Downloaded via VALDOSTA STATE UNIV on May 11, 2022 at 15:44:58 (UTC).
See https://pubs.acs.org/sharingguidelines for options on how to legitimately share published articles.

Macromolecules

pubs.acs.org/Macromolecules Article

Crazing Reveals an Entanglement Network in Glassy Ring Polymers
Jiuling Wang and Ting Ge™

Cite This: Macromolecules 2021, 54, 7500-7511 I: I Read Online

ACCESS | [l Metrics & More | Article Recommendations | @ Supporting Information

ABSTRACT: Molecular simulations are used to show that an entanglement
network exists in nonconcatenated ring polymers of sufficiently long contour
length when they are cooled down well below the glass transition
temperature. The entanglement network consists of only a fraction of the
topological constraints that force ring polymers to be in self-similar globular
conformations. The entanglement network can support stable craze
formation in ring polymer glass under tensile loading. The structural features
of the ring polymer craze and the drawing stress during the craze formation
are related to the underlying entanglement network by generalizing traditional models for the crazing in linear polymer glass. The
computer simulations and theoretical analysis demonstrate tuning polymer topology as a promising way to manipulate the
mechanical properties of traditional plastic materials.

1. INTRODUCTION prediction based solely on the surface energy required for
creating the crack surfaces.’”*****!

Given the stark contrast between the viscoelastic properties
of linear and ring polymer liquids, an intriguing research topic
is the consequence of ring topology on the mechanical
properties of polymer glasses. Such a study can not only enrich
the understanding of topological constraints among ring
polymers but also benefit the potential development of ring
polymers into useful solid materials.

In this work, we perform molecular dynamics (MD)

Ring polymers with a unique topology exhibit distinctive linear
and nonlinear viscoelastic behaviors in the melt and solution
states.' "> One prominent example is the power-law stress
relaxation of nonconcatenated ring polymers"” in contrast to
the existence of rubbery plateau in the stress relaxation of
entangled linear polymers. The viscoelastic behaviors are
intimately related to the static conformations of ring polymers.
Recent studies show that nonconcatenated ring polymers have

globular conformations due to the topological constraints simulations to initiate the study of large deformation and
arising from the noncrossability of different rings.”'**' mechanical failure of ring polymer glasses. Computer
Meanwhile, ring polymers are not completely segregated simulations have played a significant role in the research on
from one another but are interpenetrated and threaded by ring polymers as they are able to provide an independent check
neighboring rings.2’7’22728 A recent scaling model® of ring of experimental observations with perfectly controlled polymer
polymer conformations and dynamics shows that topological topology as well as detailed analyses of ring polymers at the
constraints force ring polymers into self-similar loopy globular microscopic level >”'7172272655760 y yge the simulations to
conformations, but they can be progressively released in such a show that the polymer glass formed by ring polymers of
way that no entanglement network forms to give rise to a sufficiently long contour length fails through a mechanism
rubbery plateau. similar to the crazing of linear polymer glass. Unlike in the

The studies of polymer melts and solutions are relevant to liquid state, the topological constraints on ring polymers can
the processing of polymer liquids at high temperatures. only be partially released in the glassy state upon a large tensile
Nevertheless, the usage of polymeric materials is often at low deformation. The unreleased topological constraints lead to an
temperatures, where polymers are in a solid phase.”” ™" A entanglement network that governs the crazing of ring polymer
common state of solid polymers is amorphous polymer glass. glass. Section 2 describes the simulation model and methods

for the preparation and deformation of glassy polymers.

Conventional wisdom is that polymer glass inherits the
Section 3 reports the simulation results and the theoretical

entanglement network from the melt state of linear polymers
above the glass transition temperature T, and possesses a

mechanical strength governed by the entanglement network. In Received: May 18, 2021
particular, the entanglement network of linear polymers results Revised:  July 13, 2021
in a unique mechanical failure mechanism called crazing in Published: August 12, 2021

glassy polymers.”*~>* Ahead of the crack tip in a polymer glass,
crazes consisting of fibrils and voids grow and greatly increase
the fracture toughness by orders of magnitude compared to the
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analysis by combining the scalin% model® of ring polymer
conformations and the models®”**™*¢ of crazing in linear
polymer glass. Summary of our findings and concluding
remarks are given in Section 4.

2. MODEL AND METHODOLOGY

2.1. Sample Preparation. The simulations employed the
conventional bead-spring model®"®* that captures many
features of homopolymers. The van der Waals interactions
between monomers of mass m and size o are modeled using
the truncated and shifted Lennard-Jones (1J) potential

(@ () - (2 (]|

r<r,

ULJ(r) =

0, r>r., (1)

with the cutoff distance r. = 2"/, interaction strength ¢, and

characteristic time 7 = o+/m/e. The bonds between neighbor-
ing monomers along the strong covalent backbone of a

polymer are modeled by the finite extensible nonlinear elastic
(FENE) potential

2
k
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o, r> R,

©)
where the force constant k = 30e/6* and the maximum bond
length R, = 1.56. In addition, adjacent bonds are coupled by a
bond bending potential

