Theorem 3.3

Theorem 3.3 follows from Corollary 3.11 and Proposition 3.13.
More precisely, we construct an isomorphism

c?: (RoPC) 2 (RnP c)

L 242 € DY (A7)

K

which is canonical up to scaling as the composition

Grn
Prop.3.13  p

(=]
D X D D D D D
(Rh* Q)K — iy, (Rh%L,*Q)K [-2d4)] —— i), (Rh%L*Q)K [-247] .

Here the first isomorphism [Z]g,’(' is given by Corollary 3.11, and the second isomorphism is given by
Proposition 3.13. This completes the proof of Theorem 3.3.
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4. Vanishing cycles and Hitchin moduli spaces
4.1. Overview

In this section we follow the same notation as in Section 3. We complete the proof of Theorem 3.2 (and
therefore of Theorem 3.1, as explained in the text after Theorem 3.2) by constructing an operator

c?: (RHPT) 2 (R0D.C) [-2aD] € DY (A7),

which is constructed up to scaling for any effective divisor D with deg(D) > 2¢g —2 or D = K¢. Our
main tool is Theorem 4.5, where we apply a vanishing cycle functor to connect the moduli of D-Higgs
bundles to the moduli of (D + p)-Higgs bundles, with p € C a closed point. This reduces the general
cases of Theorem 3.2 to the special cases already treated in Theorem 3.3.

In this section, it is convenient to work with the moduli stacks of stable SL,,-Higgs bundles and relative
stable Higgs bundles associated with 7 : C’ — C. As these are nonsingular Deligne-Mumford stacks,
gerbes over the coarse moduli spaces, this has no effect on the direct image complexes (64). Therefore,
throughout this section, we still use the notation ./\/tfi ., and ME () to denote the corresponding
moduli stacks for stable Higgs bundles and relative stable Higgs bundles.

4.2. Restrictions of Higgs bundles to a point

Let p be an abstract reduced point Spec(C). Any rank n vector bundle on p is an n-dimensional vector
space. Hence the category of SL,-Higgs bundles on p can be thought of as the category of matrices in
sl,, up to SL,,-conjugation, whose moduli stack is given by the quotient

M, p = [s1,/SL,].
Here SL,, acts on sl,, via conjugation. The Hitchin fibration associated with M,, ,, is

hp : My p — Ap,
where A, = sl,, / SL,, is the affine GIT-quotient parameterising all characteristic polynomials

(a2, a3,...,an) € Ap, a; = trace (A'6,),

of the traceless endomorphism 6, € End(A")y associated with a matrix in M, ,. We refer to [33,

Section 2.2] for more details concerning the stack M,, ,, and the morphism #,,.
Now we consider p as a closed point on the curve C. We fix a trivialisation

Oc(D), = C. (86)
Then the restriction map with respect to the closed embedding

ip:{pt—==C
induces the following commutative diagram:

ev

MP, — M,

lhD lh,, (87)

AD % Apa
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where the trivialisation (86) induces an evaluation (at p) map ev,:
evp(E,0) = i;(& 0) € M, p.

To generalise the diagram (87) for the relative moduli space MrD’ () with n = mr, we consider the
Lie group

Hy;= {(gl,gz, ....8m) €GL™: ndet(gi) = 1} c GL™,

which is naturally a subgroup of SL,, with Lie algebra

bﬂ' = {(gl’g27 .. ,gm) € gI;‘(m : Ztrace(gi) = O} M
i

The quotient stack

Mr,p(”) = [br/H]

is the moduli of SL,,-Higgs bundles on the point p obtained as the push-forward of rank » Higgs bundles
on m distinct reduced points LI, p; along the projection

Lm
TTp - ui:lpi —p.

Similar to diagram (87), we have the following diagram given by the restriction to p € C:

MP (1) =25 M, (x)

lhg lh (88)

AP ——— A, (7).
Here for a Higgs bundle (&, 6) € /\/lff ; on C’, again formula (86) induces an evaluation map:
evp(E,0) =iy, (m.E m.0) € M, (),
and the ‘Hitchin map over a point’ /1, is the natural projection
hap : [Dx/Hx] = Ap(m) :=Dx | Hy.
Diagram (88) recovers diagram (87) when C’ = C and 7 : C’ — C is the identity.

Proposition 4.1. Assume that D is a divisor on C satisfying either

(@ D—p=Kcor
(b) D — p is effective and deg(D — p) > 2g — 2.

