
Readable vs. Writable code:
A Survey of Intermediate Students’ Structure Choices

Eliane Wiese
University of Utah

Salt Lake City, Utah, USA
eliane.wiese@utah.edu

Anna N. Rafferty
Carleton College

Northfield, Minnesota, USA
arafferty@carleton.edu

Jordan Pyper
University of Utah

Salt Lake City, Utah, USA
jordan.pyper@utah.edu

ABSTRACT
Since intermediate CS students can use a variety of control struc-
tures, why do their choices often not match experts’? Students
may not realize what choices expert prefer, find non-expert choices
easier to read, or simply forget to write with expert structure. To
disentangle these explanations, we surveyed 328 2nd and 3rd se-
mester undergraduates, with tasks including writing short func-
tions, selecting which structure was most readable or best styled,
and comprehension questions. Questions focused on seven control
structure topics that were important to instructors (e.g., factoring
out repeated code between an if-block and its else). Students
frequently wrote with non-expert structure, and, for five topics,
at least 1/3 of students (48% - 71%) thought a non-expert struc-
ture was more readable than the expert one. However, students
often made one choice when writing code, but preferred a different
choice when reading it. Additionally, for more complex topics, stu-
dents often failed to notice (or understand) differences in execution
caused by changes in structure. Together, these results suggest that
instruction and practice for choosing control structures should be
context-specific, and that assessment focused only on code writing
may miss underlying misunderstandings.

CCS CONCEPTS
• Social andprofessional topics→Computing education; Stu-
dent assessment.

KEYWORDS
Control structures, Novice programmers, Discourse rules
ACM Reference Format:
ElianeWiese, AnnaN. Rafferty, and Jordan Pyper. 2022. Readable vs.Writable
code: A Survey of Intermediate Students’ Structure Choices. In Proceedings
of the 53rd ACM Technical Symposium on Computer Science Education V. 1
(SIGCSE 2022), March 3–5, 2022, Providence, RI, USA. ACM, New York, NY,
USA, 7 pages. https://doi.org/10.1145/3478431.3499413

1 INTRODUCTION
Instructors want students to write code that is not just functional,
but also uses code structures that promote readability (that is, follow

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
SIGCSE 2022, March 3–5, 2022, Providence, RI, USA
© 2022 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-9070-5/22/03. . . $15.00
https://doi.org/10.1145/3478431.3499413

discourse rules [18]). However, teaching students to generate code
using an appropriate control structure for a task is extremely diffi-
cult and time consuming [e.g., 8, 25]. Research has found that 90% of
introductory students used inappropriate structures for a program-
ming task [10], and structure problems persist into students’ 4th
year of a BS degree [4]. Why do students’ code structures choices
differ from their instructors’? Students and instructors may disagree
about what makes code readable. Students may find it easier to gen-
erate alternative (rather than appropriate) control structures [17],
perhaps because the alternative structures mirror their solution
strategy [20]. Students may also avoid certain structures because
they don’t understand them.

Investigating these possible explanations for students’ use of
alternative code structures is a necessary first step toward bet-
ter instruction on structure. We examine seven common patterns
with control structures, within individual methods (e.g., loops, if-
statements). Students learn these structures in introductory courses,
but often violate their discourse rules, even in their 2nd and 3rd
semesters [21]. If discourse rule violations stem from conceptual
misunderstandings, the curriculum should address this. At our
participants’ university, instruction on using these structures ap-
propriately is in the 1st semester curriculum but not a standard part
of the later courses. Instructors may give feedback during office
hours, or mention an egregious problem with an assignment during
a lecture. However, in general, our students who violate discourse
rules after the 1st semester are left to diagnose and treat themselves.

We examine students’ understanding and use of appropriate
structures via three tasks: writing, judgments of code readability
and normative style, and comprehension. These tasks provide a
holistic picture of students’ skills: writing short methods (designed
to target specific structures) allows us to assess the prevalence of
discourse rule violations outside of a specific homework context.
Asking students to choose which version of a function is most
readable (to them) and which exhibits the best style (according to
experts) can show discrepancies between knowledge of discourse
rules and agreement with them. Finally, comprehension questions
about execution and behavior with different structures demonstrate
if students understand and attend to the impact of structure choices.

Our results, from administering the survey to over 300 students,
show that many students find alternative structures more readable.
We replicate a finding that students can identify appropriate struc-
tures even when they find them less readable [21]. We go beyond
prior work to show that the relation between students’ judgments
of readability and the code that they write varies across control
structure topics: for three topics, more than 45% of students wrote
code that was not consistent with the structure they chose as most

Session: Code Quality SIGCSE ’22, March 3–5, 2022, Providence RI, USA

321

https://doi.org/10.1145/3478431.3499413
https://doi.org/10.1145/3478431.3499413

readable. Further, for more complex topics, code that followed dis-
course rules was harder for students to understand, and in many
cases, students were inattentive to how structure choices impacted
execution. These results suggest that students’ reasons for using
alternative control structures differ across contexts, and for all but
the simplest topics, it is likely that instruction and practice is needed
beyond the 1st semester. This instruction should target code reading
and understanding in addition to writing.