Ubend(e) = ke(l — cos 6) (3)

where ky = 1.5¢ and 0 is the angle between the two bonds.
Standard protocols were used to prepare the samples of
linear and ring polymers in the melt states with T = 1.0¢/k,
where kg is the Boltzmann constant. The entanglement length
N, = 28 for the linear polymers in the simulations.”’ Chain
lengths of the linear polymers are N = 200 and 800, both of
which are much larger than N,. The rubbery plateaus in the
stress relaxations of these well-entangled linear polymers were
shown in previous simulations.” Contour lengths of the ring
polymers are Ny = 200, 400, 800, and 1600. Both the self-
similar conformations and power-law stress relaxation of these
ring polymers were studied by previous simulations.”'> Table 1

Table 1. Parameters for Simulation Samples

ring polymer chain length Ny 200 400 800 1600
number of chains ng, 1600 1600 1600 800
linear polymer  chain length N 200 800
number of chains ng, 6400 1600

lists the number of chains n, for each Ni or Ny. Periodic
boundary conditions were applied to the x-, y-, and z-directions
of a sample. The velocity Verlet algorithm was utilized to
perform time integration with a time step 6t = 0.0057. For
linear polymer melts, the double-bridging algorithm64 was used
to equilibrate the polymers. For ring polymer melts, the initial
samples with ng, = 200 were obtained from Halverson et al.>"
The samples were enlarged by replicating the ring polymers in
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a larger simulation box and then equilibrated at T = 1.0€/kg for
a time period longer than the diffusion time of the rings.”
The equilibrated polymer melts were then cooled down to
obtain glassy polymers. Prior to the cooling, the FENE
bonding potential was replaced with the breakable quartic
141,42,65—71
potential ™"

(Jquartic(r) = kl(r - R1)3(V - RZ) (4)
where k; = 2351¢/0*, R, = 1.56, and R, = 0.75750. These
parameters ensure that the equilibrium bond length I, = 0.960
is the same as that of the FENE bonds, and the maximum force
before a bond breaks is 100 times higher than that required to
separate two atoms interacting via the L] potential, which is in
the typical experimental range.”””> The use of the breakable
bonds enables chain scission in the simulations of mechanical
failure. Additionally, the attractive part of the L] potential was
turned on by setting the cutoff distance at . = 1.56. The same
r. was used in previous simulations that have reproduced many
experimental features of the crazing in linear polymer
glass. " ##92987%75 Degpite the changes in the interaction
details of the simulation model, the topological constraints
among polymers were not altered. A fast quenching preserved
the topological constraints. The polymer melt samples were
first quenched at a cooling rate of —9 X 107*¢/(ky7) and a
constant volume from T = 1.0¢/kg to T = 0.55€¢/kg, where the
pressure P = 0. Subsequently, the samples were quenched at a
cooling rate of —2 X 107*¢/(ks7) and a constant pressure P =
0 from T = 0.55¢/kg to T = 0.2¢/kz. The Nose—Hoover
thermostat and Nosé—Hoover barostat were used to control
the temperature and pressure with the damping parameters 17
and 507, respectively. The glass transition temperature T, of all
samples is ~0.39¢/ky, as determined from the specific volume
versus temperature plots shown in Figure S1 of Supporting
Information. Note that the change of polymer topology from
the linear to ring forms does not alter T,.

2.2. Crazing Simulation. The glass samples at T = 0.2¢/kg
well below T, were used in crazing simulations. The
deformation protocol in the crazing simulations was the
same as in previous simulations.""***>%7%7! The box
dimensions L, and L, along the x- and y-directions were
kept constant, while the box dimension L, along the z-
direction was increased. This leads to initial triaxial tensile
stresses, which are generally required to induce cavitation and
subsequent crazing of polymer glasses.””’® The deformation
rate was increased gradually. At the beginning of the
simulation, the deformation rate (engineering strain rate)
was set at (dL,/dt)/L? = 10757"" until the engineering strain
reached AL,/L? = 0.025, where L is the initial box size along
the z-direction. Then, the deformation rate was increased to
(dL,/dt)/L? = 5 x 1077 until AL,/L? = 0.1. Finally, the
deformation rate was held constant at (dL,/dt)/L} = 2.5 X
107*z7". The deformation rates are in the range where the
stress level exhibits a weak logarithmic dependence on the
deformation rate.*” We recorded the tensile stress o, as a
function of the stretch factor A = L,/LY. A Langevin thermostat
with T = 0.2¢/kg and the damping parameter 17 was applied to
x- and y-directions perpendicular to the stretching direction
during the deformation process. All the simulations were
performed using the LAMMPS package.”” Snapshots of glassy
polymers during the deformation are shown in Figure 1. For
both linear polymers with N = 800 and ring polymers with Ny
= 800, a region of crazes formed between two dense glassy
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Figure 1. Snapshots of the coexistence of crazed and uncrazed regions for (a) linear (N = 800) and (b) ring (Ny = 800) polymers at T = 0.2¢/ks.
In both cases, L, = 1096, L, = AL? with L2 = 109, and the stretch factor A = 3. The polymer beads are colored based on the coordination number
Z. For clarity, only beads in a slab of thickness 306 in the y direction are shown.
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Figure 2. Stress o, in the stretching direction as a function of the stretch factor A for (a) linear and (b) ring polymers. Regimes I (nucleation), II
(growth), and III (breakdown) of the crazing process are separated by dashed green lines. The corresponding changes in the fraction fi, ke, of
broken bonds are shown in (c,d) for the linear and ring polymers, respectively.

regions. The polymer beads in Figure 1 are colored based on
the coordination number Z, which is the number of
neighboring beads of a bead. The probability distributions
P(Z) for the undeformed glass and the fully developed craze
are shown in Figure S2 of Supporting Information.

