
0278-0070 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2021.3104270, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 1

Evaluating the Security of Logic-Locked
Probabilistic Circuits

Michael Zuzak, Graduate Student Member, IEEE, Ankit Mondal, and Ankur Srivastava, Senior Member, IEEE

Abstract—Logic locking is a design-for-security scheme to
thwart attacks by an untrusted foundry. Prior work exposed the
vulnerability of logic-locked circuits using Boolean Satisfiability
(SAT). While these attacks are effective against deterministic
circuits, they cannot unlock probabilistic/approximate designs,
which have become increasingly popular. In this work, we
expand SAT-style attacks to locked circuits with probabilistic
behavior. We propose StatSAT, an attack incorporating statistical
techniques into the SAT attack to unlock probabilistic designs.
We then propose a countermeasure called High Error Rate Keys
(HERK) to thwart StatSAT and other attacks on probabilistic cir-
cuits. HERKs leverage high error wires, caused by probabilistic
behavior, to hide the correct key under stochastic noise.

Index Terms—StatSAT Attack, High Error Rate Keys (HERK),
Probabilistic Computing, Logic Locking, Untrusted Foundry

I. INTRODUCTION

Integrated circuit (IC) fabrication is frequently outsourced to
unaffiliated and untrusted third parties. This prompts security
concerns as fabrication facilities can reverse engineer (RE),
overproduce, and counterfeit fabricated ICs [1]. As a result, IC
designers have shown interest in mitigation schemes to protect
design secrets from malicious activity during fabrication [2].

Logic locking (or logic obfuscation) is a design-for-security
scheme that obfuscates a design’s function by adding aux-
iliary logic gates and inputs, called keys [2]. The resulting
circuit behaves correctly only when the correct key is applied.
Otherwise, errant outputs are produced for a deterministic set
of inputs. This protects an IC from an untrusted foundry by
hiding design function and rendering illegally overproduced
copies of an IC unusable. In response, attacks leveraging
Boolean satisfiability (SAT) were developed to unlock early
locking schemes [3], [4]. This prompted the development of
a flurry of SAT-resilient defense techniques [2].

During this time, approximate and probabilistic circuitry
have become increasingly relevant for 3 reasons. First, relaxing
requirements for functional correctness in circuits reduces the
cost of manufacturing, verification, and test [5]. Second, such
an approach provides substantial energy savings [6]. Finally,
the popularity of big-data, Internet-of-Things, and machine
learning applications have widened the scope of approximate
computations due to their error-tolerant nature [7].

The uncertainties of IC design at highly scaled-down tech-
nology nodes often leads to probabilistic behavior. This is due

This work was supported by the the ARCS Foundation, the National Science
Foundation grant 1642424, and the Air Force Office of Scientific Research
grant FA9550-14-1-0351.

M. Zuzak and A. Srivastava are with the Department of Electrical and
Computer Engineering at the University of Maryland, College Park, MD
20742 USA. Email: {mzuzak, ankurs}@umd.edu

A. Mondal is with Intel Corporation, Hillsboro, OR 97124 USA

to a variety of factors including 1) reduced noise margin from
voltage scaling, which reduces energy consumption, and 2)
larger process variations [5]. The errors arising from the use
of probabilistic computing elements are dynamic and transient
in nature [8]. They have a certain probability of occurring and
can occur anywhere in the circuit.

A. Contributions

In this work, we demonstrate that an untrusted foundry can
steal the intellectual property (IP) of locked probabilistic chips.
We develop an attack strategy based on Boolean satisfiability
(SAT) to find the key of logic-locked probabilistic circuits.
The existing SAT attack [3], [4] is good for deterministic
circuits, but not probabilistic ones because the latter exhibits
inconsistent behavior. The work in [9] proposes a Probabilistic
SAT (PSAT) attack to handle this, however, its success is
limited to low error rates and its scalability with the number
of circuit outputs is poor. We propose StatSAT, an attack that
is applicable to circuits with higher error than considered by
PSAT [10]. We then evaluate the security of the StatSAT attack
and develop a locking mechanism called High Error Rate Keys
(HERK) to thwart such an attack and protect probabilistic IP.

