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ALEXANDER KISELEV

Abstract. The focus of the course is on small scale formation in solutions of the incompressible
Euler equation of fluid dynamics and associated models. We first review the regularity results
and examples of small scale growth in two dimensions. Then we discuss a specific singular
scenario for the three dimensional Euler equation discovered by Hou and Luo, and analyze
some associated models. Finally, we will also consider the surface quasi-geostrophic (SQG)
equation, and review the construction an example of singularity formation in the modified
SQG patch solutions as well as discuss example of unbounded growth of derivatives for the
smooth solutions.

1. Introduction

In this section we briefly set the stage; for more detailed introduction into our subject here
one may consult excellent textbooks [44] or [46]. The incompressible Euler equation of fluid
mechanics goes back to 1755 [25]. It appears to be the second PDE ever written down. The
equation describes motion of inviscid and incompressible (also called ideal) fluid. The Euler
equation is a close relative of the Navier-Stokes equations of fluid mechanics, which came about
almost one hundred years later and include viscous effects. One could argue that the Euler
equation is less relevant in applications - for example, an observation due to D’Alambert is that
there is neither drag nor lift on a body moving in an irrotational ideal fluid. However, Euler
equation contains the fluid mechanics nonlinearity, the heart of the Navier-Stokes, and thus for
a mathematician it is the first equation to understand. It is also a model of choice in a variety
of situations where viscous effects can be ignored. The equation is given by

∂tu+ (u · ∇)u = ∇p, ∇ · u = 0. (1.1)

Here u(x, t) is the vector field of the flow, and p(x, t) is pressure. When set in a domain D
with boundary, the boundary condition that is natural in many instances is no penetration,
u · n|∂D = 0.

The story on global regularity vs finite time singularity formation question for the Euler
equation is very different in two and three dimensions. To see why, it is convenient to look at
vorticity ω = curlu. In the vorticity form, the Euler equation becomes

∂tω + (u · ∇)ω = (ω · ∇)u, (1.2)

which is supplemented with the Biot-Savart law which allows to express the velocity u through
vorticity. In two dimensions, the Biot-Savart law takes form u = ∇⊥(−∆D)−1ω, where ∆D is
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the Dirichlet Laplacian on domain D or simply Laplacian on R2 or T2, and ∇⊥ = (∂x2 ,−∂x1).
In three dimensions, u = curl(−∆)−1ω in R3 or T3, while in bounded domains the Biot-Savart
law in general takes more complicated form (see [24]).

Coming back to (1.2), notice that the term on the right hand side vanishes in two dimensions.
This makes equation simpler; notice that for any smooth solution and p ≥ 1 we have

∂t

ˆ
D

|ω(x, t)|p dx = p

ˆ
D

|ω|p−1 sgn(ω)∂tω dx = −
ˆ
D

u · ∇|ω|p dx =

ˆ
D

(∇ · u)|ω|p dx = 0;

where the third step is obtained integrating by parts (using the boundary condition) and the
last one by substituting ∇ · u = 0. This observation yields many conserved quantities that in
three dimensional case are lacking.

In the next section, we overview existence and uniqueness theory for a fairly general class of
solutions to the 2D Euler equation, called Yudovich theory.

2. The 2D Euler equation: a sketch of Yudovich theory

In this section, we assume that D ⊂ R2 is a smooth bounded domain or that solutions are
periodic in space (i.e. D = T2). More details on the material of this section can be found
in [39,44,46]. A classical solution of the 2D Euler equation is a C1 function ω that solves

∂tω + (u · ∇)ω = 0, u = ∇⊥(−∆D)−1ω, ω(x, 0) = ω0(x). (2.1)

It turns out that one can define unique solutions for more general classes of the initial data if
one properly modifies the notion of solution.

A key object of the Yudovich theory are particle trajectories Φt(x):

dΦt(x)

dt
= u(Φt(x), t), Φ0(x) = x (2.2)

which are defined by incompressible vector field u. If u is smooth, then so is the map Φt(x);
this map is also measure preserving since u is divergence free. The map is one-to-one on D by
uniqueness of solutions to ordinary differential equations with Lipschitz coefficients. It is not
hard to see that it is also onto by solving (2.2) backward in time.

A direct calculation shows that ω remains constant on trajectories (again, for smooth solu-
tions), namely, d

dt
ω(Φt(x), t) = 0, so

ω(x, t) = ω0(Φ−1
t (x)). (2.3)

Next, denote by GD(x, y) the Green’s function of the Dirichlet Laplacian in domain D, so
that

u(x, t) =

ˆ
D

∇⊥GD(x, y)ω(y) dy. (2.4)

A C1 solution of the Euler equation satisfies the system (2.2), (2.3), and (2.4). We are going
to define solutions of low regularity, with ω just in L∞, by using (2.2), (2.3) and (2.4) instead
of (2.1). At the heart of the argument are a few simple observations. The first one is a well
known estimate of potential theory.
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Proposition 2.1. If D ⊂ R2 is a compact domain with a smooth boundary, the Dirichlet
Green’s function GD(x, y) has the form

GD(x, y) =
1

2π
log |x− y|+ h(x, y).

Here, for each y ∈ D, h(x, y) is a harmonic function solving

∆xh = 0, h|x∈∂D = − 1

2π
log |x− y|. (2.5)

We have GD(x, y) = GD(y, x) for all (x, y) ∈ D, and GD(x, y) = 0 if either x or y belongs
to ∂D. In addition, we have the estimates

|GD(x, y)| ≤ C(D) (|log |x− y||+ 1) (2.6)

|∇GD(x, y)| ≤ C(D)|x− y|−1, (2.7)

|∇2GD(x, y)| ≤ C(D)|x− y|−2. (2.8)

The following lemma is a consequence of Proposition 2.1.

Lemma 2.2. The kernel KD(x, y) = ∇⊥GD(x, y) satisfiesˆ
D

|KD(x, y)−KD(x′, y)| dy ≤ C(D)φ(|x− x′|), (2.9)

where

φ(r) =

{
r(1− log r) r < 1
1 r ≥ 1,

(2.10)

with a constant C(D) which depends only on the domain D.

Proof. Set |x− x′| = r > 0, split the integration into B2r(x) ∩D and its complement, and use
estimates of the Proposition 2.1. We leave details to the interested reader, they can also be
found in [39,46]. �

A result on the regularity of fluid velocity is an immediate consequence.

Corollary 2.3. Lt D be smooth bounded domain. Suppose the vorticity ω is bounded. Then
fluid velocity u satisfies

‖u‖L∞ ≤ C(D)‖ω‖L∞ , (2.11)

and

|u(x)− u(x′)| ≤ C‖ω‖L∞φ(|x− x′|), (2.12)

with the function φ(r) defined in (2.10).

Proof. The estimate (2.11) follows from (2.7). The proof of (2.12) is immediate from Lemma 2.2,
as

u(x, t) =

ˆ
D

KD(x, y)ω(y, t)dy.

�
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We say that u is log-Lipschitz if it satisfies (2.12). A key component of the Yudovich theory
is the analysis of the fluid particle trajectories (2.2). The classical requirement for uniqueness
of solutions to a system of ODE is Lipschitz dependence of coefficients on the unknowns. If the
vorticity is bounded, heuristically we expect the velocity u to be one derivative more regular,
which would just match the requirement. However, the L∞ is the endpoint setting, where we
lose a logarithm in regularity, leading to estimates on velocity that are just log-Lipschitz. We
will see later that this estimate is sharp and one cannot in general expect better regularity of the
velocity corresponding to bounded vorticity. A key observation of the Yudovich theory is that
we can still define fluid particle trajectories (2.2) uniquely if the velocity u is only log-Lischitz.

The following lemma addresses this question [39,46].

Lemma 2.4. Let D be a bounded smooth domain in Rd. Assume that the velocity field b(x, t)
satisfies, for all t ≥ 0:

b ∈ C([0,∞)× D̄), |b(x, t)− b(y, t)| ≤ Cφ(|x− y|), b(t, x) · ν|∂D = 0. (2.13)

Here, the function φ(r) is given by (2.10) and ν is the unit normal to ∂D at point x. Then the
Cauchy problem in D̄

dx

dt
= b(x, t), x(0) = x0, (2.14)

has a unique global solution. Moreover, if x0 /∈ ∂D, then x(t) /∈ ∂D for all t ≥ 0. If x0 ∈ ∂D,
then x(t) ∈ ∂D for all t ≥ 0.

Note that the log-Lipschitz regularity is essentially border-line: the familiar example of the
ODE

ẋ = xβ, x(0) = 0,

with β ∈ (0, 1) does not have the uniqueness property: for example, x(t) ≡ 0, and

x(t) =
tp

pp
, p =

1

1− β
are both solutions (and in fact one can find infinitely many solutions by separating from zero
at an arbitrary time). Thus ODEs with just Hölder (with an exponent smaller than one)
coefficients may have more than one solution. Existence of the solutions, on the other hand,
does not really require the log-Lipschitz condition: uniform continuity of b(x, t) and at most
linear growth as |x| → +∞ would be sufficient, see e.g. [11] for the Peano existence theorem.
We omit the proof of Lemma 2.4, one can check [46] for details.

Now an iterative scheme can be used to construct a weak solution to the 2D Euler equation
with L∞ vorticity, using (2.2), (2.3), and (2.4). We summarize the results of Yudovich theory
in the following theorems.

