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We conduct a study on the problem of fair allocation of indivisible goods when maximin 
share [1] is used as the measure of fairness. Most of the current studies on this notion 
are limited to the case that the valuations are additive. In this paper, we go beyond 
additive valuations and consider the cases that the valuations are submodular, fractionally 
subadditive, and subadditive. We give constant approximation guarantees for agents with 
submodular and XOS valuations, and a logarithmic bound for the case of agents with 
subadditive valuations. Furthermore, we complement our results by providing close upper 
bounds for each class of valuation functions. Finally, we present algorithms to find such 
allocations for submodular and XOS settings in polynomial time.

© 2021 Elsevier B.V. All rights reserved.

1. Introduction

Fair division is a fundamental problem that has received significant attention in economics, political science, mathemat-
ics, and more recently in computer science [3–5,1,6–10]. In this problem, for a reasonable notion of fairness, the goal is 
to divide a resource among a set of n agents in a fair manner. Initially, the resource was considered to be a cake (that 
is, a heterogeneous infinity divisible resource) and the problem was called cake-cutting [4]. To evaluate fairness in a cake-
cutting problem, several notions of fairness have been suggested, the most famous of which are proportionality [4] and 
envy-freeness [8]. A division is called proportional, if the total value of the allocated pieces to each agent is at least 1/n
fraction of his total value for the entire cake. In an envy-free division, no agent wishes to exchange his share with another 
agent, i.e., every agent’s valuation for his share is at least as much as his valuation for the other agents’ shares.

In the past decade, a new line of research focuses on the case that the resource is a set of indivisible goods. Unfortunately, 
most of the classic fairness notions are tailored to the cake-cutting problem and none of them can be guaranteed beyond 
the divisible case. For example, despite many strong positive results for guaranteeing the envy-freeness and proportionality 
in the cake-cutting problem [11,5,6,12], none of these notions can be either exactly or approximately2 guaranteed in the 
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case of indivisible items. Consider allocating a single indivisible item to n agents. Since this item is indivisible, one agent 
receives this item and the rest of the agents receive no item. Hence, there is no way to guarantee proportionality or any 
approximation of it for the agents that receive no item. This led the community to develop more relaxed fairness notions 
that align with the allocation of indivisible goods. In the past decade, several different criteria are defined for the case of 
indivisible items, e.g., envy-freeness up to one good (EF1), envy-freeness up to any good (EFX), proportional up to one good 
(Prop1), and maximin-share (MMS) [13,1,14].

In this paper, we investigate the maximin-share (MMS) notion. This notion is introduced by Budish [1] as a relaxation of 
proportionality for the case of indivisible goods. Imagine the following cut-and-choose game: we ask an agent ai to partition 
the items into n bundles and then ask the rest of the agents to choose a bundle before agent ai . In the worst-case scenario, 
the least preferred bundle remains for agent ai . The maximin share of ai is the largest value he can guarantee herself in 
this game in the worst-case scenario.

Formally, for a set M of goods, agent ai the maximin-share value of agent ai , denoted by MMSi is defined as

MMSi = max
(π1,π2,...,πn)∈�

min
j

vi(π j),

where � is the set of all partitions of M into n bundles and vi(π j) is the valuation of agent ai for bundle π j . An allocation 
is then said to be MMS, if it guarantees each agent ai a bundle with value at least MMSi .

Contrary to optimistic views about guaranteeing MMS, a counterexample by Kurokawa, Procaccia, and Wang [9] shows 
that some instances admit no MMS allocation. On the positive side, it is shown that a 2/3-MMS allocation (allocation that 
guarantees each agent ai a bundle with a value at least 2MMSi/3) always exists [9]. Improving the approximation factor 
for guaranteeing MMS has become an intriguing direction since 2014. The current best known approximation factor for the 
additive setting is 3/4 +o(1) by Grag and Taki [15]. From the algorithmic viewpoint, the best polynomial time approximation 
guarantee for MMS is improved in series of studies to 2/3 − ε [16], 2/3 [17], 3/4 − ε [2], and 3/4 [18]. On the negative 
side, for three agents and nine items, Feige, Sapir, and Tauber [19] design an instance in which at least one agent does not 
get more than a 39

40 fraction of her maximin share. For n ≥ 4 agents, they show examples in which at least one agent does 
not get more than a 1 − 1

n4
fraction of her maximin share.

Although most early investigations on maximin-share focus on the additive settings, it is very natural to extend the 
definition to other classes of set functions. For instance, it is quite natural to expect that an agent prefers to receive two 
items of value 400, rather than receiving 1000 items of value 1. Such a constraint cannot be imposed in the additive setting. 
However, submodular functions which encompass k-demand valuations are strong tools for modeling these constraints. 
Such generalizations have been made to many similar problems, including the Santa Claus max-min fair allocation, welfare 
maximization and Nash social welfare maximization [20–25]. The most common classes of set functions that have been studied 
before are submodular, XOS, and subadditive functions. In this paper, we consider the fair allocation problem when the 
agents’ valuations are in each of these classes. In contrast to the additive setting in which finding a constant MMS allocation 
is trivial, the problem becomes much more subtle even when the agents’ valuations are monotone submodular. Independent 
of this work, Barman et al. [17] prove the existence of a 1/10-MMS allocation for monotone submodular valuations and 
provide a polynomial-time 1/30-MMS allocation algorithm for that setting. In this paper, we propose algorithms with the 
approximation guarantee of 1/3 for submodular, 1/5 for XOS, and logarithmic for subadditive valuations. In Section 2 we 
review some mathematical background and basic definitions related to our work. Next, In Section 3 we discuss our results 
and techniques in detail.