2 RELATEDWORK
Writing code with good style and assessing whether existing code
meets style guidelines are core learning outcomes in the ACM
CS2013 curriculum [1]. Discourse rules are a subset of style more
generally [16]. While discourse rules are a core part of coding ex-
pertise, experts often know them implicitly, making it difficult to
teach others [18]. Still, even when guidelines are provided within
a course, students frequently write code that violates them [e.g.,
11, 17]. Discourse rule violations can impede students’ work with
their own code. For example, duplicate code makes programs harder
for students to modify and understand, even in a block-based lan-
guage [7]. Structure in small blocks of code has been called semantic
style [4], highlighting that structure choices may be indicative of
conceptual understanding and thus particularly important to ex-
amine within CS education. Students’ coding choices have been
examined both in homework submissions [4], and by surveying
students [21]. However, prior survey-based work had one one writ-
ing task [21] or a very small sample size [22]. We build on this
work by directly examining the relation between code structure
and conceptual misunderstandings in a large sample of students.

There is increasing interest in how to support students in pro-
gramming with good structure, especially since providing individ-
ual feedback is time-consuming for instructors and often infeasible
in large courses. Automated supports for structure either flexibly
give hints and feedback on a wide range of implementations, but
only work for specific assignments with a large corpus of prior
submissions [2] or target a fixed set of possible errors. WebTA
uses static analyses to give feedback and hints [19]. The stylistic
anti-patterns that it targets were based on instructors’ experiences
with students’ style errors and can be augmented for particular
style contexts. Other work has explored generalizing feedback from
experts or instructors to a wider range of programs [6, 9]. PyTA
targets both syntactic and stylistic errors [13]. It uses existing static
analysis tools (pylint), but provides enhanced explanations of the er-
rors to help students identify problems; using PyTA was associated
with fewer repetitions of the same error and faster error fixes [13].
AutoStyle [2] generates automated style hints that help students,
but many students still struggled to act on the hints [24]. UglyCode
interactively visualizes style consequences [15]. Our investigation
complements this work by suggesting areas beyond code writing
where students may need support, and also by identifying gaps in
students’ understanding that should inform instructional design.

3 SURVEY TOPICS AND ITEMS
To assess students’ understanding of control structures, we build
on the Readability and Intelligibility of Code Examples (RICE) sur-
vey, which targets seven control structures (topics) [21]. For each

public static String word2(String word) {
if (word.endsWith("?")) {
word = word.substring(0, word.length() - 1);

} if (word.endsWith("!")) {
word = word.substring(0, word.length() - 1);

}
return word;

}

Listing 1: The conditions in this method appear exclusive,
but an input that ends in "!?" would execute both branches.
A comparison method, word1, used an else if.

topic, one structure is the most appropriate. Alternative structures
reflect common novice implementations. Each topic involves struc-
tures that occur within single methods, are taught in beginning
programming classes, and require only a few lines of code:

T1 Returning a Boolean expression (with operators) vs. literals:
Returning the expression is appropriate (return x > 7).
An if statement returning True or False is alternative.

T2 Returning a Boolean expression (with method call) vs. liter-
als: like (1), with a method (return s.equals("a")).

T3 Unique vs. repeated code within if and else: When some
behavior is shared across all cases, it could occur once, out-
side the if-else (appropriate) or in both the if and else
blocks (alternative).

T4 Only necessary cases vs. extraneous cases: Appropriate code
handles all inputs parsimoniously. Alternative structures in-
clude extraneous cases for particular inputs that are already
handled well.

T5 Array iteration with for vs. while loop: Iterating over an
entire array can be done with a for loop (appropriate) or a
while loop (alternative).

T6 Exclusive caseswith if-else-if vs. if-if statements: Code
with multiple exclusive cases can be written using a combi-
nation of if, else if, and/or else statements (appropriate)
or with a sequence of if statements (alternative).

T7 && vs. nested if statements: When at least two conditions
must be true before executing other code, they can be con-
joined in a single if statement with Boolean AND (appro-
priate) or separated in nested if-statements (alternative).

The original RICE survey included judgments of the readability
and style of different structures, comprehension items, and a code-
writing task for one topic. Our expanded version of the RICE survey,
building on [22], has five writing tasks (covering six topics), and
revised judgment and comprehension questions. It also includes
code editing and revision, to be reported on in future work.

