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ABSTRACT 
State of health (SOH) estimation of lithium-ion batteries 

has typically been focused on estimating present cell capacity 

relative to initial cell capacity. While many successes have been 

achieved in this area, it is generally more advantageous to not 

only estimate cell capacity, but also the underlying degradation 

modes which cause capacity fade because these modes give 

further insight into maximizing cell usage. There have been 

some successes in estimating cell degradation modes, however, 

these methods either require long-term degradation data, are 

demonstrated solely on artificially constructed cells, or exhibit 

high error in estimating late-life degradation. To address these 

shortfalls and alleviate the need for long-term cycling data, we 

propose a method for estimating the capacity of a battery cell 

and diagnosing its primary degradation mechanisms using 

limited early-life degradation data. The proposed method uses 

simulation data from a physics-based half-cell model and early-

life degradation data from 16 cells cycled under two 

temperatures and C rates to train a machine learning model. 

Results obtained from a four-fold cross validation study 

indicate that the proposed physics-informed machine learning 

method trained with only 60 early life data (five data from each 

of the 12 training cells) and 30 high-degradation simulated 

data can decrease estimation error by up to a total of 9.77 root 

mean square error % when compared to models which were 

trained only on the early-life experimental data. 

Keywords: Lithium-ion battery, State of health, 

Degradation diagnostics, Physics-informed machine learning 

1. INTRODUCTION 
Lithium-ion (Li-ion) batteries are an attractive mobile 

energy storage device due to their high energy density, long 

cycle life, and continuously falling cost [1]–[3]. Despite the 

advantages, Li-ion battery cells degrade over time due to 

detrimental and irreversible internal electrochemical reactions 

during operation. To ensure safe and reliable operation within a 

system, it is important to monitor the state of health (SOH) of 

the Li-ion battery cell. The SOH of a battery cell is often 

defined as the ratio of its present cell capacity/resistance to its 

initial capacity/resistance. Accurate estimation of SOH is a 

crucial factor in implementing timely maintenance and 

replacement of battery cells/modules/packs.  

Over the past few years, many health diagnostic methods 

have been developed based on readily available measurements 

(i.e., voltage, current, and temperature) from the cells. 

Generally, SOH estimation methods can be classified into two 

categories: (1) model-based methods [4]–[8] and (2) data-

driven methods [9]–[14]. 

Model-based capacity estimation methods involve the use 

of empirical [4],[8]/equivalent circuit [8]/electrochemical [5], 

[6] models to fit the experimental data. Typically, the battery 

model is combined with advanced filtering techniques, such as 

Kalman filter and particle filter, to first estimate the model 

parameters through tracking the voltage (V) vs. capacity (Q) 

curve (VQ curve), then use the model parameters to estimate 

the SOH. While these model-based methods have shown 

successes in SOH estimation, constructing an accurate battery 
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model is a challenging task, given it often requires knowledge 

on the battery working principles or experimental data under 

carefully designed and well-controlled conditions.  

Recently, data-driven methods have begun to emerge as an 

appealing alternative due to advances in data generation and 

increasing public availability of battery degradation data.  A 

growing number of studies in the literature have applied 

machine learning techniques on SOH estimation by learning the 

complex dependency between the SOH of a cell and the 

characteristic features extracted from battery degradation 

measurements. In particular, popular machine learning methods 

such as linear regression [12], support vector machine (SVM) 

[12], relevance vector machine (RVM) [13], Gaussian process 

[14], and neural network (NN) [10], [11] have been successfully 

applied to the capacity estimation of Li-ion batteries. 

While there have been many successes in estimating cell 

capacity using model-based and data-driven methods, these 

methods fall short in providing insight on the underlying 

degradation mechanisms which cause capacity fade. Three 

commonly reported degradation mechanisms in a Li-ion battery 

cell are loss of lithium inventory (LLI) and loss of active 

materials in the positive and negative electrodes (LAMPE and 

LAMNE, respectively) [15]–[18]. Limiting SOH estimation to 

available cell capacity does not fully reflect battery health. 

Diagnosing the underlying degradation mechanisms can 

provide better insight into battery health, which can facilitate 

prediction of future battery health [19], [20] and optimize the 

usage of battery cells [16]. Several degradation diagnostics 

methods have been proposed in the past. Han et al. proposed 

using membership functions to quantify the areas under the 

peak locations of the differential capacity (dQ/dV) curve and 

correlating these capacities to LLI and LAMNE [16]. Birkl et al. 

proposed a diagnostic algorithm for estimating the degradation 

mechanisms (LLI, LAMPE and LAMNE) of a battery cell [15]. 