2. Preliminaries

Throughout this paper we assume the set of agents is denoted by N and the set of items is referred to by M. Let |N | = n
and |M| = m, we refer to the agents by ai and to the items by bi , i.e., N = {a1, a2, . . . , an} and M = {b1, b2, . . . , bm}. We 
denote the valuation of agent ai for a set S of items by vi(S). Our interest is in valuation functions that are monotone and 
non-negative. More precisely, we assume vi(S) ≥ 0 for every agent ai and set S ⊆M, and for every two sets S1 and S2 we 
have

∀ai ∈ N vi(S1 ∪ S2) ≥ max{vi(S1), vi(S2)}.
Due to obvious impossibility results for the general valuation functions,3 we restrict our attention to three classes of set 

functions:

• Submodular: Given a ground set G , A function f : 2G →R is submodular if for every two sets S1, S2 ∈ G ,

f (S1) + f (S2) ≥ f (S1 ∪ S2) + f (S1 ∩ S2).

3 If the valuation functions are not restricted, no approximation guarantee can be achieved. For instance consider the case where we have two agents 
and 4 items. Agent a1 has value 1 for sets {b1, b2} and {b3, b4} and 0 for the rest of the sets. Similarly, agent a2 has value 1 for sets {b1, b3} and {b2, b4}
and 0 for the rest of the sets. In this case, no allocation can provide both of the agents with sets which are of non-zero value to them.
2
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• Fractionally Subadditive (XOS): Given a ground set G , an XOS function f : 2G → R can be shown via a finite set of 
additive functions { f 1, f 2, . . . , f α} where f (S) = maxα

i=1 f i(S) for any set S ⊆ G .
• Subadditive: Given a ground set G , a set function f : 2G →R is subadditive if for every two sets S1, S2 ⊆ G ,

f (S1) + f (S2) ≥ f (S1 ∪ S2).

For additive functions, it is reasonable to assume that the value of the function for every element is given in the input. 
However, representing other classes of set functions requires access to oracles. For submodular functions, we assume we 
have access to value-query oracle defined below. For XOS and subadditive settings, we use a stronger oracle which is called 
demand-query oracle. In addition to this, we consider a special oracle for XOS functions which is called XOS oracle. Access 
to query oracles for submodular functions, XOS oracle for XOS functions, and demand oracles for XOS and subadditive 
functions are quite common and have been very fruitful in the literature [26,23,24,27–30]. In what follows, we formally 
define the oracles:

• Value-query oracle: Given a function f , a value-query oracle Oval is an algorithm that receives a set S as input and 
computes f (S) in time O (1).

• Demand-query oracle: Given a function f , a demand-query oracle Odem is an algorithm that receives a sequence of 
prices p1, p2, . . . , pn as input and finds a set S such that

f (S) −
∑
e∈S

pe

is maximized. We assume the running time of the algorithm is O (1).
• XOS oracle: (defined only for an XOS function f ) Given a set S of items, it returns the additive representation of the 

function that is maximized for S . In other words, it reveals the contribution of each item in S to the value of f (S).

Maximin-share As mentioned before, the maximin-share of agent ai , denoted by MMSi is defined as follows:

MMSi = max
π1,π2,...,πn∈�

min
1≤ j≤n

vi(π j),

where � is the set of all partitions of M into n bundles. Throughout this paper, we suppose without loss of generality that 
the valuations are scaled so that for every agent ai we have MMSi = 1.

An allocation of items to the agents is a collection A = 〈A1, A2, . . . , An〉 where Ai is the bundle allocated to agent ai . 
For an allocation A, we have 

⋃
Ai = M and Ai ∩ A j = ∅ for every two agents ai, a j ∈ N . An allocation A is α-MMS, if 

every agent ai receives a subset of the items whose value to that agent is at least α times MMSi . Given our assumption that 
MMSi = 1 for every agent ai , we can say an allocation is α-MMS if and only if for every agent ai ∈N ,

vi(Ai) ≥ α.

Lemma 2.1 represents a well-known and very useful structural property of maximin-share notion proved by Amanitidis 
et al. [16]. Throughout this paper, we frequently use this property.

Lemma 2.1 ([16]). Assuming that the goal is to find an α-MMS allocation, we can suppose without loss of generality that for every 
item b j and every agent ai we have

vi({b j}) < α.

The reason that Lemma 2.1 holds is that, if an item is worth at least α to an agent, we can allocate it to him and solve 
the problem for the rest of the items and the rest of the agents. We remark that Lemma 2.1 holds for all the valuation 
classes, including submodular, XOS, and subadditive valuations.

3. Our results and techniques

We begin with submodular set functions. First, we show that in some instances with submodular valuations, no allocation 
is better than 3/4-MMS.

Theorem 3.1. For any n ≥ 2, there exists an instance of the fair allocation problem with n agents with submodular valuations where 
no allocation is better than 3/4-MMS.

We show Theorem 3.1 by a counterexample. In this counterexample, we have n agents and 2n items. Moreover, the 
valuation functions of the first n − 1 agents are the same, but the last agent has a slightly different valuation function 
3
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that makes it impossible to find an allocation that is better than 3/4-MMS. The number of agents in this example can be 
arbitrarily large.

