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Abstract
We identify the perverse filtration of a Lagrangian fibration with the monodromy weight filtration of a maximally
unipotent degeneration of compact hyper-Kahler manifolds.

1. Throughout, we work over the complex numbers C. Let M be an irreducible holomorphic symplectic
variety or, equivalently, a projective hyper-Kihler manifold. Assume that it admits a (holomorphic)
Lagrangian fibration 7 : M — B. The perverse ¢-structure on the constructible derived category
D?(B, Q) induces a perverse filtration on the cohomology of M,

P.H*(M,Q).

We refer to [ 1, 9] for the conventions of the perverse filtration.

2. Let f : M — A be a projective degenerating family of hyper-Kéhler manifolds over the unit
disk. For t € A*, let N denote the logarithmic monodromy operator on H>(M;, Q). The degeneration
f M — A is called of type III if

N*#0, N°=0.
By [5, Proposition 7.14], this is equivalent to having maximally unipotent monodromy. See the rest of

[5] and also [3, 8] for more discussions on degenerations of hyper-Kéhler manifolds.
Let

(H;,(Q), WoH; (Q), F.H; (C))

denote the limiting mixed Hodge structure' associated with f : M — A. In this short note, we prove
the following result relating the perverse and the monodromy weight filtrations.

1Similar to the perverse filtration, we consider the Hodge filtration as an increasing filtration.

© The Author(s), 2021. Published by Cambridge University Press. This is an Open Access article, distributed under the terms of the Creative
Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in
any medium, provided the original work is properly cited.

https://doi.org/10.1017/fms.2021.31 Published online by Cambridge University Press


doi:10.1017/fms.2021.31
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/fms.2021.31&domain=pdf
https://doi.org/10.1017/fms.2021.31

2 Andrew Harder et al.

3. Theorem. Forany Lagrangian fibration © : M — B, there exists a type Il projective degeneration
of hyper-Kdhler manifolds f : M — A with M, deformation equivalent to M for all t € A*, such that

P H*(M,Q) = Wy Hy (Q) = Wary1 Hy (Q) (D

through an identification of the cohomology algebras H*(M, Q) = H;;_(Q).

Because M and M, are deformation equivalent, and hence diffeomorphic, they share the same
cohomology. The limiting mixed Hodge structure can be viewed as supported on the cohomology of
M, which provides the required identification H*(M,Q) = H;; (Q). This identification will be built
into the construction of the degeneration f : M — A.

4. Theorem 3 was previously conjectured by the first author in [4, Conjecture 1.4] and proven in the
case of K3 surfaces.

The interaction between the perverse and the weight filtrations for certain (noncompact) hyper-Kéhler
manifolds was first discovered by de Cataldo, Hausel, and Migliorini [1], which is now referred to as the
P = W conjecture. More precisely, the P = W conjecture identifies the perverse filtration of a Hitchin
fibration with the weight filtration of the mixed Hodge structure of the corresponding character variety
through Simpson’s nonabelian Hodge theory [11]. Theorem 3 can be viewed as a direct analogue of this
conjecture.

5. Theorem 3 also offers conceptual explanations to the main results in [9]. As is remarked in [4,
Introduction], a recent result of Soldatenkov [12, Theorem 3.8] shows that limiting mixed Hodge
structure for type III degenerations is of Hodge-Tate type.? In particular, we have

dimg Gr¥¥ H'*/(Q) = dim¢ Grf' H7/ (C).

lim lim
Coupled with the equalities (by (1) and the definition of the limiting Hodge filtration)
dimg GrP H™*/ (M, Q) = dimg Gr} H[(Q),
dime Grf’ H"/(C) = dimc Gt H™ (M, C) = dimc Grl H'™/ (M, ©),
this yields the ‘Perverse = Hodge’ equality in [9, Theorem 0.2],
dimg Grf H™*/ (M, Q) = dimc Grf H'™*/ (M, C).