Theorem 2.5. Fix any ω0 ∈ L∞(D). There exists the unique triple (ω(x, t), u(x, t),Φt(x)) satis-
fying (2.2), (2.3) and (2.4) such that for every T > 0 the vorticity ω belongs to L∞([0, T ], L∞(D))
and is weak-∗ continuous in time in L∞, the fluid velocity u(t, x) is uniformly bounded and log-
Lipschitz in x and t, and Φt ∈ Cα(T )([0, T ] × D̄) is measure preserving, invertible mapping of
D̄, satisfying

dΦt(x)

dt
= u(Φt(x), t), Φ0(x) = x, (2.15)
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ω(x, t) = ω0(Φ−1
t (x)),

u(x, t) =

ˆ
D

KD(x, y)ω(y, t) dy.

Here α(T ) > 0 and only depends on ‖ω0‖L∞ and time T.

A triple (ω, u,Φt) satisfying the conditions of Theorem 2.5 is called Yudovich solution to the
2D Euler equation.

If the initial data ω0 is more regular, this regularity is inherited by the solution.

Theorem 2.6. Suppose that ω0 ∈ Ck(D̄), k ≥ 1. Then the solution described in Theorem 2.5,
satisfies, in addition, the following regularity properties, for each t ≥ 0:

ω(t) ∈ Ck(D̄), Φt(x) ∈ Ck,α(t)(D̄), and u ∈ Ck,β(D̄),

for all β < 1. In addition, the kth order derivatives of u are log-Lipschitz.

An important example of a Yudovich solution of the 2D Euler equations is the “singular
cross” flow, considered by Bahouri and Chemin [1]. We discuss its periodic version here. It
corresponds to the vorticity ω0 which equals to (−1) in the first and third quadrants of the
torus (−π, π]× (−π, π], and to (+1) in the other two quadrants:

ω0(x1, x2) = −1 for {0 < x1, x2 < π} and {−π ≤ x1, x2 < 0}, (2.16)

ω0(x1, x2) = 1 for {0 < x1 < π, −π < x2 < 0}, and {−π < x1 < 0, 0 < x2 < π}.
We set ω0 to be equal to zero on the separatrices x1,2 = 0, π. The singular cross has four
vortices, one in each quadrant of the torus, and a hyperbolic point at the origin. In fact, ω0

is a stationary Yudovich solution of the Euler equations. To arrive at this conclusion, the key
observation is that ω0 has the symmetries

ω0(x1, x2) = −ω0(−x1, x2) = −ω0(x1,−x2) (2.17)

on the torus (−π, π]× (−π, π].

Lemma 2.7. If the initial condition ω0 ∈ L∞, and satisfies the symmetries (2.17), then the
Yudovich solution of the 2D Euler equations satisfies the same symmetries for all t ≥ 0:

ω(x1, x2, t) = −ω(−x1, x2, t) = −ω(x1,−x2, t). (2.18)

The lemma is proved by checking that if ω(x1, x2, t) is a Yudovich solution of the 2D Euler
equation, then so is −ω(−x1, x2, t), and then appealing to the uniqueness property to establish
that ω(x1, x2, t) = −ω(−x1, x2, t).

Given odd symmetry and periodicity of ω(x, t), it is not hard to check that the stream
function ψ := (−∆)−1ω is also odd with respect to both variables, with respect to zero as well
as ±π. Then u1 = ∂x2ψ is odd with respect to x1 = 0,±π and u2 = −∂x1ψ is odd with respect
to x2 = 0,±π. This implies that the trajectories never leave the quadrants where they originate,
and thus by (2.3) and (2.16) the solution is stationary: ω(x, t) ≡ ω0(x).

The singular cross flow has remarkable properties showing that the estimates on the Yudovich
solution of Theorem 2.5 are qualitatively sharp. Namely, the following proposition holds:

Proposition 2.8. Consider the singular cross solution described above. Then, for small positive
x1, we have

u1(x1, 0) =
2

π
x1 log x1 +O(x1). (2.19)
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The estimate (2.19) corresponds to u1 being just log-Lipschitz near the origin. The proof of
(2.19) is based on the periodic version of the Biot-Savart law:

Proposition 2.9. Let ω ∈ L∞(T2) be a mean zero function. Then the vector field

u = ∇⊥(−∆)−1ω (2.20)

is given by

u(x) = − 1

2π
lim
γ→0

ˆ
R2

(x− y)⊥

|x− y|2
ω(y)e−γ|y|

2

dy, (2.21)

where ω has been extended periodically to all R2.

We leave the proof of this formula as an exercise.

Proof of Proposition 2.8. Given (2.21), one can show (2.19) by first estimating that the integral
over the complement of the central period cell (−π, π] contributes regular Lipschitz term to u1

near the origin. As far as the integral over the central cell goes, let us denote it uC1 (x1, 0). It is
convenient to go back to representation

uC1 (x1, 0) =
−∂x2
2π

ˆ
S

log |x− y|ω0(y) dy =
1

4π

ˆ
S

∂y2 log |x− y|2ω0(y) dy.

Integrating in y2 over each quadrant and re-grouping the terms, we obtain

1

2π

(ˆ π

0

log
(x1 − y1)2

(x1 − y1)2 + π2
dy1 −

ˆ 0

−π
log

(x1 − y1)2

(x1 − y1)2 + π2
dy1

)
=

1

π

ˆ π

0

log
x1 − y1

x1 + y1

dy1 +
1

2π

ˆ π

0

log
(x1 + y1)2 + π2

(x1 − y1)2 + π2
dy1.

The last term satisfies ˆ π

0

log

(
1 +

4x1y1

(x1 − y1)2 + π2

)
dy1 ≤ Cx1.

Let us split the first term into two parts. First,ˆ π

2x1

log

(
1− 2x1

y1 + x1

)
dy1 = −

ˆ π

2x1

2x1

y1 + x1

dy1 +O(x1) = 2x1 log x1 +O(x1).

Second, making the substitution y1 = x1z in the remaining part we obtainˆ 2x1

0

log
|x1 − y1|
x1 + y1

dy1 = x1

ˆ 2

0

log
|1− z|
|1 + z|

dz = O(x1).

Collecting all the estimates we arrive at (2.19). �

Since u2(x1, 0) ≡ 0, a trajectory starting at a point (x0
1, 0), with x0

1 ∈ (0, π) is just an interval

Φt((x
0
1, 0)) ≡ (x1(t), 0),

moving towards the origin. If x0
1 is sufficiently small, the component x1(t) will satisfy

x′1(t) ≤ x1(t) log x1(t),

and so
d

dt
(log x1(t)) ≤ log x1(t),
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thus
log x1(t) ≤ et log x0

1,

and
x1(t) ≤ x1(0)exp(t). (2.22)

This estimate has a consequence for the Hölder regularity of the trajectory map. Since the
origin is a stationary point of the flow, the inverse flow map Φ−1

t (x) can be Hölder continuous
only with a decaying in time exponent (at most ∼ e−t). Of course, the direct flow map Φt(x)
also has a similar property; to establish it one needs to look at characteristic lines moving along
the vertical separatrix. This is exactly the regularity claimed in Theorem 2.5, and thus the
Bahouri-Chemin example shows that it cannot be improved.

3. The 2D Euler equation: an upper bound on derivative growth

More details on material of this section can be found in [16, 37, 39, 44]. We now turn to
classical solutions of the 2D Euler equation whose existence and uniqueness are provided by
Theorem 2.6. We work in a setting of a compact smooth domain D, but the arguments of this
section can be adapted to work on periodic solutions (i.e., T2) or whole plane R2. The question
that interests us is how quickly can the derivatives of the solutions grow. Such bounds are
implicit already in the work of Wolibner [59] and Hölder [32], and have been stated explicitly
by Yudovich.

Theorem 3.1. Assume that ω0 ∈ C1(D̄). Then the gradient of the solution ω(x, t) satisfies the
following bound

‖∇ω(·, t)‖L∞
‖ω0‖L∞

≤
(

1 +
‖∇ω0‖L∞
‖ω0‖L∞

)C exp(‖ω0‖L∞ t)

eexp(C‖ω0‖L∞ t)−1 − 1 (3.1)

for all t ≥ 0.

This upper bound grows at a double exponential rate in time which is extremely fast. A
similar double exponential in time upper bound can also be derived for higher order derivatives
of vorticity. The occurrence of the double exponential is unusual. Such fast growth, if realized,
would pose a formidable challenge in numerical simulations. Let us sketch an argument leading
to the estimate (3.1). There are three essential ingredients.

1. The kinematics. Using the trajectories equation (2.2) and some simple estimates, one can
derive the following inequality.

exp

(
−
ˆ t

0

‖∇u(·, s)‖L∞ ds
)
≤ |Φt(x)− Φt(y)|

|x− y|
≤ exp

(ˆ t

0

‖∇u(·, s)‖L∞ ds
)
. (3.2)

Since this bound is two sided, it also applies to to the inverse map Φ−1
t (x).