We revised the code blocks that students judged for readability
and style for 4/7 topics, either to examine more complex content or
because there was not unanimous expert agreement on which block
was best styled [21]. We verified which block was best-styled on
each new item, with unanimous agreement from three instructors.
Yet, experts may disagree on which structure is best, and under-
standing the range of opinions experts is an important step for
future work. Similarly, the control structures discussed here were
chosen because of their importance to our partner instructors: other
structures may be more important in other contexts.

Session: Code Quality SIGCSE ’22, March 3–5, 2022, Providence RI, USA

322

To more thoroughly explore students’ understanding of the im-
pact of structure on execution, we revised the original RICE com-
prehension questions. These were all multiple-choice questions
about a single code block of the form “What is the output for this
input?”. We dropped Boolean returns comprehension questions
due to a ceiling effect in [21] and to constrain survey time. We
then replaced some questions about single methods with questions
comparing two or more methods, in three flavors: (1) for Exclusive
cases with if-else-if vs. ifs, identify which method performs
more comparisons for a given input (e.g., Listing 1), (2) identify
if the methods always have the same output given the same in-
put (e.g., Listing 2), and (3) a follow-up to (2) asking for an input
that would produce different outputs across the methods, and what
each output would be. These questions assess how well students
differentiate the functionality of different structures, a which could
aid in choosing appropriate structures in a variety of contexts. We
retained the original input-output questions for the Only necessary
cases topic, and added a question about alternative structure code
for && vs. Nested ifs that asked (1) did the code accomplished task
(in general) and (2) the output for a given input.

4 SURVEY METHODS AND HYPOTHESES
We tested seven hypotheses using the revised survey:

H1 For four topics (both Boolean returns, only necessary cases,
and unique code in if-else blocks), at least 20% of students
would indicate an alternative structure was more readable
than the appropriate structure.

H2 For the remaining three topics, fewer than 20% would indi-
cate that an alternative structure was more readable than
the appropriate structure

H3 Students would recognize the appropriate structure as best
styled more often than they would find it most readable.

H4 For T1 and T4 (returning a Boolean expression with opera-
tors, only necessary cases), at least 20% of students would
mis-identify an alternative structure as appropriate.

H5 For the remaining five topics, less than 20% would mis-
identify an alternative structure as appropriate.

H6 Consistent with past work [21], students’ accuracy on code
comprehension with different structures would not be pre-
dicted by which structure they said was most readable.

H7 Students’ readability preferences would predict their code
writing structure (consistent with [21] for Boolean returns
and extending to five additional topics).

These hypotheses, and our 20% as a cutoff, are consistent with [21].
We use 20% anticipating that an instructor would want to address
issues that affect at least 1 out of 5 students. These hypotheses
were pre-registered (https://osf.io/32wuv). Beyond testing these
hypotheses, our survey provides data that more fully describes the
patterns in students’ understanding, preferences, and use of control
structures.

4.1 Methods
Participants were recruited from two intermediate courses in the CS
major: a second semester course in data structures and algorithms,
and a third semester introduction to software engineering (taught
by the same instructor). The instructor publicized the survey to all

public static String combo1(int[] nums1, int[] nums2) {
String combinations = "";
for (int i = 0; i < nums1.length; i++) {

for (int j = 0; j < nums2.length; j++) {
combinations += " (" + nums1[i] + ", " + nums2[j] + ")";

}
combinations += "\n";

}
return combinations;

}

public static String combo2(int[] nums1, int[] nums2) {
String combinations = "";
int i = 0;
int j = 0;
while (i < nums1.length) {
while (j < nums2.length) {
combinations += " (" + nums1[i] + ", " + nums2[j] + ")";
j++;

}
combinations += "\n";
i++;

}
return combinations;

}

Listing 2: The nested loops appear similar, but the while
loop does not reset the inner counter. A comprehension item
asked: given the same input, do both functions always give
the same output?

students, and offered extra credit for completion. Students could
access the survey and receive extra credit without participating in
the research. The study was approved by our IRB (# 00114708). 328
participants consented to the research and skipped no more than
one question per section.

Students had one week to complete the online survey, which had
five sections: (1) code writing, (2) style and readability preferences,
(3) comprehension, (4) code editing, and (5) code revising. For style
and readability, students were shown 3-4 code blocks and first asked
to select which was most readable and then which was best styled.
To control for ordering effects, students were randomly assigned
to forward or reversed question order within each question block
except editing and revising; later analyses collapse across orderings.

4.2 Data coding for writing responses
First, functionality was evaluated via automated tests. For code that
did not compile, some manual edits were permitted to attempt to
fix errors while preserving intent (e.g., array.length() could be
modified to array.length); allowed changes were pre-registered
and refined as we found new errors (https://osf.io/gzxmf/).

Regardless of compilation, structure was also evaluated, with
some minimum functionality required (e.g., for && vs. Nested ifs,
code must evaluate at least two conditions). Responses meeting
these requirements were coded as following or violating discourse
rules for the targeted topic. Categorization guidelines were based
on the appropriate structure for each task, refined based on student
responses, and verified by the instructor (https://osf.io/3r2ax/).