II. PRELIMINARIES

A. Attack Surface

We consider the adversary outlined in [3], [4]. This model
considers an attacker with access to: 1) a netlist of the locked
IC and 2) an unlocked version of the IC (i.e. an oracle).
We consider a circuit error model where each logic gate in
the circuit has a certain error probability εg , which is the
probability that a gate outputs the inverse of what it should
have. This is realistic from the perspective of non-CMOS gates
[9] and dynamic errors [8]. The attacker must find the correct
key for the locked circuit despite the probabilistic oracle.

B. Prior Work

The work in [9] shows that probabilistic behavior in an
oracle misguides a SAT attacker, tricking them into using a
wrong output for a distinguishing input (DI). This causes a
SAT attack to fail even at negligible error levels. The authors
then propose a new SAT attack, called Probabilistic SAT
(PSAT), where the oracle is queried multiple times for each
DI (rather than once). If the most common output pattern is
dominant (defined in [9]), it is assumed correct. Otherwise,
an output pattern is sampled with a probability equal to
its frequency of occurrence. This attempts to mitigate the
inconsistency of the oracle. While the PSAT attack performs
better than conventional SAT, it lacks scalability (see Sec. IV).

Authorized licensed use limited to: University of Maryland College Park. Downloaded on May 12,2022 at 00:21:59 UTC from IEEE Xplore. Restrictions apply.

0278-0070 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2021.3104270, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 2

III. ATTACK FORMULATION

The core of the StatSAT attack is the same as the standard
SAT attack - a SAT solver finds DIs to limit the key space
until only correct keys remain. In this section, we describe
the extra steps taken by StatSAT to unlock probabilistic IP.

A. Deviation from the SAT Attack
The SAT attack [3], [4] assumes a deterministic oracle and

queries it once in every iteration with a DI to obtain the
correct output. In our work, the oracle behaves probabilisti-
cally. Because its output is probabilistically approximate (i.e.
inconsistent), the output obtained upon applying an input just
once cannot be assumed to be the correct output pattern.

Let us define the Bit Error Ratio (BER) for an output of a
circuit for a given input as the probability that the output is
erroneous for that input. Erroneous means that the output of
the probabilistic oracle differs from a deterministic version of
it. To get around such inconsistent oracle behavior, we apply
the same input (DI) multiple times to get multiple output
patterns, as was done in [9]. However, we do not consider
the oracle’s output patterns as a whole. Instead, we take an
average of all patterns for each of the circuit’s outputs. Thus,
for any DI, the oracle is queried not once, but multiple times
to obtain the signal probabilities of each output bit.

Stated mathematically, let N be the number of POs in the
circuit. If the probabilistic oracle is sampled Ns times for
an input X , let Y (1), Y (2) . . .Y (Ns) be the observed output
patterns, where each Y (j) ∈ {0, 1}N . The signal probability
at the ith output of the oracle for input X is PYi = 〈Yi〉 =
1
Ns

∑Ns

j=1(Y
(j))i with every PYi ∈ [0, 1] and i = 1, 2, . . . N .

Rounding all these signal probabilities to 0 or 1 may not
yield the correct output because one or more output bits may
have higher than 50% BER for an input depending on gate
sensitization [11]. As such, let us now discuss how the signal
probabilities PYi obtained from the oracle can be provided to
the SAT solver. The standard SAT attack uses responses from
the oracle to constrain SAT-CNF expressions. For any I/O pair
(X,Y) fed to the solver, future iterations ensure that all bits of
Y are satisfied for input X when DIs are obtained. However,
we relax this constraint by not specifying all output bits. This
avoids specifying erroneous bits in an output pattern.