The proposed algorithm was experimentally validated through 

reconstructing the pseudo-OCV curve of a coin-cell with 

artificial degradation mechanisms. Dubarry et al. proposed an 

online SOH estimation method by comparing features 

(extracted from differential voltage (dV/dQ) and dQ/dV curves) 

from an online cell to features in a simulated offline path 

degradation database [17]. Tian et al. trained a convolutional 

neural network (CNN) to learn the relationship between a 

partial 1C charge curve and the electrode aging parameters 

(obtained from a pseudo-OCV curve) [18]. These electrode 

aging parameters can be used to quantify the degradation 

parameters of the battery cell. 

Despite the promising results, these works either required 

long-term degradation data, were demonstrated solely on 

artificially constructed cells, or exhibited high errors when 

estimating degradation mechanisms at a late aging stage. To 

alleviate the time and cost in collecting long-term aging data, it 

is of great significance to develop methods that can enable 

accurate degradation diagnostics at a late aging stage using only 

early aging data. Such methods are beneficial for those who 

have limited budget and time for conducting aging tests. 

In this work, we propose a methodology for constructing a 

data-efficient estimator that can estimate the capacity of a 

battery cell and diagnose its primary degradation mechanisms. 

The methodology incorporates physical knowledge of battery 

cell degradation into machine learning models by combining 

simulation data from a physics-based model with experimental 

data from the early cycle life only. The use of early cycle life 

data is to simulate a common scenario where experimental time 

is limited, resources are scarce, and long-term cycling is not an 

option. Different combinations of simulation data and 

experimental data are considered to investigate their effects on 

the long-term health estimation accuracy of the machine 

learning models. The estimation results suggest that accurate 

SOH estimation models only require training on a small amount 

of early-life, light-degradation experimental data and high-

degradation simulated data. The role of the high-degradation 

simulated data is to loosely expand the physically meaningful 

degradation parameter space to a space that is larger than the 

space observed in the light-degradation data, enabling physics-

informed machine learning. By expanding the observed space 

of the training data, the models are able to interpolate between 

low and high degradation data points, and more accurately 

estimate late-life capacity and degradation parameters. 

The rest of the paper is arranged in the following manner. 

Section 2 presents the three machine learning models used in 

this study. Section 3 describes the methodologies of estimating 

degradation parameters using half-cell models, different 

configurations of the training dataset, and evaluation criteria of 

the model performance. Section 4 presents the experimental 

setup for aging data acquisition. Section 5 shows and discusses 

the results in estimating the health parameters (i.e., degradation 

parameters and cell capacity). Section 6 summarizes the key 

ideas of this study and offers concluding remarks. 

2. MATHEMATICAL PRELIMINARIES 
Consider the SOH estimation problem is to learn the 

relationship between the inputs and outputs of 𝑁  distinct 

training samples {𝐱𝑖, 𝐲𝑖}𝑖=1
𝑁  , where 𝐱𝑖 ∈ ℝ𝐿  and 𝐲𝑖 ∈ ℝ𝑇. Here 

𝐿  is the number of features, which is the number of dQ/dV 

readings per training/test sample in this study, and 𝑇  is the 

number of tasks, which is equal to four in this study. The 𝑡th 

output can be represented by an output function 𝑦𝑡 = 𝑓𝑡(𝐱), 

where 𝑡 = 1, … , 𝑇.  

2.1. Multi-output Gaussian process 

Multi-output Gaussian process (MOGP) extends the 

Gaussian process (GP) to jointly model a vector of outputs [21]. 

Let us first consider a single-output GP defined by its zero mean 

trend function 𝑚(𝐱) and covariance function 𝑘(𝐱, 𝐱′). We are 

interested in the target output 𝑓𝑡(𝐱) which can be expressed as 

 𝑓𝑡(𝐱)~𝒢𝒫(𝑚(𝐱), 𝑘(𝐱, 𝐱′)) (1) 

For simplicity, we only consider the squared exponential 

covariance function in this study. This kernel function takes the 

following form 

 𝑘(𝐱, 𝐱′) = 𝜎𝑓
2 exp (−

1

2
(𝐱 − 𝐱′)⊤𝑃−1(𝐱 − 𝐱′)) (2) 
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where the input variance is 𝜎𝑓
2 and the length scales are encoded 

in 𝑃 ∈ ℝ𝐿×𝐿. 

Now we consider an MOGP with T outputs. We aim to 

model the isotopic training set which is now 𝐱𝑡,𝑖 = 𝐱𝑖 and 𝑋1 =

⋯ = 𝑋𝑇 = 𝑋̅ . Just like the single-output GP, the T outputs 

denoted as 𝐟 = [𝑓1, … , 𝑓𝑇]⊤ also follow a GP model 

  𝐟(𝐱) ~ 𝒢𝒫(𝑚(𝐱), 𝑘𝑀(𝐱, 𝐱′)) (3) 

where the new multi-output covariance function 𝑘𝑀(𝐱, 𝐱′) ∈
ℝ𝑇×𝑇 is defined to be 

 𝑘𝑀(𝐱, 𝐱′) = [
𝑘11(𝐱, 𝐱′) ⋯ 𝑘1𝑇(𝒙, 𝒙′)