Next, in Section 5, we show that when the valuations of the agents are submodular, guaranteeing a 1/3-MMS is always 
possible. In addition, we show, given access to value-query and demand-query oracles, one can find such an allocation in 
polynomial time. We further complement our result by showing that a 3/4-MMS is the best guarantee that one can hope to 
achieve in this setting. This is in contrast to the additive setting for which the only upper bound is that 3940 -MMS allocation 
is not always possible [19]. We begin by stating an existential proof.

Theorem 3.2. Every fair allocation problem in which the agents have submodular valuations admits a 1/3-MMS allocation.

To prove Theorem 3.2, first, by Lemma 2.1 we assume without loss of generality that MMSi = 1 for every agent ai ∈ N . 
Next, for a given a function f (·), we define the ceiling function f {x}(·) as follows:

f {x}(S) = min{x, f (S)} ∀S ⊆ ground( f ).

An important property of the ceiling functions is that they preserve submodularity, fractionally subadditivity, and subaddi-
tivity (see Lemma 5.2). Accordingly, we define the bounded welfare of an allocation A as∑

v{2/3}
i (Ai).

Given that, we show an allocation that maximizes the bounded welfare is 1/3-MMS. To this end, let A be an allocation with 
the maximum bounded welfare and suppose for the sake of contradiction that in such an allocation, an agent ai receives a 
bundle that is worth less than 1/3 to him. Since MMSi = 1, agent ai can divide the items into n sets, where each set is worth 
at least 1 to him. For a valuation function V , define the contribution of an item b j in set S (b j ∈ S) as v(S) − v(S \ {b j}). 
Now, we randomly select an element b j which is not allocated to ai . By the properties of submodular functions, we show 
that if we allocate b j to ai , the expected contribution of b j to the bounded valuation function of ai would be more than 
the currently expected contribution of b j to the bounded welfare of the allocation. Therefore, there exists an item b j such 
that if we allocate that item to agent ai , the total bounded welfare of the allocation will be increased. This contradicts the 
optimality of the allocation.

Notice that Theorem 3.2 is only an existential proof. A natural approach to finding such a solution is to start with an 
arbitrary allocation and iteratively increase its bounded welfare until it becomes 1/3-MMS. The main challenge though is 
that we do not even know what the MMS values are. Furthermore, unlike the additive setting, we do not have any PTAS 
algorithm that provides us a close estimate of these values. To overcome this challenge, we propose a combinatorial trick 
to guess these values without incurring any additional factor to our guarantee. The high-level idea is to start with large 
numbers as estimates to the MMS values. Every time we run the algorithm on the estimated values, it either finds the 
desired allocation or reports that the maximin-share value of an agent is misrepresented by at least a multiplicative factor. 
Given this, we divide the maximin-share value of that agent by that factor and continue with the new estimates. Therefore, 
at every step of the algorithm, we are guaranteed that our estimates are not less than the actual MMS values. Based on this, 
we show that the running time of the algorithm is polynomial and that the resulting allocation has the desired properties. 
The reader can find a detailed discussion in Section 5.

Theorem 3.3. Given access to value-query oracles, one can find a 1/3-MMS allocation for agents with submodular valuations in 
polynomial time.

We also study the problem with fractionally subadditive (XOS) agents. Similar to the submodular setting, we provide an 
upper bound on the quality of any allocation in the XOS setting. We show Theorem 3.4 by a counterexample.

Theorem 3.4. For any n > 1, there exists an instance of the fair allocation problem with n agents with XOS valuations where no 
allocation is better than 1/2-MMS.

Next, we state the main theorem of this section.

Theorem 3.5. The fair allocation problem with XOS valuations admits a 1/5-MMS allocation.

Our approach for proving Theorem 3.5 is similar to the proof of Theorem 3.2. Again, we scale the valuations to make 
sure MMSi = 1 for all the agents and define the notion of bounded welfare, but this time as 

∑
v{2/5}
i (Ai). However, as XOS

functions do not adhere to the nice structure of submodular functions, we use a different analysis to prove this theorem. 
Let A be an allocation with the maximum bounded welfare. In case all agents receive a value of at least 1/5, the proof is 
complete. Otherwise, let ai be an agent that receives a set of items whose value to him is less than 1/5. In contrast to the 
submodular setting, giving no item alone to ai can guarantee an increase in the bounded welfare of the allocation. However, 
4
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this time, we show there exists a set S of items such that if we take them back from their recipients and instead allocate 
them to agent ai , the bounded welfare of the allocation increases. The reason this holds is the following: since MMSi = 1, 
agent ai can split the items into 2n sets where every set is worth at least 2/5 to ai (see Lemma 6.2). Moreover, since 
the valuation functions are XOS, we show that giving one of these 2n sets to ai will increase the bounded welfare of the 
allocation. Therefore, if A is maximal, then A is also 1/5-MMS.

Finally, we show that a 1/8-MMS allocation in the XOS setting can be found in polynomial time. Our algorithm only 
requires access to demand-query and XOS oracles. Note that this bound is slightly worse than our existential proof due to 
computational hardness. However, the blueprint of the algorithm is based on the proof of Theorem 3.5.

Theorem 3.6. Given access to demand-query and XOS oracles, there exists a polynomial time algorithm that finds a 1/8-MMS allo-
cation for agents with XOS valuations.