B. Output Uncertainty
The signal probabilities PY of the oracle response tells

us about the certainty of an output bit. Let us define the
uncertainty U associated with the signal probabilities as:

Ui = min(PYi , 1− PYi) i = 1 . . . N (1)

PYi values close to 0.5 are associated with higher uncertainties
in the output bit. Because a Boolean SAT solver accepts
only ‘0’ or ‘1’ as variable values, the PYi would have to be
converted to ‘0’ or ‘1’. We opt to leave outputs with high
uncertainties unspecified in the constraint because these have
a high BER. For any DI, the oracle output signal probability
vector PY could be translated to a binary output vector Y as:

Yi =

{
round(PYi) if Ui ≤ Uλ
x (unspecified) if Ui > Uλ (2)

where Uλ is a threshold value of uncertainty above which we
refrain from specifying the rounded signal probability value.

C. Estimation of Output BERs with DIs

In the previous subsection, we proposed using the uncer-
tainty values U as indicators of high output BERs to avoid
providing wrong DIPs to the SAT solver. While this method
is effective when the BER at a particular output is low or
moderate (close to 0.5), it would not prevent the recording
of wrong outputs (Y) if the BER happens to be large.
Specifically, if the BER at the ith output is larger than 1−Uλ,
then Ui < Uλ and Yi is set to round(PYi). This is wrong.
We discuss how to prevent this by considering the possibility
of having a large BER at any output for a given DI.

Let us assume that the attacker is aware of the error
probability εg at each logic gate in the circuit1. With this
knowledge, the attacker can roughly estimate the BER at each
of the outputs of the circuit with a given input using Boolean
Difference Calculus [11]. However, it is not possible to know
the BERs exactly without the correct key, which is unknown
to the attacker. The attacker is in possession of the netlist of
the locked circuit that has both primary inputs and key inputs.
To determine the output BER for a particular input vector, the
attacker can set the signal probabilities to 0 or 1.

This forces us to estimate the BER at each output. We do
this with satisfying keys. Each iteration of the SAT attack
prunes the key space such that the keys remaining in the
solution space at the start of an iteration satisfy all DIs
for previous iterations. The BERs from satisfying keys are
then averaged to estimate the BER E ∈ [0, 1]N for that
DI. Stated formally, let (X1, Y 1) . . . (Xm−1, Y m−1) be the
distinguishing I/O pairs (DIP) for the first m−1 iterations and
Xm be the mth DI. We find a certain number of satisfying
keys (Nsatis) for these m − 1 pairs. Using these keys, the
output BER Em of the locked circuit for Xm can be estimated
using Boolean Difference Calculus [11]. This identifies any
output bits with high error rates, determining whether to pass
off the rounded signal probabilities to the CNF formula. The
translated binary output vector for DI Xm is defined by

Y mi =

{
round(PYi) if Ui ≤ Uλ, Emi ≤ Eλ
x (unspecified) otherwise (3)

where, if the estimated BER Emi for the ith output crosses
threshold Eλ, we do not specify its value irrespective
of the corresponding signal probability PYi . For exam-
ple, if the signal probability values for a 4-bit output are
PY = (0.85, 0.38, 0.20, 0.77) and the BER estimate is
E = (0.21, 0.28, 0.27, 0.34), then the uncertainty is U =
(0.15, 0.38, 0.2, 0.23). If Uλ = 0.25 and Eλ = 0.30, then
Y = 1x0x is the output vector, with bits 2 and 4 unspecified.

D. Multiple Instances of SAT-CNF Formulas

To this point, we focused on how we can prevent the CNF
formula from recording wrong output bits for distinguishing
input patterns by holding back specific output bits from the

1In [10], we show that this assumption is unnecessary and can be relaxed.

Authorized licensed use limited to: University of Maryland College Park. Downloaded on May 12,2022 at 00:21:59 UTC from IEEE Xplore. Restrictions apply.