Then the evaluation map ev,, : MBL(T() — M, ,(r) in diagram (88) is smooth.

Proof. We first review the deformation theory of /\/lf 1. () following [4] and [33, Section 4.14]. The
deformation theory of a rank r Higgs bundle (&, #) on C’ is governed by the tangent complex

end(€) “22, end(&) ® O (D) (89)
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lying in degrees —1 and 0. Since now we only consider rank r Higgs bundles (&, 6) on C” with the fixed
determinant and trace after pushing forward to C, to govern the deformation theory of ME 1 (m) we need
to remove the traces of End(€) after pushing forward the complex (89) to C. Hence the deformation
theory of ME 1. () is governed by

C*(£,0,D) = |(m.nd(€)) =222 (n.6nd (&) ® Oc(D)|,  (£,0) € MP,(n),  (90)

where (7.End(£))y denotes the kernel with respect to the trace

T trer
trc : ménd(§) — n1.0¢c — O¢

on C. The complex (90) is the tangent complex of M?’ (). The automorphism space, the tangent
space and the obstruction space, respectively, are thus given by the cohomology groups

HY(C,C*(£,0,D)), H'Y(C,C*(£,6,D)) and H?*(C,C*(E,0,D)).

Since the evaluation map ev,, is induced by the restriction to the point p viai, : {p} — C, the tangent
map of ev,, is

Tane,, : H'(C,C*(£,6, D)) — H' (p,i;,c°(5, e,D)) , 1)

induced by the restriction morphism between the tangent complexes. Here i},C* (&,6,D) = [[) - 2, b ,r]
recovers the tangent complex of M, ,(7); see [8, Appendix 8.2]. To prove the smoothness of ev,, we
show in the following that formula (91) is surjective.

The restriction map between the tangent complexes

C*(&,0,D)) — ip,i,C*(E,6,D))
fits into the exact triangle
E* — C*(£,0,D) — i, i C*(£,6,D) 5, 92)
where E* is given by

E* = C*(£.6.D) ® Oc(~p) = [(mendw))o ® Oc(-p) =%, (n.€nd(€)) ® Oc (D - p)| .

The long exact sequence associated with formula (92) contains
1 . Tal’le\,p 1 . ok ° 2 .
HY(C,C*(£,0,D)) —2s H (c, ip.iC* (E,0, D)) s HX(C,E*).
Hence, in view of the Serre duality, it suffices to show the vanishing of
H*(C,E*) =H"(C,(E®)" ® Qc), (93)

where

(E*)Y @ Qc = | (1.£0d(€))0 ® Oc(p — D + Ke) =22, (r.end(E)y @ Oc (p + Ke) | .
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~\V
To calculate equation (93), we consider the hypercohomology group H° (C, (E ') ® Qc) with

(r.End () ® Oc(-p) =225 (n.nd(£) @ Oc(D - p)]

~\V
It is clear that H® (C, (E ') ® Qc) contains equation (93) as a direct sum component, and the comple-

~\V
ment is contributed by the trace parts on C. The hypercohomology group H° (C , (E ') ® Qc) can be

written as

HO (c’ End(€) @ °Oc(p - D + K¢) =2, end(€) @ 1 Oc (p + K¢

) (94)

via the projection formula associated with 7 : C’ — C. By [16, Theorem 5.1] (see also the calculation
of [17, Lemma 7.3]), formula (94) can be interpreted as the group of homomorphisms of stable Higgs
bundles
Homc ((€,6), (€@ 7" Oc(Kc = D +p),0)). 95)
In case (a), these two stable Higgs bundles coincide, so the Hom space (95) is 1-dimensional, given
by the identity map. Hence we have the vanishing of equation (93) by the removal of the 1-dimensional
trace parts on C from formula (95). In case (b), we have

deg(&) > deg (E@ 7" Oc(Kc — D + p)) .

Hence formula (95) vanishes due to the stability condition, which further implies the vanishing of
equation (93). ]

Assume that the divisor D satisfies Proposition 4.1(a) and (b). The moduli of stable (D — p)-Higgs
bundles admits a natural closed embedding into the moduli of D-Higgs bundles. More precisely, let

(&, 0) be a stable (D — p)-Higgs bundle on C; then we may view it naturally as a D-Higgs bundle (&, 6')
by setting the new Higgs field as the composition

0.5 00D -p) = £E& Oc(D),

where the second map is induced by O¢ (—p) < Oc¢. By definition, the (slope-)stability conditions of
(&,0) and (&, 8”) coincide. Hence we obtain a closed embedding

MPP s M (£.0) - (£.0)). (96)
Similarly, we also have the relative version with respectto 7 : C’ — C:
MP P (1) > MP (), (£,6) - (50, 97)
where 0" : £ - £Q® 1*O¢ (D) is given by the composition
0.5 @ Oc(D - p) = E® 1*Oc (D).