⋮ ⋱ ⋮
𝑘𝑇1(𝐱, 𝐱′) ⋯ 𝑘𝑇𝑇(𝐱, 𝐱′)

]. (4) 

Each element 𝑘𝑡𝑡′(𝐱, 𝐱′)  represents the covariance between 

outputs, or in other words, the similarity between the tasks. Just 

like a single-output GP, we define the MOGP relationship to be 

 𝑦𝑡(𝐱) = 𝑓𝑡(𝐱) + 𝜖𝑡 (5) 

where the term 𝜖𝑡 is iid Gaussian noise for each of the T outputs 

such that 𝜖𝑡~𝒩(0, 𝜎𝑡
2) . The corresponding multi-output 

likelihood function is written as 

 𝑝(𝐲|𝐟, 𝐱, Σ𝑠) = 𝒩(𝐟(𝐱), Σ𝑠) (6) 

where Σ𝑠  is a diagonal matrix which contains the noise 

information for each output, i.e., Σ𝑠 = diag(𝜎1
2, … , 𝜎𝑇

2). Given 

the original multi-output training dataset, the posterior 

distribution at a new point 𝐱∗ can be written 

 𝐟(𝐱∗)|𝐱, 𝐲, 𝐱∗~𝒩(𝐟(𝐱∗), Σ∗) (7) 

The corresponding prediction mean and covariance are, 

respectively, given as 

 𝐟(𝐱∗) = 𝐾𝑀∗
⊤ [𝐾𝑀(𝑋̅, 𝑋̅) + Σ𝑀]−1𝐲 (8) 

 Σ∗ = 𝐾𝑀(𝐱∗, 𝐱∗) − 𝐾𝑀∗
⊤ [𝐾𝑀(𝑋̅, 𝑋̅) + Σ𝑀]−1𝐾𝑀∗ (9) 

where 𝐾𝑀∗ = 𝐾𝑀(𝑋̅, 𝐱∗)  and has blocks 𝐾𝑡𝑡′(𝑋̅, 𝐱∗) =
[𝑘𝑡𝑡′(𝐱𝑖 , 𝐱∗)] for 𝑡, 𝑡′ = 1, … , 𝑇 and 𝑖 = 1, … , 𝑛. 

2.2 Multitask Lasso and elastic net 

Lasso and elastic net are two regression methods with 

built-in variable selection and regularization. Let 𝑥𝑖𝑗  denote the 

jth reading (or discretized measurement) in the ith dQ/dV 

charge curve where 𝑖 = 1: 𝑁 and 𝑗 = 1: 𝐿. In a multitask model 

with 𝑇  tasks, 𝑦𝑡𝑖  with 𝑡 = 1, … , 𝑇  represents an instance of a 

single task output. With the prior knowledge that the 𝑇 tasks are 

related to one another, we define a multitask regression problem 

to map from a dQ/dV curve to the four tasks. The multitask 

regression model consists of a single design matrix 𝑋  and 

multiple task-specific weights 𝛃𝑡: 

 𝒚𝑡 = 𝑋𝛃𝑡 + 𝜀𝑡 (10) 

where 𝜀𝑡  is normalized random noise. To improve the model 

performance and reduce overfitting, the 𝐱𝑗’s  are first 

standardized to have zero mean and unit variance. To find the 

optimal weights 𝛽𝑡 for the 𝑇 tasks, multitask Lasso solves the 

following: 

 min
𝛃

𝐽1(𝛃) =
1

2
∑ ‖𝒚𝑡 − 𝑋𝛃𝒕‖2

2𝑇
𝑡=1 + 𝛼 ∑ ‖𝛽𝑡𝑗‖

2

𝐿
𝑗=1  (11) 

where the term ∑ ‖𝛽𝑡𝑗‖
2

𝐿
𝑗=1   is a mixed ℓ1/ ℓ 2-norm which 

encourages sparsity across related tasks and 𝛼  is a 

hyperparameter which controls the extent to which the mixed 

ℓ1/ℓ2-norm is enforced in the loss function. After iterative 

testing, it was found that 0.1 is an acceptable value for 𝛼. By 

including another quadratic penalty ∑ ‖𝛽𝑡𝑗‖
2

2𝐿
𝑗=1  in the loss 

function along with an additional hyperparameter 𝛾  for 

adjusting the ratio of the two loss penalties, we arrive at the 

objective function for a multi-task elastic net model with the 

following formulation: 

min
𝛃

    𝐽2(𝛃) =
1

2
∑‖𝒚𝑡 − 𝑋𝛃𝒕‖2

2

𝑇

𝑡=1

+ 𝛼𝛾 ∑‖𝛽𝑡𝑗‖
2

𝐿

𝑗=1

+ 

 𝛼(1 − 𝛾) ∑ ‖𝛽𝑡𝑗‖
2

2𝐿
𝑗=1  (12) 

Through iterative testing, it was determined that optimal values 

for 𝛼 and 𝛾 are 0.05 and 0.05, respectively.  