Array iteration with for vs. while loop (T5) was evaluated via
regular expressions. Boolean returns (T1, T2) were evaluated with
regular expressions and hand-checked for ternary operators or in-
sufficient functionality (e.g., always returning false). For code that
compiled, we identified && vs. Nested ifs (T7) with static analysis

Session: Code Quality SIGCSE ’22, March 3–5, 2022, Providence RI, USA

323

Figure 1: Percentage of students who chose alternative struc-
tures as most readable and best styled. Point represents esti-
mate and error bars are the confidence intervals.

and hand-checked. For all other topics (and && vs. Nested ifs for
non-compiling code), two coders scored 29-30 non-blank responses,
with Cohen’s 𝜅 of .78 for Only necessary cases (T4), and > .9 for &&
vs. Nested ifs (T7), Unique vs. repeated code within if-else (T3),
and Exclusive cases with if-else-ifs vs. if-if (T6) (𝜅 =.60-.79
indicates moderate agreement; .80-.89, strong; and ≥ .90, almost
perfect [14]). For T3, a third coder achieved pair-wise 𝜅 > .8 with
the two original coders. After resolving disagreements, one coder
scored remaining responses.

5 RESULTS
5.1 Style and readability choices
Students’ judgments of what structures were most readable differed
markedly from those chosen by instructors as most appropriate:
for an average of 2.4/7 topics, students chose an alternative struc-
ture as most readable. 𝑧-tests supported Hypothesis H1 for all four
topics where we predicted that ≥ 20% of the population of 2nd and
3rd semester CS students would select an alternative code block as
most readable, replicating prior results [21] (Figure 1). However, for
the other three topics, H2 (< 20% of students would select an alter-
native code structure as most readable) was not supported. Rather,
𝑧-tests for && vs. Nested ifs and Exclusive cases with if-else-if
vs. ifs topics were significant for ≥ 20% of the population choosing
an alternative code block as most readable (𝑝 < .0001 for both).
This indicates that a large minority of students find violations of
discourse rules to be more readable than adherence to them.

For recognizing experts’ preferred style, 𝑧-tests supported H4 for
one of the two topics where we predicted ≥ 20% of students would
say an alternative code structure had the best style (𝑝 < .0001 for
Only necessary cases, not significant for Returning a Boolean expres-
sion with operators). For the five topics in H5 where we predicted
that < 20% of students would choose alternatively structured code
blocks as best styled, again only one was supported (Figure 1).

H3 was supported: students were significantly more likely to
choose appropriately-structured code when asked what an expert
would prefer prefer (vs. when asked which was the most readable).

We tested H3 with logistic regression. The dependent variable was
chosen structure (binary: appropriate or alternative), with question
topic (T1-T7) and type (style or readability) as predictors, and a
random predictor for student; 𝛽 = 0.2186, 𝑡 (4584) = 6.33, 𝑝 < .0001.
Exploring the effect of course level, we found only one significant
difference: students in software engineering (3rd semester) were
more likely to prefer reading expert styled code than those in data
structures and algorithms (2nd semester) (𝛽 = −0.15652, 𝑡 (2294) =
2.3514, 𝑝 = 0.019).

Results for T7 are strikingly different from the original RICE
survey [21], where about 90% of students thought conjoining condi-
tions with &&was both more readable and better styled than nested
ifs. Less than 65% of our sample thought so, likely because our
revised survey use code blocks relying on short-circuit evaluation.
See [23] for separate discussion of this result.

5.2 Comprehension of code
Comprehension questions revealed some misunderstandings for
particular structures, but in general, these difficulties were not
related to which code structure a student said was most readable
(consistent with H6). For all topics, logistic regressions showed
that students were not more accurate for the structure they said
was more readable (dependent variable: correctness; predictors:
code structure of item, structure selected as most readable, the
interaction between these two, and a random effect for student).

For T4, Only necessary cases, students were less accurate at iden-
tifying the output for code with only necessary cases compared
to code which included extraneous cases (77% vs. 86% correct; co-
efficient for alternative structure = .38, 𝑡 (2298) = 5.5, 𝑝 < .0001).
This was due to greater accuracy on inputs handled by the extra
cases (typically, these inputs were length 0 or 1 arrays, with the
general solution involving a loop): students answered 91% of these
accurately when shown the alternative structure code, compared to
76% when shown the code with one general solution. Code struc-
ture made little difference for other inputs (79% correct for both
structures). Accuracy on these “edge case” inputs for appropriately
structured code suggests potential challenges with understanding
loop entry and exit conditions: although these edge cases required
fewer tracing steps than “normal” input, tracing was harder.