As before, the relative case (97) recovers formula (96) by setting 7 = id.
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A Higgs bundle in MVD’ ; () which sits inside MrDlp () can be characterised by the vanishing of the
restricted Higgs field over the point p. Therefore it is natural to use the evaluation map ev,, to describe
formulas (96) and (97) as in the following lemma:

Lemma 4.2. Assume that the divisor D satisfies Proposition 4.1(a) and (b). We denote by
Oy = [O/Hﬂ] — Mr,p(”) = [b?r/Hﬂ]

the closed substack corresponding to the O matrix. Then the closed embedding (97) is realised as a
closed fibre of ev), over Og.

4.3. Functions and critical loci

We consider the quotient map
sl, — sl, J/ SL,

sending a matrix to the coefficients
(a2,as,...ay) € sly | SLy = Spec (Clsl, ] ), deglar) =1,

of its characteristic polynomial. The term a; defines a degree i polynomial function on the Lie algebra
sl,,. We define the quadratic function on the Lie algebra sI,, given by a; as

u=a:sl, » Al (98)
which induces a function u, : h, — Al via the composition

fr e > sl, 5 AL (99)

By definition, the functions u and p, are invariant under the conjugation actions by the Lie groups SL,,
and H ., respectively.

Since any matrix g € b, C sl,, satisfies trace(g) = 0, the quadratic function u, (up to scaling) can
be written as

g > trace (gz) . (100)

For the semisimple Lie algebra sl,,, formula (100) is the Killing form, which is clearly nondegenerate.
In the following we prove the nondegeneracy for general ) ,:

Lemma 4.3. The critical locus of the quadratic function u . is the isolated reduced point O € §) —that is,

Crit(uy) (= {dur = 0}) = {0} C hy.

Consequently, the perverse sheaf of vanishing cycles ¢, (C[dim(h]) [13, Theorem 5.2.21] is the
skyscraper sheaf supported on the closed point 0 € §,.

Proof. To prove the first part of the lemma, it suffices to show that the quadratic form (100) on . is
nondegenerate.
We consider the decomposition

b.=bhr ¢, (101)
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where ¢ C b, is the Cartan subalgebra of trace-free diagonal matrices and };, consists of the matrices
in b, such that the entries of the diagonals vanish. For a matrix g € §, with the decomposition

g=g¢+c, g €bh,, ceq,

a direct calculation yields trace(g’c) = 0. Therefore we have
trace (gz) = trace (g’Z) + trace (cz) .

So it suffices to show that the quadratic forms (100) are nondegenerate for both by}, and c.

We notice that the Cartan subalgebra ¢ of b, is the same as that of sl,,. Also, equipped with the
quadratic forms (100), b7, is a direct summand component of the Lie algebra sI™ via the decomposition
(101) for sIX™. Since both B/, and ¢ are direct summand components of semisimple Lie algebras where
the Killing forms (100) are nondegenerate, we conclude the nondegeneracy of formula (100) for b, and
¢, which further implies the nondegeneracy of §,, through equation (101).

This completes the proof of the first part of the lemma and reduces the second part to the case

N
AN 1 2
Ug A" > A (z1,...,28) E z;.
i=1

In this case, the Milnor fibre is a sphere [31] whose reduced homology computes the vanishing cycle
[13, Proposition 4.2.2]. O
The H ;-invariant function (99) induces the functions

M1 [Da/Hy] _’Al» M2 by [ Hy _’Al,

which form the commutative diagram

M, p(7)
lhw & (102)
Ay () —£5 Al

The pullback of diagram (102) along diagram (88) yields the functions
. aqD 1 . 4D 1
l’tﬂ',M 'Mr,L(n-) _)A ’ /Jﬂ',.A A (ﬂ) _)A ’ (103)

fitting into the commuatative diagram

MEL ()
lh? Hr, M (104)

AP () LA Al

Before stating and proving the main theorem (Theorem 4.5) of this section, we note the following
standard facts:

Lemma 4.4. Let f : V — Al be a regular function.