We start with an arbitrary allocation and increase the bounded welfare until the allocation becomes 1/8-MMS. The catch 
is that if the allocation is not 1/8-MMS, then there exists an agent ai and a set S of items such that if we take back 
these items from their current recipients and allocate them to agent ai , the bounded welfare of the allocation increases. To 
increase the bounded welfare, two computational barriers need to be lifted. First, similar to the submodular setting, we do 
not have any estimates for the MMS values. Analogously, we resolve the first issue by iteratively guessing the MMS values. 
The second issue is that in every step of the algorithm, we have to find a set S of items to allocate to an agent ai that 
increases the bounded welfare. Such a set S cannot be trivially found in polynomial time. That is where the demand-query 
and XOS oracles take part. In Section 6.2.1 we show how to find such a set in polynomial time. The high-level idea is the 
following: first, by accessing the XOS oracles, we determine the contribution of every item to the bounded welfare of the 
allocation. Next, we set the price of every element equal to three times the contribution of that element to the bounded 
welfare and run the demand-query oracle to find which subset has the highest profit for agent ai . We show this subset has 
a value of at least 1/4 to ai . Next, we sort the elements of this set based on the ratio of contribution to the overall value 
of the set over the price of the item and select a prefix for them that has a value of at least 1/4 to ai . Finally, we argue 
that allocating this set to ai increases the bounded welfare of the allocation by at least some known lower bound. This, 
combined with the combinatorial trick to guess the MMS values, gives us a polynomial time algorithm to find a 1/8-MMS
allocation.

Note that, an immediate corollary of Theorems 3.3 and 3.6 is a polynomial time algorithm for approximating the 
maximin-share value of an agent with a submodular or XOS valuation function within factors 1/3 and 1/8, respectively.

Finally, we investigate the problem when the agents are subadditive and present an existential proof based on a well-
known reduction to the XOS setting.

Theorem 3.7. Any fair allocation problem in which the agents have subadditive valuations admits a 1/10�logm�-MMS allocation.

4. Upper-bounds

We begin by presenting our impossibility results for submodular and XOS valuations. First, we give an example that 
shows that the best guarantee that we can achieve for submodular valuations is upper bounded by 3/4. Next, we modify 
this example to prove that the best guarantee that we can achieve for XOS valuations is upper bounded by 1/2. Our 
counterexample is generic; we show this result for any number of agents.

Theorem 3.1. For any n ≥ 2, there exists an instance of the fair allocation problem with n agents with submodular valuations where 
no allocation is better than 3/4-MMS.

Proof. We construct an instance of the problem that does not admit any 3/4 + ε-MMS allocation. To this end, let n be the 
number of agents and M = {b1, b2, . . . , bm} where m = 2n. Furthermore, let f : 2M →R be as follows:

f (S) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

0, if |S| = ∅
1, if |S| = 1

2, if |S| > 2

2, if S = {b2i,b2i−1} for some 1 ≤ i ≤ n

3/2, if |S| = 2 and S �= {b2i,b2i−1} for any 1 ≤ i ≤ n.

In what follows we show that f is submodular. To this end, suppose for the sake of contradiction that there exist sets S
and S ′ such that S ⊆ S ′ and for some element bi we have:

f (S ′ ∪ {bi}) − f (S ′) > f (S ∪ {bi}) − f (S). (1)

Since f is monotone and S ′ �= S , f (S ′ ∪ {bi}) − f (S ′) > 0 holds and thus S ′ cannot have more than two items. Therefore, 
S ′ contains at most two items and thus S is either empty or contains a single element. If S is empty, then adding every 
5
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element to S has the highest increase in the value of S and thus Inequality (1) doesn’t hold. Therefore, S contains a single 
element and S ′ contains exactly two elements. Thus, f (S) = 1 and f (S ′) ≥ 3/2. Therefore, f(S ∪{bi}) − f (S) ≥ 1/2 and 
f (S ′ ∪ {bi}) − f (S ′) ≤ 1/2 which contradicts Inequality (1).

Now, for agents a1, a2, . . . , an−1 we set vi = f and for agent an we set vn = f (inc(S)) where bi is in inc(S) if and only if 
either i > 1 and bi−1 ∈ S or i = 1 and bm ∈ S . Clearly, for every agent ai we have MMSi = 2.

The crux of the argument is that for any allocation of the items to the agents, someone receives a value of at most 
3/2. In case an agent receives fewer than two items, his valuation for his items would be at most 1. Similarly, if an 
agent receives more than two items, someone has to receive fewer than 2 items and the proof is complete. Therefore, the 
only case to investigate is where everybody receives exactly two items. We show in such cases, min vi(Ai) = 3/2 for all 
possible allocations. If all agents a1, a2, . . . , an−1 receive two items whose value for them is exactly equal to 2, then by the 
construction of f , the value of the remaining items is also equal to 2 to them. Thus, an ’s valuation for the items he receives 
is equal to 3/2. �

Remark that one could replace function f with an XOS function

g(S) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

0, if |S| = ∅
1, if |S| = 1

2, if |S| > 2

2, if S = {b2i,b2i−1} for some 1 ≤ i ≤ n

1, if |S| = 2 and S �= {b2i,b2i−1} for any 1 ≤ i ≤ n,

and make the same argument to achieve a 1/2-MMS upper bound for XOS and subadditive valuations.

Theorem 3.4. For any n > 1, there exists an instance of the fair allocation problem with n agents with XOS valuations where no 
allocation is better than 1/2-MMS.

