



The conjunction of the linear arboricity conjecture and Lovász's path partition theorem

Guantao Chen ^{a,1}, Yanli Hao ^{a,b,*}

^a Department of Mathematics and Statistics, Georgia State University, Atlanta, GA 30303, USA

^b Faculty of Mathematics and Statistics, Central China Normal University, Wuhan, 430079, China

ARTICLE INFO

Article history:

Received 30 November 2020

Received in revised form 7 April 2021

Accepted 10 April 2021

Available online xxxx

Keywords:

Linear arboricity conjecture

Gallai's path partition conjecture

k -degenerate graph

Dense random graphs

ABSTRACT

A graph is a *linear forest* if each of its components is a path. Given a graph G with maximum degree $\Delta(G)$, motivated by the famous linear arboricity conjecture and Lovász's classic result on partitioning the edge set of a graph into paths, we call a partition $\mathcal{F} := F_1 | \dots | F_k$ of the edge set of G an *exact linear forest partition* if each F_i induces a linear forest, $k \leq \lceil \frac{\Delta(G)+1}{2} \rceil$, and every vertex $v \in V(G)$ is on at most $\lceil \frac{d_G(v)+1}{2} \rceil$ non-trivial paths belonging to \mathcal{F} . In this paper, we prove the following two results.

- Every 2-degenerate graph has an exact linear forest partition, and so does every series-parallel graph, every outerplanar graph, and every subdivision of any graph provided each edge of the original graph is subdivided at least once.
- Let $p \in (0, 1)$ be a constant. If $G \sim G_{n,p}$, then a.a.s. G has an exact linear forest partition.

© 2021 Elsevier B.V. All rights reserved.

1. Introduction

We will mainly use the notation and terminologies from West [12]. Graphs in this paper are simple unless otherwise specified. Let G be a graph. We use $V(G)$ and $E(G)$ to denote the vertex set and the edge set of G , respectively. The degree of vertex v in a graph G , written $d_G(v)$, is the number of edges incident to v in G . The maximum degree and minimum degree of G are denoted by $\Delta(G)$ and $\delta(G)$, respectively.

A graph is a *linear forest* if each of its components is a path. The *linear arboricity* of a graph G , denoted by $la(G)$, is the least number of linear forests needed to partition the edge set of G . In 1981, Akiyama, Exoo, and Harary [1] made the following conjecture, commonly referred to as the *linear arboricity conjecture* (LAC).

Conjecture 1.1. For every graph G , $la(G) \leq \lceil \frac{\Delta(G)+1}{2} \rceil$.

It is noteworthy that $la(G) \geq \lceil \frac{\Delta(G)}{2} \rceil$ for any graph G because the maximum degree of a path is at most 2. In addition, $la(G) \geq \lceil \frac{\Delta(G)+1}{2} \rceil$ for some graphs G ; for example, regular graphs with even degree because for any linear forest partition

* Corresponding author at: Department of Mathematics and Statistics, Georgia State University, Atlanta, GA 30303, USA.
E-mail addresses: gchen@gsu.edu (G. Chen), yhao4@student.gsu.edu (Y. Hao).

¹ Partially supported by NSF grant DMS-1855716.

\mathcal{F} of $E(G)$, there is a vertex $v \in V(G)$ such that v is an end-vertex of a path belonging to \mathcal{F} . Recall that an edge-coloring of a graph is actually a partition of edges into matchings, and a matching can be viewed as a linear forest whose each component is an edge. Therefore, the above conjecture can be viewed as an analogue to Vizing's theorem. Alon [2] in 1988 showed that LAC is asymptotically correct as $\Delta \rightarrow \infty$. In the same paper, he also proved that LAC holds for graphs G with girth $\Omega(\Delta(G))$. The bound was subsequently improved by Alon and Spencer [3] in 1992, and by Ferber, Fox and Jain [7] in 2020. LAC was verified for planar graphs G with $\Delta(G) \neq 7$ by Wu [13] in 1991 and for planar graphs G with $\Delta(G) = 7$ by Wu and Wu [14] in 2008. McDiarmid and Reed [10] confirmed the conjecture for random regular graphs with fixed degree. Glock, Kühn and Osthus [8] showed that, for $p \in (0, 1)$, a.a.s. the random graph $G \sim G_{n,p}$ can be decomposed into $\lceil \frac{\Delta(G)}{2} \rceil$ linear forests.

Erdős asked what is the minimum number of paths into which the edge set of a connected graph of order n can be partitioned. Gallai conjectured that this number is $\lceil \frac{n}{2} \rceil$. (See [4,9].) Lovász [9] confirmed Gallai's conjecture for graphs with at most one even degree vertex. More specifically, Lovász proved the following result.

Theorem 1.2. For any graph G , $E(G)$ can be partitioned into paths with the following two properties.

- For each odd degree vertex v , there is exactly one of these paths containing v as an end-vertex, and
- For each even degree vertex v , there are at most two of these paths containing v as an end-vertex.

We call an edge set partition of a graph satisfying the above two properties a *Lovász's path partition*. Pyber [11] and Fan [6], as well as some others, improved Lovász's result. Inspired by LAC and Lovász's path partition theorem, we give the following definition.

Definition 1.3. For a graph G with maximum degree $\Delta(G)$, a partition $\mathcal{F} := F_1 | \dots | F_k$ of $E(G)$ is called an *exact linear forest partition* of G if each F_i induces a linear forest, $k \leq \lceil \frac{\Delta(G)+1}{2} \rceil$, and every vertex $v \in V(G)$ is on at most $\lceil \frac{d_G(v)+1}{2} \rceil$ non-trivial paths belonging to \mathcal{F} .

