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ABSTRACT

State of health (SOH) estimation of lithium-ion batteries
has typically been focused on estimating present cell capacity
relative to initial cell capacity. While many successes have been
achieved in this area, it is generally more advantageous to not
only estimate cell capacity, but also the underlying degradation
modes which cause capacity fade because these modes give
further insight into maximizing cell usage. There have been
some successes in estimating cell degradation modes, however,
these methods either require long-term degradation data, are
demonstrated solely on artificially constructed cells, or exhibit
high error in estimating late-life degradation. To address these
shortfalls and alleviate the need for long-term cycling data, we
propose a method for estimating the capacity of a battery cell
and diagnosing its primary degradation mechanisms using
limited early-life degradation data. The proposed method uses
simulation data from a physics-based half-cell model and early-
life degradation data from 16 cells cycled under two
temperatures and C rates to train a machine learning model.
Results obtained from a four-fold cross validation study
indicate that the proposed physics-informed machine learning
method trained with only 60 early life data (five data from each
of the 12 training cells) and 30 high-degradation simulated
data can decrease estimation error by up to a total of 9.77 root
mean square error % when compared to models which were
trained only on the early-life experimental data.
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1. INTRODUCTION

Lithium-ion (Li-ion) batteries are an attractive mobile
energy storage device due to their high energy density, long
cycle life, and continuously falling cost [1]-[3]. Despite the
advantages, Li-ion battery cells degrade over time due to
detrimental and irreversible internal electrochemical reactions
during operation. To ensure safe and reliable operation within a
system, it is important to monitor the state of health (SOH) of
the Li-ion battery cell. The SOH of a battery cell is often
defined as the ratio of its present cell capacity/resistance to its
initial capacity/resistance. Accurate estimation of SOH is a
crucial factor in implementing timely maintenance and
replacement of battery cells/modules/packs.

Over the past few years, many health diagnostic methods
have been developed based on readily available measurements
(i.e., voltage, current, and temperature) from the cells.
Generally, SOH estimation methods can be classified into two
categories: (1) model-based methods [4]-[8] and (2) data-
driven methods [9]-[14].

Model-based capacity estimation methods involve the use
of empirical [4],[8]/equivalent circuit [8]/electrochemical [5],
[6] models to fit the experimental data. Typically, the battery
model is combined with advanced filtering techniques, such as
Kalman filter and particle filter, to first estimate the model
parameters through tracking the voltage (V) vs. capacity (Q)
curve (VQ curve), then use the model parameters to estimate
the SOH. While these model-based methods have shown
successes in SOH estimation, constructing an accurate battery
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model is a challenging task, given it often requires knowledge
on the battery working principles or experimental data under
carefully designed and well-controlled conditions.

Recently, data-driven methods have begun to emerge as an
appealing alternative due to advances in data generation and
increasing public availability of battery degradation data. A
growing number of studies in the literature have applied
machine learning techniques on SOH estimation by learning the
complex dependency between the SOH of a cell and the
characteristic features extracted from battery degradation
measurements. In particular, popular machine learning methods
such as linear regression [12], support vector machine (SVM)
[12], relevance vector machine (RVM) [13], Gaussian process
[14], and neural network (NN) [10], [11] have been successfully
applied to the capacity estimation of Li-ion batteries.

While there have been many successes in estimating cell
capacity using model-based and data-driven methods, these
methods fall short in providing insight on the underlying
degradation mechanisms which cause capacity fade. Three
commonly reported degradation mechanisms in a Li-ion battery
cell are loss of lithium inventory (LLI) and loss of active
materials in the positive and negative electrodes (LAMpg and
LAMNng, respectively) [15]-[18]. Limiting SOH estimation to
available cell capacity does not fully reflect battery health.
Diagnosing the underlying degradation mechanisms can
provide better insight into battery health, which can facilitate
prediction of future battery health [19], [20] and optimize the
usage of battery cells [16]. Several degradation diagnostics
methods have been proposed in the past. Han et al. proposed
using membership functions to quantify the areas under the
peak locations of the differential capacity (dQ/dV) curve and
correlating these capacities to LLI and LAMng [16]. Birkl et al.
proposed a diagnostic algorithm for estimating the degradation
mechanisms (LLI, LAMpg and LAMNng) of a battery cell [15].
The proposed algorithm was experimentally validated through
reconstructing the pseudo-OCV curve of a coin-cell with
artificial degradation mechanisms. Dubarry et al. proposed an
online SOH estimation method by comparing features
(extracted from differential voltage (dV/dQ) and dQ/dV curves)
from an online cell to features in a simulated offline path
degradation database [17]. Tian et al. trained a convolutional
neural network (CNN) to learn the relationship between a
partial 1C charge curve and the electrode aging parameters
(obtained from a pseudo-OCV curve) [18]. These electrode
aging parameters can be used to quantify the degradation
parameters of the battery cell.