5. Submodular valuations

Most of the studies on maximin-share are limited to the agents with additive valuations [15,16,9]. In the real world, 
however, valuation functions are usually more complex than additive ones. As an example, imagine an agent is interested in 
at most k items. More precisely, he is indifferent between receiving k items or more than k items. Such a valuation function 
is called k-demand and cannot be modeled by additive functions. k-demand functions are a subclass of submodular set 
functions which have been extensively studied in the literature of different contexts, e.g., optimization, mechanism design, 
and game theory [31–37,30]. To the best of our knowledge, the only result for the maximin-share notion beyond additive 
valuations is the work of Barman and Krishna Murthy [17] wherein the authors prove the existence of 1/10-MMS allocation 
for agents with submodular valuations.4

In this section we provide an existential proof to a 1/3-MMS allocation when the valuations are submodular. Due to the 
algorithmic nature of the proof, we show in Section 5.1 that such an allocation can be computed in time poly(n, m). We 
emphasize that we scale the valuation functions to ensure MMSi = 1 for every agent ai .

We begin by introducing the ceiling functions.

Definition 5.1. Given a set function f : ground( f ) →R+ , we define f {x}(·) as follows:

f {x}(S) =
{
f (S), if f (S) ≤ x

x, if f (S) > x.

Observation 5.1. f {x}(S) ≤ x for every given S.

Observation 5.2. f {x}(S) ≤ f (S) for every given S.

An important property of the ceiling functions is that they preserve submodularity, fractionally subadditivity, and subad-
ditivity as we show in Lemma 5.2.

Lemma 5.2. For any real number x ≥ 0, we have:

1. Given a submodular set function f (·), f {x}(·) is submodular.

4 In the journal version of this paper, this factor is improved to 0.21.
6
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2. Given an XOS set function f (·), f {x}(·) is XOS.
3. Given an subadditive set function f (·), f {x}(·) is also subadditive.

Proof. First Claim: By definition of submodular functions, for given sets A and B we have:

f (A ∪ B) ≤ f (A) + f (B) − f (A ∩ B).

We prove that f {x}(·) is a submodular function in three different cases:

First Case: let both f (A) and f (B) be at least x. According to Observation 5.1, f {x}(A ∪ B) and f {x}(A ∩ B) are bounded 
by x. Therefore, f {x}(A ∪ B) + f {x}(A ∩ B) ≤ 2x, which yields:

f {x}(A ∪ B) + f {x}(A ∩ B) ≤ f {x}(A) + f {x}(B).

Second Case: in this case one of f (A) and f (B) is at least x. We have f (A ∪ B) ≥ x and f (A ∩ B) is no more than max 
{ f (A), f (B)}. As a result f {x}(A ∪ B) and one of f {x}(A) or f {x}(B) are equal to x which yields:

f {x}(A ∪ B) + f {x}(A ∩ B) ≤ f {x}(A) + f {x}(B)

Third Case: in this case both f (A) and f (B) are less than x, and f (A ∩ B) is less than x too. Since f {x}(A) = f (A), 
f {x}(B) = f (B), f {x}(A ∩ B) = f (A ∩ B), according to Observation 5.2, f {x}(A ∪ B) ≤ f (A ∪ B) holds. Since f (·) is a submodular 
function, we conclude that:

f {x}(A ∪ B) ≤ f {x}(A) + f {x}(B) − f {x}(A ∩ B).

Second Claim: Since f (·) is an XOS set function, by definition, there exists a finite set of additive functions { f1, f2, . . . , fα}
such that

f (S) = α
max
i=1

f i(S)

for any set S ⊆ ground( f ). With that in hand, for a given real number x, we define an XOS set function g(·), and show g(·)
is equal to f {x}(·).

We define g(·) on the same domain as f (·). Moreover, based on { f1, f2, . . . , fα}, we define a finite set of additive 
functions {g1, g2, . . . , gβ} that describe g . More precisely, for each set S in domain of f (·) we define a new additive function 
like gγ in g(·) as follows: Without loss of generality let fδ be the function which maximizes f (S). For each bi /∈ S let 
gγ (bi) = 0. Furthermore, for each bi ∈ S if f (S) ≤ x let gγ (bi) = fδ(bi), and otherwise let gγ (bi) = x

f (S) fδ(bi).

We claim that g(·) is equivalent to f {x}(·), which implies f {x}(·) is an XOS function. g(·) and f {x}(·) are two functions 
which have equal domains. First, we prove that g(S) ≤ f (S) for any given set S . According to construction of g(·), for each 
additive function in g(·) such gγ , there is at least one additive function in f (·) such fδ where gγ (bi) ≤ fδ(bi) for each 
bi ∈M. Therefore, for any given set S we have:

g(S) ≤ f (S) (2)

Now, according to the construction of g(·), for any given set S where f (S) ≤ x, we have a function gγ (S) = f (S), and where 
f (S) > x, we have a function gγ (S) = x. Therefore, we can conclude that:

g(S) ≥ f {x}(S) (3)

For any given set S where f (S) ≤ x, according to the definition of f {x}(·), f (S) = f {x}(S), and using Inequalities (2) and 
(3) we argue that f {x}(S) = g(S). Moreover, according to the construction of g(·), g(S) ≤ x for any given set S . Therefore, 
for any given set S where f (S) > x, according to the definition of f {x}(·) and Inequality (3), f {x}(S) = g(S) = x. As a result, 
by considering these two cases we argue that f {x}(·) and g(·) are equivalent, which shows f {x}(·) is an XOS function.