It is worth noting that if G has an exact linear forest partition \mathcal{F} , then it gives both LAC and a Lovász's path partition: Clearly, the exact linear forest partition of G is also a linear forest partition of G and $la(G) = k \leq \lceil \frac{\Delta(G)+1}{2} \rceil$. Hence, LAC holds for G . For any vertex $v \in V(G)$, let p be the number of paths in \mathcal{F} containing v and q be the number of paths in \mathcal{F} containing v as an end-vertex. Since G has an exact linear forest partition \mathcal{F} , we have $p \leq \lceil \frac{d_G(v)+1}{2} \rceil$. If $d_G(v)$ is odd, then $p \leq \frac{d_G(v)+1}{2}$ and $q \geq 1$. Since $d_G(v) = q + 2(p - q) = 2p - q \leq 2 \cdot \frac{d_G(v)+1}{2} - q = d_G(v) + 1 - q$, we have $q \leq 1$, and so $q = 1$. Therefore, G has the first property in Theorem 1.2. If $d_G(v)$ is even, then $p \leq \frac{d_G(v)+2}{2}$ and $q \geq 0$. Since $d_G(v) = q + 2(p - q) = 2p - q \leq 2 \cdot \frac{d_G(v)+2}{2} - q = d_G(v) + 2 - q$, we have $q \leq 2$. Hence, G has the second property in Theorem 1.2. Consequently, G has a Lovász's path partition.

A graph G is k -degenerate if every induced subgraph H has a vertex v with $d_H(v) \leq k$.

Theorem 1.4. If G is a 2-degenerate graph, then G has an exact linear forest partition.

We believe that the above theorem can be extended to k -degenerate graph for small k , such as $k = 3, 4, 5$. For a given k , we guess that there is a positive number K such that every k -degenerate graph G with $\Delta(G) \geq K$ has an exact linear forest partition. With Yu, we [5] recently proved that LAC holds for k -degenerate graph G with $\Delta(G) \geq 2k^2 - 2k$.

A graph H is said to be a *minor* of a graph G if a copy of H can be obtained from G by deleting and/or contracting edges of G . Furthermore, a graph is called *series-parallel* if it has no K_4 as a minor. It is well-known that every graph with minimum degree $\delta \geq 3$ contains K_4 as a minor. Thus, every series-parallel graph is 2-degenerate, which in turn gives that every series-parallel graph has an exact linear forest partition.

A graph G is an *outerplanar graph* if and only if neither K_4 nor $K_{2,3}$ is a minor of G . Hence, every outerplanar graph is a series-parallel graph, and so each outerplanar graph has an exact linear forest partition.

An *H-subdivision* (or *subdivision of H*) is a graph obtained from H by replacing edges with pairwise internally disjoint paths. Clearly, given a graph G , if the vertices with degree at least three form an independent set, then G is 2-degenerate. Hence, each subdivision of a graph has an exact linear forest partition provided each edge of the original graph is subdivided at least once.

Fix $0 \leq p \leq 1$. Let $G_{n,p}$ denote a random graph on a set of n vertices such that each possible edge occurs independently with probability p . Given a probability space, a property is said to hold *asymptotically almost surely* (a.a.s) if over a sequence of sets, the probability converges to 1. The following result shows that almost all dense graphs have an exact linear forest partition.

Theorem 1.5. Let $p \in (0, 1)$ be a constant. If $G \sim G_{n,p}$, then a.a.s. G has an exact linear forest partition.

We make a rough guess that every graph might have an exact linear forest partition. In the remainder of this paper, we will give the proof of Theorem 1.4 in Section 2 and Theorem 1.5 in Section 3.

2. Theorem 1.4

A family \mathcal{G} of graphs is said to be *monotonic decreasing* if $G \in \mathcal{G}$ and $H \subseteq G$, then $H \in \mathcal{G}$. Let \mathcal{G} be a monotonically decreasing family of graphs. We call a graph $G \in \mathcal{G}$ a *minimal counterexample* to the exact linear forest partition if G does not have an exact linear forest partition, but every proper subgraph of G in \mathcal{G} has one. With this, we state the following technical result, which gives Theorem 1.4.

Theorem 2.1. *Let \mathcal{G} be a monotonic decreasing family of graphs. If $G \in \mathcal{G}$ is a minimal counterexample to the exact linear forest partition, then G is 2-connected and $\delta(G) \geq 3$.*

Proof. We first claim that G is connected. Suppose on the contrary that G is disconnected. Since G is the minimal counterexample, each of its components has an exact linear forest partition, which in turn gives a desired partition of $E(G)$, contradicting that G is a counterexample. The remainder of the proof is divided into two claims.

Claim 1. G is 2-connected.

Suppose the contrary: G has a cut-vertex v . We can assume $G := G_1 \cup G_2$ such that $V(G_1) \cap V(G_2) = \{v\}$, $E(G_1) \cap E(G_2) = \emptyset$ and $E(G) = E(G_1) \cup E(G_2)$. Since \mathcal{G} is a monotonic decreasing family of graphs, we have $G_1, G_2 \in \mathcal{G}$. Since G is a minimal counterexample, for $1 \leq i \leq 2$, G_i has an exact linear forest partition $\mathcal{F}^i := F_1^i | \dots | F_{k_i}^i$ such that $k_i \leq \lceil \frac{\Delta(G_i)+1}{2} \rceil$ and each vertex $u \in V(G_i)$ is on at most $\lceil \frac{d_{G_i}(u)+1}{2} \rceil$ paths belonging to \mathcal{F}^i . Clearly, $k_i \leq \lceil \frac{\Delta(G)+1}{2} \rceil$.