Despite the promising results, these works either required
long-term degradation data, were demonstrated solely on
artificially constructed cells, or exhibited high errors when
estimating degradation mechanisms at a late aging stage. To
alleviate the time and cost in collecting long-term aging data, it
is of great significance to develop methods that can enable
accurate degradation diagnostics at a late aging stage using only
early aging data. Such methods are beneficial for those who
have limited budget and time for conducting aging tests.

In this work, we propose a methodology for constructing a
data-efficient estimator that can estimate the capacity of a
battery cell and diagnose its primary degradation mechanisms.
The methodology incorporates physical knowledge of battery
cell degradation into machine learning models by combining
simulation data from a physics-based model with experimental
data from the early cycle life only. The use of early cycle life
data is to simulate a common scenario where experimental time
is limited, resources are scarce, and long-term cycling is not an
option. Different combinations of simulation data and
experimental data are considered to investigate their effects on
the long-term health estimation accuracy of the machine
learning models. The estimation results suggest that accurate
SOH estimation models only require training on a small amount
of early-life, light-degradation experimental data and high-
degradation simulated data. The role of the high-degradation
simulated data is to loosely expand the physically meaningful
degradation parameter space to a space that is larger than the
space observed in the light-degradation data, enabling physics-
informed machine learning. By expanding the observed space
of the training data, the models are able to interpolate between
low and high degradation data points, and more accurately
estimate late-life capacity and degradation parameters.

The rest of the paper is arranged in the following manner.
Section 2 presents the three machine learning models used in
this study. Section 3 describes the methodologies of estimating
degradation parameters using half-cell models, different
configurations of the training dataset, and evaluation criteria of
the model performance. Section 4 presents the experimental
setup for aging data acquisition. Section 5 shows and discusses
the results in estimating the health parameters (i.e., degradation
parameters and cell capacity). Section 6 summarizes the key
ideas of this study and offers concluding remarks.

2. MATHEMATICAL PRELIMINARIES

Consider the SOH estimation problem is to learn the
relationship between the inputs and outputs of N distinct
training samples {x;, y;}), , where x; € R and y; € R”. Here
L is the number of features, which is the number of dQ/dV
readings per training/test sample in this study, and T is the
number of tasks, which is equal to four in this study. The tth
output can be represented by an output function y, = f,(X),
wheret =1, ..., T.

2.1. Multi-output Gaussian process

Multi-output Gaussian process (MOGP) extends the
Gaussian process (GP) to jointly model a vector of outputs [21].
Let us first consider a single-output GP defined by its zero mean
trend function m(x) and covariance function k(x,x"). We are
interested in the target output f; (x) which can be expressed as

fe(®)~GP(mx), k(x,x)) (1

For simplicity, we only consider the squared exponential
covariance function in this study. This kernel function takes the
following form

k(x,x") = of exp (— % x—x)"TP1(x- X')) (2)
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where the input variance is afz and the length scales are encoded
in P € RF*L,