0278-0070 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2021.3104270, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 3

SAT solver. Doing so keeps the correct key within the solution
space. However, after a certain number of SAT iterations, the
SAT solver may no longer be able to eliminate keys because
of the unspecified bits in the output vectors of the DIs. This is
evident from the repetition of a DI in 2 consecutive iterations.
Querying the oracle again with the same DI is unlikely to help
since it would yield the same signal probability vector PY as
in the prior iteration, hence, the same binary output vector
Y m. Next, we describe how to get around this dead-end.

Duplication: Let us call the set of CNF formulas and the
distinguishing I/O pairs collectively an instance of the SAT
formulation. To proceed with the attack, we propose creating
a duplicate (clone) of the SAT instance to be able to consider
both possibilities of an unspecified bit. Thus, if the DI Xm+1

is a repeat, we let one of the previously unspecified bits of the
binary output vector Y m be represented differently in Y m+1

for these 2 SAT instances - one considers a value of ‘0’ for
that bit and the other considers a ‘1’. They differ only in bit
position Y m+1 that we were forced to specify. Because a bit
position can have a correct value of either ‘0’ or ‘1’, one of
these 2 instances is guaranteed to hold correct I/O pairs.

The output bit specified during SAT duplication is chosen
by the uncertainty U and estimated BER E. Among all
unspecified bits, we choose the one with the largest uncertainty
Ui > Uλ because that output wire is likely to have a high
error. If no Ui > Uλ, we choose the output bit with the
largest estimated BER Ei for the same reason. The original
and duplicated instances differ in their Y m+1 at bit index jdup:

jdup =

{
j = argmaxi (Ui) if Uj > Uλ

argmaxi Ei otherwise (4)

After the original SAT instance has duplicated into 2 in-
stances, the attack proceeds, finding separate DIs for future
iterations. These instances do not interact with one another.

Force Proceed: The duplicated instances continue finding
DIs. Whenever any of them halt due to another repeated DI, the
instance is further duplicated per the above process. However,
to avoid exponentiation in the number of SAT instances, we
limit the total number of SAT instances to a certain value,
Ninst. Once this limit has been reached, SAT instances can no
longer duplicate. Instead, we forcefully proceed by specifying
one of the unspecified bits of Y m, hoping that this provides
sufficient information to the SAT solver to trim down a few
wrong keys and not repeat the DI again. To do so, we specify
the output bit which had the least estimated BER (hence the
least risky) by rounding the observed signal probability. Thus,
if Xm+1 = Xm and the instance cannot duplicate, let jfp =
argmini(Ei I(Y mi = x)) where indicator function I(f) = 1
if f is true, and ∞ otherwise. Then, Y m+1

jfp
= round(PYjfp

).
Evaluation: Each instance carries out the process of elim-

inating wrong keys on its own until it cannot find any more
DIs. It then returns one key which satisfies all prior DIPs
or states that they cannot be satisfied by any key (UNSAT).
When an instance becomes UNSAT, the space occupied by it
is “freed-up” to allow other instances to duplicate themselves
if necessary. After each satisfiable instance returns a key (at
most Ninst keys), each key is evaluated by comparing the
response of the oracle to the locked circuit fitted with the

Is the
SAT instance
satisfiable ?

Yes Get DI Xm,
Em, PY, U, Ym

Yes Can
duplicate?

Force proceed
(follow eqn. 6)

Create 2 independent
SAT instances (eqn. 5)

Add respective constraint to SAT instance:

Add constraint
START

No

No

Yes

Get key (if any)
satisfying all DIPs

END

No

Fig. 1: StatSAT attack procedure for one SAT instance.

obtained keys. This evaluates the efficacy of a key by looking
for discrepancies between oracle and keyed netlist responses.

Let X1 . . . Xj . . . XNeval
be randomly chosen input vectors.

Let PYj and PYj (K) denote the output signal probabilities for
input Xj in the oracle and the unlocked circuit (with key K).
Let FM(K) be the figure of merit for an obtained key K:

FM(K) =
1

N

N∑
i=1

max
j
|PYj − PYj (K)| , j = 1..Neval (5)

The key with the smallest FM is chosen as the best key. In
Fig. 1, the full StatSAT attack is outlined for one SAT instance.