See [9, Section 0.4] for various applications of this equality.
Moreover, the P = W identity (1) implies the multiplicativity of the perverse filtration

U: PyHY(M,Q) x P HY (M,Q) — P H* (M, Q)

through the general fact that the monodromy weight filtration is multiplicative. The latter may follow
from a combination of results of Fujisawa and Steenbrink. Fujisawa [2, Lemma 6.16] proved that the
wedge product on the relative logarithmic de Rham complex of a projective semistable degeneration
induces a cup product on the hypercohomology groups that respects a particular weight filtration. In a
much earlier work [ 13, Section 4], Steenbrink identified the hypercohomology of the relative logarithmic
de Rham complex with the cohomology of the nearby fibre, in such a way that the cup product matches
the topological cup product and the weight filtration corresponds to the monodromy weight filtration.
Alternatively, as the referee pointed out,> monodromy acts on cohomology by algebra automorphisms.
The logarithmic monodromy operator then acts on the cohomology algebra as a derivation, which yields
the multiplicativity of the monodromy weight filtration. This recovers [9, Theorem A.1].

2This parallels the fact that the mixed Hodge structure of character varieties is of Hodge-Tate type; see [10].
3We thank the referee for suggesting this simpler argument.
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Because the proof of Theorem 3 uses the same ingredients as in [9], our new way of deriving these
results is not logically independent.

6. We now prove Theorem 3 and we make free use of the statements in [9]. To fix some notation,
let 7 : M — B be a Lagrangian fibration with dim M = 2 dim B = 2n. The second cohomology group
H?*(M,Z) (respectively H>(M, Q)) is equipped with the Beauville-Bogomolov-Fujiki quadratic form
qm (—) of signature (3, b(M) — 3), where b(M) is the second Betti number of M.

Let n € H*>(M,Q) be a n-relative ample class, and let 8 € H?(M, Q) be the pullback of an ample
class on B. We have gas(8) = 0 and, by taking Q-linear combinations of r and 8, we may assume
g (17) = 0. Note that in this case, we have by (M) > 4.

7. Consider the following operators on the cohomology H* (M, Q):
Ly(-)=nuU-, Lg(-)=pU-.

In [9, Section 3.1], it was shown that L,, and Lg form sl>-triples (L, H,,, A;;) and (Lg, Hg, Ag), which
generate an sl X slp-action on H*(M, Q). The action induces a weight decomposition

H'(M.Q) = (D P @)
i,j

with
Hylpij = (i—n)id, Hglpij = (j —n)id.

A key observation in [9, Proposition 1.1] is that (2) provides a canonical splitting of the perverse
filtration PoH* (M, Q). More precisely, we have

PeHY(M,Q) = (P P (3)
i+j=d
i<k

8. The sl, X sly-action above is part of a larger Lie algebra action on H*(M, Q) introduced by
Looijenga-Lunts [7, Section 4] and Verbitsky [14, 15]. The Looijenga-Lunts-Verbitsky algebra

g ¢ End(H"(M, Q)

is defined to be the Lie subalgebra generated by all sI,-triples (L, H, A,,) with w € H*(M, Q) such
that L, (—) = w U — satisfies hard Lefschetz.
Given a Q-vector space V equipped with a quadratic form g, we define the Mukai extension

V=veQ’, gj=qo(%3).
Looijenga—Lunts [7, Proposition 4.5] and Verbitsky [15, Theorem 1.4] showed independently that
g~ so(H (M, Q).4um), = = 50(4,b2(M) - 2).

Here the statement with Q-coefficients is taken from [3, Theorem 2.7]. Moreover, there is a weight
decomposition g = g_» ® go ® g» with natural isomorphisms

g2 = H*(M,Q), go=s0(H*(M,Q),qm)®(H), ¢ =~H*(M,Q). 4)

Another relevant Lie algebra is generated by the sl,-triples associated with 77, 5 and a third element
p € H*(M, Q) satisfying

am(p) >0, qumm.p)=qmu(B,p)=0.
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Such a p exists by the signature (3, b2(M) — 3) of gps. Let g, C g denote this Lie subalgebra and let

VP = <77,,3,,0> - HZ(M9 Q)

By [9, Corollary 2.6] complemented with the argument in [3, Theorem 2.7], we have
o = 50(Vp, Guly)- ®)

The g,-action on H*(M, Q) induces the same weight decomposition as (2); see [9, Section 3.1].