2.3 Extreme learning machine  

Extreme learning machine (ELM) is often used as a single 

hidden layer feedforward network (SLFN) with random input 

weights and biases that do not change throughout the training 

process. Mathematically, the SLFN with 𝑁  distinct training 

samples {𝐱𝑖, 𝐲𝑖}𝑖=1
𝑁  , where 𝐱𝑖 ∈ ℝ𝐿  and 𝐲𝑖 ∈ ℝ𝑇 , can be 

formulated as 

 𝐨𝑖 = ∑ 𝛃𝑗
𝐷
𝑗=1 𝑔(𝐰𝑗

⊤ ∙ 𝐱𝑖 + 𝑏𝑗) = 𝐲𝑖 + 𝜖𝑖,   𝑖 = 1: 𝑁 (13) 

where 𝐨𝑖  is the output of the network, 𝐰𝑗 = [𝑤𝑗1, 𝑤𝑗2, ⋯ , 𝑤𝑗𝐿]
⊤

 

is the hidden layer weight vector connecting the input neurons 

and the 𝑗th hidden neuron, 𝑏𝑗 is the bias for 𝑗th hidden neuron, 

𝐷 is the total number of hidden neurons, 𝑔(∙) is the activation 

function that is used to introduce nonlinearity to the SLFN, 

𝛃𝑗 = [𝛽1𝑗 , 𝛽2𝑗 , … , 𝛽𝑇𝑗]
⊤

 is the output bias vector that connects 

the 𝑗th hidden neuron to output neurons, and 𝜖  is noise that 

includes both random noise and noise that depends on variables 

other than the inputs [22].  

The above 𝑁  equations can be written in the following 

matrix form for compact representation, 

 𝐇𝛃 = 𝐎 (14) 

 𝐇 = [
𝑔(𝐰1 ∙ 𝐱1 + 𝑏1) ⋯ 𝑔(𝐰𝐷 ∙ 𝐱1 + 𝑏𝐷)

⋮ ⋱ ⋮
𝑔(𝐰1 ∙ 𝐱𝑁 + 𝑏1) ⋯ 𝑔(𝐰𝐷 ∙ 𝐱𝑁 + 𝑏𝐷)

]

𝑁×𝐷

 (15) 

 𝛃 = [
𝜷1

⊤

⋮
𝜷𝐷

⊤
]

𝐷×𝑇

and 𝐎 = [
𝐨1

⊤

⋮
𝐨𝑁

⊤
]

𝑁×𝑇

 (16) 

where 𝐇 is called the hidden layer output matrix.  

During the training process, ELM uses the Moore-Penrose 

inverse (pseudoinverse) to find a solution to the linear system 

shown in equation (4). For many machine learning problems, 

the number of training instances (i.e., 𝑁) is much larger than the 

number of hidden neurons (i.e., 𝐷). Therefore, the linear system 

is an overdetermined system, and a unique solution is obtained 

by minimizing the ℓ2 norm of the vector of training errors: 

 𝛃̂ = 𝐇†𝐘 (17) 

 𝐇† = (𝐇⊤𝐇)−𝟏𝐇⊤ (18) 

where 𝐇†  is the pseudoinverse of matrix 𝐇 , and 𝛃̂  is the 

solution of the overdetermined system of linear equations 

𝐇𝛃 = 𝐘 . Compared to the model training with back 

propagation which requires the iterative updating of input 
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weights and biases, the model training with ELM is much faster 

as it requires only a single process, pseudoinverse, to find the 

optimum solution.  

3. METHODOLOGY 

3.1 Half-cell model  

The half-cell model is a non-destructive degradation 

analysis method that estimates the three commonly reported 

degradation mechanisms (i.e., LAMPE, LAMNE, and LLI) in a 

Li-ion battery cell by reconstructing the measured full-cell V 

(dV/dQ) vs. Q curve with positive and negative half-cell V 

(dV/dQ) vs. Q curves [23]–[25]. The VQ curve analysis ensures 

the upper and lower cutoff voltages of the simulated curve 

match those of the experimental curve. In contrast, the dV/dQ 

curve unveils the phase transition information of the battery 

electrode materials as identifiable peaks during 

charge/discharge and amplifies small changes in the voltage 

curve, thus facilitating the identification and quantification of 

degradation mechanisms of the battery cell. We use both VQ 

curve analysis and dV/dQ curve analysis to robustly identify 

and quantify the degradation mechanisms. The equations for 

VQ curve analysis and dV/dQ curve analysis are shown in 

equation (19) and (20), respectively: 

 𝑉c(𝑄)|𝑄=𝑄c
≈ 𝑉p(𝑞p)|

𝑞p=
𝑄c−𝛿p

𝑚p

− 𝑉n(𝑞n)|
𝑞n=

𝑄c−𝛿n
𝑚n

 (19) 

 
𝑑𝑉(𝑄)