3. RESULTS AND DISCUSSION

3.1. Stress—Strain Behavior. The plot of tensile stress o,
as a function of A for the crazing in linear polymer glass
exhibits features in agreement with previous simulations. As
shown in Figure 2a, o, rises to the yield peak and then drops as
the craze nucleates in regime I, it remains at a constant value S
as the glass is progressively transformed to craze fibrils in
regime II, and eventually, it rises to a second peak, followed by
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a drop as the entire craze is further stretched and broken in
regime III. A stable craze grows in the two linear polymer
glasses with N} = 200 and 800 as the chains are sufficiently
long to avoid the catastrophic pullout through chain ends.
Nevertheless, the failure mechanism of the developed craze
differs in the two samples. The craze for Ny, = 200 fails through
chain pullout with almost no bond breaking, while the one for
N = 800 fails through chain scission, as demonstrated by the
change in the fraction of broken bonds fy,o., With increasing 4
in Figure 2c. The simulation results in Figure 2a for linear
polymer glass agree with the previous results*””*”*~®" that Ny,
~ 3N, is the threshold for a stable craze formation with a
plateau stress S, whereas N; &~ 10N, is the threshold for the
failure dominated by chain scission.

https://doi.org/10.1021/acs.macromol.1c01080
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The stress—stretch curves for ring polymer glasses in Figure
2b exhibit features similar to the results in Figure 2a. For all
Ny, the peak stress 1.5¢/6° in regime I is the same as that for
linear polymers, showing that craze nucleation is not affected
by the change in polymer topology. For Ny = 200, o, quickly
drops after regime I, indicating pullout of rings upon
deformation and thus no stable craze growth. For Ny = 400,
a stress plateau emerges after regime I, but it is not fully
developed as the ring contour length is still not long enough.
For both Ny = 800 and Ny = 1600, three regimes exist as in the
crazing of linear polymer glass (Figure 2a). The stress plateau
in regime II is well developed, and the ultimate failure in
regime III involves chain scission, as indicated by the increase
of firoken With A in Figure 2d. To conclude, the simulations
demonstrate glassy ring polymers of sufficiently long contour
length can fail through crazing.

3.2. Extension Ratio. A polymer craze is characterized by
the eXtenSion ratio A = puncraze/pcrazel Where puncraze and pcraze
are the densities in the uncrazed and crazed regions,
respectively. The density profiles at different A for the linear
polymers with N; = 800 and ring polymers with Ny = 800 and
Ny = 1600 are shown in Figure S3 of Supporting Information.
We determine that the extension ratio A; = 4.4 for N| = 800,
while Ay = 11.5 and 11.3 for Ny = 800 and 1600, respectively.
A and other properties for linear and ring polymer crazes are
listed in Table 2. A coincides with the end of regime II, where

Table 2. Comparison of the Properties for Linear and Ring
Polymer Crazes

scaling fibril fibril
extension relation N, or  diameter diameter
ratio A for A NR (D) (o) (Dgia) (o)
N, = 800 44 N2 28 54 2.7
Ng = 800 115 (N®)23) 120 53 3.1
Nel/é
Ny = 1600 113 (NRY23/ 120 5.3 3.1
Ncl/é
fibril spacing drawing stress work of failure
(Do) (o) S (¢/a) siture (e/0)
N; = 800 13.4 0.85 8.7 20.9
Ny = 800 20.2 0.53 16.5 109
Ny = 1600 20.4 0.56 19 15.8

all dense glass has just been converted to craze fibrils. From the
end of regime II in Figure 2, A = 4.4 for Ny = 800, while Ay =
11.0 for Ny = 800 and 1600.

For linear polymer glass, A; has been related to the
underlying entanglement network. Kramer first developed the
geometric argument’>** that A, is determined by the
maximum extension of a network strand between entangle-
ments. The argument is rephrased below. Consider a network
strand consisting of N, monomers of size b, the maximum
extension AL, = I/d* = N.b/N,"*b = N,'/?, where IL' = N,b is
the contour length of a strand and d~ N,"2b is the root-
mean-squared (rms) end-to-end size of a strand according to
the Gaussian chain statistics. For simplicity, the characteristic
ratio C,, is dropped from the expression of di. The
proportionality between A, and A%, for linear E)olymers has
been confirmed by experiments and simulations.”>****>>7>