For T7, && vs. Nested ifs, students were more accurate with
nested ifs (logistic regression with structure and condition order as
predictors, with a random student effect; coefficient for nested ifs
= 0.61, 𝑡 (1308) = 9.4, 𝑝 < .0001). One item presented three similar
methods that checked the same conditions in two different orders
(two with nested ifs, one with &&). Only 52% of students identified
how condition order affected short-circuit evaluation. Most stu-
dents stated all three blocks were equivalent, suggesting that many
students are inattentive to how small structural changes impact
functionality; for more detail on conjoined conditions see [23].

For T6, Exclusive cases with the if-else-if vs. if-if, 63% of stu-
dents incorrectly stated the two code blocks described in Listing 1
had the same functionality (𝑧-test for ≥20% of students: 𝑝 < .0001).
A side effect within the first if-statement meant that some inputs for
the word2 method could cause both statements to evaluate to true;
this would not happen in word1 because of the else-if. When
given an input that had different outputs for each method, and

Session: Code Quality SIGCSE ’22, March 3–5, 2022, Providence RI, USA

324

Table 1: Responses for which method from Listing 1 ex-
ecutes more comparisons for some input, grouped by re-
sponses for functionality. Most students incorrectly stated
they had the same functionality; most also realized the if-if
code would execute more comparisons.

Choice for more comparisons
Do code blocks differ word1 word2 Same
in functionality? [if-if] [if-else-if] number
Yes: Correct (34% overall) 89% (100) 4.5% (5) 6.3% (7)
No: Incorrect (66% overall) 68% (147) 11% (23) 21% (46)

asked which code performed more comparisons, students were
more accurate, but 25% still answered incorrectly (𝑧-test for ≥20%
of students: 𝑝 = .008). Most incorrect answers stated the two meth-
ods performed the same number of comparisons, especially among
students who answered the functionality question incorrectly (Ta-
ble 1). For a pair of code blocks with truly exclusive cases, 98% of
students correctly indicated that input/output functionality was
identical (𝑧-test for > 80%: 𝑝 < .0001), but 37% incorrectly iden-
tified which block performed more comparisons for given inputs
(𝑧-test for > 20%: 𝑝 < .0001). We thus see that a large minority
of 2nd and 3rd semester students don’t understand how a series
of if statements differs from an if-else-if sequence, and their
inattention persists even when pointed to specifics input. This gap
may affect how they read and write code.

For T5, Array iteration with for vs. while, one item presented
equivalent single loops, and 96% of students correctly identified that
they had the same functionality. Another item presented the code
in Listing 2, with doubly-nested loops. Although the loops appear
similar, the while code does not reset the internal counter to 0; 83%
incorrectly said the methods were equivalent (𝑧-test for ≥ 20%: 𝑝 <

.0001). Consistent with T6 and T7, these results suggest students
are not particularly sensitive to the details of control structures and
the impact of structure choices on likely bugs.

5.3 Code writing
For all but two topics, 𝑧-tests indicate that at least 20% of 2nd and
3rd semester students violate discourse rules (see Table 2). Except
for T7 (&& vs. Nested ifs), the proportion of students who wrote
with appropriate structures was similar for code that passed all tests
and for all code with sufficient functionality to evaluate structure.
For T7, students were much less likely to use && if their code passed
all tests (33% of fully functional responses used && vs. 62% of all
responses with ≥ 2 conditions).

Students’ selection of which code block was most readable pre-
dicted their writing style for 3/6 topics (H7 partially supported). As
in past work [22], readability preferences predicted writing style
for T1 and T2, Returning Boolean expressions (separate logistic re-
gressions predicting writing structure, with readability preference
as a predictor: Boolean expression with operators coefficient = 1.34,
𝑡 (313) = 5.4, 𝑝 < .0001; Boolean expression with method call coef-
ficient = 0.77, 𝑡 (326) = 3.2, 𝑝 = .002). When students’ writing and
readability styles did not match for T1 and T2, it was more common
for students to write with an alternative structure while still choos-
ing the appropriate structure as most readable (Table 3). Students

may thus like the appropriate structure but not always produce it.
Following the lower levels of the SOLO taxonomy, these students
may be directly translating English instructions into code [12].

T3, Unique vs. repeated code within if and else, showed mixed
evidence for how readability preferences predicted writing struc-
ture: readability was predictive of writing style when all submis-
sions were included (coefficient for readability preference = 0.93,
𝑡 (211) = 2.5 𝑝 = .01), but not when including only submissions that
passed all tests (coefficient = .13, 𝑡 (119) = .26, 𝑝 = .79). Only 37%
of submissions passed all tests, and those submissions tended to be
from students who selected the appropriate choice for readability
(83%, versus 69% of all students whose code could be evaluated for
structure). Yet, for both sets, the plurality of students chose the
appropriate structure for readability and wrote with an alternative
structure (58% for all, and 45% for code passing all tests; Table 2),
and only a few students chose the alternative structure for readabil-
ity but wrote with an appropriate structure (7.8% for all, 7.5% for
code passing all tests). That is, when students’ reading preferences
differed from their implementation choices, they were more likely
to prefer an expert choice (but not implement it) than the reverse,
suggesting that preferring the expert choice is a precursor to using
it. This aligns with prior findings that writing code tends to follow
other programming skills [e.g., 12], although that work has not
examined students’ readability preferences.