Now we consider an MOGP with T outputs. We aim to
model the isotopic training set which is now x,; = Xx; and X; =
-« =Xy = X. Just like the single-output GP, the T outputs
denoted as f = [fj, ..., fr]" also follow a GP model

f(x) ~ GP(m(x), ky (x,x")) 3)
where the new multi-output covariance function ky, (x,x") €
R™T is defined to be
ki1 (x,x") kqr(x,x")
ky(x,x") = : : . @)
kr1(%,X") krr(x,x")
Each element k., (X,X") represents the covariance between
outputs, or in other words, the similarity between the tasks. Just
like a single-output GP, we define the MOGP relationship to be

y:(X) = fi (%) + € (5)
where the term €, is iid Gaussian noise for each of the 7 outputs
such that €,~N(0,02) . The corresponding multi-output
likelihood function is written as

p(yIf.x, %) = N (£(x), %) (6)
where Z; is a diagonal matrix which contains the noise
information for each output, i.e., X, = diag(c?Z, ..., 2). Given
the original multi-output training dataset, the posterior
distribution at a new point X, can be written

f(x)|xy x.~N(f(x.),2.) Q)

The corresponding prediction mean and covariance are,
respectively, given as

f(x.) = Ky [Ky (X, X) + 2]y ®)

Z, = Ky (X, X.) = Ky [Ky (X, X) + Zy ] 7 Ky )

where Ky, = Ky(X,x,) and has blocks K,/ (X, x,) =
ke (xi,x)] fort,t' =1,...,Tandi =1, ...,n.

2.2 Multitask Lasso and elastic net

Lasso and elastic net are two regression methods with
built-in variable selection and regularization. Let x;; denote the
jth reading (or discretized measurement) in the ith dQ/dV
charge curve where i = 1: N and j = 1: L. In a multitask model
with T tasks, y;; with t = 1, ..., T represents an instance of a
single task output. With the prior knowledge that the T tasks are
related to one another, we define a multitask regression problem
to map from a dQ/dV curve to the four tasks. The multitask
regression model consists of a single design matrix X and
multiple task-specific weights B;:

Ye=XPB: t+& (10)
where &; is normalized random noise. To improve the model
performance and reduce overfitting, the X;’s are first
standardized to have zero mean and unit variance. To find the
optimal weights f; for the T tasks, multitask Lasso solves the
following:

. 1
min Jy(B) = Eluallye = XBoll3 + a Zieal|Byll, )
where the term Z}L=1||ﬁtj||2 is a mixed ¢i/¢>-norm which

encourages sparsity across related tasks and a is a
hyperparameter which controls the extent to which the mixed
{1/€r-norm is enforced in the loss function. After iterative

testing, it was found that 0.1 is an acceptable value for a. By
including another quadratic penalty Z§=1”18t1‘”2 in the loss

function along with an additional hyperparameter y for
adjusting the ratio of the two loss penalties, we arrive at the
objective function for a multi-task elastic net model with the
following formulation:

T L
1
min J>(8) =5 ) 1y = XBdl3 +ar )8y, +
t=1 j=1

2
a(1 =) B 1B 12 (12)
Through iterative testing, it was determined that optimal values
for @ and y are 0.05 and 0.05, respectively.

2.3 Extreme learning machine
Extreme learning machine (ELM) is often used as a single
hidden layer feedforward network (SLFN) with random input
weights and biases that do not change throughout the training
process. Mathematically, the SLFN with N distinct training
samples {x;,y;}}*, , where x; € R and y; € RT, can be
formulated as
0, =Y Big(w -x;+b)=yi+€, i=1N (13)
where 0; is the output of the network, w; = [wjl, Wig, ", ij]T
is the hidden layer weight vector connecting the input neurons
and the jth hidden neuron, b; is the bias for jth hidden neuron,
D is the total number of hidden neurons, g(*) is the activation
function that is used to introduce nonlinearity to the SLFN,

B = [[31]-,,82]-, ,,BT]-]T is the output bias vector that connects
the jth hidden neuron to output neurons, and € is noise that
includes both random noise and noise that depends on variables
other than the inputs [22].
The above N equations can be written in the following
matrix form for compact representation,
HB=0 (14)

g(wy - x; +by) g(wp " x4 + bp)
H= : : (15)
g(wy -Xy + by) g(wp -xy + bp)l,.
Bi o]
leil and O = l (16)
B DXT oy NXT

where H is called the hidden layer output matrix.