(a) Assume that V admits an action of a finite group G which is fibrewise with respect to f. Then the
nearby and vanishing cycle functors ®y, ¢y are G-equivariant.
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(b) Assume F € D2(V) and that g = A - id € End(F) is a scaling automorphism of F with 1 € C*.
Then applying the nearby or vanishing cycle functor to g yields also a scaling endomorphism:

Dp(g)=A-id: O F > OpF, ¢p(g)=A-id: op F > ¢y F.

(c) Assume that g : W — V is smooth with f' = f o g : W — Al the composition; then we have the
smooth pullback formula for vanishing cycles:

g opr=¢pog :DE(V) > D! (f”l (OA‘))'

Parts (a) and (c) follow directly from the definition of these functors [26, (1.1.5)]; part (b) holds more
generally for any C-linear exact functor between triangulated categories.

Theorem 4.5. Assume that the divisor D satisfies Proposition 4.1(a) and (b).

(a) The closed embedding (97) can be realised as the critical locus of the function pi am : Mg () —
Al — that is, we have

./\/lf)’ip(n) = Crit (fr,pm) — MQL(n).
(b) We have a natural isomorphism
Pue € = Cl-r0]. (105)

Here the first and the second C stand for the trivial local systems on M? () and M?Zp (m),
respectively, and r is the codimension of formula (97).
(c) For any character k € T, the isomorphism (105) induces a natural isomorphism

funs (RN2.C) = (ROZ7.C) [-ral.

where [ 4 is given in diagram (104) and ry is the same as in (D).

Proof. By definition, the function p, s : M?’ () — Al is the composition

ev
MP, (1) =25 M, (1) =5 Al
where the first morphism is smooth. Hence we have
Crit (ttx, p1) = Crit (uy o evp) = eV;ICrit(,ul) = ev;1 (Og).

Here the last identity follows from Lemma 4.3. This implies (a) by Lemma 4.2.
Now we prove (b). The smooth pullback of vanishing cycles (Lemma 4.4(c)) yields the canonical
equivalence of the functors

€V}, O Oy = Puipps O EV - (106)

Since the vanishing cycle complex

¢,,C € D2 ([Dx/Hx]) (107)

is the H -equivariant vanishing cycle complex ¢,,, C on b, we see from Lemma 4.3 that formula (107)
is the shifted skyscraper sheaf supported at Oy with the trivial H ;-action. Hence, applying equation
(106) to the trivial local system C, we deduce that the vanishing cycle complex ¢, ,,C is canonically
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isomorphic to C on ./\/12 1 (r) with a shift. Since the functor ¢, ,, preserves the perverse ¢-structures,
equation (105) is concluded.
For (c), the proper base change of vanishing cycles [13, Proposition 4.2.11] implies the canonical
equivalence of the functors
Rhg* © ()D,Un,M = ‘p/‘n,A ° RhD

TTx*

As a consequence, we obtain
‘plln,.A (Rhg*g) = Rhgip*g[_ro] (108)

by applying the push-forward functor Rhg* to equation (105) and the fact that 42 coincides with h?fp
restricting to M?Z” . Because the regular function

faat : M2 (7) — A

passes through the Hitchin base .A” (r), it admits a fibrewise I'-action. By Lemma 4.4(a), the vanishing
cycle functor ¢, ,, is ['-equivariant. Hence the isomorphism (105) is compatible with the I'-equivariant

structures on the shifted trivial local systems on MQ () and MVDZP (). After pushing forward, we see
that equation (108) matches for any «-isotypic components with respect to the I'-action. This completes
the proof of (c). O

The value of the function u, 4 : AP (7) — Al is constant along each orbit of the Galois group
G r-action on AP (7). Hence u,_4 induces a regular function on the G ,-quotient of AP (r),

fy.a: AD — Al (109)

where the element y € I" corresponds to 7 : C’ — C. Alternatively, formula (109) is the restriction of
the function on the SL,,-Hitchin base

frsida s AP — Al

to the closed subvariety i? : Afy) — AP,
Recall the notation from diagram (29). We have the following corollary of Theorem 4.5:

Corollary 4.6. Theorem 4.5(c) induces for any character k € I a natural isomorphism

o 02.0), = (6.2), 1r

Here r is the same as in Theorem 4.5(b) and (c).