𝑑𝑄
|

𝑄=𝑄c

= 

 
1

𝑚p

𝑑𝑉p(𝑞p)

𝑑𝑞p
|

𝑞p=
𝑄c−𝛿p

𝑚p

−
1

𝑚n

𝑑𝑉n(𝑞n)

𝑑𝑞n
|

𝑞n=
𝑄c−𝛿n

𝑚n

 (20) 

where 𝑉c(𝑄c) is the full-cell VQ curve with 𝑄𝑐 denoting the cell 

capacity, 𝑉(𝑞) is the half-cell curve, 𝑞 is the specific capacity 

(mAh/g), 𝑚 is the active mass (g), and 𝛿 is the half-cell curve 

slippage ( mAh ). The subscripts p  and n  correspond to the 

positive and negative electrodes (PE and NE), respectively. 

Slippage 𝛿p / 𝛿n  quantifies the horizontal distance the left 

endpoint of the positive/negative half-cell curve with respect to 

𝑄c = 0 mAh  [20], [26]. When the value of 𝛿  increases 

(decreases), the half-cell curve shifts to the left (right). The 

active masses in the PE and NE control the capacity of the 

corresponding half-cell curves, which shrink when active 

masses decrease.  

In this study, we identify three degradation parameters 

from the half-cell model to quantify the three degradation 

mechanisms in a Li-ion battery cell. These degradation 

parameters are 𝑚𝑝  and 𝑚𝑛 , used to quantify LAMPE and 

LAMNE, respectively, and the lithium inventory indicator (LII), 

which is defined as 𝐿𝐼𝐼 = 𝑄𝑝 − (𝛿𝑝 − 𝛿𝑛) , used to quantify 

LLI [19]. 

3.2 Input and output variables 

This study aims to estimate the three degradation 

parameters and capacity of a cell based on its dQ/dV curve by 

using machine learning models. The input features of these 

models are the dQ/dV readings, calculated by differentiating the 

capacity over the voltage. A sampling interval, ∆𝑉, is defined 

to calculate the dQ/dV value at the specified voltage, [𝑉𝐿𝐶 , 

𝑉𝐿𝐶 + ∆𝑉, 𝑉𝐿𝐶 + 2∆𝑉, …, 𝑉𝐿𝐶 + (𝐿 − 1)∆𝑉] within the lower 

and upper cutoff voltages (𝑉𝐿𝐶  and𝑉𝑈𝐶 , respectively), where 

(𝐿 − 1) = ⌊
𝑉𝑈𝐶−𝑉𝐿𝐶

∆𝑉
⌋ . dQ/dV analysis possesses several 

benefits compared to VQ analysis and dV/dQ analysis. 

Compared to VQ analysis, dQ/dV analysis transforms the phase 

transitions of active electrode materials to identifiable peaks in 

the dQ/dV curve which are sensitive to small changes in the 

materials. These small changes can be learned by machine 

learning models to improve the diagnostic accuracy. Unlike the 

dV/dQ and VQ curves, the dQ/dV curve is dependent on a 

fixed, directly measurable voltage range (e.g., 3.4 V – 4.075 V 

considered in this study) instead of a capacity range, which 

could vary over the course of cell aging and be unmeasurable 

due to an unknown initial capacity in a partial charge cycle.  

The input variables for one sample are split into L equally 

spaced voltage steps and the corresponding discretized dQ/dV 

values are considered as the input variables to be fed into a 

machine learning model. The larger the value L, the higher 

resolution the dQ/dV curve possesses. 

Two datasets are considered in this study: 1) simulation 

dataset generated from half-cell model and 2) experimental 

dataset collected from a high precision charger (see Table 1). 

The simulation data are generated by sampling the three 

degradation parameters in a predefined design space using 

Latin hypercube sampling. This design space is selected such 

that it sufficiently encompasses possible extremes in the 

experimental data. The experimental data consists of 16 

implantable-grade Li-ion battery cells that are aged in a long-

term cycling test for up to 2.5 years. These cells are divided into 

four groups each running a unique test configuration (see the 

test matrix in Table 3).  

Table 1 Summary of the two datasets used in this study. 

Dataset Simulation data Experimental data 

Number of 

cells 
NA 16 

Data size 10,000 
372 (up to 2.5 years of 

aging test) 

Source Half-cell model 
Implantable-grade Li-ion 

cells (see Table 3) 

3.3 Training dataset configurations 

In this subsection, we identify a number of training dataset 

configurations that serve the objective of constructing an 

accurate health (degradation mechanisms and capacity) 

estimator based on early-life degradation data by using a 

machine learning model.  Each configuration consists of 

experimental data, simulation data, or both. The use of 

simulation data is to overcome the difficulty of extrapolation in 

data-driven models. Simulation data from a physics-based 

model can indirectly incorporate degradation physics into the 

data-driven models, thus facilitating the estimation of late-life 

health parameters. We label each configuration as EXP𝑁𝐸𝑋𝑃 
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Sim𝑁𝑆𝑖𝑚, where 𝑁𝐸𝑋𝑃 indicates that the first 𝑁𝐸𝑋𝑃 data points 

(early-life data) from each experimental cell are used in the 

training dataset and 𝑁𝑆𝑖𝑚 is the number of randomly selected 

simulation data for inclusion in the training dataset. 