Let $d = d_G(v)$, $d_1 = d_{G_1}(v)$, and $d_2 = d_{G_2}(v)$. Clearly, $d = d_1 + d_2$. Let $k = \lceil \frac{\Delta(G)+1}{2} \rceil$. For $1 \leq i \leq 2$, let $\tilde{\mathcal{F}}^i := \tilde{F}_1^i | \dots | \tilde{F}_k^i$ be a new partition of $E(G_i)$ obtained from \mathcal{F}^i by adding some empty sets and relabeling them if necessary such that $\tilde{I}(v) \cup \tilde{J}(v) \subseteq \{1, \dots, \lceil \frac{d+1}{2} \rceil\}$ and $|\tilde{I}(v) \cup \tilde{J}(v)|$ is maximum, where $\tilde{I}(v) = \{j : d_{\tilde{F}_j^i}(v) > 0\}$ and $\tilde{J}(v) = \{j : d_{\tilde{F}_j^i}(v) > 0\}$. Clearly, $|\tilde{I}(v)| \leq \lceil \frac{d_1+1}{2} \rceil \leq \lceil \frac{d+1}{2} \rceil$ and $|\tilde{J}(v)| \leq \lceil \frac{d_2+1}{2} \rceil \leq \lceil \frac{d+1}{2} \rceil$. Let's consider the two cases as follows.

Case 1.1. Both d_1 and d_2 are odd.

In this case, $\lceil \frac{d_1+1}{2} \rceil + \lceil \frac{d_2+1}{2} \rceil = \lceil \frac{d+1}{2} \rceil$, and so $|\tilde{I}(v)| + |\tilde{J}(v)| \leq \lceil \frac{d_1+1}{2} \rceil + \lceil \frac{d_2+1}{2} \rceil = \lceil \frac{d+1}{2} \rceil$. Since $|\tilde{I}(v) \cup \tilde{J}(v)|$ is maximized, we have $|\tilde{I}(v) \cap \tilde{J}(v)| = 0$. Let $F_i = \tilde{F}_1^i \cup \tilde{F}_i^2$ for all i such that $1 \leq i \leq k$. Since $|\tilde{I}(v) \cap \tilde{J}(v)| = 0$, if v is on a path in \tilde{F}_i^1 then it is not on any path in \tilde{F}_i^2 , and vice versa, which in turn gives that each F_i is a linear forest. So $\mathcal{F} := F_1 | \dots | F_k$ is a linear forest partition of $E(G)$. Obviously, $k \leq \lceil \frac{\Delta(G)+1}{2} \rceil$. Since $|\tilde{I}(v) \cup \tilde{J}(v)| \leq \lceil \frac{d+1}{2} \rceil$, vertex v is on at most $\lceil \frac{d+1}{2} \rceil = \lceil \frac{d_G(v)+1}{2} \rceil$ paths belonging to \mathcal{F} . For any vertex $x \in V(G)$ other than v , x is on at most $\lceil \frac{d_G(x)+1}{2} \rceil = \lceil \frac{d_G(x)+1}{2} \rceil$ paths belonging to \mathcal{F} . Therefore, \mathcal{F} is an exact linear forest partition of $E(G)$, giving a contradiction.

Case 1.2. At least one of d_1 and d_2 is even.

In this case, $\lceil \frac{d_1+1}{2} \rceil + \lceil \frac{d_2+1}{2} \rceil = \lceil \frac{d+1}{2} \rceil + 1$, and so $|\tilde{I}(v)| + |\tilde{J}(v)| \leq \lceil \frac{d_1+1}{2} \rceil + \lceil \frac{d_2+1}{2} \rceil = \lceil \frac{d+1}{2} \rceil + 1$. Since $|\tilde{I}(v) \cup \tilde{J}(v)|$ is maximized, we have $|\tilde{I}(v) \cap \tilde{J}(v)| \leq 1$. Moreover, the equalities hold if and only if

$$|\tilde{I}(v)| = \lceil \frac{d_1+1}{2} \rceil \text{ and } |\tilde{J}(v)| = \lceil \frac{d_2+1}{2} \rceil. \quad (1)$$

If $|\tilde{I}(v) \cap \tilde{J}(v)| = 0$, similarly to the case 1, we then can construct an exact linear forest partition of $E(G)$. So we assume $|\tilde{I}(v) \cap \tilde{J}(v)| = 1$. In this case, we have (1). Let $\tilde{I}_1(v) = \{i : d_{\tilde{F}_i^1}(v) = 1\}$, $\tilde{I}_2(v) = \{i : d_{\tilde{F}_i^1}(v) = 2\}$, $\tilde{J}_1(v) = \{i : d_{\tilde{F}_i^2}(v) = 1\}$ and $\tilde{J}_2(v) = \{i : d_{\tilde{F}_i^2}(v) = 2\}$. We claim $\tilde{I}_1(v) \neq \emptyset$, which is clearly true if d_1 is odd. If d_1 is even and $\tilde{I}_1(v) = \emptyset$, then $\lceil \frac{d_1+1}{2} \rceil = |\tilde{I}(v)| = |\tilde{I}_2(v)| = \lceil \frac{d_1}{2} \rceil = \lceil \frac{d_1+1}{2} \rceil - 1$, giving a contradiction. Similarly, we have $\tilde{J}_1(v) \neq \emptyset$. Relabeling the indices in $\tilde{I}(v)$ and $\tilde{J}(v)$ if necessary such that $\tilde{I}_1(v) \cap \tilde{J}_1(v) \neq \emptyset$, say $1 \in \tilde{I}_1(v) \cap \tilde{J}_1(v)$. We then have $\{1\} = \tilde{I}_1(v) \cap \tilde{J}_1(v) = \tilde{I}(v) \cap \tilde{J}(v)$ because of $|\tilde{I}(v) \cap \tilde{J}(v)| = 1$.