2. The vorticity conservation along trajectories. The formula (2.3) implies that

‖∇ω(·, t)‖L∞ ≤ ‖∇ω0‖L∞supx,y
|Φ−1

t (x)− Φ−1
t (y)|

|x− y|
. (3.3)

3. The Kato inequality.

‖∇u‖L∞ ≤ C(α,D)‖ω‖L∞
(

1 + log

(
1 +
‖∇ω‖L∞
‖ω‖L∞

))
. (3.4)
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The way to think about this inequality is as follows. The derivatives of u can be expressed
as second order derivatives of the stream function, ∂2

xixj
(−∆D)−1ω. Such expressions are called

(double) Riesz transforms of ω. These are classical objects in Fourier analysis, and lead to
Caldreon-Zygmund operators. Riesz transforms are bounded on Lp, 1 < p <∞, but not in L∞

or L1 (see e.g. [48]). The structure of the problem, however, requires an L∞ bound and then
we have to pay a logarithm of a higher order norm.

Given (3.2), (3.3), and (3.4), the estimate (3.1) follows from some algebraic manipulations
and application of Gronwall inequality.

4. The 2D Euler equation: an example of double exponential growth

More details on material of this section can be found in [37,39].
A natural question prompted by Theorem 3.1 is whether the double exponential upper bound

on growth of derivatives of vorticity is sharp. A variety of examples with some growth in
derivatives have been provided by a number of authors. Yudovich [61, 62] built first such
examples with growth near the boundary using Lyapunov-type functionals, but without explicit
growth rate bounds. Nadirashvili’s [49] example is set in an annulus, and is based on using a
perturbation of a stable background shear flow. The rate of growth in this example can be shown
to be linear in time. Denisov [16] has constructed a periodic solution such that ‖∇ω‖L∞ grows
faster than linearly (in a certain average sense). In [17], Denisov has constructed examples with
extremely strong (double exponential in time in a certain sense) bursts of growth in derivatives
over finite time interval. The idea of Denisov’s construction goes back to the singular cross
example. Indeed, imagine that a smooth passive scalar ψ(x, t) is advected by the singular cross
flow u, that is,

∂tψ + (u · ∇)ψ = 0. (4.1)

Assume that the initial data ψ0 is a C∞0 bump supported away from the origin and but nonzero
on the x2 = 0 separatrix for x1 ∼ δ > 0, δ sufficiently small. Then ψ(Φt(δ, 0), t) = ψ0(δ) > 0,
while (2.22) shows that Φt(δ, 0) ≤ δexp(t). At the same time, ψ(0, t) = 0 since the origin is a
stationary point of the singular cross flow. Together, these observations imply that

‖∇ψ(·, t)‖L∞ ≥ ψ0(δ)δ− exp(t),

and is therefore growing at a double exponential rate. The 2D Euler equation for vorticity has
the same form as (4.1), but of course it is not passive. Changes in ω affect u. Yet the idea
of Denisov is to smooth out the singular cross at a very small scale (which depends on how
long we would like to control the solution), and to place a perturbation close to the separatrix.
In the end, one can mimic the effect of the singular cross flow on passive scalar small scale
formation for a finite time, but then control is lost.

The purpose of this section is to present an example where double exponential growth in
‖∇ω‖L∞ is maintained for all times, thus showing that the upper bound of Theorem 3.1 is in
general qualitatively sharp [37].

Theorem 4.1. Consider the two-dimensional Euler equation on a unit disk D. There exist
smooth initial data ω0 with ‖∇ω0‖L∞/‖ω0‖L∞ > 1 such that the corresponding solution ω(x, t)
satisfies

‖∇ω(x, t)‖L∞
‖ω0‖L∞

≥
(
‖∇ω0‖L∞
‖ω0‖L∞

)c exp(c‖ω0‖L∞ t)

(4.2)
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for some c > 0 and for all t ≥ 0.

The example can be extended to any smooth domain with an axis of symmetry [60].
From now on in this section, we will denote by D the unit disk in the plane. It will be

convenient for us to take the system of coordinates centered at the lowest point of the disk, so
that the center of the disk is at (0, 1). Our initial data ω0(x) will be odd with respect to the
vertical axis: ω0(x1, x2) = −ω0(−x1, x2).

We will take smooth initial data ω0(x) so that ω0(x) ≤ 0 for x1 > 0 (and so ω0(x) ≥ 0 for
x1 < 0). This configuration makes the origin a hyperbolic fixed point of the flow; in particular,
u1 vanishes on the vertical axis. Let us analyze the Biot-Savart law we have for the disk to
gain insight into the structure of the velocity field. The Dirichlet Green’s function for the disk
is given explicitly by GD(x, y) = − 1

2π
(log |x − y| − log |x − ȳ| − log |y − e2|), where with our

choice of coordinates ȳ = e2 + (y− e2)/|y− e2|2, e2 = (0, 1). Given the symmetry of ω, we have

u(x, t) = ∇⊥
ˆ
D

GD(x, y)ω(y, t) dy = − 1

2π
∇⊥
ˆ
D+

log

(
|x− y||x̃− ȳ|
|x− ȳ||x̃− y|

)
ω(y, t) dy, (4.3)

where D+ is the half disk where x1 ≥ 0, and x̃ = (−x1, x2). The following Lemma is crucial for
the proof of Theorem 4.1. To state it, we need a bit more notation. Let us introduce notation
Q(x1, x2) for a region that is the intersection of D+ and the quadrant x1 ≤ y1 <∞, x2 ≤ y2 <
∞. Given π/2 > γ > 0, denote Dγ

1 the intersection of D+ with a sector π/2 − γ ≥ φ ≥ 0,
where φ is the usual angular variable. Similarly, define Dγ

2 the intersection of D+ with a sector
π/2 ≥ φ ≥ γ.

Lemma 4.2. Fix the value of γ, π/2 > γ > 0 (later it will be convenient to take γ sufficiently
small, in particular γ < π/4). Suppose that x ∈ Dγ

1 . Then there exists δ > 0 such that for all
x ∈ Dγ

1 such that |x| ≤ δ we have

u1(x1, x2, t) =
4

π
x1

ˆ
Q(x1,x2)

y1y2

|y|4
ω(y, t) dy1dy2 + x1B1(x1, x2, t), (4.4)

where ‖B1(·, t)‖∞ ≤ C(γ)‖ω0‖L∞ .
If x ∈ Dγ

2 is such that |x| ≤ δ then we have

u2(x1, x2, t) = − 4

π
x2

ˆ
Q(x1,x2)

y1y2

|y|4
ω(y, t) dy1dy2 + x2B2(x1, x2, t), (4.5)

where ‖B2(·, t)‖∞ ≤ C(γ)‖ω0‖L∞ .

The proof of the lemma is based on careful analysis of the Biot-Savart law; the details can
be found in [37,39].

It will be convenient to denote

Ω(x1, x2, t) = − 4

π
x2

ˆ
Q(x1,x2)

y1y2

|y|4
ω(y, t) dy1dy2. (4.6)

Now let us select the initial data as follows. Fix some small γ, and choose δ < 1 so that
the bounds of Lemma 4.2 hold. Note that in what follows, we can always make δ smaller if
necessary. Take ω0(x) = −1 if x1 ≥ δ, odd with respect to x1, and satisfying 0 ≥ ω0(x) ≥ −1
for x ∈ D+.
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Lemma 4.3. Let the initial data ω0 be as above. Suppose that |x| ≤ δ. Then, if δ is sufficiently
small, we have

Ω(x1, x2, t) ≥ c log δ−1 (4.7)

for some universal constant c > 0. Here Ω(x1, x2, t) is given by (4.6).

Proof. We sketch the proof of this estimate leaving detailed computations to the reader. The
key observation is that the trajectory map Φt(x) and its inverse are area preserving, while
ω(x, t) = ω0(Φ−1

t (x)). For this reason, for all times t, the area of the set St ⊂ D+ where
−1 < ω(x, t) < 0 does not exceed 2δ; on the complement of St we have ω(x, t) = −1. Given this
observation, (4.4) and the formula (4.6), it is not hard to devise a lower bound estimate that will
show (4.7). The singularity of the kernel in (4.6) would yield log |x|−1 & log δ−1 if integrated
against −1 over all Q(x1, x2), and removing a set of measure ≤ 2δ from the integration region
will preserve the lower bound by log δ−1. �

Now we will put one more requirement on the initial data. Given 0 < x′1 < x′′1 < 1, we set

O(x′1, x
′′
1) =

{
(x1, x2) ∈ D+ , x′1 < x1 < x′′1 , x2 < x1

}
. (4.8)

We are going to take a sufficiently small ε < δ and require in addition that ω0(x) = −1 for
x ∈ O(ε10, ε). We can find ω0 satisfying this requirement such that ‖∇ω0‖L∞ . ε−10.

Let us also define, for 0 < x1 < 1,

u1(x1, t) = min
(x1,x2)∈D+ , x2≤x1

u1(x1, x2, t) (4.9)

and
u1(x1, t) = max

(x1,x2)∈D+ , x2≤x1
u1(x1, x2, t) . (4.10)

Since ω(x, t) and u(x, t) are smooth by Theorem 2.6, these functions are locally Lipschitz in x1

on [0, 1), with the Lipschitz constants being locally bounded in time. Hence, we can uniquely
define a(t) by

a′ = u1(a, t) , a(0) = ε10 , (4.11)

and b(t) by
b′ = u1(b, t) , b(0) = ε . (4.12)

We set
Ot = O(a(t), b(t)) (4.13)

note that O0 is exactly the set where we set ω0 = −1 (in addition to the x1 ≥ δ region). The
next key observation is

Lemma 4.4. We have ω(x, t) = −1 for x ∈ Ot for all t ≥ 0.