IV. ATTACK RESULTS

We implemented the StatSAT attack2 by modifying the SAT-
attack framework developed and made open-source by [3],
[9]. To evaluate StatSAT, we attacked SFLL-locked benchmark
circuits [12]. In our attack, Ninst, Uλ and Eλ are attacker spec-
ified parameters. In addition to the figure of merit FM(K)
in Eqn. 5, we calculate the average of the signal probability
differences for the best key K∗. This is an average hamming
distance in the signal probability domain (i.e. HD(K) =

1
Neval

∑Neval

j=1
1
N ||P

Yj − PYj (K)||1 , where j = 1..Neval
and ||.||1 is L1-norm). HD(K) is better than FM(K) for
measuring the closeness between the behavior of the oracle
and the unlocked circuit because it averages over all Neval
patterns, whereas FM(K) takes the maximum and is better
for measuring discrepancies between a small number of keys.
We now present experiments to evaluate StatSAT.

(A) First, we show how the number of instances Ninst
required to find the correct key increases with gate-level error
εg . Table I aggregates attack results for several values of εg .
The gate-level error probability εg (labeled A, B, . . .) was
varied and Ninst was incremented from 1 in powers of 2 until
the correct key was found. For all benchmarks, the smallest
εg in Table I was chosen such that any increase required more
than 1 SAT instance. For each εg , we started the attack with
Uλ = 0.25, Eλ = 0.30. If the attack did not find a key, we
decremented both values. From Table I, notice that StatSAT
fully unlocked each benchmark. Moreover, the correct key was
found for higher εg by increasing the allowed SAT instances.

(B) Comparison with PSAT: We assess the performance
of the PSAT attack [9] by launching it 20 times on several
benchmarks. Table II aggregates the number of times that
PSAT ran to completion and found a key. Notice that StatSAT,
unlike PSAT, could always find the correct key for those
circuits (see Table I), demonstrating StatSAT’s superiority.

2The code for StatSAT can be found at github.com/mzuzak/StatSAT-attack

Authorized licensed use limited to: University of Maryland College Park. Downloaded on May 12,2022 at 00:21:59 UTC from IEEE Xplore. Restrictions apply.

0278-0070 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2021.3104270, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 4

Bench+Lock εg (in %) Avg. BER Max. BER Ninst |K| HD(K∗)
1.25 (A) 0.241 0.834 1 1 0.0192

c3540 1.50 (B) 0.269 0.852 8 7 0.0200
SFLL-HD 1.75 (C) 0.286 0.865 16 16 0.0207

2.00 (D) 0.302 0.850 64 64 0.0209
2.00 (A) 0.173 0.784 1 1 0.0122

c7552 2.25 (B) 0.182 0.784 8 1 0.0125
SFLL-HD 2.50 (C) 0.189 0.760 16 5 0.0125

3.00 (D) 0.201 0.758 16 16 0.0128
0.50 (A) 0.0520 0.628 1 1 0.0087

b14 0.75 (B) 0.0668 0.724 4 1 0.0100
SFLL-HD 0.80 (C) 0.0750 0.760 4 3 0.0103

0.85 (D) 0.0759 0.776 16 16 0.0112
0.2 (A) 0.0200 0.378 1 1 0.00583

b15 0.4 (B) 0.0311 0.546 4 4 0.00796
SFLL-HD 0.5 (C) 0.0489 0.580 8 1 0.00874

0.6 (D) 0.0498 0.608 16 10 0.00939

TABLE I: Ninst required to find the correct key for varied εg .
Attack parameters: Ns = 500, Nsatis = 100, Neval = 2000.

Circuit c880 b15 c3540 b14 c7552
εg (in %) 1.0 1.5 2.0 0.1 0.2 1.25 0.5 2.0

Valid PSAT Runs 20 5 0 20 0 0 0 0
Valid StatSAT Runs 20 20 20 20 20 20 20 20

TABLE II: # of runs (of 20) that the correct key was located.