For $1 \leq i \leq 2$, let P_i be a path in \tilde{F}_i^1 containing v . Since $1 \in \tilde{I}_1(v)$, vertex v is an end-vertex of P_1 . Similarly, vertex v is an end-vertex of P_2 . Then, $P = P_1 \cup P_2$ is a path. Let $F_1 = (\tilde{F}_1^1 \setminus \{P_1\}) \cup (\tilde{F}_1^2 \setminus \{P_2\}) \cup \{P\}$ and $F_i = \tilde{F}_i^1 \cup \tilde{F}_i^2$ for $i > 2$. Thus $\mathcal{F} := F_1 | \dots | F_k$ is a linear forest partition of $E(G)$ with $k \leq \lceil \frac{\Delta(G)+1}{2} \rceil$. Since $|\tilde{I}(v) \cup \tilde{J}(v)| = |\tilde{I}(v)| + |\tilde{J}(v)| - 1 = \lceil \frac{d+1}{2} \rceil = \lceil \frac{d_G+1}{2} \rceil$, vertex v is on $\lceil \frac{d_G+1}{2} \rceil$ paths belonging to \mathcal{F} , and for any vertex $x \in V(G)$ other than v , x is on at most $\lceil \frac{d_G(x)+1}{2} \rceil = \lceil \frac{d_G(x)+1}{2} \rceil$ paths belonging to \mathcal{F} . Hence, \mathcal{F} is an exact linear forest partition of $E(G)$, giving a contradiction.

Claim 2. $\delta(G) \geq 3$.

Suppose the contrary: there exists a vertex $v \in V(G)$ such that $d_G(v) = 2$. Let u, w be the two neighbors of v and let $H = G - vw$. Since \mathcal{G} is a monotonic decreasing family of graphs, we have $H \in \mathcal{G}$. Given the assumption that G is a minimal counterexample to the exact linear forest partition, $E(H)$ has an exact linear forest partition $\mathcal{F} := F_1 | \dots | F_k$ such that $k \leq \lceil \frac{\Delta(H)+1}{2} \rceil \leq \lceil \frac{\Delta(G)+1}{2} \rceil$ and for each $x \in V(H)$, $|I(x)| \leq \lceil \frac{d_{H(x)}+1}{2} \rceil$, where $I(x) = \{i : d_{F_i}(x) > 0 \text{ and } 1 \leq i \leq k\}$. Adding some empty sets to the partition \mathcal{F} if necessary such that $k = \lceil \frac{\Delta(G)+1}{2} \rceil$. Since $w \in V(H)$, we have $|I(w)| \leq \lceil \frac{d_{H(w)}+1}{2} \rceil = \lceil \frac{d_G(w)+1}{2} \rceil \leq \lceil \frac{d_G(w)+1}{2} \rceil$.

We first assume that $|I(w)| \leq \lceil \frac{d_G(w)+1}{2} \rceil - 1$. So $|I(w)| < k$. Without loss of generality, we assume that $1 \notin I(w)$, i.e., $d_{F_1}(w) = 0$. If $d_{F_1}(v) = 0$, then let $F_1^* = F_1 \cup \{vw\}$. If $d_{F_1}(v) = 1$, then there exists a path P belonging to F_1 such that v is an end-vertex of P . Let P^* be a path obtained by adding edge vw in P . Let $F_1^* = (F_1 \setminus \{P\}) \cup \{P^*\}$ and $F_i^* = F_i$ for

$i \in \{2, \dots, k\}$. Since $d_{F_1}(w) = 0$, F_1^* is a linear forest. Therefore, $\mathcal{F}^* := F_1^* \cup \dots \cup F_k^*$ is also a linear forest partition of $E(G)$ with $k \leq \lceil \frac{\Delta(G)+1}{2} \rceil$. Moreover, vertex v is on at most $2 = \lceil \frac{d_G(v)+1}{2} \rceil$ paths belonging to \mathcal{F}^* , vertex w is on $|I(w)| + 1 \leq (\lceil \frac{d_G(w)+1}{2} \rceil - 1) + 1 = \lceil \frac{d_G(w)+1}{2} \rceil$ paths belonging to \mathcal{F}^* , and any other vertex x is on at most $\lceil \frac{d_H(x)+1}{2} \rceil = \lceil \frac{d_G(x)+1}{2} \rceil$ paths belonging to \mathcal{F}^* . So, \mathcal{F}^* is an exact linear forest partition of $E(G)$, giving a contradiction.

We now assume that $|I(w)| = \lceil \frac{d_G(w)+1}{2} \rceil$. Recall $|I(w)| \leq \lceil \frac{d_H(w)+1}{2} \rceil = \lceil \frac{d_G(w)}{2} \rceil$. In this case, $d_G(w)$ is odd, i.e., $d_H(w)$ is even. Let $I_1(w) = \{i : d_{F_i}(w) = 1\}$ and $I_2(w) = \{i : d_{F_i}(w) = 2\}$. Clearly, $I(w) = I_1(w) \cup I_2(w)$.

We first claim $|I_1(w)| \geq 1$. Otherwise, we have $\lceil \frac{d_G(w)+1}{2} \rceil = |I(w)| = |I_2(w)| = \frac{d_H(w)}{2} = \frac{d_G(w)-1}{2}$, giving a contradiction. Further, we claim $|I_1(w)| \geq 2$. If $|I_1(w)| = 1$, then $d_H(w) = |I_1(w)| + 2|I_2(w)|$ is odd, giving a contradiction. So $|I_1(w)| \geq 2$ and $|I_1(w)|$ is even.