Note that for what we know so far, Ot may become empty at some point in time. We will
see later that this is not the case.

Proof. Here is the sketch of the argument. Note that due to Lemma 4.3, if δ is chosen sufficiently
small, then Ot will lie in the region x1 ≤ δ for all times and thus the estimates of Lemma 4.2
will continue to apply for all times. The main idea is that given any point y ∈ Ot, we have
y = Φt(x) with x ∈ O0. If we can show that, then the lemma is proved by (2.3). Suppose
that this is not true, and some trajectory Φt(x) for x /∈ O0 ends up inside Ot. This trajectory
cannot enter through the boundary ∂D due to the boundary condition. It also could not have
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entered through the left and right sides of the region Os due to definitions of a, b, u and u. It
remains to consider the diagonal x1 = x2. However, by Lemma 4.2 and Lemma 4.3, we have

c log δ−1 − C
c log δ−1 + C

≤ −u1(x1, x1, t)

u2(x1, x1, t)
≤ c log δ−1 + C

c log δ−1 − C
.

If δ is sufficiently small, this shows that any trajectory on the diagonal part of the boundary
of Ot is always moving out of Ot, and hence no trajectory could have entered Ot through the
diagonal. �

Now we are going to complete the construction of the example.

Proof of Theorem 4.1. To get double exponential growth of the derivatives, we need a genuinely
nonlinear argument; it is not sufficient to show that Ω(x, t) is large for all times as we did in
Lemma 4.3. Instead, we will show that Ω(x, t) grows due to region Ot approaching the origin
and remaining sufficiently large. Lemma 4.2 yields

u1(b(t), t) ≥ −b(t) Ω(b(t), x2(t), t)− C b(t),

for some 0 ≤ x2(t) ≤ b(t) and a constant C that may depend only on γ. A simple calculation
shows that, for any 0 ≤ x2 ≤ b(t) we have

Ω(b(t), x2, t) ≤ Ω(b(t), b(t), t) + C.

Thus, we get

u1(b(t), t) ≥ −b(t) Ω(b(t), b(t), t)− C b(t), (4.14)

with C a new universal constant; below the constant C may change from step to step. In the
same vein, for suitable x̃2(t) with 0 ≤ x̃2(t) ≤ a(t), we have

u1(a(t), t) ≤ −a(t) Ω(a(t), x̃2(t), t) + Ca(t) ≤ −a(t) Ω(a(t), 0, t) + Ca(t).

A key observation is that

Ω(a(t), 0, t) ≥ − 4

π

ˆ
Ot

y1y2

|y|4
ω(t, y) dy1dy2 + Ω(b(t), b(t), t).

Since ω(y, t) = −1 on Ot, we have

−
ˆ
Ot

y1y2

|y|4
ω(t, y) dy1dy2 ≥

ˆ π/4

π/8

ˆ b(t)/ cosφ

a(t)/ cosφ

sin 2φ

2r
drdφ >

1

8
(− log a(t) + log b(t)).

Therefore

u1(a(t), t) ≤ − a(t)

(
1

2π
(− log a(t) + log b(t)) + Ω(b(t), b(t), t)

)
+ Ca(t). (4.15)

It follows from (4.14) and (4.15) that

d

dt
(log a(t)− log b(t)) ≤ 1

2π
(log a(t)− log b(t)) + C. (4.16)

From (4.16), the Gronwall lemma leads to

log a(t)− log b(t) ≤ log (a(0)/b(0)) exp(t/2π) + C exp(t/2π) ≤ (9 log ε+ C) exp(t/2π). (4.17)
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z
u periodic in z

symmetry plane
for the reflection
(x, y, z)→ (x, y,−z)

u · n = 0 at ∂Ω

u

u

Figure 1. The initial data for Hou-Luo scenario

We should choose our ε so that − log ε is larger than the constant C that appears in (4.17). In
this case, we obtain from (4.17) that

log a(t) ≤ 8 exp(t/2π) log ε,

and so
a(t) ≤ ε8 exp(t/2π).

Note that by the definition of a(t), the first coordinate of the characteristic that originates at
the point on ∂D near the origin with x1 = ε10 does not exceed a(t). To arrive at (4.2), it remains
to note that we chose ω0 so that ‖∇ω0‖L∞ . ε−10. �

5. The Hou-Luo scenario for the 3D Euler equation

More information on the material of this section can be found in [43,44]. The global regularity
vs finite time blow up question for smooth solutions of the 3D Euler equation is open. There
has been much work on local well-posedness, on conditional regularity criteria, as well as on
search for singular scenario. How would finite time blow up manifest itself? In general, any
loss of regularity by smooth solution qualifies. However, from many conditional criteria one
can infer certain minimal conditions needed for blow up. Perhaps the best known and one of
the earliest such conditions was proved by Beale, Kato and Majda [2,44]. It states that at the
singularity formation time T , one must have

lim
t→T

ˆ t

0

‖ω(·, s)‖L∞ ds =∞.

A few years ago, Hou and Luo [43] have performed an in-depth numerical simulation, identi-
fying a promising singularity formation scenario. The scenario is axi-symmetric (that is, there
is no dependence on the angular variable φ in the cylindrical coordinates) and odd with respect
to z = 0 plane. Very fast vorticity growth is observed at a ring of hyperbolic stagnation points
of the flow located on the boundary of a cylinder. In fact, the geometry of the scenario is
similar to that of the double exponential growth example for the 2D Euler we discussed in the
previous section; the paper [37] has been inspired by the numerical simulations of [43].
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“secondary
flow”

possible
finite-time
singularity?

x

z

Figure 2. The secondary flows in fixed φ section

One of the standard forms of the 3D axi-symmetric Euler equations in the usual cylindrical
coordinates (r, φ, z) is (see e.g. [44] for more details)

∂t

(
ωφ

r

)
+ ur∂r

(
ωφ

r

)
+ uz∂z

(
ωφ

r

)
= ∂z

(
(ruφ)2

r4

)
(5.1a)

∂t(ru
φ) + ur∂r(ru

φ) + uz∂z(ru
φ) = 0 , (5.1b)

with the understanding that ur, uz are given from ωφ via the Biot-Savart law which takes form

ur = −∂zψ
r
, uz =

∂rψ

r
, Lψ =

ωφ

r
, Lψ = −1

r
∂r

(
1

r
∂rψ

)
− 1

r2
∂2
zzψ.

The initial data for the Hou-Luo scenario, shown schematically on Figure 1, has ωφ = 0 and
only the swirl uφ is non-zero. From (5.1), it is clear that the swirl will spontaneously generate
toroidal rolls corresponding to non-zero ωφ. These are the so-called “secondary flows”, [51];
their effect on river flows was studied by Einstein [19]. Thus the initial condition leads to the
(schematic) picture in the xz–plane shown on Figure 2, in which we also indicate the point
where a conceivable finite-time singularity (or at least an extremely strong growth of vorticity)
is observed numerically. In the three-dimensional picture, the points with very fast growth
form a ring on the boundary of the cylinder.

A similar scenario can be considered for the 2D inviscid Boussinesq system in a half-space
R+ = {(x1, x2) ∈ R× (0,∞)} (or in a flat half-cylinder S1× (0,∞)), which we will write in the
vorticity form:

∂tω + (u · ∇)ω = ∂x1θ (5.2a)

∂tθ + (u · ∇)θ = 0 . (5.2b)

Here u = (u1, u2) is obtained from ω by the usual Biot-Savart law u = ∇⊥(−∆)−1ω, with
appropriate boundary conditions on ∆, and θ represents fluid temperature or density.
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Figure 3. The 2D Boussineq singularity scenario

It is well-known (see [44]) that this system has properties similar to the 3D axi-symmetric
Euler (5.1), at least away from the symmetry axis. Indeed, comparing (5.1) with (5.2), we see
that θ essentially plays the role of the square of the swirl component ruφ of the velocity field u,
and ω replaces ωφ/r. The real difference between the two systems only emerges near the axis
of rotation, where factors of r can conceivably change the nature of dynamics. For the purpose
of comparison with the axi-symmetric flow, the last picture should be rotated by π/2, after
which it resembles the picture relevant for (5.2), see Figures 2 and 3. The system (5.2) has an
advantage of being simpler looking and easier to think about while very likely preserving all
the essential features. Of course, the question of global regularity vs finite time blow up is also
open for the 2D inviscid Boussinesq; in fact it appears on the list of “eleven great problems of
mathematical hydrodynamics” by Yudovich [63].

In both the 3D axi-symmetric Euler case and in the 2D Boussinesq system case the best
chance for possible singularity formation seems to be at the points of symmetry located at the
boundary, which numerical simulations suggest are fixed hyperbolic points of the flow. So far
there is no proof of singularity formation for smooth solutions in the Hou-Luo scenario, but a
number of models have been proposed (e.g. [9, 10, 18, 31, 33, 41, 42]). All these models suggest
finite time blow up. In the next section, we will take a look at one of the simpler ones that
provides a qualitative insight into the nature of possible nonlinear feedback loop leading to
singularity.