Proof. We consider the quotient map g 4 : AP (1) — A? . By the proper base change [ 13, Proposition
4.2.11], we have

Ortys (4.RN2.C) = g0, . (RN2.C) (110)

Similar to the proof of Theorem 4.5(c), the identity (110) is compatible with the G .- and I"-actions on
both sides. By taking the G ,-invariant and the «-isotypic parts, we obtain

Cuya ((CIA*RhB*Q)G”) = (qA*sO,M,A (RhE*Q)K)G" = (‘IA*RhB_p*Q)f” [~rol.
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where we use Theorem 4.5(c) in the last identity. Hence Lemma 1.7 implies that

Ouys (RUD.C) = (ROYP.C) [-rol.

K

]

Remark 4.7. A different choice of trivialisation (86) affects the functions (103), and therefore the
vanishing cycle sheaves, by a scalar 4 € C*. Since all the isomorphisms in our main theorems are
constructed only up to scaling, choices of trivialisation (86) do not matter for our purpose.

4.4. Proof of Theorem 3.2

In this section, we prove Theorem 3.2 by constructing the operator

2 (ROPC) 5P (RnD C) [-242]. (111)
K K

This recovers the G ,-equivariant operator

02 (e?) : a (RaPC),

for Theorem 3.1, as explained in Section 3.1.
We construct the operator (111) in the following three cases:

— (Rnb.C

_~ gD
.AD(ﬂ)* )K|_AD(71')* [ Zd),]

Case 1. The effective divisor D satisfies the conditions that deg(D) is even and greater than 2g —2. This
is Theorem 3.3, already proven in Section 3, where the operator comes from Ng6’s endoscopic
correspondence and the support theorems.

Case 2. The effective divisor D satisfies the conditions that deg(D) is odd and greater than 2g — 2. In
this case, the support theorems still hold, but the isomorphism of Proposition 3.13 is missed
due to parity reasons (see Remark 3.14). We apply Theorem 4.5 to reduce this case to case 1 as
follows:

Let p be a closed point of C. Then the effective divisor

D,=D+p
satisfies the assumption of case 1. Hence we have an isomorphism

e i (Rurc) S, (Roy* ) |-2477| € D2 (42r), (112)

which is canonical up to scaling, constructed from Ng6’s endoscopic correspondence. Applying
to formula (112) the vanishing cycle functor ¢, , associated with the function

pa = iga s APP — Al
we obtain
0p () = ua ()t ous (ROPC) S (177, (RO .C) ) -2ay7]. a1
Since formula (112) is canonical up to scaling, so is formula (113), by Lemma 4.4(b). In fact,

the operator (113) gives the desired operator c2. To justify this, we calculate both sides of
it.For the left-hand side, Theorem 4.5(c) applied to the special case 7 = id yields

Pua (Rh]*)pg)l( = (Rh]*)@)K [-r1], = COdimMﬁi (MQL) )
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For the right-hand side, we have by the proper base change ([13, Proposition 4.2.11]) and
Corollary 4.6 that

9Ol'l.A (i)?l’* (Rhl)?p*g) ) = igp*sa/‘%A (Rh])?p*@)

_:D D
=i (Rn} C) [-ral.
where

ry = codimMDi(ﬂ) (MQL(R')) .

r,

In conclusion, formula (113) gives an isomorphism
¢p (ci)") : (Rh?@)l( 5 iy, (RhB*Q)K [—Zd.?" +r; — }"2] .
By the dimension formulas in [6, Section 6.1], we have
ri =2 = (dim (M7 ) — dim (M2, )) = (dim (M (7)) = dim (MP ()
=2d," - 2dP.

D
Hence -2d,, Pyri—r= —2dyD, and the operator

X =¢p (cf”’) (114)
induces an isomorphism (111), as desired.
We now treat the last case, D = K¢. In this case the support theorems fail for the Hitchin
fibrations (compare [8]). However, we are able to construct the operator (111) following the
same strategy as in case 2.
Let p, g be two closed points on the curve C. Then the divisor
Ky,qs=Kc+p+gqg

satisfies the assumption of case 1, and we have
Cfp.q . (Rhi(pqg) = l-)I/{p.q* (RhI;p'q*(_j) [_dep,q] )
Similar to equation (114), we define

£ = 0q (¢ (X)) (115)

which gives the desired isomorphism (111) for D = K¢.