During the training process, ELM uses the Moore-Penrose
inverse (pseudoinverse) to find a solution to the linear system
shown in equation (4). For many machine learning problems,
the number of training instances (i.e., N) is much larger than the
number of hidden neurons (i.e., D). Therefore, the linear system
is an overdetermined system, and a unique solution is obtained
by minimizing the £, norm of the vector of training errors:

B=H'Y (17)

Hf = (H'H)"'H" (18)

where HT is the pseudoinverse of matrix H, and B is the
solution of the overdetermined system of linear equations
HB =Y . Compared to the model training with back
propagation which requires the iterative updating of input
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weights and biases, the model training with ELM is much faster
as it requires only a single process, pseudoinverse, to find the
optimum solution.

3. METHODOLOGY

3.1 Half-cell model
The half-cell model is a non-destructive degradation
analysis method that estimates the three commonly reported
degradation mechanisms (i.e., LAMpg, LAMng, and LLI) in a
Li-ion battery cell by reconstructing the measured full-cell V
(dV/dQ) vs. Q curve with positive and negative half-cell V
(dV/dQ) vs. Q curves [23]-[25]. The VQ curve analysis ensures
the upper and lower cutoff voltages of the simulated curve
match those of the experimental curve. In contrast, the dV/dQ
curve unveils the phase transition information of the battery
electrode  materials as identifiable peaks  during
charge/discharge and amplifies small changes in the voltage
curve, thus facilitating the identification and quantification of
degradation mechanisms of the battery cell. We use both VQ
curve analysis and dV/dQ curve analysis to robustly identify
and quantify the degradation mechanisms. The equations for
VQ curve analysis and dV/dQ curve analysis are shown in
equation (19) and (20), respectively:
Ve(@)lg=g, = Vp(qp)|qp=Qc;5p - Vn(%)|qn=M (19)

mp Mn
av(Q) —
aQ lo=q
—NC
1 dvp(ap) _ 1 ava(gn) (20)
mp  dqp quQc—5p my  dqn CIn=Q‘;;6n
m n

p
where V(Q.) is the full-cell VQ curve with Q. denoting the cell
capacity, I (q) is the half-cell curve, q is the specific capacity
(mAh/g), m is the active mass (g), and § is the half-cell curve
slippage (mAh). The subscripts p and n correspond to the
positive and negative electrodes (PE and NE), respectively.
Slippage 8, /6, quantifies the horizontal distance the left
endpoint of the positive/negative half-cell curve with respect to
Q. = 0mAh [20], [26]. When the value of & increases
(decreases), the half-cell curve shifts to the left (right). The
active masses in the PE and NE control the capacity of the
corresponding half-cell curves, which shrink when active
masses decrease.

In this study, we identify three degradation parameters
from the half-cell model to quantify the three degradation
mechanisms in a Li-ion battery cell. These degradation
parameters are m, and m,, used to quantify LAMpr and
LAMNE, respectively, and the lithium inventory indicator (LII),
which is defined as LIl = Q, — (6, — 8,), used to quantify
LLI[19].

3.2 Input and output variables

This study aims to estimate the three degradation
parameters and capacity of a cell based on its dQ/dV curve by
using machine learning models. The input features of these
models are the dQ/dV readings, calculated by differentiating the

capacity over the voltage. A sampling interval, AV, is defined
to calculate the dQ/dV value at the specified voltage, [V,
Vie + AV, Vo + 2AV, ..., Vic + (L — 1)AV] within the lower
and upper cutoff voltages (V. andVy, respectively), where
(-1 =[]
benefits compared to VQ analysis and dV/dQ analysis.
Compared to VQ analysis, dQ/dV analysis transforms the phase
transitions of active electrode materials to identifiable peaks in
the dQ/dV curve which are sensitive to small changes in the
materials. These small changes can be learned by machine
learning models to improve the diagnostic accuracy. Unlike the
dV/dQ and VQ curves, the dQ/dV curve is dependent on a
fixed, directly measurable voltage range (e.g., 3.4 V—-4.075V
considered in this study) instead of a capacity range, which
could vary over the course of cell aging and be unmeasurable
due to an unknown initial capacity in a partial charge cycle.