In addition, there is recent and very interesting work by Elgindi and Elgindi and Jeong [21–23]
and [7] where the initial data is taken to be singular, to a varying degree, in a scenario very
similar to that of Hou-Luo and involving stationary hyperbolic points of the flow. Then finite
time blow up is shown in a sense of the solution becoming more singular than the initial data.
In [21, 22] the domain needs to have a corner (for the 2D Boussinesq, and a wedge for the 3D
Euler), and the initial vorticty is just L∞, but becomes unbounded in finite time. The work [23]
is set in the whole space, and the initial vorticity is Hölder continuous, leading to a solution
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satisfying

lim
t→1

ˆ t

0

‖ω(·, t)‖L∞ dt =∞.

The paper [7] builds on [23] and [8] and proves finite time blow up for solutions with Cα initial
vorticity and C1,α density (respectively, swirl) in the Hou-Luo scenario.

6. Singularities and turbulence

In this section, we take a step back to look at the big picture. The material in this section
is motivational and largely informal. Most of the statements and problems mentioned here are
either heuristic or remain wide open. One of the incentives in trying to understand and describe
small scale and possible singularity formation in solutions to equations of fluid mechanics is
the connection to turbulence. Turbulence is familiar to all of us from bumpy airplane ride or
fluctuations we feel in strong wind. It is a ubiquitous feature of intense fluid motion, and plays
a role in a wide range of processes in nature: drag effects for cars and airplanes, efficiency of
internal combustion engines, mixing crucial for survival of marine animals, or even evolution of
temperature inside Earth [58]! Nevertheless, turbulence remains relatively poorly understood:
Richard Feynman has called it the greatest unsolved problem of classical physics fifty years
ago, and not much has changed since. This situation is not for the lack of trying: a number of
heuristic theories have been proposed by Prandtl, von Kármán, Richardson, Taylor, Heisenberg,
Kolmogorov, Onsager, Kraichnan, and others, see e.g. [26] for review. These phenomenological
theories have been quite successful in predicting some of the properties of turbulent flows, but
deeper understanding and in particular rigorous connection to the partial differential equations
of fluid mechanics have not been established. Among these predictions, the one most consistent
with experiments and reported at least as early as Dryden’s wind tunnel experiments in 1943,
is Kolmogorov’s “zeroth law of turbulence” which postulates anomalous dissipation of energy,
that is, non-vanishing of the rate of dissipation of kinetic energy of turbulent fluctuations per
unit mass, in the limit of zero viscosity. Let uν be solutions of the 3D Navier-Stokes equations
with viscosity ν (in the non-dimensional form, ν is equal to the inverse of the Reynolds number,
Re = UL

σ
, where σ is the actual viscosity and U, L typical velocity and length scales):

∂tu
ν + (uν · ∇)uν − ν∆uν = ∇pν + f, ∇ · uν = 0,

where f is some spatially regular forcing. Notice that ν
´
|∇uν |2 dx is just an instantaneous

rate of energy dissipation. Then the zeroth law states that

lim
ν→0

ν〈|∇uν(x, t)|2〉 > 0, (6.1)

where 〈·〉 represents a suitable ensemble or space-time average. On the other hand, one may
expect that as ν → 0, uν converges to the solution u of the incompressible 3D Euler equa-
tion. This is far from clear, especially when there are boundaries. But if we accept this as
a reasonable assumption, and the limiting solution is smooth, then the limit of the enstropy´
|∇uν |2 dx should equal

´
|∇u|2 dx < ∞, and so (6.1) cannot hold. Therefore, if the zeroth

law of turbulence is mathematically valid, it is intimately linked with singularity formation in
the solutions of the Euler (and possibly Navier-Stokes) equation. In fact, the zeroth law has
been rigorously proved in just one PDE setting: for stochastically forced Burgers equation [20].
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In this case, the underlying singularities are well understood shocks, and this is a key aspect
that makes the problem approachable.

The set up of the Hou-Luo scenario seems to be rather special, but there are indications that
hyperbolic point geometry plays an important role in extreme dissipation regions in turbulent
fluid flows. In a paper [53], the authors describe a physical experiment where they study
turbulence. The geometry of the experiment is very similar to the Hou-Luo setting: the flows are
confined to a cylinder and are statistically axi-symmetric (of course, in any real flow the exact
axial symmetry breaks down spontaneously). Using particle image velocimetry techniques, they
are able to capture the structure of fluid flow in the regions of “extreme inertial dissipation
events”. These are regions where the dissipation rate is anomalously large, essentially the
regions that would facilitate the zeroth law as viscosity decreases. There are four different
geometric scenarios documented in [53], and by far the most common is the one where vorticity
growth happens at the front between colliding masses of fluid with different directions of the
velocity and hyperbolic point geometry. In this sense, the Hou-Luo scenario may be thought of
as an idealized blueprint of what appears to be a common small scale formation mechanism.

In recent years, there have been other works on singularity formation in equations of fluid
mechanics, in particular by Terry Tao [56, 57]. In these papers, finite time blow up is proved
for modified Euler and Navier-Stokes equations; the modifications involve suitable averaging or
changes in coupling of the Fourier modes. The philosophy of these examples is different from
Hou-Luo scenario and involves instead a self-similar picture of energy transition to smaller and
smaller scales. Inspired by these ideas, the paper [4] has outlined a specific physical mechanism
that could be behind such self-similar cascades: repeated flattening of vortex tubes into sheets
and breakup of the sheets into tubes. There are some numerical simulations, however (see
e.g. [47] where further references can be found), that suggest that this process is quite complex
and it is not clear whether some sort of approximate self-similarity can be traced over smaller
and smaller scales.

7. One-dimensional models of the Hou-Luo scenario

More details on the results discussed in this section can be found in [9, 10, 43]. A one-
dimensional model of the Hou-Luo scenario was formulated already in [43]. This model is given
by

∂tω + u∂xω = ∂xθ,

∂tθ + u∂xθ = 0, ux = Hω. (7.1)

Here H is the Hilbert transform, and the setting can be either periodic or the entire axis with
some decay of the initial data. The model (7.1) can be thought of as an effective equation
on the x2 = 0 axis in the Boussinesq case (see (5.2) and Figure 3) or on the boundary of the
cylinder in the 3D axi-symmetric Euler case. The model can be derived from the full equations
under assumption that ω(x, t) is concentrated in a boundary layer of width a near x2 = 0 axis
and is independent of x2, that is ω(x1, x2, t) = ω(x1, t)χ[0,a](x2). Such assumption is necessary
to close the system and reduces the half-plane Biot-Savart law to ux = Hω in the main order;
the parameter a enters into the additional term that is non-singular and is dropped from (7.1).
See [43], [10] for more details. We will call the system (7.1) the Hou-Luo model.
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The Hou-Luo model is still fully nonlocal. A further simplification was proposed in [9], where
the Biot-Savart law has been replaced with

u(x, t) = −x
ˆ 1

x

ω(y, t)

y
dy. (7.2)

Here the most natural setting is on an interval [0, 1] with smooth initial data supported away
from the endpoints. For simplicity we set the Biot-Savart law so that blow up at zero happens
for positive vorticity. The law (7.2) is motivated by the velocity representation in Lemma 4.2
above, as it is the simplest one dimensional analog of such representation. This law is “almost
local” - if one divides u by x and differentiates, one gets local expression. We will call the model
(7.2) the CKY model. The law (7.2) models the situation where ω is odd in x1, and with this
additional assumption one can show that it is not too different from the relation ux = Hω in
the Hou-Luo model.

Both Hou-Luo and CKY models are locally well-posed in reasonable spaces, and in both
cases possibility of finite time blow up has been proved in [9] and [10] respectively. Here we
sketch the arguments showing singularity formation in the CKY model [9]. In this section, let
us denote

Ω(x, t) =

ˆ 1

x

ω(y, t)

y
dy. (7.3)

The first step is the following

Lemma 7.1. Along the trajectories Φt(x), we have

d

dt
Ω(Φt(x), t) =

ˆ 1

Φt(x)

ω(y, t)2

y
dy +

ˆ 1

Φt(x)

∂xθ(y, t)

y
dy. (7.4)

The proof of this lemma is a direct computation taking advantage of (7.1), (7.2), and inte-
gration by parts. A key observation is the positivity of the first term in the right hand side of
(7.4).

Consider now ψ(x, t) := log Φt(x)−1. From (7.2), we have that

∂tψ(x, t) = Ω(Φt(x), t). (7.5)

On the other hand, from Lemma 7.1, we have that

d

dt
Ω(Φt(x), t) ≥

ˆ 1

Φt(x)

∂xθ(y, t)

y
dy. (7.6)

Let us trace a trajectory that originates at some point in the support of θ where ∂xθ is not
zero. As the flow pushes the vorticity support towards the origin, we expect that the front of
the graph of θ will become very steep. Then morally, we can think of the integral on the right
hand side of (7.6) as ˆ 1

Φt(x)

∂xθ(y, t)

y
dy ∼ Φt(x)−1 = eψ(x,t),

as most of the variation of θ will be supported close to Φt(x). If we accept this heuristic argument
for a moment, we get a system of differential inequalities

∂tψ(x, t) = Ω(Φt(x), t), ∂tΩ(Φt(x), t) & eψ(x,t)
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for which it is not hard to prove finite time blow up. Such blow up corresponds to a trajectory
carrying some positive value of the density arriving at the origin at a finite time T <∞, which

one can show only happens if
´ T

0
‖ω(·, t)‖L∞ dt =∞.