For the remaining topics with writing tasks, readability prefer-
ences did not predict writing. For && vs. Nested ifs, across submis-
sions, 26% selected an alternative structure for readability and wrote
with an appropriate structure, and a similar number of students
showed the opposite pattern (Table 3). When including only fully
functional code, more students said the appropriately-structured
code was most readable than actually wrote that way. However,
appropriately structured code was less likely to pass all tests.

For T4 (Only necessary cases) and T5 (Array iteration with for),
students were more likely to write with appropriate structure than
to identify appropriately structured code as most readable (Table 3).
However, results from the comprehension questions for T4 (where
students understood alternative code more easily for edge cases),
suggest that some students who write appropriate code may not
fully understand why the code works.

6 DISCUSSION
Overall, our results show that across topics, students are more likely
to identify which structure follows discourse rules than they are to
agree that this structure is more readable. Beyond this, students’
understanding of control structures varies across topics, suggesting
that a unified instructional strategy may not be feasible. Several
themes in how code writing, comprehension (reading), and judg-
ments of style and readability are related provide further insight
into students’ skills. For the simplest topics (T1 and T2, return-
ing Boolean expressions), most students recognized appropriate
structure, frequently found it most readable, and tended to write
code that aligned with the structure they found most readable.
When students’ writing structure and readability choices disagreed,
most students found the appropriate structure more readable while
writing with an alternative structure, suggesting that instruction

Session: Code Quality SIGCSE ’22, March 3–5, 2022, Providence RI, USA

325

Table 2: Proportion of responses with appropriate structure, by topic. Passed all tests has only functionally correct responses,
while Evaluated includes all code whose structure could be categorized. 𝑝-values are for 𝑧-tests of ≥20% alternative structure.

Writing: Passed all tests Writing: All Evaluated for Structure
Topic 𝑛 % appropriate 𝑝 𝑛 % appropriate 𝑝

T1 Return Boolean expression w/ Operator 312 57% 𝑝 < .0001 328 54% 𝑝 < .0001
T2 Return Boolean expression w/ Method Call 294 62% 𝑝 < .0001 328 59% 𝑝 < .0001
T3 Unique Code within if and else 121 46% 𝑝 < .0001 213 42% 𝑝 < .0001
T4 Only Necessary Cases 97 79% 𝑝 = .44 282 74% 𝑝 = .008
T5 Array Iteration with for 77 90% 𝑝 = .983 240 93% 𝑝 = .999
T7 Conjoined Conditions with && 109 33% 𝑝 < .0001 318 62% 𝑝 < .0001

Table 3: Writing structure and readability preferences (for expert vs. alternative structure). A disagreement between how
students write and what they prefer to read is common, varying from 29% to 66% of students, depending on the topic.

Disagreement Agreement
Write Expert Read Expert Total Both Expert Both Alternative Total

Unique Code within if & else (T3) 8% 58% 66% 11% 23% 34%
Conjoined Conditions with && (T7) 26% 26% 52% 33% 14% 47%
Only Necessary Cases (T4) 33% 14% 47% 42% 11% 53%
Return Boolean Expression w/ Method Call (T2) 14% 25% 39% 45% 16% 61%
Return Boolean Expression w/ Operator (T1) 13% 21% 34% 42% 24% 66%
Array iteration with for (T5) 24% 5% 29% 69% 2% 71%

helping students to remember to write in an appropriate structure
might be sufficient.

In contrast, students demonstrated less mastery of the other
topics: for most of these topics, fewer students identified the ap-
propriate structure and they were less likely to choose it as most
readable. Students often did not notice how structure affected func-
tionality (T6, if-else-if vs. if-if). For T5 (for vs. while), most
students missed a bug common to the alternative structure (nested
while loops). For both T7 && vs. Nested ifs and T4 (Only necessary
cases), students were generally more accurate on code-tracing ques-
tions with alternative rather than appropriate structures. For T3-T7,
readability choices and writing structure were less aligned than for
T1 and T2, but not in a consistent way: e.g., more students chose
the alternative structure as most readable for T4 than wrote with
it, suggesting that appreciating the readability of the appropriate
structure is harder than creating it, but the opposite pattern held
for T3 (Unique vs. repeated code within if and else). This interplay
between identifying, using, and understanding appropriate struc-
ture means that, for all but the simplest structures, students will
likely need carefully designed instruction and practice to improve;
simply flagging discourse rule violations is unlikely to be sufficient
and may fail to address misunderstandings about how structure
impacts execution.