Third Claim: In this claim, we use a similar argument to the first claim. By definition of subadditive functions for any given 
sets A and B , we have:

f (A ∪ B) ≤ f (A) + f (B).

We prove that f {x}(·) meets the definition of subadditive functions by considering two different cases. In the first case at 
least one of f (A) and f (B) is at least x, and in the second case both f (A) and f (B) is less than x.

First Case: In this case f {x}(A) + f {x}(B) is at least x. Since f {x}(S) ≤ x for any given set S , f {x}(A ∪ B) ≤ x. Therefore,

f {x}(A ∪ B) ≤ f {x}(A) + f {x}(B).
7
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Second Case: Since f {x}(A ∪ B) ≤ f (A ∪ B), f (A ∪ B) ≤ f (A) + f (B), f (A) = f {x}(A), and f (B) = f {x}(B), we have:

f {x}(A ∪ B) ≤ f {x}(A) + f {x}(B). �
The idea behind the existence of a 1/3-MMS allocation is simple: let A = 〈A1, A2, . . . , An〉 be an allocation of items to 

the agents that maximizes the following expression:∑
ai∈N

v{2/3}
i (Ai). (4)

We refer to Expression (4) by ex{2/3}(A). We prove vi(Ai) ≥ 1/3 for every agent ai ∈ N . The main ingredients of the proof 
are Lemmas 2.1, 5.3 and 5.4.

Lemma 5.3. Let S1, S2, . . . , Sk be k disjoint sets and f1, f2, . . . , fk be k submodular functions. We remove an element e from 
⋃

Si
uniformly at random to obtain sets S∗

1 = S1 \ {e}, S∗
2 = S2 \ {e}, . . . , S∗

k = Sk \ {e}. In this case we have

E[
∑

f i(S
∗
i )] ≥

∑
f i(Si)

|⋃ Si | − 1

|⋃ Si| .

Proof. Since f (·) is submodular, according to the definition of submodular functions, for every given sets X and Y in 
domain of f (·) with X ⊆ Y and every x ∈M \ Y we have:

f (X ∪ {x}) − f (X) ≥ f (Y ∪ {x}) − f (Y ) (5)

Let Si = {e1, e2, . . . , eα}, T0 = ∅, and T j = {e1, e2, . . . , e j}, for every 1 ≤ j ≤ α. Since T j ⊆ Si for each 0 ≤ j ≤ α and f i is 
a submodular function, according to Inequality (5) we have:∑

1≤ j≤α

f i(Si \ T j−1) − f i(Si \ T j) ≥
∑

1≤ j≤α

f i(Si) − f i(Si − e j). (6)

Since f i(Si) = ∑
1≤ j≤α f i(Si \ T j−1) − f i(Si \ T j), we can rewrite Inequality (6) for every 1 ≤ i ≤ k as follows:

f i(Si) ≥
∑
e∈Si

f i(Si) − f i(Si − e). (7)

For every 1 ≤ i ≤ k we can rewrite Inequality (7) as follows:∑
e∈si

f i(Si − e) ≥ (|Si| − 1) f i(Si) (8)

By adding (| ⋃ Si | − |Si |) f i(Si) to the both sides of Inequality (8), we have:

(|
⋃

Si| − |Si|) f i(Si) +
∑
e∈Si

f i(Si − e) =
∑

e∈⋃
Si

f i(Si \ {e})

≥ (|
⋃

Si| − 1) f i(Si)

(9)

Since Inequality (9) holds for every 1 ≤ i ≤ k, we can sum up both sides of Inequality (9) as follows:∑
1≤i≤k

∑
e∈⋃

Si

f i(Si − e) ≥
∑

1≤i≤k

(|
⋃

Si| − 1) f i(Si) (10)

By dividing both sides of Inequality (10) over 1/| ⋃ Si | we obtain:

1

|⋃ Si| (
∑

e∈⋃
Si

∑
1≤i≤k

f i(Si − e)) = E[
∑

1≤i≤k

f i(S
∗
i )]

≥
∑

1≤i≤k

f i(Si)
|⋃ Si| − 1

|⋃ Si | . �
(11)

Lemma 5.4. Let f be a submodular function and S1, S2, . . . , Sk be k disjoint sets such that f (Si) ≥ 1 for every set Si . Moreover, let 
S ⊆ ⋃

Si be a set such that f (S) < 1/3. If we pick an element {e} of ⋃ Si \ S uniformly at random, we have:

E[ f (S ∪ {e}) − f (S)] ≥ 2k/3⋃ .
| Si \ S|
8
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Proof. Similar to the proof of Lemma 5.3, we use Inequality (5) as a definition of submodular functions. Let S ′
i = Si \ S =

{e1, e2, . . . , eα}, T0 = S , and T j = S ∪{e1, e2, . . . , e j} for 1 ≤ j ≤ α. According to f (S) < 1/3, f (S ∪ S ′
i) ≥ 1, and Inequality (5)

as a definition of submodular functions, we have:

2/3 < f (S ∪ S ′) − f (S)

=
∑

1≤ j≤α

f (T j−1 ∪ {e j}) − f (T j−1)

≤
∑
e∈S ′

i

f (S ∪ {e}) − f (S).

(12)

Similar to Inequality (10), we can rewrite Inequality (12) with a summation, since Inequality (12) holds for any 1 ≤ i ≤ k.