The input variables for one sample are split into L equally
spaced voltage steps and the corresponding discretized dQ/dV
values are considered as the input variables to be fed into a
machine learning model. The larger the value L, the higher
resolution the dQ/dV curve possesses.

Two datasets are considered in this study: 1) simulation
dataset generated from half-cell model and 2) experimental
dataset collected from a high precision charger (see Table 1).
The simulation data are generated by sampling the three
degradation parameters in a predefined design space using
Latin hypercube sampling. This design space is selected such
that it sufficiently encompasses possible extremes in the
experimental data. The experimental data consists of 16
implantable-grade Li-ion battery cells that are aged in a long-
term cycling test for up to 2.5 years. These cells are divided into
four groups each running a unique test configuration (see the
test matrix in Table 3).

dQ/dV analysis possesses several

Table 1 Summary of the two datasets used in this study.

Dataset Simulation data Experimental data
Number of NA 6
cells
Data size 10,000 372 (up to 2.5 years of
aging test)
Source Half-cell model Implantable-grade Li-ion

cells (see Table 3)

3.3 Training dataset configurations

In this subsection, we identify a number of training dataset
configurations that serve the objective of constructing an
accurate health (degradation mechanisms and capacity)
estimator based on early-life degradation data by using a
machine learning model. FEach configuration consists of
experimental data, simulation data, or both. The use of
simulation data is to overcome the difficulty of extrapolation in
data-driven models. Simulation data from a physics-based
model can indirectly incorporate degradation physics into the
data-driven models, thus facilitating the estimation of late-life
health parameters. We label each configuration as EXPNgyp
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SimNy;,,,, where Ngxp indicates that the first Nyyxp data points
(early-life data) from each experimental cell are used in the
training dataset and Ng;,,,is the number of randomly selected
simulation data for inclusion in the training dataset.

In the first few configurations, we explore models trained
using simulation data only. These configurations explore the
accuracy of the half-cell model in its ability to mirror the true
degradation observed in the experimental cells. Next, we
investigate models trained using only early-life experimental
data. These tests will help expose the models’ extrapolation
limits in estimating late-life degradation. As a baseline for
training dataset configurations consisting of both experimental
data and simulation data, we fix the early-life experimental data
to be the first five data points from each cell (Ngxp = 5). For
the experimental data used in this study, five data points are
equivalent to approximately three months of lab testing. For the
next set of training dataset configurations, we augment the
baseline dataset with various amounts of simulation data
selected either randomly from the simulation dataset or limited
to high degradation simulation data (labelled as HiDeg (short
for High Degradation)). For each training dataset consisting of
both experimental and simulation data, we investigate the
benefit of feature dimension reduction by using principal
component analysis (PCA). PCA is used to reduce the original
dimension of dQ/dV features from 100 to 20.

3.4 Error metric

To evaluate the performance of the machine learning
models, we use a four-fold cross validation (CV). In particular,
the complete experimental dataset consisting of 16 cells was
divided into four mutually exclusive folds with the test data in
each fold consisting of one battery cell (see Table 2) from each
group in the test matrix (Table 3). The overall test errors
ptiseo, Of the machine learning models were estimated by
taking the average of the individual test errors across the four
training/test runs:

- 2

Ehmisew = \/ﬁ PR [(%) x100%| (1)
where the subscript ¢t denotes the tth health parameter, ;; and
y;; denote the predicted value and true value for the tth
degradation parameter at the ith test point, respectively. Using
a normalized error metric is important when the outputs have

different magnitudes and comparison among them is desired.

Table 2 CV folds indicating the online cells (test data).

4. EXPERIMENTAL SETUP

We conducted a cycle aging test on 16 fresh implantable-
grade Li-ion battery cells. The cells were cycled at two ambient
temperatures and two discharge rates, a total of four test
configurations (see Table 3). A temperature of 37 °C was
chosen to simulate the normal working temperature of the
implantable-grade battery cells and 55 °C was chosen to
accelerate the capacity fade while maintaining the stability of
the battery materials [27]. For each temperature, two
charge/discharge conditions are considered, i.e., (C/3, C/24)
and (C/3, C/3). Charging was carried out via a constant-current
(CQO), constant voltage (CV) step, where the cells were charged
at C/3 to an upper cutoff voltage of 4.075 V, at which point,
charging continued at a constant voltage of 4.075 V until either
the charge current was C/50 or the charge time reached 30 min.
Following the CC-CV charging step, the cells were CC
discharged at C/3 or C/24 until the voltage reached a lower
cutoff of 3.4 V. Compared to the nominal operating temperature
and discharge rate of an implantable cell, 55 °C and C/3
conditions highly accelerate the aging of the cells [28].