In the first few configurations, we explore models trained 

using simulation data only. These configurations explore the 

accuracy of the half-cell model in its ability to mirror the true 

degradation observed in the experimental cells. Next, we 

investigate models trained using only early-life experimental 

data. These tests will help expose the models’ extrapolation 

limits in estimating late-life degradation. As a baseline for 

training dataset configurations consisting of both experimental 

data and simulation data, we fix the early-life experimental data 

to be the first five data points from each cell (𝑁𝐸𝑋𝑃 = 5).  For 

the experimental data used in this study, five data points are 

equivalent to approximately three months of lab testing. For the 

next set of training dataset configurations, we augment the 

baseline dataset with various amounts of simulation data 

selected either randomly from the simulation dataset or limited 

to high degradation simulation data (labelled as HiDeg (short 

for High Degradation)). For each training dataset consisting of 

both experimental and simulation data, we investigate the 

benefit of feature dimension reduction by using principal 

component analysis (PCA). PCA is used to reduce the original 

dimension of dQ/dV features from 100 to 20. 

3.4 Error metric 

To evaluate the performance of the machine learning 

models, we use a four-fold cross validation (CV). In particular, 

the complete experimental dataset consisting of 16 cells was 

divided into four mutually exclusive folds with the test data in 

each fold consisting of one battery cell (see Table 2) from each 

group in the test matrix (Table 3). The overall test errors 

𝜀𝑅𝑀𝑆𝐸%
𝐴𝐿𝐿  of the machine learning models were estimated by 

taking the average of the individual test errors across the four 

training/test runs: 

 𝜀𝑅𝑀𝑆𝐸%
𝐴𝑙𝑙 = √

1

∑ 𝑁𝑘
4
𝑘=1

∑ ∑ [(
𝑦̂𝑡𝑖−𝑦𝑡𝑖

𝑦𝑡𝑖
) × 100%]

2𝑁𝑘
𝑖=1

4
𝑘=1  (21) 

where the subscript 𝑡 denotes the 𝑡th health parameter, 𝑦̂𝑡𝑖 and 

𝑦𝑡𝑖  denote the predicted value and true value for the 𝑡 th 

degradation parameter at the 𝑖th test point, respectively. Using 

a normalized error metric is important when the outputs have 

different magnitudes and comparison among them is desired. 

Table 2 CV folds indicating the online cells (test data). 

Discharge rate C/24 C/3 

Temperature 37 ℃ 55 ℃ 37 ℃ 55 ℃ 

Fold 1 G1C1 G2C1 G3C1 G4C1 

Fold 2 G1C2 G2C2 G3C2 G4C2 

Fold 3 G1C3 G2C3 G3C3 G4C3 

Fold 4 G1C4 G2C4 G3C4 G4C4 

 

4. EXPERIMENTAL SETUP 
We conducted a cycle aging test on 16 fresh implantable-

grade Li-ion battery cells. The cells were cycled at two ambient 

temperatures and two discharge rates, a total of four test 

configurations (see Table 3). A temperature of 37 ℃  was 

chosen to simulate the normal working temperature of the 

implantable-grade battery cells and 55 ℃  was chosen to 

accelerate the capacity fade while maintaining the stability of 

the battery materials [27]. For each temperature, two 

charge/discharge conditions are considered, i.e., (C/3, C/24) 

and (C/3, C/3).  Charging was carried out via a constant-current 

(CC), constant voltage (CV) step, where the cells were charged 

at C/3 to an upper cutoff voltage of 4.075 V, at which point, 

charging continued at a constant voltage of 4.075 V until either 

the charge current was C/50 or the charge time reached 30 min. 

Following the CC-CV charging step, the cells were CC 

discharged at C/3 or C/24 until the voltage reached a lower 

cutoff of 3.4 V. Compared to the nominal operating temperature 

and discharge rate of an implantable cell, 55 ℃  and C/3 

conditions highly accelerate the aging of the cells [28]. 

During cycling, a characterization test is conducted at an 

ambient temperature of 40 ℃ every 2 weeks during the first 3 

months and every 4 weeks thereafter. The characterization test 

is used to determine the battery cell capacity and voltage curve 

at a slow rate. The recorded capacity and voltage curves are 

used for degradation parameter quantification. The 

characterization test includes four sequential steps: 1) CC and 

CV charge to 4.075 V at C/3 with a cutoff current of C/50, 2) 

CC discharge to 3.4 V at C/50 and rest for 30 min, 3) CC charge 

to 4.075 V at C/50 and rest for 30 min, and 4) repeated CC 

discharge to a voltage corresponding to 10% of the state of 

charge reduction at C/10 followed by a 1-hour rest period until 

the cell voltage reached 3.4 V. The temperature (40 ℃) and 

charging rate (C/50) are selected to be consistent with the test 

condition of the half-cells [19]. The capacity evolution of the 

16 battery cells is shown in Fig. 1. Cell C1 and C2 from group 

G1 and G3, and cell C3 and C4 from group G2 and G4 were 

removed roughly halfway through the test for destructive 

analysis. 