A more careful argument to establish blow up uses a cascade of trajectories corresponding
to a sequence of initial points with larger and larger values of θ0, and iterative estimates. The
details can be found in [9].

8. The modified SQG equation: singularity formation in patches

More details regarding material of this section can be found in [34,38,40]. Note that the 2D
Euler equation is just the 2D inviscid Boussinesq system with θ ≡ 0. It is tempting to try to
extend the insight and techniques used in the proof of Theorem 4.1 to analysis of the Hou-Luo
scenario. There are several issues that arise in such an attempt. Perhaps the most significant
one is that the vorticity may no longer be bounded, so the result of Lemma 4.2 giving fairly
precise control over fluid velocity near the origin is not available. The kernel in the Biot-Savart
law is not sign definite, and growth of vorticity may conceivably make the contributions of
the regions that in Lemma 4.2 end up in the regular Lipschitz term no longer relatively small.
This might destroy the hyperbolic structure of the flow and sabotage singularity formation. The
available evidence suggests that singularity formation likely holds - the numerical computations
of Hou and Luo are very detailed and precise, all the models considered so far suggest blow
up, and so does the work of Elgindi and Jeong [21–23]. Yet there are counter arguments to
all these points. Any numerical simulation has a limit; the models of the Hou-Luo scenario
make simplifying assumptions on the Biot-Savart law and other aspects of the problem; and
the works on rough initial data do not apply to smooth initial data.

In this section, we discuss a blow up example in a different setting, where nevertheless some
of the technical issues are similar. In particular, we will see that the term pushing towards
singularity has the same order as the term opposing it (in contrast to Lemma 4.2 where we could
isolate a relatively simple dominant main term). This setting is patch solutions to modified
surface quasi-geostrophic (SQG) equation.

The SQG equation is similar to the 2D Euler equation in vorticity form, but is more singular:

∂tω + (u · ∇)ω = 0, u = ∇⊥(−∆)−1+αω, α = 1/2, ω(x, 0) = ω0(x). (8.1)

The value α = 0 in (8.1) corresponds to the 2D Euler equation, while 0 < α < 1
2

is the so-
called modified SQG range. The SQG and modified SQG equations come from atmospheric
science. They model evolution of temperature near the surface of a planet and can be derived
by formal asymptotic analysis from a larger system of rotating 3D Navier-Stokes equations
coupled with temperature equation through buoyancy force [30, 39, 45, 50]. In mathematical
literature, the SQG equation was first considered by Constantin, Majda and Tabak [12], where
a parallel between the structure of the SQG equation and the 3D Euler equation was drawn. A
singularity formation scenario, a closing front, has been proposed in [12], but it was later proved
to be impossible under certain additional assumptions in [13,14]. The SQG and modified SQG
equations are perhaps simplest looking equations of fluid mechanics for which the question of
global regularity vs finite time blow up remains open.

The equation (8.1) can be considered with smooth initial data, but another important class
of initial data is patches, where θ0(x) equals linear combination of characteristic functions of
some disjoint domains Ωj(0). The resulting evolution yields time dependent regions Ωj(t). The
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regularity question in this context addresses the regularity class of the boundaries ∂Ωj(t) and
lack of self-intersection or contact between different components Ωj(t). Existence and uniqueness
of patch solution for 2D Euler equation follows from Yudovich theory. The global regularity
question has been settled affirmatively by Chemin [6] (Bertozzi and Constantin [3] provided a
different proof). For the SQG and modified SQG equations patch dynamics is harder to set up.
Local well-posedness has been shown by Rodrigo in C∞ class [52] and by Gancedo in Sobolev
spaces [27] in the whole plane setting. Numerical simulations by Cordoba, Fontelos, Mancho
and Rodrigo [15] and by Dritschel and Scott [54, 55] suggest that finite time singularities are
possible. There are different scenarios involving boundaries touching and forming corners [15,55]
and self-similar cascade of filaments [54], but rigorous understanding of this phenomena remains
missing.

We will discuss modified SQG and Euler patches in a half-plane. The Bio-Savart law for the
patch evolution on the half-plane D := R× R+ is

u = ∇⊥(−∆D)−1+αω,

with ∆D being the Dirichlet Laplacian on D, which can also be written as

u(x, t) :=

ˆ
D

(
(x− y)⊥

|x− y|2+2α
− (x− ȳ)⊥

|x− ȳ|2+2α

)
ω(y, t)dy. (8.2)

Note that u is divergence free and tangential to the boundary. A traditional approach to the
2D Euler (α = 0) vortex patch evolution, going back to Yudovich (see [46] for an exposition) is
via the corresponding flow map. The active scalar ω is advected by u from (8.2) via

ω(x, t) = ω
(
Φ−1
t (x), 0

)
, (8.3)

where
d

dt
Φt(x) = u (Φt(x), t) and Φ0(x) = x. (8.4)

The initial condition ω0 for (8.2)-(8.4) is patch-like,

ω0 =
N∑
k=1

θkχΩk(0), (8.5)

with θ1, . . . , θN 6= 0 and Ω1(0), . . . ,ΩN(0) ⊆ D bounded open sets, whose closures Ωk(0) are
pairwise disjoint and whose boundaries ∂Ωk(0) are simple closed curves of given regularity.

One reason the Yudovich theory works for the 2D Euler equations is that for ω which is
(uniformly in time) in L1∩L∞, the velocity field u given by (8.2) with α = 0 is log-Lipschitz in
space, and the flow map Φt is everywhere well-defined as discussed in Section 2. But when ω
is a patch solution and α > 0, the flow u from (8.2) is smooth away from the patch boundaries
∂Ωk(t) but is only 1−α Hölder continuous near ∂Ωk(t), which is exactly where one needs to use
the flow map. This creates significant technical difficulties in proving local well-posedness of
patch evolution in some reasonable functional space. A naive intuition on why patch evolution
can be locally well-posed for α > 0 without boundaries is that one can show that the below-
Lipschitz loss of regularity only affects the tangential component of the fluid velocity at patch
boundary. The normal to patch component, that intuitively should determine the evolution of
the patch, retains stronger regularity.
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In presence of boundaries, the problem is even harder. Intuitively, one reason for the difficul-
ties can be explained as follows. In the simplest case of the half-plane the reflection principle
implies that the boundary can be replaced by a reflected patch (or patches) of the opposite
sign. If the patch is touching the boundary, then the reflected and original patch are touching
each other, and the low regularity tangential component of the velocity field generated by the
reflected patch has strong influence on the boundary of the original patch near touch points.
Even in the 2D Euler case, the global regularity for patches in general domains with boundaries
remained open until very recently [35]. In the half-plane, a global regularity result has been
established earlier in [38]:

Theorem 8.1. Let α = 0 and γ ∈ (0, 1]. Then for each C1,γ patch-like initial data ω0, there
exists a unique global C1,γ patch solution ω to (8.3), (8.2), (8.4) with ω(·, 0) = ω0.

In the case α > 0 with boundary, even local well-posedness results are highly non-trivial.
The following result has been proved in [40] for the half-plane.

Theorem 8.2. If α ∈ (0, 1
24

), then for each H3 patch-like initial data ω0, there exists a unique
local H3 patch solution ω with ω(·, 0) = ω0. Moreover, if the maximal time Tω of existence of ω
is finite, then at Tω a singularity forms: either two patches touch, or a patch boundary touches
itself or loses H3 regularity.

On the other hand, in [38], it was proved that for any 1
24
> α > 0, there exist patch-like

initial data leading to finite time blow up.

Theorem 8.3. Let α ∈ (0, 1
24

). Then there are H3 patch-like initial data ω0 for which the
unique local H3 patch solution ω with ω(·, 0) = ω0 becomes singular in finite time (i.e., its
maximal time of existence Tω is finite).

Together, Theorems 8.1 and 8.3 give rigorous meaning to calling the 2D Euler equation
critical. In the half-plane patch framework α = 0 is the exact threshold for phase transition
from global regularity to possibility of finite time blow up.

Recently, the local well-posedness result of Theorem 8.2 and the finite time blow up example
of Theorem 8.3 have been extended to 0 < α < 1/3 for H2 patches in [28].

In what follows, we will sketch the proof of the blow up Theorem 8.3. Full details can be found
in [38]. Let us describe the initial data set up. Denote Ω1 := (ε, 4)×(0, 4), Ω2 := (2ε, 3)×(0, 3),
and let Ω0 ⊆ D+ ≡ R+ × R+ be an open set whose boundary is a smooth simple closed curve
and which satisfies Ω2 ⊆ Ω0 ⊆ Ω1. Here ε is a small parameter depending on α that will be
chosen later.

Let ω(x, t) be the unique H3 patch solution corresponding to the initial data

ω(x, 0) := χΩ0(x)− χΩ̃0
(x) (8.6)

with maximal time of existence Tω > 0. Here, Ω̃0 is the reflection of Ω0 with respect to the
x2-axis. Then

ω(x, t) = χΩ(t)(x)− χΩ̃(t)(x) (8.7)

for t ∈ [0, Tω), with Ω(t) := Φt(Ω0). It can be seen from (8.2) that the rightmost point of the
left patch on the x1-axis and the leftmost point of the right patch on the x1-axis will move
toward each other. In the case of the 2D Euler equations α = 0, Theorem 8.1 shows that
the two points never reach the origin. When α > 0 is small, however, it is possible to control
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Figure 4. The domains Ω1,Ω2,Ω0, and K(0) (with ω0 = χΩ0 − χΩ̃0
).

the evolution sufficiently well to show that — unless the solution develops another singularity
earlier — both points will reach the origin in a finite time. The argument yielding such control is
fairly subtle, and the estimates only work for sufficiently small α, even though one would expect
singularity formation to persist for more singular equations. This situation is not uncommon
in the field: there is plenty of examples with the infinite in time growth of derivatives for the
smooth solutions of 2D Euler equation, while until very recently none were available for the
more singular SQG equation - this will be discussed in the Section 9 below.