We have completed the construction of formula (111), which proves Theorems 3.1 and 3.2. In cases 2
and 3, the construction of the operator ¢ a priori depends on the choice of the closed points p and g. We
finish this section by showing in the following proposition that ¢2 in case 2 or 3 is in fact independent
of the choice of points:

Proposition 4.8. The operators (114) and (115) do not depend on the choice of p € C and p,q € C
respectively.

https://doi.org/10.1017/fmp.2021.7 Published online by Cambridge University Press


https://doi.org/10.1017/fmp.2021.7

Forum of Mathematics, Pi 43

Proof. We prove independence for the operator (114). By varying the point p, we have a family of
Hitchin fibrations

DF D
r
n,L - ‘A

hPr . M

over a base 7. The construction of the correspondence (112) works relatively over the base, which gives
a family of operators c?” . By applying the vanishing cycle functor relatively over 7, we obtain a family
of operators ¢, (c?” ) which form a section of the trivial local system

Cw® Hom 4o (F1,F2)
on 7. Here

Fi= (RhEQ)K and F3 =iy, (Rhl;*g) [-24"]

K
are independent of the point p. Hence ¢, (c?”) is constant over 7.

An identical argument works for formula (115), which we omit. m]
Remark 4.9. Applying the vanishing cycle functors as in cases 2 and 3, we obtain that Proposition 2.1 1
also holds for D = K¢.

5. The P=W conjecture and the Hausel-Thaddeus conjecture

Throughout this section, we assume that the curve C has genus g > 2. We assume that D is an effective
divisor of degree deg(D) > 2g —2 or D = K. For a cyclic Galois cover 7 : C’ — C, we denote by D’
the divisor 7*D on C’.

We discuss some applications of Theorems 3.1 and 3.2.

5.1. Perverse filtrations

We briefly recall the definition of perverse filtrations [11, 7].

Let f : X — Y be a proper morphism, with X a nonsingular algebraic variety. The perverse ¢-
structure on the constructible derived category D2 (Y) induces an increasing filtration on the cohomology
H*(X,C),

PyH*(X,C) c P1H"(X,C) C --- Cc PtH*(X,C) c --- Cc H"(X,C), (116)

called the perverse filtration associated with f.
The perverse filtration (116) can be described via the decomposition theorem [3]. In fact, applying
the decomposition theorem to the map f : X — Y, we obtain an isomorphism

21
Rf.Cldim(X) - 1] = P P;[~i] € DE(Y),
i=0

with P; a perverse sheaf on Y and / the defect of semismallness:
[ =dim (X Xy X) — dim(X).
The kth piece of the perverse filtration is

k

Py H’(X,Q) =Im {Hf—<dim<x>—” (Y, @ P; [—i]) — H/(X, Q)} .

i=0
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5.2. The P=W conjecture

Perverse filtrations appear naturally in studying the topology of Hitchin fibrations. For notational
convenience, we let

h: M- A

be the Hitchin fibration with M = M,, 1 or Mn,dﬁ We denote by M the Betti moduli space associated
with M. There is a diffeomorphism M = M?# induced by nonabelian Hodge theory [36, 37, 23] which
identifies the cohomology

H*(M,C) = H* (MB,C). (117)

A central question concerning the cohomological aspect of nonabelian Hodge theory is the P=W
conjecture formulated by de Cataldo, Hausel and Migliorini [7], connecting the perverse filtration
associated with the Hitchin fibration / to the weight filtration

WoH* (MB,C) c Wi H* (MB,C) C...C WH (MB,C) c...cH (MB,C)

associated with the mixed Hodge structure on M.

Conjecture 5.1 (P=W [7]). Under the nonabelian Hodge correspondence (117), we have
PkHi(M,C) = WzkHi (MB,C) .

For the GL,, case, the P=W conjecture was proven for n = 2 in [7], and recently for g = 2 [9].
Furthermore, [9] reduces the full P=W conjecture to the multiplicativity of the perverse filtration (see
[9, Introduction] for the precise statement). In either situation, the way to attack the P=W conjecture is
to analyse the location of the tautological classes in both the perverse and the weight filtrations.

The case of SL,, is more complicated, due to the lack of tautological classes accessing the I'-variant
cohomology. When 7 is a prime number, the shapes of the perverse and weight filtrations on the I'-
variant parts are of simpler forms, and therefore the P=W conjecture has been verified for the I"-variant
cohomology via direct calculations; see [7] for n = 2 and [10] for any prime number #.