V. HIGH ERROR RATE KEYS (HERK)

To continue, we propose a new logic locking scheme, called
High Error Rate Keys (HERK), to counter the StatSAT attack.
HERKs are key gates inserted on high error rate wires in
probabilistic circuits. Such an approach hides the correct key
value (i.e. correct HERK function) under high probabilistic
noise present at the insertion point. This makes it extremely
hard for a SAT solver to infer the correct key (i.e. correct
function) of any logic locking influenced by HERK function.
We show that this leads to an exponential increase in StatSAT
runtime for a linear increase in the number of inserted HERKs.

A. Overview of High Error Rate Keys (HERK)

The proposed HERK structure is shown in Figure 2. To
implement the construction in this figure, a designer must
first identify locations in the circuit that exhibit a high error
rate (i.e. wires where probabilistic behavior makes wrong
signal values likely). The error rate at each location in the
circuit can be calculated via Boolean Difference Calculus [11].
However, the calculated error rate on a wire is dependent on
the considered input pattern. Ideally, HERKs will be inserted
at high error rate locations for many inputs. We propose the
following approach for HERK insertion.

FANIN 2
PO

PI

Key0
HERK

FANIN 1

PI FANOUT 1
...

Fig. 2: Sample HERK insertion into probabilistic circuit.

First, a set of random inputs is selected and Boolean
Difference Calculus is used to calculate the BER at each
location in the (correctly-keyed) circuit for each input. The

BER is averaged over all inputs for each location. The wires
with the highest average BER likely exhibit error for a large
subset of inputs, making them ideal for HERK insertion. A
XOR gate is inserted on the highest average BER wires, driven
by the wire and an added key input. A XOR gate is used due
to its minimal error masking compared to other gates (i.e. any
single input error guarantees an output error for a XOR gate).
This added gate is called a High Error Rate Key (HERK). We
propose inserting many HERKs in this way for security.

In probabilistic circuits, high error wires often exhibit error
rates that exceed 50% for specific input patterns [11]. This can
be observed in our benchmark circuits in Table I where the
worst-case BER among only outputs (not all wires) exceeds
50% in 15 of 16 circuits. HERKs inserted at these locations
exhibit extremely high error rates. This is by design as HERKs
aim to hide their key value under probabilistic noise on a
high error rate wire. Thus, in any oracle circuit, the actual
functionality of the HERK is extremely hard to infer. This
obfuscates not only the key value (correct function) of the
HERK gate, but also the key value (correct function) for any
locking structures that rely/influence HERK functionality. This
property of HERKs is shown to ensure StatSAT resilience.

B. Evaluation of HERK Attack Resilience
The StatSAT attack presents a security threat for locked

probabilistic IP. We propose HERKs to counter this threat.
To show this, remember that StatSAT assigns a “don’t-care”
state for any primary output (PO) whose BER exceeds a
user-specified threshold for a given DI. This eliminates the
possibility of using a wrong value for a PO, which would
exclude the correct key from consideration. However, an
unspecified PO also cannot be used to eliminate wrong keys
either. HERKs exploit this by inserting key gates at high error
locations for a set of inputs. Whenever any of these high error
inputs are used as a DI during the StatSAT attack, the HERK
gate has high output error. This error propagates to one or
more POs, resulting in the BER threshold being exceeded and
the PO being specified as “don’t-care”. StatSAT can handle
this in 3 ways that each degrade performance.

1) StatSAT Forks: High error inputs to a HERK leads to
unspecified POs. An unspecified PO cannot be used to
eliminate keys. Hence, StatSAT cannot eliminate keys
for the HERK. If few/no keys are eliminated, StatSAT
forks. Thus, an exponential number of SAT instances in
the number of POs affected by HERKs are required.