Threats to Validity. Since extra credit was given for survey com-
pletion, not correctness, students may not have tried their best,
causing us to underestimate their abilities. Students’ opinions on
the style and readability of short code blocks may not reflect their
judgments in more complex contexts, although given that some
revised survey questions increased complexity (e.g., adding reliance
on short-circuit evaluation) and preference for appropriate struc-
tures decreased, we believe more complexity may lead to increased

affinity for alternative structures. We did not probe students’ views
of what “readable” means, asking only that they identify “Which
one is most readable to you: which one makes it easiest for YOU to
figure out what the code does?”; students may differ in their inter-
pretation of readability in this context. Our students attend a college
of engineering at an R1 university, so results may not generalize to
other contexts such as liberal arts or community colleges.

6.1 Takeaways for instructors
A surprisingly high proportion of students had comprehension er-
rors with loops, short-circuit evaluation, and if-else sequences.
In courses where the survey was conducted, most reading/edit-
ing exercises were only on exams; the bulk of students’ practice
was weekly code-writing assignments. Since professional software
development often involves reading existing code [3, 5], these re-
sults argue for integrating more code-reading practice, even at the
expense of writing.

Especially by their 3rd semester, students are expected to follow
the discourse rules noted here. Yet, at our participants’ university
(and likely at others), formal instruction or consistent feedback on
structure is not given after the 1st semester. This study shows that
students struggle beyond CS1, which may create matching strug-
gles for the course staff. Poorly-structured code creates additional
burdens for these staff, as it is more time-consuming for instructors
and TAs to help debug. It also raises pedagogical dilemmas: should
TAs help students find the bug, ignoring structure, or try to show
students how good structure could have avoided the bug (which
students may not be ready or willing to engage)? When course staff
do provide in-depth feedback on structure, they can’t tell if it sticks.
These results strongly argue for formalizing repeated instruction
and practice related to control structures in courses beyond CS1,
and for exploring effective ways to teach structure.

Session: Code Quality SIGCSE ’22, March 3–5, 2022, Providence RI, USA

326

ACKNOWLEDGMENTS
This workwas supported in part by the National Science Foundation
(NSF) award SHF 1948519.

REFERENCES
[1] Association for Computing Machinery (ACM) and IEEE Computer Society. 2013.

Curriculum Guidelines for Undergraduate Degree Programs in Computer Science
by the Joint Task Force on Computing Curricula. https://www.acm.org/binaries/
content/assets/education/cs2013_web_final.pdf

[2] Rohan Roy Choudhury, HeZheng Yin, Joseph Moghadam, and Armando Fox.
2016. Autostyle: Toward coding style feedback at scale. In Proceedings of the 19th
ACM Conference on Computer Supported Cooperative Work and Social Computing
Companion. ACM, 21–24.

[3] Cecil Eng Huang Chua, Sandeep Purao, and Veda C Storey. 2006. Developing
maintainable software: The Readable approach. Decision Support Systems 42, 1
(2006), 469–491.

[4] Giuseppe De Ruvo, Ewan Tempero, Andrew Luxton-Reilly, Gerard B Rowe, and
Nasser Giacaman. 2018. Understanding semantic style by analysing student code.
In Proceedings of the 20th Australasian Computing Education Conference. ACM,
73–82.

[5] Robert L. Glass. 2002. Facts and Fallacies of Software Engineering. Addison-Wesley
Professional.

[6] Elena L Glassman, Lyla Fischer, Jeremy Scott, and Robert C Miller. 2015. Foobaz:
Variable Name Feedback for Student Code at Scale. In Proceedings of the 28th
Annual ACM Symposium on User Interface Software & Technology - UIST ’15. 609–
617. https://doi.org/10.1145/2807442.2807495 arXiv:13/02 [978-1-4503-1332-2]

[7] Felienne Hermans and Efthimia Aivaloglou. 2016. Do code smells hamper novice
programming? A controlled experiment on Scratch programs. In 2016 IEEE 24th
International Conference on Program Comprehension (ICPC). IEEE, 1–10.

[8] Christopher Hundhausen, Anukrati Agrawal, Dana Fairbrother, and Michael
Trevisan. 2009. Integrating pedagogical code reviews into a CS 1 course: an
empirical study. ACM SIGCSE Bulletin 41, 1 (2009), 291–295.

[9] Michelle Ichinco, Aaron Zemach, and Caitlin Kelleher. 2013. Towards general-
izing expert programmers’ suggestions for novice programmers. In 2013 IEEE
Symposium on Visual Languages and Human Centric Computing. IEEE, 143–150.

[10] Saj-Nicole A Joni and Elliot Soloway. 1986. But My Program Runs! Discourse
Rules for Novice Programmers. Journal of Educational Computing Research 2, 1
(1986), 95–125.