Since $|I_1(w)| \geq 2$ and $|I(v)| = d_H(v) = 1$, we assume without loss of generality that $I(v) = \{1\}$ and $2 \in I_1(w) \setminus I(v)$. Let P be a path in F_2 containing w as an end-vertex and $P^* = P \cup \{vw\}$ be a path obtained by adding the edge vw in P . Let $F_2^* = (F_2 \setminus \{P\}) \cup \{P^*\}$ and $F_i^* = F_i$ for each $i \neq 2$. Let $\mathcal{F}^* := F_1^* \cup \dots \cup F_k^*$. Clearly, \mathcal{F}^* is a linear forest partition of $E(G)$ with $k \leq \lceil \frac{\Delta(G)+1}{2} \rceil$. Moreover, vertex v is on two paths belonging to \mathcal{F}^* , vertex w is on $\lceil \frac{d_G(w)+1}{2} \rceil$ paths belonging to \mathcal{F}^* , and any other vertex x is on $|I(x)| \leq \lceil \frac{d_H(x)+1}{2} \rceil = \lceil \frac{d_G(x)+1}{2} \rceil$ paths belonging to \mathcal{F}^* . So, \mathcal{F}^* is an exact linear forest partition of $E(G)$, giving a contradiction. \square

3. Theorem 1.5

Glock, Kühn, and Osthus [8] proved the following optimal decomposition results for random graphs.

Theorem 3.1. Let $p \in (0, 1)$ be a constant and let $G \sim G_{n,p}$. Let $\text{odd}(G)$ be the number of odd degree vertices in G . The following a.a.s. hold:

- (i) G can be decomposed into $\lceil \frac{\Delta(G)}{2} \rceil$ cycles and a matching of size $\text{odd}(G)/2$.
- (ii) G can be decomposed into $\max\{\text{odd}(G)/2, \lceil \frac{\Delta(G)}{2} \rceil\}$ paths.
- (iii) G can be decomposed into $\lceil \Delta(G)/2 \rceil$ linear forests.

Our proof of Theorem 1.5 is inspired by the proof of Theorem 3.1. In the next subsection, we will state some additional notation and preliminary results given in [8].

3.1. Notation and preliminary results

Let G be a multigraph or digraph. Denote by $V(G)$ and $E(G)$ the vertex set and the edge set of G , respectively. Given $U \subseteq V(G)$, let $G - U$ be the graph obtained by deleting vertices in U from G , and $G[U]$ be the subgraph of G induced by U . If $F \subseteq E(G)$, then let $G \setminus F$ be the graph obtained by removing all edges in F from G , and $G \cup F$ denote the graph obtained by adding the edges in F to G .

Let $\varepsilon, p \in (0, 1)$ and $e_G(S, T)$ be the number of edges in G between disjoint $S, T \subseteq V(G)$. A graph G of order n is said to be *lower-(p, ε)-regular* if we have

$$e_G(S, T) \geq (p - \varepsilon) \cdot |S| \cdot |T|$$

for all disjoint $S, T \subseteq V(G)$ with $|S|, |T| \geq \varepsilon n$.

Proposition 3.2. [Lemma 3.5 in [8]] Let $\varepsilon, p \in (0, 1)$ be constant. The following hold a.a.s. for the random graph $G \sim G_{n,p}$:

- (i) $\Delta(G) - \delta(G) \leq 4\sqrt{n \log n}$,
- (ii) G is lower-(p, ε)-regular,
- (iii) G has a unique vertex of maximum degree.

Proposition 3.3. [Proposition 3.1. in [8]] Let $0 < 1/n_0 \ll \varepsilon, p < 1$, and let G be a lower-(p, ε)-regular (di-)graph on $n \geq n_0$ vertices. Then the following hold:

- (i) If G' is obtained from G by adding a new vertex w and arbitrary edges at w , then G' is lower-($p, 2\varepsilon$)-regular.
- (ii) Let H be a graph on $V(G)$ such that $\Delta(H) \leq \eta n$. Let $\varepsilon' := \max\{2\varepsilon, 2\sqrt{\eta}\}$. Then $G \setminus H$ is lower-(p, ε')-regular.
- (iii) If $U \subseteq V(G)$ has size at least βn , then $G[U]$ is lower-($p, \varepsilon/\beta$)-regular.

A graph G is *Eulerian* if and only if it is connected and its vertices all have even degree. A digraph G is *Eulerian* if it has a closed trial containing all edges of G .

Proposition 3.4. [Lemma 3.12 in [8]] Let $0 < 1/n_0 \ll \varepsilon \ll p, \alpha < 1$. Suppose that G is an Eulerian graph on $n \geq n_0$ vertices. Assume further that G is lower- (p, ε) -regular and $\delta(G) \geq \alpha n$. Then there exists an orientation G' of G such that G' is Eulerian and lower- $(p/4, \varepsilon)$ -regular.

Let G be a (di-)graph and let $M = \{x_1y_1, \dots, x_my_m\}$ be a matching in the complete graph on $V(G)$ such that $d_G(x_i) \leq d_G(y_i)$ for all $i \in \{1, \dots, m\}$. We say that a subgraph $F \subseteq G$ is *consistent with M* if for all $i \in \{1, \dots, m\}$, $x_i \in V(F)$ implies $y_i \in V(F)$.

Theorem 3.5. [Theorem 4.1 in [8]] Let $0 < 1/n_0 \ll \eta, \varepsilon \ll p < 1$ be such $\varepsilon^2 \leq \eta$. Suppose that G is a lower- (p, ε) -regular digraph on $n \geq n_0$ vertices. Moreover, assume that G is Eulerian and $\Delta(G) - \delta(G) \leq \eta n$. Let M be any matching in the complete graph on $V(G)$. Then G can be decomposed into $\frac{\Delta(G)}{2}$ cycles which are consistent with M .

Corollary 3.6. [Corollary 4.2 in [8]] Let $0 < 1/n_0 \ll \eta, \varepsilon \ll p < 1$. Suppose that G is a lower- (p, ε) -regular graph on $n \geq n_0$ vertices. Moreover, assume that $\Delta(G) - \delta(G) \leq \eta n$ and that G is Eulerian. Let M be any matching in the complete graph on $V(G)$. Then G can be decomposed into $\frac{\Delta(G)}{2}$ cycles which are consistent with M .