To show finite time blow up, we will deploy a barrier argument. Define

K(t) := {x ∈ D+ : x1 ∈ (X(t), 2) and x2 ∈ (0, x1)} (8.8)

for t ∈ [0, T ], with X(0) = 3ε. Clearly, K(0) ⊂ Ω(0). Set the evolution of the barrier by

X ′(t) = − 1

100α
X(t)1−2α. (8.9)

Then X(T ) = 0 for T = 50(3ε)2α. So if we can show that K(t) stays inside Ω(t) while the patch
solution stays regular, then we obtain that singularity must form by time T : the different patch
components will touch at the origin by this time unless regularity is lost before that.

The key step in the proof involves estimates of the velocity near origin. In particular, u1

needs to be sufficiently negative to exceed the barrier speed (8.9); u2 needs to be sufficiently
positive in order to ensure that Ω(t) cannot cross the barrier along its diagonal part. Note that
it suffices to consider the part of the barrier that is very close to the origin, on the order ∼ ε2α.
Indeed, the time T of barrier arrival at the origin has this order, and the fluid velocity satisfies
uniform L∞ bound that follows by a simple estimate which uses only α < 1/2. Thus the patch
Ω(t) has no time to reach more distant boundary points of the barrier before formation of
singularity.

Let us focus on the estimates for u1. For y = (y1, y2) ∈ D̄+ = R+ × R+, we denote ȳ :=
(y1,−y2) and ỹ := (−y1, y2). Due to odd symmetry, (8.2) becomes (we drop t from the notation
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in this sub-section)

u1(x) = −
ˆ
D+

K1(x, y)ω(y)dy, (8.10)

where

K1(x, y) =
y2 − x2

|x− y|2+2α︸ ︷︷ ︸
K11(x,y)

− y2 − x2

|x− ỹ|2+2α︸ ︷︷ ︸
K12(x,y)

− y2 + x2

|x+ y|2+2α︸ ︷︷ ︸
K13(x,y)

+
y2 + x2

|x− ȳ|2+2α︸ ︷︷ ︸
K14(x,y)

, (8.11)

Analyzing (8.11), it is not hard to see that we can split the region of integration in the
Biot-Savart law according to whether it helps or opposes the bounds we seek. Define

ubad1 (x) := −
ˆ
R+×(0,x2)

K1(x, y)ω(y)dy and ugood1 (x) := −
ˆ
R+×(x2,∞)

K1(x, y)ω(y)dy.

The following two lemmas contain the key estimates.

Lemma 8.4 (Bad part). Let α ∈ (0, 1
2
) and assume that ω is odd in x1 and 0 ≤ ω ≤ 1 on D+.

If x ∈ D+ and x2 ≤ x1, then

ubad1 (x) ≤ 1

α

(
1

1− 2α
− 2−α

)
x1−2α

1 . (8.12)

The proof of this lemma uses (8.11) and after cancellations leads to the bound

ubad1 (x) ≤ −
ˆ

(0,2x1)×(0,x2)

y2 − x2

|x− y|2+2α
dy, (8.13)

which gives (8.12)
In the estimate of the good part, we need to use a lower bound on ω that will be provided

by the barrier. Define

A(x) := {y : y1 ∈ (x1, x1 + 1) and y2 ∈ (x2, x2 + y1 − x1)} . (8.14)

Lemma 8.5 (Good part). Let α ∈ (0, 1
2
) and assume that ω is odd in x1 and for some x ∈ D+

we have ω ≥ χA(x) on D+, with A(x) from (8.14). There exists δα ∈ (0, 1), depending only on
α, such that the following holds.

If x1 ≤ δα, then

ugood1 (x) ≤ − 1

6 · 20αα
x1−2α

1 .

Here analysis of (8.11) leads to

ugood1 (x) ≤ −
ˆ
A1

y2 − x2

|x− y|2+2α
dy︸ ︷︷ ︸

T1

+

ˆ
A2

y2 − x2

|x− y|2+2α
dy︸ ︷︷ ︸

T2

,

with the domains

A1 := {y : y2 ∈ (x2, x2 + 1) and y1 ∈ (x1 + y2 − x2, 3x1 + y2 − x2)} ,
A2 := (x1 + 1, 3x1 + 1)× (x2, x2 + 1) .
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Figure 5. The segments I1 and I2 and the sets Ω3 and K(t0).

The term T2 can be estimated by Cx1, since the region of integration A2 lies at a distance
∼ 1 from the singularity. A relatively direct estimate of the term T1 leads to the result of the
Lemma.

A distinctive feature of the problem is that estimates for the “bad” and “good” terms appear-
ing in Lemmas 8.4 and 8.5 above have the same order of magnitude x1−2α

1 . This is unlike the 2D
Euler double exponential growth construction, where we were able to isolate the main term. To
understand the balance in the estimates for the “bad” and “good” terms, note that the “bad”
term estimate comes from integration of the Biot-Savart kernel over rectangle (0, 2x1)× (0, x2),
while the good term estimate from integration of the same kernel over the region A1 above.
When α is close to zero, the kernel is longer range, and the more extended nature of the
region A1 makes the “good” term dominate. In particular, the coefficient 1

α

(
1

1−2α
− 2−α

)
in

front of x1−2α
1 in Lemma 8.4 converges to to finite limit as α → 0, while the coefficient 1

6·20αα

in Lemma 8.5 tends to infinity. On the other hand, when α → 1
2
, the singularity in the Biot-

Savart kernel is strong and getting close to non-integrable. Then it becomes important that the
“bad” term integration region contains an angle π range near the singularity, while the “good”
region only π

4
. For this reason, controlling the “bad” term for larger values of α is problematic

- although there is no reason why there cannot be a different, more clever argument achieving
this goal.

It is straightforward to check that the dominance of the “good” term over “bad” one extends
to the range α ∈ (0, 1

24
), and that in this range we get as a result

u1(x, t) ≤ − 1

50α
x1−2α

1 (8.15)

for x = (x1, x2) such that x1 ≤ δα and x1 ≥ x2. A similar bound can be proved showing that

u2(x, t) ≥ 1

50α
x1−2α

2 (8.16)

for x = (x1, x2) such that x2 ≤ δα and x1 ≤ x2.
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The proof is completed by a contradiction argument, where we assume that the barrier K(t)
catches up with the patch Ω(t) at some time t = t0 < T of first contact. Taking ε sufficiently
small compared to δα from Lemma 8.5, we can make sure the contact can only happen on the
intervals I1 and I2 along the boundary of the barrier K(t0) appearing on Figure 5. But then
bounds (8.15), (8.16) and the evolution of the barrier prescription (8.9) lead to the conclusion
that the barrier should have been crossed at t < t0, yielding a contradiction.

9. The SQG equation: smooth solutions

More details on material presented in this section can be found in [29]. As we already
mentioned above, until recently, there have been no examples of smooth solutions to the SQG
equation exhibiting infinite in time growth of derivatives. The best known result [36] involved
only finite time bursts of growth. In this section, we outline the argument of [29] where
examples of SQG solutions with infinite - exponential in time - growth of derivatives have been
obtained. The construction involves a mix of ideas from [37], from the work of Zlatos [64]
yielding exponential in time growth for periodic solutions of the 2D Euler equation, and some
new ingredients. The theorem below involves the whole range of the modified SQG equations.

Theorem 9.1. Consider the modified SQG equations (8.1) in periodic setting. For all 0 < α <
1, there exist initial data ω0 such that

supt≤T‖∇2ω(·, t)‖L∞ ≥ exp(γT ), (9.1)

for all T > 0 and constant γ > 0 that may depend on ω0 and α. This constant can be made
arbitrarily large by picking ω0 appropriately.

Note that if α > 1/2, the models considered are actually more singular then the SQG
equation. Even local well-posedness in this case is not obvious, but has been established in [5].
Also, observe that we do not prove global regularity of the solutions in these examples - solutions
that blow up in finite time will also satisfy (9.1).

As before, we will make use of symmetries and assume that the initial data (and so the
solution) is odd with respect to both x1 and x2. We will also need a certain degenerate structure,
with solution vanishing to higher order near the x2 axis. The following lemma shows that this
property is preserved in time.

Lemma 9.2. Suppose that in addition to being odd in x1 and x2 and periodic, the initial data
ω0 also satisfies ∂x1ω0(0, x2) = 0 for all x2. Then the solution ω(x, t), while it remains smooth,
also satisfies ∂x1ω(0, x2, t) = 0.

The lemma is proved by differentiation of the equation and direct analysis. Note that all
even derivatives of ω also vanish when x1 = 0 due to odd symmetry.