[11] Xiaosong Li and Christine Prasad. 2005. Effectively teaching coding standards
in programming. In Proceedings of the 6th Conference on Information Technology
Education. ACM, 239–244.

[12] Raymond Lister, Tony Clear, Dennis J Bouvier, Paul Carter, Anna Eckerdal, Jana
Jacková, Mike Lopez, Robert McCartney, Phil Robbins, Otto Seppälä, et al. 2010.
Naturally occurring data as research instrument: analyzing examination re-
sponses to study the novice programmer. ACM SIGCSE Bulletin 41, 4 (2010),
156–173.

[13] David Liu and Andrew Petersen. 2019. Static Analyses in Python Programming
Courses. In Proceedings of the 50th ACM Technical Symposium on Computer Science
Education. ACM, 666–671.

[14] Mary L McHugh. 2012. Interrater reliability: the kappa statistic. Biochemica
Medica 22, 3 (2012), 276–282.

[15] K McMaster, S Sambasivam, and Stuart Wolthuis. 2013. Teaching Program-
ming Style with Ugly Code. In Information Systems Educators Conference, Vol. 30.
San Antonio, TX. http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.400.
9411&rep=rep1&type=pdf

[16] Paul W Oman and Curtis R Cook. 1990. A Taxonomy for Programming Style. In
Proceedings of the 1990 ACM Annual Conference on Cooperation CSC ’90. Wash-
ington, DC, 244–250. https://doi.org/10.1145/100348.100385

[17] Stewart D Smith, Nicholas Zemljic, and Andrew Petersen. 2015. Modern goto:
novice programmer usage of non-standard control flow. In Proceedings of the
15th Koli Calling Conference on Computing Education Research. ACM, 171–172.

[18] Elliot Soloway and Kate Ehrlich. 1984. Empirical Studies of Programming
Knowledge. IEEE Transactions on Software Engineering SE-10, 5 (1984), 595–
609. https://doi.org/10.1109/TSE.1984.5010283

[19] Leo C Ureel II and Charles Wallace. 2019. Automated Critique of Early Pro-
gramming Antipatterns. In Proceedings of the 50th ACM Technical Symposium on
Computer Science Education. ACM, 738–744.

[20] Jacqueline Whalley, Tony Clear, Phil Robbins, and Errol Thompson. 2011. Salient
elements in novice solutions to code writing problems. Conferences in Research
and Practice in Information Technology Series 114 (2011), 37–45.

[21] Eliane S Wiese, Anna N Rafferty, and Armando Fox. 2019. Linking Code Read-
ability, Structure, and Comprehension among Novices: It’s Complicated. In Pro-
ceedings of the 41st ACM/IEEE International Conference on Software Engineering.

[22] Eliane S Wiese, Anna N Rafferty, Daniel M Kopta, and Jacqulyn M Anderson.
2019. Replicating novices’ struggles with coding style. In Proceedings of the 27th
International Conference on Program Comprehension. IEEE Press, 13–18.

[23] Eliane S Wiese, Anna N Rafferty, and Garrett Moseke. 2021. Students’ misunder-
standing of the order of evaluation in conjoined conditions. In 2021 IEEE/ACM
29th International Conference on Program Comprehension (ICPC). IEEE.

[24] Eliane S Wiese, Michael Yen, Antares Chen, Lucas A Santos, and Armando Fox.
2017. Teaching Students to Recognize and Implement Good Coding Style. In
Proceedings of the 4th ACM conference on Learning at Scale. ACM, Cambridge,
MA, 41–50.

[25] Michael Woodley and Samuel N. Kamin. 2007. Programming Studio: A Course
for Improving Programming Skills in Undergraduates. In Proceedings of the
38th SIGCSE Technical Symposium on Computer Science Education (Covington,
Kentucky, USA) (SIGCSE ’07). ACM, New York, NY, USA, 531–535. https:
//doi.org/10.1145/1227310.1227490

Session: Code Quality SIGCSE ’22, March 3–5, 2022, Providence RI, USA

327

https://www.acm.org/binaries/content/assets/education/cs2013_web_final.pdf
https://www.acm.org/binaries/content/assets/education/cs2013_web_final.pdf
https://doi.org/10.1145/2807442.2807495
http://arxiv.org/abs/13/02
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.400.9411&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.400.9411&rep=rep1&type=pdf
https://doi.org/10.1145/100348.100385
https://doi.org/10.1109/TSE.1984.5010283
https://doi.org/10.1145/1227310.1227490
https://doi.org/10.1145/1227310.1227490

	Abstract
	1 Introduction
	2 Related Work
	3 Survey Topics and Items
	4 Survey Methods and Hypotheses
	4.1 Methods
	4.2 Data coding for writing responses

	5 Results
	5.1 Style and readability choices
	5.2 Comprehension of code
	5.3 Code writing

	6 Discussion
	6.1 Takeaways for instructors

	Acknowledgments
	References