2) StatSAT Cannot Fork: If the StatSAT instance limit
(Ninst) is reached, further forking is prohibited. StatSAT
force proceeds by guessing the most likely PO value. If
wrong, the correct key is eliminated from consideration.

3) Low Quality CNF Clauses: Defined POs can still be
used to eliminate wrong keys. However, because HERK-
related POs are unspecified, the resulting CNF cannot be
used to infer the key value for the HERK (or any HERK-
influenced logic). This reduces the number of keys that
can be eliminated for a DI, requiring more DIs be found.

1) HERK Attack Resilience: We consider 3 ways that an
attacker could attempt to tune StatSAT (or the locked circuit)
to thwart HERKs. HERKs resist each mitigation strategy.

Authorized licensed use limited to: University of Maryland College Park. Downloaded on May 12,2022 at 00:21:59 UTC from IEEE Xplore. Restrictions apply.

0278-0070 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2021.3104270, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 5

0 1 2 3 4
Number of HERKs

25

28

211

214

T/O
St

at
SA

T
Ru

nt
im

e
(s

)

48,5

167,21
(T/O) (T/O) (T/O)

27
,1

236,1
229,128

26,1
67,2

83,128 x,128

43
,1

51,128
105,128

167,128

Benchmark
b14
b15
c3540
c7552

Fig. 3: Runtime required by StatSAT to unlock each HERK-
secured benchmark circuit. Numbers beside each data point
correspond to “SAT iterations, SAT instances” for each attack.

1) Raise BER Threshold: The BER threshold can be
increased such that the BER at any PO will not exceed
it. Thus, high error inputs do not produce an unspecified
PO. However, a high BER threshold risks incorrectly
specifying a PO, excluding the correct key.

2) Ignore HERKs (Removal [13]): Because HERKs corre-
spond to high error points in the circuit, one could assume
that ignoring them is acceptable. However, error is input
dependent. Nodes may be high error for some inputs and
critical for others. HERKs greatly impact function for
low-error input patterns, which are likely critical [14],
thus they cannot be removed.

3) Tune Allowable SAT Instances: To avoid excluding the
correct key due to SAT instance limits, one could increase
this limit. However, the number of SAT instances is
exponential in the number of HERKs. Such an approach
quickly becomes infeasible. Conversely, to avoid expo-
nentiation, the instance limit could be kept low. However,
once the limit is reached, StatSAT “force proceeds”. If a
wrong value is assumed, the correct key is eliminated.

2) Experimental Analysis: We implemented HERKs with
the existing conventional locking (SFLL [12]) in each StatSAT
benchmark in Table I. To do so, we selected 1000 random input
patterns and used Boolean Difference Calculus [11] to estimate
the error on each wire in the circuit. A HERK (XOR gate) was
then inserted, driven by the wire containing the highest average
error and an added key input. A separate set of 1000 inputs
were used for each HERK insertion and no 2 HERKs were
inserted at the same location. We considered only the lowest
gate error (εg) version of each circuit. This maps to the lowest
PO BER, hence, it is the hardest for HERKs to secure. HERK
security at lower εg implies security at higher εg for a circuit.

We launched the StatSAT attack against each benchmark
containing 1-4 HERKs. The uncertainty and BER thresholds
(Uλ and Eλ) for StatSAT were set to the highest value still
able to recover the correct key for the baseline (i.e. 0 HERK)
circuit. This ensures that increasing the BER threshold cannot
be used to bypass HERK-based locking as the correct key
would not be recovered. For each run, if StatSAT did not
recover a correct key with its uncertainty and BER threshold,
we lowered both in 1% increments and relaunched the attack.
This continued until a correct key was found, the SAT instance
limit (Ninst=128) was reached, or a 30 hour timeout was
reached. The resulting StatSAT runtime, SAT iterations, and

SAT instances required to unlock each benchmark are in Fig.
3. An ‘x’ for any data point indicates that StatSAT did not
find a correct key. We make 3 observations from these results.