During cycling, a characterization test is conducted at an
ambient temperature of 40 °C every 2 weeks during the first 3
months and every 4 weeks thereafter. The characterization test
is used to determine the battery cell capacity and voltage curve
at a slow rate. The recorded capacity and voltage curves are
used for degradation parameter quantification. The
characterization test includes four sequential steps: 1) CC and
CV charge to 4.075 V at C/3 with a cutoff current of C/50, 2)
CC discharge to 3.4 V at C/50 and rest for 30 min, 3) CC charge
to 4.075 V at C/50 and rest for 30 min, and 4) repeated CC
discharge to a voltage corresponding to 10% of the state of
charge reduction at C/10 followed by a 1-hour rest period until
the cell voltage reached 3.4 V. The temperature (40 °C) and
charging rate (C/50) are selected to be consistent with the test
condition of the half-cells [19]. The capacity evolution of the
16 battery cells is shown in Fig. 1. Cell C1 and C2 from group
G1 and G3, and cell C3 and C4 from group G2 and G4 were
removed roughly halfway through the test for destructive
analysis.

The charge curve at step 3 of the characterization test was
used to quantify the degradation parameters with half-cell curve
analysis. Both the cycling and characterization tests were
conducted using a high precision charger from NOVONIX with
a voltage range of 0—5 V and a maximum current output of 2 A
for high-quality aging data acquisition [29].

Table 3 Test matrix of the experimental data.

Discharge rate C/24 C/3

Temperature 37°C 55°C 37°C 55°C
Fold 1 G1C1 G2Cl1 G3Cl1 G4Cl1
Fold 2 G1C2 G2C2 G3C2 G4C2
Fold 3 G1C3 G2C3 G3C3 G4C3
Fold 4 G1C4 G2C4 G3C4 G4C4

. Number

Group Charge rate Discharge rate  Temperature of cells
Gl C/3 C/24 37°C 4
G2 C/3 C/24 55°C 4
G3 C/3 C/3 37°C 4
G4 C/3 C/3 55°C 4

Copyright © 2021 by ASME



100

868
C/24
—_ Eg@ggg@ﬁagg
e 864 ._°0 00oqog
~ %0 9060,
b=
S 80+ C/3
3
X G1[G3
£ €1l [¢
5 0ric2lo [0
~ C3 oo
C4 o | ¢ 37°C
60 : . ' '
0 200 400 600 800
Time on test (days)
(a)
Fig. 1

1000

Normalized capacity (%)

G2
Cllalo , 8
Nrc2lalo 3 OQ%
Cc3lalo '
calalo 55°C
60 * * -
0 200 400 600 800 1000

Time on test (days)

(b)

Capacity fade plots of battery cells tested at (a) 37°C and (b) 55°C. Each cell has anywhere between 17

and 30 data points, depending on whether or not the cell has been removed for destructive analysis [19].

5. RESULTS AND DISCUSSION

5.1 Physics informed machine learning study

Figure 2 shows the health parameters estimation accuracy
for models trained on either simulation data only or experimental
data only. Despite the simulation dataset encompassing a much
wider range of degradation scenarios (as described in subsection
3.2) than the early-life experimental dataset, the models trained
only with simulation data performed worse when compared to
those trained only with early-life experimental data. This can be
attributed to the fact that the half-cell model, being a simplified,
largely imperfect physics-based model, cannot accurately
reconstruct the voltage curves of the experimental cells
especially when the cells have aged heavily. We have discussed
such observation in our previous paper [19]. Due to the
disagreement between the simulation and the experimental data,
the health parameters estimation errors do not possess clear
decreasing trends as the amount of training data increases (see
Fig. 2(a-d)). In contrast, the estimation errors of the models
trained with early-life experimental data show obvious
decreasing trends as more experimental data are used for
training. However, using 12 or more experimental data points (an
approximately 14-month or longer test time) is often not feasible
because of the extensive time, money, and manpower required to

perform the tests. In response to this issue, we limit the next set
of tests to include only the first five sequential data points from
each cell (approximately three months of test time).