The charge curve at step 3 of the characterization test was 

used to quantify the degradation parameters with half-cell curve 

analysis. Both the cycling and characterization tests were 

conducted using a high precision charger from NOVONIX with 

a voltage range of 0–5 V and a maximum current output of 2 A 

for high-quality aging data acquisition [29].  

Table 3 Test matrix of the experimental data. 

Group Charge rate Discharge rate Temperature 
Number 

of cells 

G1 C/3 C/24 37 ℃ 4 

G2 C/3 C/24 55 ℃ 4 

G3 C/3 C/3 37 ℃ 4 

G4 C/3 C/3 55 ℃ 4 
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Fig. 1 Capacity fade plots of battery cells tested at (a) 37℃ and (b) 55℃. Each cell has anywhere between 17 

and 30 data points, depending on whether or not the cell has been removed for destructive analysis [19]. 

5. RESULTS AND DISCUSSION 

5.1 Physics informed machine learning study 

Figure 2 shows the health parameters estimation accuracy 

for models trained on either simulation data only or experimental 

data only. Despite the simulation dataset encompassing a much 

wider range of degradation scenarios (as described in subsection 

3.2) than the early-life experimental dataset, the models trained 

only with simulation data performed worse when compared to 

those trained only with early-life experimental data. This can be 

attributed to the fact that the half-cell model, being a simplified, 

largely imperfect physics-based model, cannot accurately 

reconstruct the voltage curves of the experimental cells 

especially when the cells have aged heavily. We have discussed 

such observation in our previous paper [19]. Due to the 

disagreement between the simulation and the experimental data, 

the health parameters estimation errors do not possess clear 

decreasing trends as the amount of training data increases (see 

Fig. 2(a-d)). In contrast, the estimation errors of the models 

trained with early-life experimental data show obvious 

decreasing trends as more experimental data are used for 

training. However, using 12 or more experimental data points (an 

approximately 14-month or longer test time) is often not feasible 

because of the extensive time, money, and manpower required to 

perform the tests. In response to this issue, we limit the next set 

of tests to include only the first five sequential data points from 

each cell (approximately three months of test time). 

Now, with limited experimental data, we aimed to improve 

model accuracy further by including half-cell model simulation 

data in the training dataset for each machine learning model. The 

results are displayed in Fig. 4 and the best results for each model 

are compared in Table 4. The first five entries in Fig. 4 show the 

results for the inclusion of random simulation data. We observe 

that the small quantity of random data points selected from the 

large simulation dataset generally do not improve model 

accuracy. In the MOGP and ELM models, we observe that LLI 

and capacity have improved accuracy, but at the cost of reduced 

accuracy on 𝑚𝑝  and 𝑚𝑛 . These results are consistent with the 

results seen in Fig. 2(a-d), where the models were trained on 

simulation data only. The simulation data covers a very large 

degradation space, and when choosing points at random, there is 

no guarantee the chosen points will reflect the degradation trends 

observed in the experimental cells. In effect, the random 

simulation data prove to corrupt the experimental data, making 

it more difficult for the models to learn the correct mapping from 

dQ/dV features to late-life degradation parameters. 
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Fig. 2 RMSE % of models when trained exclusively on half-cell model simulation data for (a) Lasso, (b) MOGP, 

(c) ELM, and (d) elastic net. RMSE % of models when trained exclusively on experimental data for (e) Lasso, (f) 

MOGP, (g) ELM, and (h) elastic net. 

 

 Inspired by the way simulation data caused the models to 

learn an incorrect degradation trend, we investigated whether the 

models could be coerced into learning a late-life degradation 

trend that more closely resembled the observed experimental 

cells. From the large simulation dataset, we filtered to only data 

points corresponding to the highest 20% degradation in 𝑚𝑝, 𝑚𝑛, 

and 𝐿𝐼𝐼. The new subset of simulation data, labelled as HiDeg, 

were added in small amounts to the early-life experimental data. 

The results are shown in the next four rows in Fig. 4. It is 

observed that the HiDeg simulation data improved 𝑚𝑝 and 𝑚𝑛 

estimation accuracy for Lasso, MOGP, and ELM when 

compared to their respective models without any simulation data. 

Likewise, MOGP and ELM showed a sizeable increase in 𝐿𝐼𝐼 

and capacity estimation accuracy. 