3.2. Proof of Theorem 1.5

We will prove the following result which by Proposition 3.2 in turn gives Theorem 1.5.

Theorem 3.7. Let $0 < 1/n_0 \ll \eta, \varepsilon \ll p < 1$. Suppose that G is a lower- (p, ε) -regular graph on n vertices. If $n \geq n_0$ and $\Delta(G) - \delta(G) \leq \eta n$, then G has an exact linear forest partition.

Proof. Denote by $W = \{x_1, y_1, x_2, y_2, \dots, x_m, y_m\}$ the set of odd degree vertices in G . We assume without loss of generality that $d_G(x_i) \leq d_G(y_i)$ for $i \in \{1, \dots, m\}$. The proof is divided into two cases according to whether $|W| \geq \Delta(G)$.

Case 1. $|W| \geq \Delta(G)$.

Let H be the graph obtained from G by the following two steps: (1). Add a new vertex z and edges between z and every vertex in $\lceil \frac{\Delta(G)}{2} \rceil$ pairs $\{x_i, y_i\}$ of W with $i \in \{1, \dots, \lceil \frac{\Delta(G)}{2} \rceil\}$; (2). In the remaining $m - \lceil \frac{\Delta(G)}{2} \rceil$ pairs, let $M = \{x_iy_i : x_iy_i \in E(G)\}$ and $M^* = \{x_iy_i : x_iy_i \in E(G^c)\}$, where G^c is the complement of G . Remove M from the graph and add M^* .

Clearly, H is Eulerian, $\Delta(H) \leq \Delta(G) + 1$ and $\delta(H) \geq \delta(G) - 1$. Hence, $\Delta(H) - \delta(H) \leq \Delta(G) - \delta(G) + 2$, which in turn implies that H is lower- $(p, 4\varepsilon)$ -regular by Proposition 3.3 (i) and (ii). By Corollary 3.6, we obtain a cycle partition $\mathcal{C} := C_1 | \dots | C_k$ of H with $k = \frac{\Delta(H)}{2}$, which are consistent with M .

Note that $d_H(z) = 2 \cdot \lceil \frac{\Delta(G)}{2} \rceil$. We claim that $d_H(z) = \Delta(H)$. For any vertex $v \in V(G)$, we have $d_H(v) \leq d_G(v) + 1 \leq \Delta(G) + 1$. If $\Delta(G)$ is odd, then $d_H(z) = \Delta(G) + 1$, and so $d_H(z) = \Delta(H)$. If $\Delta(G)$ is even, then $v \in V(G) \setminus W$ for any vertex $v \in V(G)$ with $d_G(v) = \Delta(G)$. So $d_H(v) = d_G(v) = \Delta(G) = d_H(z)$. Hence, $d_H(z) = \Delta(H)$. We now are going to get a linear forest partition of G in the following three steps.

(1) Remove z in H .

Since $d_H(z) = \Delta(H)$, we then have that z is contained in each of $\frac{\Delta(H)}{2} = \lceil \frac{\Delta(G)}{2} \rceil$ cycles of \mathcal{C} . Therefore, we obtain a path partition $\mathcal{P} := P_1 | \dots | P_k$ of $(G \setminus M) \cup M^*$, i.e., $H - z$, where $P_i = C_i - z$ and $k = \lceil \frac{\Delta(G)}{2} \rceil$. Clearly, every vertex in $\{x_1, y_1, \dots, x_k, y_k\}$ becomes end-vertex of some path P_i in \mathcal{P} .

(2) Remove edges of M^* one by one from $(G \setminus M) \cup M^*$.

For each path P_i , if $E(P_i) \cap M^* \neq \emptyset$, then we let $F_i^* = P_i \setminus M^*$; if $E(P_i) \cap M^* = \emptyset$, then we let $F_i^* = P_i$. Obviously, F_i^* is a linear forest for $i \in \{1, \dots, k\}$. Hence, we obtain a linear forest partition $\mathcal{F}^* := F_1^* | \dots | F_k^*$ of $G \setminus M$. Clearly, every vertex in pair $\{x_j, y_j\}$ with $x_jy_j \in M^*$ for $j \in \{k+1, \dots, m\}$ becomes an end-vertex of some path belonging to \mathcal{F}^* .

(3) Add edges of M one by one from $G \setminus M$.

For any edge $x_iy_i \in M$, since $x_iy_i \in E(G)$, we have $d_{G \setminus M}(y_i) = d_H(y_i) = d_G(y_i) - 1 < \Delta(G)$. Since $y_i z \notin E(H)$ and $y_i \notin V(M^*)$, operations in (1) and (2) do not affect y_i . Thus, y_i is not a leaf in any F_j^* for $j \in \{1, \dots, k\}$. Therefore, there exists some $j \in \{1, \dots, k\}$ such that $d_{F_j^*}(y_i) = 0$, and so $y_i \notin V(C_j)$. Since cycle C_j is consistent with M , we have $x_i \notin V(C_j)$, which in turn shows that $d_{F_j^*}(x_i) = 0$. Hence, $F_j^* \cup \{x_iy_i\}$ is also a linear forest. Let $F_j = F_j^* \cup \{x_iy_i\}$ and $F_\ell = F_\ell^*$ for $\ell \neq j$. In the same fashion, we add all edges of M to get G . Thus, we obtain a linear forest partition $\mathcal{F} := F_1 | \dots | F_k$ of G , where $k = \lceil \frac{\Delta(G)}{2} \rceil$. Moreover, only the vertices in pair $\{x_i, y_i\}$ with $x_iy_i \in M$ for $i \in \{k+1, \dots, m\}$ become end-vertices of new paths (i.e., x_iy_i) belonging to F_j .