2k/3 <
∑

1≤i≤k

∑
e∈S ′

i

f (S ∪ {e}) − f (S) (13)

By dividing both sides of Inequality (13) over 1/| ⋃ Si \ S| we have:

2k/3

|⋃ Si \ S| <
1

|⋃ Si \ S| (
∑

1≤i≤k

∑
e∈S ′

i

f (S ∪ {e}) − f (S))

= E[ f (S ∪ {e}) − f (S)] �
(14)

Next, we show the fair allocation problem with submodular valuations admits a 1/3-MMS allocation.

Theorem 3.2. Every fair allocation problem in which the agents have submodular valuations admits a 1/3-MMS allocation.

Proof. Since our goal is to prove 1/3 approximation guarantee, by Lemma 2.1 we can assume that the value of each item 
for each agent is less than 1/3. Let A be an allocation that maximizes ex{2/3} . Suppose for the sake of contradiction that 
vi(Ai) < 1/3 for some agent ai . In this case we select an item br from M \ Ai uniformly at random to create a new 
allocation Ar as follows:

Ar
j =

{
A j \ {br}, if i �= j

A j ∪ {br} if i = j.

In the rest we show E[ex{2/3}(Ar)] > ex{2/3}(A) which contradicts the maximality of A. Note that by Lemma 5.3 the 
following inequality holds:

E[
∑
j �=i

v{2/3}
j (Ar

j)] ≥
∑
j �=i

v{2/3}
j (A j)

|M \ Ai| − 1

|M \ Ai| . (15)

Moreover, by Lemma 5.4 we have

E[vi(A
r
i ) − vi(Ai)] ≥ 2n/3

|M \ Ai | . (16)

Inequality (15) along with Inequality (16) shows

E[ex{2/3}(Ar)] =E[
∑
j �=i

v{2/3}
j (Ar

j)] +E[vi(A
r
i )]

≥
∑
j �=i

v{2/3}
j (A j)

|M \ Ai| − 1

|M \ Ai| +E[vi(A
r
i )]

≥
∑
j �=i

v{2/3}
j (A j)

|M \ Ai| − 1

|M \ Ai| + 2n/3

|M \ Ai| + vi(Ai)

≥
∑
j �=i

v{2/3}
j (A j)

|M \ Ai| − 1

|M \ Ai| + 2n/3

|M \ Ai| + v{2/3}
i (Ai)

≥
∑
j �=i

v{2/3}
j (A j)

|M \ Ai| − 1

|M \ Ai| + 2n/3

|M \ Ai| + v{2/3}
i (Ai)

|M \ Ai| − 1

|M \ Ai |

= ex{2/3}(A)
|M \ Ai| − 1 + 2n/3

.

(17)
|M \ Ai| |M \ Ai|
9



M. Ghodsi, M. HajiAghayi, M. Seddighin et al. Artificial Intelligence 303 (2022) 103633
Recall that by Lemma 2.1, the value of agent ai for any item alone is bounded by 1/3 and thus E[vi(Ar
i ) − vi(Ai)] =

E[v{2/3}
i (Ar

i ) − v{2/3}
i (Ai)]. Notice that by the definition, v{2/3}

j is always bounded by 2/3 and also vi(Ai) < 1/3, therefore, 
ex{2/3}(A) ≤ 2n/3 − 1/3 and thus

E[ex{2/3}(Ar)] ≥ ex{2/3}(A)
|M \ Ai| − 1

|M \ Ai | + 2n/3

|M \ Ai|
≥ ex{2/3}(A) + 1/3

|M \ Ai|
≥ ex{2/3}(A) + 1/3m. �

(18)

5.1. Algorithm

In this section we give an algorithm to find a 1/3-MMS allocation for submodular valuations. We show our algorithm 
runs in time poly(n, m).

For simplicity, we assume for every agent ai , MMSi is given as input to the algorithm. However, computing MMSi alone is 
an NP-hard problem. That said, we show in Section 6.2.2 that such a computational barrier can be lifted by a combinatorial 
trick. We refer the reader to Section 6.2.2 for a more detailed discussion. The procedure is illustrated in Algorithm 1.

Algorithm 1: Finding a 1/3-MMS allocation for submodular valuations.
Data: N , M, 〈v1, v2, . . . , vn〉, 〈MMS1, MMS2, . . . , MMSn〉

1 For every a j , scale v j to ensure MMS j = 1;
2 while there exist an agent ai and an item b j such that vi({b j}) ≥ 1/3 do
3 Allocate {b j} to ai ;
4 M = M \ b j ;
5 N = N \ ai ;

6 A = an arbitrary allocation of the items to the agents;
7 while min v{2/3}

j (A j) < 1/3 do
8 i = the agent who receives the lowest value in allocation A;
9 Find an item be such that: ex(〈A1 \ {be}, A2 \ {be}, . . . , Ai−1 \ {be}, Ai ∪ {be}, Ai+1 \ {be}, . . . , An \ {be}〉) ≥ ex(A) + 1/3m;

10 A = 〈A1 \ {be}, A2 \ {be}, . . . , Ai−1 \ {be}, Ai ∪ {be}, Ai+1 \ {be}, . . . , An \ {be}〉;
11 For every ai ∈ N allocate Ai to ai ;

Based on Theorem 3.2, one can show that in every iteration of the algorithm value of ex{2/3}(A) is increased by at 
least 1/3m. Moreover, such an element be can be easily found by iterating over all items in time O (m). Furthermore, the 
number of iterations of the algorithm is bounded by 2nm, since ex{2/3}(A) is bounded by 2n/3. Therefore, Algorithm 1 finds 
a 1/3-MMS allocation in time poly(n, m).