For glassy ring polymers of sufficiently long contour length,
the stable growth of the craze indicates the existence of an
underlying entanglement network. We develop a geometric
argument similar to Kramer’s to relate Ay to the entanglement
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network in glassy ring polymers. As illustrated in Figure 3a, the
topological constraints indicated by the open and filled red
circles force a ring polymer to be in a self-similar loopy
globular conformation, but only the topological constraints
indicated by the filled red circles contribute to the
entanglement network in glassy ring polymers. A network
strand is indicated by the black line between the two filled red
circles within the blue dashed rectangular box in Figure 3a.
The network strand is a compact three-dimensional object
made of Ni/N, “elementary loops”, where N, is the average
number of monomers in an elementary loop between two
topological constraints, and Nt > N is the average number of
monomers in a network strand. For simplicity, the entangle-
ment length N, for linear polymers is used as the average
number of monomers between topological constraints. The
rms end-to-end size of an elementary loop is N,'/?b,
corresponding to a Gaussian chain conformation between
two topological constraints. Here, again the characteristic ratio
Cs is dropped from the expression for the elementary loop
size. A recent study”' has demonstrated that the size of an
elementary loop of ring polymers is in the range of an
entanglement strand size N, for linear polymer melts and
characterized by Gaussian statistics. The rms end-to-end size of
a network strand is dX = (N*/N,)"/3-(N,"/?b), corresponding to
the self-similar conformation of rings. As illustrated in Figure
3b, the maximum extension of the strand with contour length
R =N is AR = ’R/d® = (NR)3/N, V6,

Based on Ay = AL = N.”? from Kramer’s geometric
argument for linear polymer glass and Ay = A%, = (N&)3/
N, from our geometric argument for ring polymer glass, we
obtain N& = N,(Ag/A;)*? a relation that allows us to estimate
N® from the known value of N, and the measured values of Ay
and A;. Note that C,, does not enter A%, /A and the relation
N® = N,(Ag/AL)¥% Using N, = 28, Ag = 11.5, and A; = 4.4,
we estimate that N~ = 120 = 4.3N,. This result indicates that
on average, only one out of four topological constraints that
determine the conformations of ring polymers contribute to
the formation of an entanglement network that supports the
craze growth in the glassy state. Using the estimated value of
N%, we further examine the results in Figure 2b. No stable
craze forms for Ny = 200 < 3N5, a stable craze starts to emerge
for Ny = 400 ~ 3N¥, while stable crazes form for Ny = 800 >
3N® and Ny = 1600 > 3NX. The threshold for stable craze
growth in ring polymer glass is Ny ~ 3N%, in agreement with
the threshold Ny & 3N, established for linear polymer glass.
For both linear and ring polymers, the physical meaning of the
threshold is that a few entanglements per polymer are needed
to prevent the catastrophic pullout of polymers and thus
promote stable craze growth.

Figure 3c,d visualizes the conformational changes of ring
polymers during craze formation in the simulations. An
ensemble of 200 ring polymers of Ny = 800 is visualized
with their centers of mass overlapping with each other. One
ring polymer with its squared radius of gyration Rg2 closest to
the average (R,?) for the 200 ring polymers in the undeformed
glassy state is highlighted. The polymer beads in the
highlighted ring are colored based on their positions in the
ring. The conformational changes of the color-coded ring
polymer during craze formation align with the schematic
illustration in Figure 3a,b. A quantitative comparison of the
conformational changes of a network strand in the schematic
illustration and those in the simulations are not feasible
without identifying and tracking individual topological

https://doi.org/10.1021/acs.macromol.1c01080
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Figure 3. (a) Schematic illustration of the self-similar conformation of a ring polymer (solid black line) under topological constraints (open and
filled red circles). Loops at different length scales are indicated by dashed black circles. A fraction of the topological constraints (filled red circles)
form an entanglement network in glassy ring polymers. The blue dashed rectangular box encloses one network strand. (b) The maximum extension
of an entanglement network strand is Ay = I5/d%, where I is the contour length of a strand and dX is the rms end-to-end size of a strand. (c,d)
Snapshots of an ensemble of 200 ring polymers of Ny = 800 in (c) undeformed glassy state at 4 = 1 and (d) fully developed craze at 4 = 12. The
centers of mass of the 200 ring polymers are shifted to overlap. One ring polymer is highlighted by coloring the polymer beads based on their
positions in the ring. In the undeformed glassy state, the squared radius of gyration Rg2 of the highlighted ring is the closest to the average (Rgz) of
the 200 rings. The same ring polymer is highlighted in (c,d). Note the change of the scale bar from (c) to (d).

constraints in the simulations. Sophisticated algorithms of
geometric analysis such as the contour reduction analysis
(CReTA) algorithm®>** may be applied to the trajectories of
ring polymer crazing in the future.

3.3. Craze Structure. A polymer craze consists of fibrils
and voids, as illustrated in Figure 1. To quantify the craze
structure, we compute the fibril diameter and the spacing
between fibrils. A fully developed craze at the end of regime II
was divided into consecutive slices of thickness 6L, = r. = 1.5¢
along the z-direction. The monomers in one slice were
projected to the xy-plane and grouped into clusters to
represent the cross sections of craze fibrils. Two monomers
are in the same cluster if their separation is smaller than r. =
1.5¢. Figure 4a,b shows the cross sections of the linear polymer
craze and ring polymer craze, respectively. The diameter of a

fibril is related to the area A of a cluster as D = \/4A/x. To
obtain the area A for each cluster, the xy-plane was divided into
a grid of square cells with the side length of a cell a, = 0.20.
The area A of a cluster is the sum of the area of all square cells
that are within 6r = r./2 = 0.7506 from at least one bead in the
cluster. The average spacing between fibrils is estimated as