Now, with limited experimental data, we aimed to improve
model accuracy further by including half-cell model simulation
data in the training dataset for each machine learning model. The
results are displayed in Fig. 4 and the best results for each model
are compared in Table 4. The first five entries in Fig. 4 show the
results for the inclusion of random simulation data. We observe
that the small quantity of random data points selected from the
large simulation dataset generally do not improve model
accuracy. In the MOGP and ELM models, we observe that LLI
and capacity have improved accuracy, but at the cost of reduced
accuracy on m, and m,. These results are consistent with the
results seen in Fig. 2(a-d), where the models were trained on
simulation data only. The simulation data covers a very large
degradation space, and when choosing points at random, there is
no guarantee the chosen points will reflect the degradation trends
observed in the experimental cells. In effect, the random
simulation data prove to corrupt the experimental data, making
it more difficult for the models to learn the correct mapping from
dQ/dV features to late-life degradation parameters.
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Fig. 3 Comparison of the 30 simulated dQ/dV curves
randomly selected from (a) the entire simulation dataset and (b)
the high degradation dataset in relation to the early- and late-
life experimental data.

Inspired by the way simulation data caused the models to
learn an incorrect degradation trend, we investigated whether the
models could be coerced into learning a late-life degradation
trend that more closely resembled the observed experimental
cells. From the large simulation dataset, we filtered to only data
points corresponding to the highest 20% degradation in m,,, m,,
and LII. The new subset of simulation data, labelled as HiDeg,
were added in small amounts to the early-life experimental data.
The results are shown in the next four rows in Fig. 4. It is
observed that the HiDeg simulation data improved m,, and m,,
estimation accuracy for Lasso, MOGP, and ELM when
compared to their respective models without any simulation data.
Likewise, MOGP and ELM showed a sizeable increase in LI]
and capacity estimation accuracy.

The inclusion of HiDeg simulation data into the models’
training dataset did not produce consistent and large accuracy
improvements across all models. For MOGP and ELM, this
method was more effective. In this work, we only considered an
MOGP model with a zero-mean trend function. As a result, when
estimating late-life cell degradation which is far from the training
data, the MOGP model returns to the mean, zero. Including the
high degradation simulation data served to extend the training
data space, allowing the MOGP model to interpolate between the
high degradation simulation data and the early-life experimental
data. The same can be said about ELM. Neural networks like
ELM are conditioned on the training data distribution and are
only intelligent at estimation within the domain of the training
data. With the inclusion of high-degradation simulated training
data, the ELM is able to bridge the gap between early-life and

Copyright © 2021 by ASME



EXPS5 Sim0

EXP5 Sim10

EXP5 Siml15

EXP5 Sim20

EXPS5 Sim30

EXP5 Sim10 HiDeg
EXPS5 Sim15 HiDeg
EXP5 Sim20 HiDeg
EXPS5 Sim30 HiDeg

RMSE %

EXPS5 Sim10 PCA
EXP5 Sim15 PCA
EXP5 Sim20 PCA
EXP5 Sim30 PCA
EXP5 Sim10 HiDeg PCA
EXP5 Siml5 HiDeg PCA
EXP5 Sim20 HiDeg PCA

EXP5 Sim30 HiDeg PCA

Fig. 4

1.3 0.8 2.9
1.5 09 33
1.5 0.8 33
1.4 08 34
1.3 08 3.2
14 09 3.2
1.3 08 3.1
1.3 08 2.9
9 1.1 0.8 2.8
1.7 1.0 3.7
2.0 1.1 3.9
2.0 1.0 4.1 M

RMSE %

2.0 1.1 3.9
1.6 1.0 3.5
1.6 1.0 3.5
14 09 33
13 0.9 3.0

(d)

RMSE % of models trained with different training data combinations for (a) Lasso, (b) MOGP, (c) ELM, and (d) elastic
net.