We now show that each vertex $v \in V(G)$ is on at most $\lceil \frac{d_G(v)+1}{2} \rceil$ nontrivial paths in \mathcal{F} . Note that only the vertices in W are the end-vertices of paths belonging to \mathcal{F} and each vertex in W is an end-vertex of exactly one path in \mathcal{F} . Consequently, for any vertex $v \in V(G)$, if $v \in W$, then v is on exactly $1 + \frac{d_G(v)-1}{2} = \lceil \frac{d_G(v)+1}{2} \rceil$ nontrivial paths in \mathcal{F} ; and if $v \in V(G) \setminus W$, then v is on exactly $\frac{d_G(v)}{2} < \lceil \frac{d_G(v)+1}{2} \rceil$ nontrivial paths in \mathcal{F} . Hence, for each vertex v , v is on at most $\lceil \frac{d_G(v)+1}{2} \rceil$ nontrivial paths in \mathcal{F} , which completes the proof of Case 1.

Case 2. $|W| < \Delta(G)$.

Let $M = \{x_i y_i : x_i y_i \in E(G)\}$ and let $M^* = \{x_i y_i : x_i y_i \in E(G^c)\}$. Let $H = (G \setminus M) \cup M^*$. Clearly, H is Eulerian and lower- $(p, 2\varepsilon)$ -regular. Applying Proposition 3.4, we get an orientation D of H which is Eulerian and lower- $(p/4, 2\varepsilon)$ -regular. Let D^* be the digraph obtained from D as follows: Add a new vertex z and connect it to all vertices of W by one edge according to the following rule. If $x_i y_i \in E(D)$, then remove it and add $x_i z$ and $z y_i$. If $y_i x_i \in E(D)$, then remove it and add $y_i z$ and $z x_i$. Else (i.e., $x_i y_i \in M$), add edge $x_i y_i$, $y_i z$ and $z x_i$. Note that G is the underlying graph of $D^* - z$. Let's consider the following two cases.

Case 2.1. G has a unique vertex v_0 of maximum degree and $\Delta(G)$ is even.

Let $\ell = \frac{\Delta(G) - |W|}{2}$ and U be an ℓ -vertex set in $V(G) \setminus (W \cup \{v_0\})$. Let D^{**} be the digraph obtained from D^* by adding two edges which are oriented in opposite directions between z and each vertex of U . Clearly, D^{**} is Eulerian.

We claim $d_{D^{**}}(z) = \Delta(D^{**}) = \Delta(G)$. Let $u \in V(G) \setminus \{v_0\}$. If $u \in V(G) \setminus (W \cup \{v_0\})$, then $d_G(u) \leq \Delta(G) - 2$. Hence, $d_{D^{**}}(u) \leq d_G(u) + 2 \leq (\Delta(G) - 2) + 2 = \Delta(G)$. If $u \in W$, then $d_G(u) \leq \Delta(G) - 1$, which gives us that $d_{D^{**}}(u) = d_G(u) + 1 \leq (\Delta(G) - 1) + 1 = \Delta(G)$. Note that $d_{D^{**}}(z) = |W| + 2\ell = |W| + 2 \cdot \frac{\Delta(G) - |W|}{2} = \Delta(G)$. Therefore, $\Delta(D^{**}) = \Delta(G) = d_{D^{**}}(z)$.

By Proposition 3.3, D^{**} is lower- $(p/4, 8\varepsilon)$ -regular. Applying Theorem 3.5, we can obtain a cycle partition $\mathcal{C} := C_1 | \dots | C_k$ of D^{**} , where $k = \frac{\Delta(D^{**})}{2} = \frac{\Delta(G)}{2}$. Since $d_{D^{**}}(z) = \Delta(D^{**}) = \Delta(G)$, we then get that z is contained in each of these $\frac{\Delta(G)}{2}$ cycles. Note that G is the underlying graph of $D^{**} - z = D^* - z$. After removing z from each cycle of \mathcal{C} , we get a disjoint path partition $\mathcal{P} := P_1 | \dots | P_k$ of G with $k = \frac{\Delta(G)}{2}$, where $P_i = C_i - z$. Let $F_i = P_i$ for $i \in \{1, \dots, k\}$. So, we get a linear forest partition $\mathcal{F} := F_1 | \dots | F_k$ of $E(G)$.

We observe the following facts to show that each vertex $v \in V(G)$ is on at most $\lceil \frac{d_G(v)+1}{2} \rceil$ paths belonging to \mathcal{F} . Only the vertices in $W \cup U$ can be an end-vertex of a path belonging to \mathcal{F} . Moreover, each vertex in W is an end-vertex of exactly one of these paths, and each vertex in U (which has even degree) may be end-vertex of 0 or 2 of such paths. Therefore, for any vertex $v \in V(G)$, if $v \in W$, then v is on exactly $1 + \frac{d_G(v)-1}{2} = \lceil \frac{d_G(v)+1}{2} \rceil$ nontrivial paths belonging to \mathcal{F} ; if $v \in U$, then v is on at most $2 + \frac{d_G(v)-2}{2} = \lceil \frac{d_G(v)+1}{2} \rceil$ nontrivial paths belonging to \mathcal{F} ; if $v \in V(G) \setminus \{U, W\}$, then v is on exactly $\frac{d_G(v)}{2} < \lceil \frac{d_G(v)+1}{2} \rceil$ nontrivial paths belonging to \mathcal{F} . Hence, for each vertex $v \in V(G)$, v is on at most $\lceil \frac{d_G(v)+1}{2} \rceil$ nontrivial paths in \mathcal{F} , which completes the proof of Case 2.1.