(Do) = (J4L,L,/ (m(m)), where (m) is the average number of

clusters per slice.
The calculation of the fibril diameter as D = /4A/x is

based on the approximation of a fibril cross section as a circle,
which corresponds to the ideal treatment of craze fibrils as
uniform vertical cylinders in the molecular models of crazing.
To go beyond the approximation, we calculate the fibril
diameter using a different method that takes into account the
anisotropic shape of a fibril cross section. As illustrated in
Figure 4c, we find all the horizontal and vertical straight lines
across the fibril cross section on the grid of square cells and
determine the length I,;4 of each line. The average of I, is the
effective diameter D4 of the fibril. By sampling [,y from
different positions and orientations, this approach captures the
effect of the anisotropic shape on the fibril diameter. The fibril

area A, fibril diameter D4, and fibril perimeter P are related to
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each other as A = P-Dyq/ 7.%* The grid cells that belong to a
fibril cross section but have less than four nearest neighbors in
the same cross section constitute the perimeter of the cross
section. The perimeter P = fa,N,, where N, is the number of
the cells on the perimeter and f = 1.1222 is a numerical
correction factor.”" Figure 4d shows that the relation A = P-
Dygia/m holds in our system, justifying the estimation of the
fibril diameter.

The probability distributions P(D) and P(Dy;q) for the fully
developed crazes are shown in Figure 4e/f, respectively. The
number-average fibril diameter (D)* = 53¢ for the ring
polymers is close to (D) = S.4c¢ for the linear polymers.
However, the area-average fibril diameter (D)} = 8.96 for the
ring polymers is smaller than (D); = 11.8¢ for the linear
polymers, in consistency with the less dispersed distribution of
D in Figure 4e. The number-average fibril diameter (Dgﬂd)R =
3.10 for the ring polymer craze is also close to (ngd)L =270
for the linear polymer craze, consistent with the result based on
the approximation of a cross section as a circle. Interestingly,
the area-average fibril diameter <Dgrid>11} = 4.40 is larger than
(Dgridﬂ; = 4.206, which is different from the result (D)} < (D),
reflecting the effect of the anisotropic shape of the cross
section.

The average spacing between fibrils (Do)® = 20.2¢ for the
ring polymers is larger than (Dg)" = 13.46 for the linear
polymers. The larger separation between craze fibrils in ring
polymers compared to that in linear polymers is also observed
in Figure 1. For the craze in linear polymer glass, it has been
argued that (Dg)" is determined by the average spacing
between entanglements or the rms end-to-end size of a strand
in the entanglement network as the growth of a void during
crazing is limited by the network strands.>*® According to this
argument, (Do)" = d~ = N,"?b for linear polymers. The same
argument applied to ring polymer glass gives (Dy)* = di =
(NR/N,)V3.(N,"?b). With N® = 120 and N, = 28, the
geometric argument leads to (Do)*/(Do)* = (NY/N,)YV? =
1.62. This ratio from relating (D,) to the rms end-to-end size
of an entanglement network strand is close to (Do)"/(Dy)" =
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denotes the length of a line, and the average of |
4 for the ring polymer craze with Ny = 800. (e,f) Probability density functions P(D) and P(D

q for all lines across the cluster is the fibril diameter Dy (d)

grl
i) for the linear (N,

20.26/13.40 = 1.51 from the analysis of the craze structure,
supporting the argument that (D,) is determined by the
average spacing between entanglements. For linear polymers,
the entanglement length N, can be tuned by diluting the
polymers with short unentangled chains, and it was found that
an increased N, leads to a larger fibril spacing (D,),*> which is
consistent with our results here.

(D) can also be related to the entanglement network.
Consider one slice of the fully developed craze; the area
occupied by craze fibrils is L,L,/A, which is reduced by A with
respect to L,L, for the same slice across the uncrazed glass.
The average number of fibrils (m) = L,L,/ (m{D,)*/4), the area
per fibril A = (L,L,/A)/{m) = 7{Dy)*/4A, and therefore, the
average fibril diameter (D) = \J4A/7n = (D,)/ JA. Using
(Do)*/(Do)" = (N/N)'* and Ag/Ay = (NZ/N)™, we

obtain (D)* /(D) = ({Dy)*/(Dy)")/[Ax/ A, = 1, meaning
the same average fibril diameter for linear and ring polymer
crazes. This result based on the geometric argument above
agrees with (D)® = 5.36 and (D)" = 5.46 from the analysis of
the craze structure. The geometric argument may be extended
to explain the result that (Dgrid)R =3.1c and (Dgrid)L =2.70 are
almost the same by introducing a prefactor a correcting for the
anisotropic shape of a fibril cross section. According to our
calculation, (Dg4) = a{D) with a = 0.5-0.6.