When 7 is not a prime number, numerical evidence from the Hausel-Thaddeus conjecture suggests
that the P=W conjecture for SL,, should rely on the P=W conjecture for a sequence of moduli spaces
of stable GL.-Higgs bundles on different curves with different ranks. In particular, we expect that the
P=W conjecture for SL,, can be eventually reduced to the P=W conjecture for GL,..

As a first step in this direction, we will introduce the operator (125) connecting H* (./\/ln L» C)K and
the cohomology of the moduli space of stable GL,-Higgs bundles on another curve C’, where r and C’
are determined by « € I". Then we prove Theorem 5.4 on the compatibility of the perverse filtrations.

5.3. The stable cohomology

Let 7 : C’ — C be a cyclic Galois cover of degree m. Let L € Pic?(C) be a fixed line bundle with
ged(n, d) = 1. We allow D to be any effective divisor with deg(D) > 2¢g —2or D = K.

We recall the moduli spaces Mﬁd(C ") and ME () as well as their respective Hitchin fibrations
(10) and (16). The group scheme

My o(C) = Pic®(C) x HY(C, O (D))

5Here the divisor D is chosen as the canonical divisor K¢.
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~D
acts on the moduli space M, ,;(C’) inducing

71 Mpo(C)x MP (1) = ML g(C)), ((£1,00), (E,0,)) > (161 © &, 701 +60,).  (118)

Here 6, € H'(C, O¢ (D)) and its pullback give a section 7%6; € H°(C’, O¢+(D")). The finite group I’
acts on the left-hand side of formula (118) diagonally:

L (8,00, 0 = ((810L7,61),(E,®L,6,), LeT.

The morphism (118) factors through this I'-quotient, and its fibres are given by I"-orbits. For dimension
reasons, the right-hand side of formula (118) coincides with the I'-quotient of the left-hand side. We
have the following canonical isomorphisms of the cohomology:

H* (Mf;,(c’),c) 5 H (/\7’30(0 x /\/tﬁ{L(n),c)r
= (1 (MFo(00.2) @ H* (M2, (m).2)) (119)
—H (/T/tfo(C),c) ® H' (MQL(n),C)F,

where the first isomorphism is induced by the I'-quotient map g*, the second identity is the Kiinneth
decomposition and the last identity follows from the triviality of the I'-action on H* (/Wﬁo(C ), C).

For any Hitchin-type moduli space Mfzd, Mﬁ L or Mg (), we consider the perverse filtrations
on the cohomology defined via the corresponding Hitchin fibration (10), (12) or (16). The following

proposition provides a description of the perverse filtration on the stable part of H* (Mf (), C):

Proposition 5.2. The quotient map (118) induces a canonical isomorphism

o (Fere) - oo (stnd),
satisfying
PLH' (M 4(C').2) = @) B (M70(0).C) @ PyH (MP, ().C) . (121)
i+j=k s

Here the stable part (—)y denotes the I'-invariant part of the cohomology.

Proof. The first isomorphism is induced by formula (119). It suffices to show the compatibility (121)
of the perverse filtrations.

We notice that the quotient map (118) is compatible with the Hitchin fibrations, and we have the
commutative diagram

—~D q — D’
Mio(C) x MP | (1) —L—= M, 4(C")

lﬁD(C)xh,? lﬁD’

HO(C,0c(D)) x AP (m) —= A" (C").

where the bottom arrow is a canonical identification. The pullback morphism ¢* for the cohomology is
induced sheaf-theoretically by the canonical morphism

C—-4q.C

tl

(122)
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where the first and the second C, respectively, denote the trivial local systems on the target and the
source of g. By applying the perverse truncation functor to the push-forward of formula (122) along
hP’, we find that the first map of formula (119) satisfies

PLH (Mf;,(c’),c) > PuH" (/TxlfO(C) x MQL(n),C)F. (123)

We conclude equation (121) from formula (123), the Kiinneth decomposition and the fact that the
perverse filtration on

H' (Myo(0),€) = H' (Pic(0), )

coincides with the cohomological filtration H*=<¥. O

As a consequence of Proposition 5.2, we obtain a canonical operator given by the projection

ve : H (M, (C),C) » H (MP,(x),€) , Viz0, (124)

st

. (—~D’
sending a class in H* (./\/lr’d(C ), C) to its projection to the direct summand component

H' (My0(C).C) ® H' (MP, (m),C) = H' (MP,(m).C)

st st

with respect to the decomposition (120). This identity is induced by the fundamental class 1 €
—D
H° (MLO(C), c).