1) No correct key could be located in 30 hours when 4
HERKs were applied. This indicates that strong StatSAT
resilience can be achieved with only a few HERKs.

2) The 3 mechanisms by which StatSAT responds to a
HERK-induced unspecified PO can be observed for each
benchmark. 1) The number of SAT instances increases
exponentially in the number of HERKs. 2) Once the SAT
instance limit is reached, StatSAT cannot find the key
(due to wrong POs assumed for suppressed forks). 3) The
SAT iterations to locate the key increases with HERKs.

3) StatSAT runtime increases exponentially in the number of
HERKs. This is the key takeaway. It indicates that a small
number of HERKs causes infeasible StatSAT runtime.

VI. CONCLUSION

In this work, we proposed StatSAT, a Boolean satisfiability
attack against logic-locked probabilistic circuits. We then
developed High Error Rate Keys (HERK), a logic locking
technique that resists both StatSAT and other prominent at-
tacks. HERKs use high error points in probabilistic IP to hide
the correct key (i.e. correct function) under stochastic noise.

REFERENCES

[1] M. Rostami, F. Koushanfar, and R. Karri, “A primer on hardware
security: Models, methods, and metrics,” Proceedings of the IEEE, vol.
102, no. 8, pp. 1283–1295, 2014.

[2] A. Chakraborty et al., “Keynote: A disquisition on logic locking,”
IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, 2019.

[3] P. Subramanyan, S. Ray, and S. Malik, “Evaluating the security of logic
encryption algorithms,” in IEEE International Symposium on Hardware
Oriented Security and Trust, 2015, pp. 137–143.

[4] M. El Massad, S. Garg, and M. V. Tripunitara, “Integrated circuit (ic)
decamouflaging: Reverse engineering camouflaged ics within minutes.”
in NDSS, 2015, pp. 1–14.

[5] K. V. Palem et al., “Sustaining moore’s law in embedded com-
puting through probabilistic and approximate design: retrospects and
prospects,” in international conference on Compilers, architecture, and
synthesis for embedded systems, 2009, pp. 1–10.

[6] J. Han and M. Orshansky, “Approximate computing: An emerg-
ing paradigm for energy-efficient design,” in IEEE European Test
Symposium, 2013, pp. 1–6.

[7] C.-Y. Chen et al., “Exploiting approximate computing for deep learning
acceleration,” in Design, Automation & Test in Europe. IEEE, 2018.

[8] T. Rejimon, K. Lingasubramanian, and S. Bhanja, “Probabilistic error
modeling for nano-domain logic circuits,” IEEE Transactions on Very
Large Scale Integration, vol. 17, no. 1, pp. 55–65, 2008.

[9] S. Patnaik et al., “Spin-orbit torque devices for hardware security:
From deterministic to probabilistic regime,” IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, 2019.

[10] A. Mondal, M. Zuzak, and A. Srivastava, “Statsat: a boolean satisfia-
bility based attack on logic-locked probabilistic circuits,” in ACM/IEEE
Design Automation Conference, 2020, pp. 1–6.

[11] N. Mohyuddin, E. Pakbaznia, and M. Pedram, “Probabilistic error
propagation in a logic circuit using the boolean difference calcu-
lus,” in Advanced Techniques in Logic Synthesis, Optimizations and
Applications. Springer, 2011, pp. 359–381.

[12] A. Sengupta et al., “Truly stripping functionality for logic locking: A
fault-based perspective,” IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems, 2020.

[13] M. Yasin et al., “Removal attacks on logic locking and camouflaging,”
IEEE Transactions on Emerging Topics in Computing, 2017.

[14] K. He, A. Gerstlauer, and M. Orshansky, “Controlled timing-error
acceptance for low energy idct design,” in Design, Automation & Test
in Europe. IEEE, 2011, pp. 1–6.

Authorized licensed use limited to: University of Maryland College Park. Downloaded on May 12,2022 at 00:21:59 UTC from IEEE Xplore. Restrictions apply.