3.4. Drawing Stress. The growth of the craze in regime II
occurs under a constant drawing stress S for both linear and
ring polymers. Sg = 0.53¢/0” for the ring polymers of Ny = 800
is below S; = 0.85¢/6° for the linear polymers of Nj = 800, as
shown in Figure 2. However, the decomposition of local
drawing stress s(z) to bonded and nonbonded components
exhibits similar features in both linear and ring polymers. As
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shown in Figure Sab, there are interfaces between the
uncrazed region and the crazed region, which are the active
zones for the conversion of dense glass to craze fibrils. While
s(z) = S is independent of z, the dominant component of s(z)
changes from the nonbonded stress mainly due to the pairwise
L] interactions in the uncrazed region to the bonded stress
carried by the covalent bonds in the crazed region. The
changes of the dominant component across the active zone are
shown in Figure Sc,d.

The drawing stress acts to pull polymers out of the dense
glass and turn them into craze fibrils. Across the active zone,
there is a balance of the bonded stress in the crazed region and
the nonbonded stress in the uncrazed region, the latter of
which is directly related to the creation of new surfaces in the
glass. Traditionally, the drawing process has been modeled as
the propagation of voids into the region of dense glass, as in
the pioneering studies by Kramer and Berger’””* and the
subsequent work by Krupenkin and Fredrickson.*>*® The
drawing stress S is related to the energy I required to create a
unit new surface in the glass and the radius of curvature of a
void front, which is proportional to the average spacing (D)
between fibrils. With the numerical prefactor dropped, S ~ I'/
(Dy), one would expect that I' is not affected by the topology
of polymers at the chain level. We estimate the surface energy
as I' = AUy /A, where AUy is the increase in the nonbonded
L] potential energy due to the creation of the craze fibril
surface and A; is the surface area of all craze fibrils at the end of

LZ
regime II. A, = /o B(z) dz, where P(z) is the sum of the

perimeters of all fibril cross sections located at z, and the
perimeter P of a cross section is computed using the procedure
described in Section 3.3. We find that the surface area of the
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linear polymer craze AL = 1.31 X 10°%” is slightly larger than
that of the ring polymer craze A} = 1.16 X 10°7, which is
consistent with the result that the average coordination
number Z; = 9.8 for the linear polymer craze is slightly
smaller than Z = 10.5 for the ring polymer craze in Figure S2
of Supporting Information. The estimated surface energies for
the linear and ring polymers are I'" = 0.77¢/6* and T'™ = 0.64¢/
&, respectively. I” for the two systems are close to each other,
and both agree with the polymer—vacuum interfacial energy I
= 0.6 — 1.0¢/6® determined by previous simulations.”"”*
Application of the void propagation model to ring and linear
polymers in the simulations leads to Sg/S; = (I*/T™)-({Dg)*/
(De)")™ = 0.55. The result is close to Sg/S; = (0.53¢/6%)/
(0.85¢/6*) = 0.62 from Figure 2. Therefore, the difference
between Sy and S can be explained as the consequence of the
different average sizes (D,) of voids between the fibrils.
Furthermore, as (Dy)" = N,"/?b for linear polymers and (Dy)®
= (N&/N,)"3-(N,!?b) for ring polymers, Sg/S; ~ (N&/N,)~/3
for T® = I'", indicating that the plateau stress ratio is related to
the entanglement networks.

We further examine the thermodynamics in the conversion
of dense glass to craze fibrils. The total work done in regime II
is W~ S(L,L,) (A — 1). The potential energy change AU
during craze formation includes the contributions from the
changes in the bond, angle, and pairwise L] interactions. AU as
a function of A is shown in Figure S4 of Supporting
Information. Since there is no change in the kinetic energy
at constant T, the work dissipated as heat is calculated as Q =
W — AU. We find that Q/W = 88%, 97%, and 96% for N} =
800, Ny = 800, and Ny = 1600, respectively. The large fraction
of the work dissipated as heat is related to the rearrangements
of LJ interactions between monomers as the chains are
converted to the fibrils with open surfaces.

7506

3.5. Perturbative Simulations. Our interpretation of the
simulation results of crazing in ring polymer glass is based on
the entanglement network with network strand length N%,
which controls Ag, (D), and (Dy)* according to the geometric
arguments for the craze structure, and S according to the void
propagation model for craze growth. Perturbative computer
simulations are designed to further explore the entanglement
network. In a set of perturbative simulations, we removed n,
bonds that are regularly distributed along the contour of a ring
polymer and thereby cut each ring into n, linear subsections
with length Ny, = Ni/n, as illustrated in Figure 6a. The
stress—stretch curves in Figure 6b show that stable craze
formation occurs only if Ny > 400. For Ny, = 200 < 3Ny,
there are no sufficient entanglements to prevent the
catastrophic pullout from the open chain ends. Ny, = 400 =~
3NY is the marginal case where regime II is almost fully
developed. For N, = 800 > 3N% and N, = 1600 > 3N%, there
are sufficient entanglements per chain to yield an entanglement
network and support the stable craze growth. The resulting
stable craze forms only for N, > 3Ny, further demonstrating
the role of NY as an effective entanglement length for ring
polymer crazing. Figure 6b for different Ny, aligns with Figure
2b for different N, reflecting that the subsections of large rings
behave as smaller rings due to the self-similar conformations of
ring polymers. For Ny, > 400, both the extension ratio of the
craze and the constant drawing stress during craze formation
are almost the same in different samples. This excludes the
formation of topological links under tension as the origin of
ring polymer crazing. The conjecture that topological links
between nonconcatenated rings might emerge is motivated by
a recent study'' that demonstrates that topological links play a
critical role in the thickening of ring polymer melts under weak
extensional flow. Driven by the flow, topological links form
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between ring polymers and connect multiple rings into
supramolecular chains'' that induce the thickening behavior.
Such a phenomenon cannot occur for the linear subsections in
Figure 6, where the ring topology is broken by the open ends,
and thus cannot play a role in the stable craze formation.