9. Recall the natural isomorphism A? H2(M, Q) =~ so(H2(M,Q), ga) defined by
1 1
anNbm— qu(a,—)b - EQM(b’ -)a.

Asin[12, Lemma 4.1], we obtain a nilpotent operator Ng , = BAp € so(H?(M,Q), gp) whose action
on H>(M, Q) satisfies

Im(Ng ) = (B.p). Im(N3 ) =(B). N, =0.

By [6, Lemma 3.9] and the assumption g (8, p) = 0, we can further identify Ng , with the commutator
[Lg,Ap] € go through the isomorphisms (4). Note that Ng , = [Lg, Ap] € gp.

In the two remaining sections, we show that the nilpotent operator Ng ,, induces an sl,-triple whose
weight decomposition splits both the perverse filtration Po H* (M, Q) and the monodromy weight filtra-
tion of a degeneration f : M — A. This completes the proof of Theorem 3.

10. The construction of a degeneration f : M — A with logarithmic monodromy Ng , is precisely
[12, Theorem 4.6]. Whereas the original statement requires b,(M) > 5 to ensure the existence of
an element 8 € H>(M,Q) with ¢y (8) = 0, in our situation 8 is readily given by the Lagrangian
fibration 7 : M — B. From the proof of [12, Theorem 4.6], it suffices to find an element / € HZ(M ,Z)
satisfying

CIM(h) >O’ qM(ﬁ’h) :CIM(P,h) =0

in order to obtain nilpotent orbits (Ng ,, x) withx € D nasin[12, Definition 4.3].# These nilpotent orbits
eventually provide the required degeneration f : M — A through global Torelli. Now because ¢, is of
signature (3, b2(M) - 3) and gy, is only of signature (2, 1) (recall that by (M) > 4), such an & exists.

By Jacobson-Morozov, the nilpotent operator Ng ,, € g, is part of an sl>-triple that we denote (Ly =
Ng o, Hn, An). Consider the action of this sI; on H*(M, Q) and the associated weight decomposition

H' (M, Q) = P wy ©)
d,m
with Hy IW,f. = mid. By the definition of the monodromy weight filtration, we have
WeH;, (Q = €D Wi @
d-m<k

11. Finally, we match the perverse decomposition (2) with the weight decomposition (6). Because
both decompositions are defined over Q, it suffices to work with C-coefficients.

We recall some basic facts about so(5, C)-representations. Let V be a C-vector space admitting three
sly-actions (L, H, A1), (Ly, H, Ay) and (L3, H, A3) that generate an so(5, C)-action. More concretely,
the operators

LS’ AS, KSI = [LS’AZ]7 H7 for s’t € {172’ 3}

4Here @h is the extended polarised period domain with respect to h € H*(M , Z).
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satisfy the relations (2.1) in [14]. We consider the Cartan subalgebra
b =(H,-V-1Kz) c s0(5,C)

and the associated weight decomposition
-
i,j

with
Hlyii =@+ j-2n)id, (-V=-1K3)|yi;i = (i —j)id.

We define a nilpotent operator

1 V-1 1 V-1
LN = ELZ — TL:‘” Al = _§K12 + TK13 € SD(S,C),

which induces an sl,-triple (Ly, Hy, Ay ) with

1 V-1 1 V-1 —
AN = _ELZ - TL3, A | = EKlz + TKB, Hy = V-1Ky;.

In particular, we have Hy |yi.; = (j — i) id. The weight decomposition with respect to this sl-action

then takes the form
v=va. vi= v
m i+j=d
j—i=m
with Hy |V,;f = mid.
In our geometric situation, let V be the total cohomology H* (M, C). We consider the three operators
Ly, Ly, L3 determined by

1 V-1 1 V-1
L= Lp, ELZ + TL?, = L,], ELQ - TL3 = LB,

which induce a representation of so(5,C) by (5). In particular, we have Vi/ = Péj . Moreover, the
nilpotent operator Ly is exactly Ng , = [Lg, A,]. We conclude from (3) and (7) that

peHlM.C)= PP = P vii= P vi= B wio=wuh (©).

i+j=d it+j=d d-m<2k d-m<2k
i<k j-i=m
d-m<2k
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