Next, we need to carefully analyze the Biot-Savart law, which we state below under assump-
tion of oddness in both x1 and x2.

u1(x) =

ˆ ∞
0

ˆ ∞
0

(
x2 − y2

|x− y|2+2α
− x2 − y2

|x̃− y|2+2α
− x2 + y2

|x̄− y|2+2α
+

x2 + y2

|x+ y|2+2α

)
ω(y) dy1dy2, (9.2)

u2(x) = −
ˆ ∞

0

ˆ ∞
0

(
x1 − y1

|x− y|2+2α
− x1 − y1

|x̄− y|2+2α
− x1 + y1

|x̃− y|2+2α
+

x1 + y1

|x+ y|2+2α

)
ω(y) dy1dy2.(9.3)
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Here x̃ = (−x1, x2), x̄ = (x1,−x2), and the function ω is extended to the entire plane by
periodicity. We will later see that the integral converges absolutely at infinity if α > 0. Near
the singularity x = y, the convergence is understood in the principal value sense if α ≥ 1/2. In
what follows, we will denote the kernels in the integrals (9.2), (9.3) by K1(x, y) and K2(x, y)
respectively.

Let L ≥ 1 be a constant that we will eventually choose to be large enough. The first estimate
addresses the contribution of the near field y1, y2 ≤ L|x| to the Biot-Savart law provided that
we have control of ‖∇2ω‖L∞ . All the inequalities we show in the rest of this section, similarly to
Lemma 9.2, assume that the solution remains smooth at times where these inequalities apply.

Lemma 9.3. Assume that ω is odd with respect to both x1 and x2, periodic and smooth. Take
L ≥ 2, and suppose L|x| ≤ 1. Denote

unearj (x) =

ˆ
[0,L|x|]2

Kj(x, y)ω(y) dy.

Then we have

|unearj (x)| ≤ Cxj|x|2−2αL2−2α‖∇2ω‖L∞ . (9.4)

The lemma is proved by about a page of estimates. The control of the second derivative of
ω is used, in particular, to estimate the principal value singularity. The key observation is that
in the integral∣∣∣∣∣P.V.

ˆ L|x|

0

dy1

ˆ 2x2

0

dy2
(x2 − y2)(|x̃− y|2+2α − |x− y|2+2α)

x̃− y|2+2α|x− y|2+2α
ω(y, t)

∣∣∣∣∣
the kernel is odd with respect to y2 = x2 line, so ω(y, t) can be replaced by ω(y1, y2, t) −
ω(y1, x2, t). The latter difference can be estimated using second order derivatives by mean
value theorem, and the order of the singularity can be reduced to integrable. There are of
course more terms to estimate but their control is more straightforward.

The next result records an important property of the Biot-Savart law that makes contribution
of the L|x| ≤ |y| . 1 region of the central cell to u1 and u2 nearly identical when L is large.

Proposition 9.4. Let L be a parameter and x be such that L|x| ≤ 1. Assume that ω is odd
with respect to both x1 and x2, ω(x) ≥ 0 in [0, π)2, and is positive on a set of measure greater
than (L|x|)2. Let us define

umedj (x) =

ˆ
[0,π)2\[0,L|x|]2

Kj(x, y)ω(y) dy.

Then for all sufficiently large L ≥ L0 ≥ 2 and x such that L|x| ≤ 1 we have that

1−BL−1 ≤ −u
med
1 (x)x2

x1umed2 (x)
≤ 1 +BL−1, (9.5)

with some universal constant B.

The bound (9.5) follows from more informative pointwise bound for the Biot-Savart kernel.
A direct computation shows that in the region y1, y2 ≥ L|x|, we have

K1(x, y) = −8(1 + α)x1y1y2|y|−4−2α(1 + f1(x, y)), (9.6)
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and

K2(x, y) = 8(1 + α)x2y1y2|y|−4−2α(1 + f2(x, y)), (9.7)

where |f1,2(x, y)| ≤ AL−1 with some universal constant A.
Lemma 9.3 and Proposition 9.4 control contribution to the Biot-Savart law of the central

period cell. It turns out that the contribution of the rest of the cells is regular near the origin.

Lemma 9.5. Suppose that |x| ≤ 1. Define

ufarj (x) =

ˆ
[0,∞)2\[0,π)2

Kj(x, y)ω(y) dy.

Then

|ufarj (x)| ≤ C(α)xj‖ω‖L∞ . (9.8)

The final estimate we need is a lower bound on the absolute value of the velocity components
(−1)jumedj , j = 1, 2, near the origin provided certain assumptions on the structure of vorticity.

Lemma 9.6. There exists a constant 1 > δ0 > 0 such that if δ ≤ δ0, the following is true.
Suppose, in addition to symmetry assumptions made above, that we have 1 ≥ ω0(x) ≥ 0 on
[0, π)2 and that ω0(x) = 1 if δ ≤ x1,2 ≤ π − δ. Then for all x and L ≥ L0 such that L|x| ≤ δ,
we have that

(−1)jumedj (x, t) ≥ cxjδ
−α. (9.9)

The proof of the lemma uses the area preserving property of the flow and the fact that
vorticity is conserved along the trajectories, as well as the estimates (9.6), (9.7).

Now we have all the tools to sketch the proof of Theorem 9.1.
The initial data ω0 will be chosen as follows. First, as we already discussed, ω0 is odd with

respect to both x1 and x2, 1 ≥ ω0(x) ≥ 0 in [0, π)2 and it equals 1 in this region, apart from a
region of width ≤ δ along the boundary. The parameter δ ≤ δ0 < 1 will be fixed later. We also
require ∂x1ω0(0, x2) = 0 for all x2, a condition that is preserved for all times while the solution
stays smooth by Lemma 9.2. Finally, we assume that in a small neighborhood of the origin of
order ∼ δ we have ω0(x1, x2) = δ−4x3

1x2. Note that ∂2
x1
ω0(0, x2) = 0 by oddness, so this is the

“maximal” behavior of ω0 under our degeneracy condition.
Fix arbitrary T ≥ 1; for small T the result follows automatically as ‖∇2ω(·, t)‖L∞ ≥ cδ−2 for

all times. Take x0
1 = e−Tδ

−α/2
and x0

2 = (x0
1)β where β > 1 will be chosen later. Observe that

ω0(x0
1, x

0
2) = δ−4(x0

1)3+β = δ−4e−(3+β)Tδ−α/2 .

Consider the trajectory (x1(t), x2(t)) originating at (x0
1, x

0
2). We will track this trajectory until

either time reaches T, or x2(t) reaches x0
1, or ‖∇2ω(·, t)‖L∞ becomes large enough to satisfy the

lower bound we seek.
Let us denote

T0 = min
(
T, min{t : x2(t) = x0

1}, min{t : ‖∇2ω(·, t)‖L∞ ≥ exp(cT )}
)
.

Note that for all t ≤ T0, we have x2(t) ≤ x0
1.

The first step is to notice that for all t ≤ T0, if the contribution of ufar and unear ever becomes
of comparable size relatively to umed, and if the parameters δ and L are appropriately chosen,
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then the growth condition we seek must be satisfied. A specific condition sufficient for growth
estimate is

|unearj (x(t), t)|+ |ufarj (x(t), t)| ≥ L−1(−1)jumedj (x(t), t). (9.10)

This can be derived from Lemma 9.3, Lemma 9.5, Lemma 9.6, and the definition of x0
1. Hence

we can from now on assume that (9.10) never holds for t ≤ T0; otherwise we are done.
The second step is to observe that if umed does dominate for t ≤ T0 and T0 = T, then the

exponential growth that we seek would follow simply from Lemma 9.6 as well as conservation
of vorticity along trajectories.

This leaves the most interesting case where T0 < T due to x2(t) reaching the value x0
1. The

main danger is that u2 somehow happens to be much more efficient in pushing the trajectory
away from the origin than u1 in compressing it towards the origin. But such scenario is pre-
vented by Proposition 9.4, which basically says that when umed1,2 provide dominant contributions
to u1,2 then these contributions coincide to the main order, and the trajectory is almost pre-
cisely a hyperbola. Here is a sketch of the detailed estimate. Using that umed1,2 give dominant
contributions to u1,2 and Proposition 9.4 one can obtain

−u1(x(t), t)

x1(t)
≥ (1− 2BL−1)

u2(x(t), t)

x2(t)
(9.11)

provided that B > 2 and L is sufficiently large that can always be arranged. Therefore

x0
1

x1(T0)
= e

−
´ T0
0

u1(x(t),t)
x1(t)

dt ≥ e
(1−2BL−1)

´ T0
0

u2(x(t),t)
x2(t)

dt
=(

x2(T0)

x0
2

)1−2BL−1

= (x0
1)(1−β)(1−2BL−1).

Here we used that x0
2 = (x0

1)β and x2(T0) = x0
1. It follows that

x1(T0) ≤ (x0
1)β(1−2BL−1)+2BL−1

.

This implies that

‖∂2
x1x1

ω(·, T0)‖L∞ ≥ 2ω(x1(T0), x2(T0), T0)x1(T0)−2 ≥ δ−4(x0
1)3+β−2β(1−2BL−1) ≥

δ−4(x0
1)3−β+4βBL−1

= δ−4eδ
−α/2(β−3−4βBL−1)T .

Now one select β (say β = 5 would work), L, and δ so that all parts of the argument are valid,
obtaining exponential growth we seek in this final step as well.
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