In another set of perturbative simulations, we fixed ng,
monomers that are regularly distributed along the contour of
a ring polymer and turned each ring into ng, subsections of
length N, = Ng/ng, with fixed ends, as illustrated in Figure 7a.
We then introduced internal tension to pull the subsections as
taut as possible without allowing them to cross each other. The
thick green lines in Figure 7a indicate the taut subsections
between fixed monomers after the process. This procedure is
similar to the standard algorithm of primitive path analysis.*®
Technically, we turned off all the intrachain L] and bond-
bending potentials and then ran simulations with the fixed
monomers at T = 0.01le/kg (close to zero) until the system
energy was minimized. A Langevin thermostat was used to
control T, and the friction constant was 207 during the first
1000 time steps and 0.5z afterward.”> The perturbative
simulations with fixed monomers were also performed for the
linear polymers with N} = 800. Two chain ends were always
fixed, and the rest (ng — 2) fixed monomers were regularly
distributed along the chain. In particular, the simulation with
only two chain ends fixed (ng, = 2) is exactly the primitive path
analysis.

Figure 7b shows the rms end-to-end size (R*(n))"? of a
subsection as a function of the number of monomers 7 in a
subsection for linear polymers of N; = 800 in the melt state
and after the perturbative simulations with ng, = 2, 3, 5, and 9
fixed monomers per chain. In the melt state, there is a
crossover from (R*(n))? ~ n to (R*(n))'? n'’2,
corresponding to the change from a straight segment to a
linear chain of random-walk conformation. After a perturbative
simulation, (R*(n))"/* was calculated only for n up to Ny, =
Ni/(ng — 1). The results for different ng, almost overlap with
each other, exhibiting a crossover from (R*(n))"? ~ n to
(R*(n))"* ~ n"2 As indicated in Figure 7b, the entanglement
length N, = 28 is between the two asymptotic regimes.
(R*(n))"/? ~ n for n < N, describes a straight segment between
entanglements, while (R*(n))"/* ~ n'/* describes the random
walk of the straight segment as n exceeds N..

Figure 7c shows (R*(n))"/? for the ring polymers of Ny =
1600 in the melt state and after the perturbative simulations
with ng, = 2, 4, 8, and 16 fixed monomers per ring. Figure 7d
shows the snapshots of ring conformations after the
perturbative simulations. In the melt state, (R*(n))"/? ~ n!/3
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emerges at intermediate 7, indicating the self-similar globular
conformation of ring polymers. (RY(n))Y? levels off as n
approaches Ny/2 due to the finite-size effect. After a
perturbative simulation, (R*(n))"/> was calculated only for n
up to Ny, = Np/ng,. For Ny, = 100, (R*(n))"/* scales almost
linearly with n, indicating that almost no entanglements exist at
that length scale to resist the pulling by internal tension. For
Ny > 200, there is a sublinear dependence of (R*(1))"/? on n
for sufficiently large n due to the emergence of entanglements.
Although a clean asymptotic regime for the sublinear
dependence is not observed, the range of n for the sublinear
dependence roughly corresponds to n larger than the
entanglement length N& = 120 of glassy ring polymers. This
correspondence essentially reflects the similarity between the
topological constraints during the pulling under internal
tension and those during the craze formation under tensile
loading. Unlike the conformational statistics for the linear
polymers after the pulling in Figure 7b, the conformational
statistics for the ring polymers after the pulling depends on the
value of Ny, This is another difference between topological
constraints in the two systems. For ring polymers, the pulling
with ng, = 2 fixed monomers that are furthest apart from each
other in a ring has been performed, and an effective
entanglement length NX has been calculated by assuming
random-walk statistics for the polymer subsections after the
pulling.” However, our result in Figure 7c shows that it is not
appropriate to estimate Ny using the random-walk statistics as
the conformational statistics of the subsections of ring
polymers after the pulling does not exhibit a clean regime
with (R*(n))"/* ~ n'/? at large n.

3.6. Discussion. The geometric argument for the extension
ratio A does not take into account the random orientation of
the end-to-end vector of an entanglement network strand and
the fact that a strand is fully stretched to A, during craze
formation only if the end-to-end vector is aligned with the
stretching direction. In fact, the full extension of a polymer
backbone, as indicated by the emergence of broken bonds in
Figure 2, occurs at a stretch factor 4 above the craze extension
ratio A. As a result, there is a prefactor of order unity that is
dropped from the relation A Anae 75452 However,

regardless of the exact value of the prefactor, the relation
Ap/AL = Ao/ Aax holds.