Corollary 5.3. The operator (124) respects the perverse filtrations:

vs (P! (M, 4(C'),C)) = Pe (MP (), C)

st

Proof. Since the fundamental class 1 € H° (ﬂﬁO(C), C) lies in PoH" (/Wﬁo(C), C), the corollary
follows from equation (121). O

5.4. Operators

Let 7 : C’ — C be the cyclic Galois cover given by y € I, which corresponds to x € I" via equation
(3). We define the operator

. ~D .
P - H2 (M,,d(c’), c) > H (MﬁL,C)K (125)
as the following composition:

1 (M (c).c) 2 1 (ML) = H (MP(m).C)

proj. . Gn Thm. 3.2
— —_—
K

H (MQL(n),C) - H (Mly),c) 2 (MﬁL,c)K. (126)

=
Here the first morphism is formula (124), the second isomorphism is given by Proposition 2.10, the third
morphism is the projection to the G ,-invariant part, the fourth isomorphism is given by Lemma 1.7 and
the last isomorphism follows from Theorem 3.2. Hence we obtain that formula (125) is surjective and
canonically defined up to scaling.
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Theorem 5.4. We have
: D
P« (PkH ( r, d(C ) C)) = Pk+d,[/)Hl+2dy (Mrll),L’C)K

Proof. By Corollary 5.3, the morphism p; preserves the perverse filtrations. All the other morphisms in
formula (126) except the last one are deduced from sheaf-theoretic morphisms which clearly preserve
the perverse filtrations. Hence we have

PeH! (M) 4(C),C) > Pyt (MP,C)

K

The last morphism of formula (126) is given by the sheaf-theoretic isomorphism (65). Taking account
of the shift, we have

PiH' (ME,C)K 5 Pyyap HH (MQL(n),C)K
O

Now we consider the special case D = K. Passing through the isomorphisms (117) induced by the
nonabelian Hodge theory, we obtain an operator for the corresponding Betti moduli spaces

pE HM (M. (C)C)—»H’(MEL,C)

Here MB a(C’) is the Betti moduli space associated with the curve C’, the group GL, and the degree
d, and M B n.1, Stands for the Betti moduli space associated with the curve C, the group SL,, and the line
bundle L. We refer to [23] for more details on these moduli spaces.

Question 5.5. Is it true that
Py (WZkH ( r d(C) C)) = W2k+2d7Hi+2d (Mn L» )K.

If Question 5.5 has an affirmative answer, then Theorem 5.4 implies that if the P=W conjecture holds
for GL, for any r dividing n, then the P=W conjecture holds for SL,,. However, the construction of the
operator p, relies heavily on the topology of Hitchin fibrations, which is mysterious on the Betti side.
A better understanding of the operator p, may be needed.

5.5. The Hausel-Thaddeus conjecture

We explain in this final section that Theorem 3.2 implies Theorem 0.5. Here for Higgs bundles, we
again work with any effective divisor D with deg(D) > 2g —2or D = K.

Proof of Theorem 0.5. We first note that for two line bundles L1 and L, with L; = L, ® N®", there is a
natural identification of the moduli spaces

MP, S M2 (£.6) - (E@N,0), (127)
compatible with the Hitchin fibrations. Hence we obtain

put (32,.6) | =t (4,0 )

= Pk—df/)Hi_ng) ((MDL’Q"{")Y’C) } (128)
K

- |Peapr ((2) ) ]
dek
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in the Grothendieck group Ky (Vect) of C-vector spaces. Here the first identity is induced by formula
(127), since deg(L) = deg (L’g’de) mod n; the second identity follows from formula (65); and the

third identity is given by Remark 4.9 and Proposition 2.11.

This proves the Betti-number version of the refined Hausel-Thaddeus conjecture (7). To get the
enhanced version concerning Hodge structures, we follow [12, Section 2.1] to work with the category of
mixed Hodge modules [35], which refines the category of perverse sheaves. Identical arguments show
that Theorems 3.1 and 3.2 actually hold in the derived category of mixed Hodge modules, which gives
the enhanced version of equation (128) in Ko(HS). This completes the proof of equation (7).

Finally, we note that equation (7) implies equation (8). This follows from taking the summation over
all y € I and the natural identification of the fixed loci

(M), = (M)

qy

for any g € Z coprime to n. O
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