Table 4 Estimation accuracy of best-performing machine learning models.

Training Data Model m, m, LIl Q

EXP5 Sim0 Elastic net 4.77 4.58 1.32 0.76
EXPS5 Sim30 HiDeg Elastic net 4.23 4.86 1.14 0.77
EXP5 Sim0 Lasso 4.82 5.62 1.50 1.69
EXPS5 Sim30 HiDeg Lasso 4.19 4.02 1.17 1.24
EXP5 Sim0 MOGP 8.03 5.09 3.17 3.66
EXPS5 Sim30 HiDeg MOGP 4.35 4.08 1.44 0.57
EXP5 Sim0 ELM 7.53 6.98 2.30 1.63
EXPS Sim30 HiDeg ELM 4.06 3.25 1.24 0.74
EXP5 Sim15 HiDeg PCA ELM 4.20 3.15 0.87 0.62

late-life degradation parameter trends and can more accurately
interpolate within the new combined distribution.

As for the Lasso and elastic net models, the method of
increasing the training space by adding high degradation
simulation data was less effective at improving accuracy. This is
likely due the parametric models’ innate ability to extrapolate
more consistently than the other methods. Using only the first
few early-life experimental data points proved to be nearly
enough to get acceptable late-life degradation estimates. When
adding high-degradation simulation data to the models, the
estimation accuracy improved only slightly due to the models’
improved understanding of late-life degradation trends.

Last, the results in Fig. 4 indicate PCA was ineffective at
increasing model accuracy. Lasso and elastic net already have
built-in feature normalization and selection mechanisms, which
made PCA less effective. As for MOGP, the model performed
worse when the PCA transformation was applied to the data.
MOGP likely relied on the un-altered feature values in the dQ/dV
curve to learn trends. Reducing the number of input features to
20 principal components likely altered the feature data in a way
which made fitting the MOGP model more difficult. ELM was
the only model to exhibit similar performance both with and
without PCA for feature reduction. However, PCA negligibly
increased ELM accuracy.
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5.2 Feature reduction study

A key parameter in the generation of half-cell data is the
voltage increment between successive dQ/dV samples. To
determine whether 100 dQ/dV samples were sufficient for
optimal model performance, we varied the input feature size for
each model and recorded the average error across the four
outputs. Each model was four-fold cross validated 50 times with
a mixed dataset, namely EXP5 Sim20 HiDeg. The results are
shown in Fig. 5(a) and the dQ/dV feature vectors of different
lengths are visualized in Fig. 5(b). Relative to a feature vector
length of 100, there was minimal effect on model performance
until the number of features was reduced to 25 or less. This
indicates that 100 dQ/dV samples were enough to represent the
curve’s major features (peaks and valleys) and those that are
useful for degradation diagnostics. Likewise, using too many
dQ/dV samples proved to be counterproductive, and the models
had a difficult time determining the most important features.

4.0
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3.014 —l— Kriging
1 »— ELM

—&— Elastic Net

Change in RMSE % Relative to V199
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Fig. 5 (a) Effect of dQ/dV discretization length on model
accuracy. (b) Visualizations of dQ/dV curves sampled to
different lengths.

6. CONCLUSION

This study has demonstrated the possibility of accurately
estimating lithium-ion battery capacity and degradation
parameters by training a machine learning model using both
limited early-life degradation data obtained through cycling tests
and high-degradation simulation data from a half-cell model.

The resulting physics-informed machine learning models exhibit
improved accuracy compared to models trained strictly on early-
life degradation data. The preliminary results in this study
suggest that the proposed methodology can significantly reduce
the amount of experimental degradation data required for
accurate late-life degradation estimation. The best models use
only 60 experimental data (five data from each of the 12 training
cells) and 30 high-degradation simulation data. In turn, this can
reduce the expenses, manpower, and time required to
characterize cell degradation in a laboratory setting for the
purpose of online degradation diagnostics over a cell’s lifetime.
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