The nucleation and growth of craze precede the mechanical
failure of glassy polymers. The calculation of the fracture
toughness of glassy polymers requires a multiscale approach, as
demonstrated previously."' Since the focus of this paper is
craze formation in regime II, the multiscale approach has not
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Figure 7. (a) Illustration of fixing g, monomers in a ring polymer. The thick green lines indicate the taut subsections between fixed monomers
after the pulling with internal tension. (b) rms end-to-end size (R*(n))"/? as a function of the number of monomers 7 in a subsection for linear
polymers of Ny = 800. (c) (R*(n))!/? for ring polymers of Ny = 1600. The gray curve shows (R*(n))"/? in the melt state, while the other curves
show (R*(n))"/? after the perturbative simulations. For linear polymers, Ny, = Ny /(ng, — 1), where ng, is the number of fixed monomers per chain.
For ring polymers, Ny, = Np/ng,. The dotted green lines in (b,c) indicate N, = 28. The dashed green line in (c) indicates N = 120. (d) Snapshots

of the ring polymer (N = 1600) conformations after the perturbative simulations with nz, monomers fixed. For each subfigure,

Ny, is indicated.

For clarity, only polymers within a region of 60c X 60c X 60c are displayed.

been used to calculate the fracture toughness. However, in
Table 2, we report the failure point Agy,., which corresponds
to the peak of the tensile stress in regime III, and the work of
failure, which is the integral of the entire stress—stretch curve.
The work of failure here is the work done to break the finite-
size sample in the simulation and does not represent the
fracture toughness of a macroscopic sample.

The glassy state of ring polymers in our simulations arises
from the suppression of molecular mobility as the temperature
drops below T,. Glassy states of ring polymers have been
created in different ways. For example, by randomly pinning a
small fraction of ring polymers, it has been shown that the
strong interpenetration between ring polymers can generate an
extensive network of topological constraints and thereby
induces a kinetically arrested state well above the classical
glass transition temperature Tg.%’87 A recent work has shown
that ring polymers can transition into a glassy state also by
increasing the mobility of the segments of ring polymers.*>*’
In this work, the traditional approach to prepare a glassy state
allows us to borrow the conventional wisdom that topological
constraints in glassy polymers are inherited from those in the
melt states and thus justify the theoretical description of self-
similar globular ring polymer conformations in the glassy state.

For the same contour length, the only difference between
linear and ring polymers is their topology and thus topological
constraints. Without changing the interactions in the
simulation model, the comparison of crazing in linear and
ring polymer glasses evaluates the traditional models®>**™® of
polymer crazing from a new perspective. Previous studies
showed that the entanglement network of linear glassy
polymers can be tuned by introducing short unentangled
chains to dilute the polymers®>”® or by reducing the thickness
of a thin glassy polymer film.”" This work shows changing
polymer topology from linear to ring is an alternative method
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to alter the entanglement network without changing the
chemistry.

On the theoretical side, one open question is what
determines the fraction (~1/4 in this work) of the topological
constraints that can survive the process of craze formation in
the glassy state and serve as the constituents of an
entanglement network. Detailed tracking of the evolution of
topological constraints during the crazing of ring polymer glass
may provide some insights. For the crazing of linear polymer
glass, the application of the CReTA algorithm®>*’ to
simulation trajectories has revealed that the topological
constraints on the linear chains in the glassy state correspond
to the rheological tubes restricting chain dynamics in the melt
state, rather than acting as permanent cross-links.> For the
crazing of ring polymers, it would be interesting to check
whether a theoretical concept similar to the rheological tube
for linear polymers may be introduced to understand the
topological constraints that survive the craze formation.

4. CONCLUSIONS

To summarize, we have performed MD simulations to show
the crazing of nonconcatenated ring polymers in the glassy
state. Our results demonstrate that a fraction of the topological
constraints that force ring polymers to be in the self-similar
globular conformations can form an entanglement network
that supports stable craze formation in ring polymer glass. If
the contour length of ring polymers is above 3 times the
entanglement strand length N, a stable craze can form in rings
as the catastrophic pullout is inhibited. The maximum
extension of an entanglement network strand determines the
extension ratio Ay of craze fibrils with respect to dense glass.
The average network strand size d~ determines the average
spacing (Dy)® between craze fibrils and thereby the average
fibril diameter (D)". Generalizing the geometric argument
about the structure of the craze in linear polymer glass to the
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ring polymer craze allows us to quantitatively describe the
relation between the entanglement network and structural
features of the ring polymer craze. The constant drawing stress
S during craze growth is related to (Dy)" and therefore di. The
craze growth model based on void propagation allows us to
quantitatively account for the change in the drawing stress as
the polymer topology changes from linear to ring. The value of
N for the entanglement network in the crazing of ring
polymers is further validated by a set of perturbative
simulations with open ends introduced and another set of
perturbative simulations of pulling internal chain segments
with fixed monomers.

We hope that the computational work and theoretical
analysis presented here will motivate experimentalists to cool
down their ring polymer samples and carry out crazing
experiments to confirm our findings. The relation N&
N.(Ap/AL)*?* can be used to characterize the entanglement
network in glassy ring polymers. We anticipate that future
computational and theoretical research as well as experiments
will further clarify the relation between polymer topology and
glassy polymer mechanics, which offers a novel pathway to
manipulate the mechanical properties of traditional plastic
materials.
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