The inclusion of HiDeg simulation data into the models’ 

training dataset did not produce consistent and large accuracy 

improvements across all models. For MOGP and ELM, this 

method was more effective. In this work, we only considered an 

MOGP model with a zero-mean trend function. As a result, when 

estimating late-life cell degradation which is far from the training 

data, the MOGP model returns to the mean, zero. Including the 

high degradation simulation data served to extend the training 

data space, allowing the MOGP model to interpolate between the 

high degradation simulation data and the early-life experimental 

data. The same can be said about ELM. Neural networks like 

ELM are conditioned on the training data distribution and are 

only intelligent at estimation within the domain of the training 

data. With the inclusion of high-degradation simulated training 

data, the ELM is able to bridge the gap between early-life and 

 

Fig. 3 Comparison of the 30 simulated dQ/dV curves 

randomly selected from (a) the entire simulation dataset and (b) 

the high degradation dataset in relation to the early- and late-

life experimental data. 
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Fig. 4  RMSE % of models trained with different training data combinations for (a) Lasso, (b) MOGP, (c) ELM, and (d) elastic 

net. 

 

Table 4 Estimation accuracy of best-performing machine learning models. 

Training Data Model 𝑚𝑝 𝑚𝑛 𝐿𝐼𝐼 Q 

EXP5 Sim0 Elastic net 4.77 4.58 1.32 0.76 

EXP5 Sim30 HiDeg Elastic net 4.23 4.86 1.14 0.77 

EXP5 Sim0 Lasso 4.82 5.62 1.50 1.69 

EXP5 Sim30 HiDeg Lasso 4.19 4.02 1.17 1.24 

EXP5 Sim0 MOGP 8.03 5.09 3.17 3.66 

EXP5 Sim30 HiDeg MOGP 4.35 4.08 1.44 0.57 

EXP5 Sim0 ELM 7.53 6.98 2.30 1.63 

EXP5 Sim30 HiDeg ELM 4.06 3.25 1.24 0.74 

EXP5 Sim15 HiDeg PCA ELM 4.20 3.15 0.87 0.62 

late-life degradation parameter trends and can more accurately 

interpolate within the new combined distribution. 

As for the Lasso and elastic net models, the method of 

increasing the training space by adding high degradation 

simulation data was less effective at improving accuracy. This is 

likely due the parametric models’ innate ability to extrapolate 

more consistently than the other methods. Using only the first 

few early-life experimental data points proved to be nearly 

enough to get acceptable late-life degradation estimates. When 

adding high-degradation simulation data to the models, the 

estimation accuracy improved only slightly due to the models’ 

improved understanding of late-life degradation trends. 

Last, the results in Fig. 4 indicate PCA was ineffective at 

increasing model accuracy. Lasso and elastic net already have 

built-in feature normalization and selection mechanisms, which 

made PCA less effective. As for MOGP, the model performed 

worse when the PCA transformation was applied to the data. 

MOGP likely relied on the un-altered feature values in the dQ/dV 

curve to learn trends. Reducing the number of input features to 

20 principal components likely altered the feature data in a way 

which made fitting the MOGP model more difficult. ELM was 

the only model to exhibit similar performance both with and 

without PCA for feature reduction. However, PCA negligibly 

increased ELM accuracy. 
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5.2 Feature reduction study 

A key parameter in the generation of half-cell data is the 

voltage increment between successive dQ/dV samples. To 

determine whether 100 dQ/dV samples were sufficient for 

optimal model performance, we varied the input feature size for 

each model and recorded the average error across the four 

outputs. Each model was four-fold cross validated 50 times with 

a mixed dataset, namely EXP5 Sim20 HiDeg. The results are 

shown in Fig. 5(a) and the dQ/dV feature vectors of different 

lengths are visualized in Fig. 5(b). Relative to a feature vector 

length of 100, there was minimal effect on model performance 

until the number of features was reduced to 25 or less. This 

indicates that 100 dQ/dV samples were enough to represent the 

curve’s major features (peaks and valleys) and those that are 

useful for degradation diagnostics. Likewise, using too many 

dQ/dV samples proved to be counterproductive, and the models 

had a difficult time determining the most important features. 

6. CONCLUSION 
This study has demonstrated the possibility of accurately 

estimating lithium-ion battery capacity and degradation 

parameters by training a machine learning model using both 

limited early-life degradation data obtained through cycling tests 

and high-degradation simulation data from a half-cell model. 

The resulting physics-informed machine learning models exhibit 

improved accuracy compared to models trained strictly on early-

life degradation data. The preliminary results in this study 

suggest that the proposed methodology can significantly reduce 

the amount of experimental degradation data required for 

accurate late-life degradation estimation. The best models use 

only 60 experimental data (five data from each of the 12 training 

cells) and 30 high-degradation simulation data. In turn, this can 

reduce the expenses, manpower, and time required to 

characterize cell degradation in a laboratory setting for the 

purpose of online degradation diagnostics over a cell’s lifetime. 
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