Case 2.2. At least two $\Delta(G)$ -vertices in G or $\Delta(G)$ is odd.

Let $\ell = \lceil \frac{\Delta(G)+1-|W|}{2} \rceil$ and U be an ℓ -vertex set in $V(G) \setminus W$. Let D^{**} be obtained from D by adding two edges with opposite orientations between z and each vertex in U . Clearly, D^{**} is Eulerian.

Note that $d_{D^{**}}(z) = |W| + 2\ell = |W| + 2 \cdot \lceil \frac{\Delta(G)+1-|W|}{2} \rceil = 2 \cdot \lceil \frac{\Delta(G)+1}{2} \rceil$. We claim that $d_{D^{**}}(z) = \Delta(D^{**})$. Let $u \in V(D^{**}) \setminus \{z\}$ and $S = \{v : d_G(v) = \Delta(G)\}$. Suppose $|S| \geq 1$ and $\Delta(G)$ is odd. If $u \in W$, then $d_G(u) \leq \Delta(G)$. And so $d_{D^{**}}(u) = d_G(u) + 1 \leq \Delta(G) + 1$. If $u \in V(G) \setminus W$, then $d_G(u) \leq \Delta(G) - 1$. Hence, $d_{D^{**}}(u) \leq d_G(u) + 2 \leq \Delta(G) + 1 = 2 + \lceil \frac{\Delta(G)+1}{2} \rceil$. Suppose $|S| \geq 2$ and $\Delta(G)$ is even. If $u \in W$, then $d_G(u) \leq \Delta(G) - 1$, which in turn gives $d_{D^{**}}(u) = d_G(u) + 1 \leq \Delta(G)$. If $u \in V(G) \setminus W$, then $d_G(u) \leq \Delta(G)$. Hence, $d_{D^{**}}(u) \leq d_G(u) + 2 = \Delta(G) + 2 = 2 + \lceil \frac{\Delta(G)+1}{2} \rceil$. Therefore, $\Delta(D^{**}) = 2 + \lceil \frac{\Delta(G)+1}{2} \rceil = d_{D^{**}}(z)$.

By Proposition 3.3, D^{**} is lower- $(p/4, 8\varepsilon)$ -regular. Applying Theorem 3.5, we can obtain a cycle partition $\mathcal{C} := C_1 | \dots | C_k$ of D^{**} , where $k = \frac{\Delta(D^{**})}{2} = \lceil \frac{\Delta(G)+1}{2} \rceil$. Since $d_{D^{**}}(z) = \Delta(D^{**}) = \Delta(G)$, we then get that z is contained in each of these $\lceil \frac{\Delta(G)+1}{2} \rceil$ cycles and G is the underlying graph of $D^{**} - z$. Similarly to Case 2.1, we get a linear forest partition $\mathcal{F} := F_1 | \dots | F_k$ of $E(G)$, where $F_i = C_i - z$ and $k = \lceil \frac{\Delta(G)+1}{2} \rceil$, and for each vertex $v \in V(G)$, v is on at most $\lceil \frac{d_G(v)+1}{2} \rceil$ nontrivial paths belonging to \mathcal{F} , which completes the proof of Case 2.2. \square

Declaration of competing interest

The work of this article has not been published previously and it not under consideration for publication elsewhere, that its publication is approved by all authors and tacitly or explicitly by the responsible authorities where the work was carried out, and that, if accepted, it will not be published elsewhere in the same form, in English or in any other language, including electronically without the written consent of the copyright-holder.

References

- [1] Jin Akiyama, Geoffrey Exoo, Frank Harary, Covering and packing in graphs. IV. Linear arboricity, Networks 11 (1) (1981) 69–72.
- [2] N. Alon, The linear arboricity of graphs, Isr. J. Math. 62 (3) (1988) 311–325.
- [3] Noga Alon, Joel H. Spencer, The Probabilistic Method, fourth edition, Wiley Series in Discrete Mathematics and Optimization, John Wiley & Sons, Inc., Hoboken, NJ, 2016.
- [4] Adrian Bondy, Beautiful conjectures in graph theory, Eur. J. Comb. 37 (2014) 4–23.
- [5] Guantao Chen, Yanli Hao, Guoning Yu, The Linear Arboricity Conjecture on Degenerate Graphs, September 2020.
- [6] Genghua Fan, Path decompositions and Gallai's conjecture, J. Comb. Theory, Ser. B 93 (2) (2005) 117–125.
- [7] Asaf Ferber, Jacob Fox, Vishesh Jain, Towards the linear arboricity conjecture, J. Comb. Theory, Ser. B 142 (2020) 56–79.
- [8] Stefan Glock, Daniela Kühn, Deryk Osthus, Optimal path and cycle decompositions of dense quasirandom graphs, J. Comb. Theory, Ser. B 118 (2016) 88–108.
- [9] L. Lovász, On covering of graphs, in: Theory of Graphs, Proc. Colloq., Tihany, 1966, Academic Press, New York, 1968, pp. 231–236.

- [10] Colin McDiarmid, Bruce Reed, Linear arboricity of random regular graphs, *Random Struct. Algorithms* 1 (4) (1990) 443–445.
- [11] L. Pyber, Covering the edges of a connected graph by paths, *J. Comb. Theory, Ser. B* 66 (1) (1996) 152–159.
- [12] Douglas B. West, *Introduction to Graph Theory*, Prentice Hall, Inc., Upper Saddle River, NJ, 1996.
- [13] Jian-Liang Wu, On the linear arboricity of planar graphs, *J. Graph Theory* 31 (2) (1999) 129–134.
- [14] Jian-Liang Wu, Yu-Wen Wu, The linear arboricity of planar graphs of maximum degree seven is four, *J. Graph Theory* 58 (3) (2008) 210–220.