Theorem 3.3. Given access to value-query oracles, one can find a 1/3-MMS allocation for agents with submodular valuations in 
polynomial time.

As a corollary of Theorem 3.3, one can show that the problem of finding the maximin value of a submodular function 
admits a 3 approximation algorithm.

Corollary 5.5. For a given submodular valuation function vi , we can in polynomial time split the elements of ground set into n disjoint 
sets S1, S2, . . . , Sn such that

vi(S j) ≥ MMSi/3

for every 1 ≤ j ≤ n.

6. XOS valuations

The class of fractionally subadditive (XOS) set functions is a superclass of submodular functions. These functions too, 
have been the subject of many studies in recent years [38,39,23,40–43,28,44]. Similar to submodular functions, in this 
section, we show a 1/5-MMS allocation is possible when all agents have XOS valuations. Furthermore, we complement our 
proof by providing a polynomial algorithm to find a 1/8-MMS allocation in Section 6.2.
10
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6.1. Existential proof

In this section we show every instance of the fair allocation problem with XOS valuations admits a 1/5-MMS allocation. 
Without loss of generality, we assume MMSi = 1 for every agent ai . Recall the definition of ceiling functions. As stated in 
Lemma 5.2, for every XOS function f and every real number x ≥ 0, f x is also XOS. The proof of this section is similar 
to the result of Section 5. However, the details are different since XOS functions do not adhere to the special structure of 
submodular functions. For every allocation A, we define ex{2/5}(A) as follows:

ex{2/5}(A) =
∑
ai∈N

v{2/5}
i (Ai).

Now let A = 〈A1, A2, . . . , An〉 be an allocation of items to the agents that maximizes ex{2/5} . Provided that the problem 
is 1/5-irreducible, we show A is a 1/5-MMS allocation. Before we proceed to the main proof, we state Lemmas 6.1, and 6.2
as auxiliary observations.

Lemma 6.1. Let f (·) be an XOS set function and let S ⊆ ground( f ). If we divide S into k (possibly empty) sets S1, S2, . . . , Sk then

k∑
i=1

(
f (S) − f (S \ Si)

)
≤ f (S).

Proof. According to the definition of XOS function, f (·) is an XOS function with a finite set of additive functions 
{g1, g2, . . . , gα} where f (S) = maxα

i=1 gi(S) for any set S ∈ ground( f ). Let g j(·) be the additive function which maximizes S . 
Let g j(S1) = α1, g j(S2) = α2, . . . , g j(Sk) = αk , which yields f (S) = ∑

αi . Since g j(Si) = αi , f (S \ Si) ≥ f (S) − αi . Therefore, 
we have:∑

f (S) − f (S \ Si) ≤
∑

f (S) − ( f (S) − αi)

= f (S). � (19)

By Lemma 2.1, to prove the approximation ratio of 1/5, we can assume without loss of generality that the value of every 
item for an agent is bounded by 1/5. For XOS functions, in Lemma 6.2 we prove another important property.

Lemma 6.2. Assume that the value of each item for each agent is less than 1/5. Then, for a given agent ai we can divide the items into 
2n sets S1, S2, . . . , S2n such that

vi(S j) ≥ 2/5

for every 1 ≤ j ≤ 2n.

Proof. According to the definition of MMS, we know that ai can divide items to n sets P = 〈P1, P2, . . . , Pn〉 such that 
Vi(P j) ≥ 1 for any P j . The catch is that ai can divide each of these n sets to two disjoint sets such that the value of each 
of these new sets be at least 2/5 to him. Let T = {b1, b2, . . . , bγ } be one of these n sets, and g j(·) be an additive function 
which maximizes Vi(T ). Let Tk = {b1, b2, . . . , bk} for any 1 ≤ k ≤ γ . Since the value of any item is less than 1/5 to ai , there 
is a set Tk among T1 to Tγ where 2/5 ≤ g j(Tk) < 3/5. Since g j(·) is one of additive functions of XOS function Vi , we have 
Vi(Tk) ≥ 2/5. Moreover, since g j(Tk) < 3/5, g j(T \ Tk) ≥ 2/5, which yields Vi(T \ Tk) ≥ 2/5. As a conclusion, we can divide 
each of n sets to two disjoint sets with at least 2/5 value to ai . �

Next we prove the main theorem of this section.

Theorem 3.5. The fair allocation problem with XOS valuations admits a 1/5-MMS allocation.

Proof. Consider an allocation A = 〈A1, A2, . . . , An〉 of items to the agents that maximizes ex{2/5} . We show that such an 
allocation is 1/5-MMS. Suppose for the sake of contradiction that there exists an agent ai who receives a set of items which 
are together worth less than 1/5 to him. More precisely,

v{2/5}
i (Ai) = vi(Ai) < 1/5.

Recall that by Lemma 2.1, the value of each item to each agent is less than 1/5, and therefore by Lemma 6.2, we can divide 
the items into 2n sets S1, S2, . . . , S2n such that vi(S j) ≥ 2/5 for every 1 ≤ j ≤ 2n. Note that in this case, v{2/5}

i (S j) = 2/5

follows from the definition. Moreover by monotonicity, v{2/5}
(S j ∪ Ai) = 2/5 holds for every j.
i

11
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Now consider 2n allocations A1, A2, . . . , A2n such that

A j = 〈A j
1, A

j
2 . . . , A j

n〉
for every 1 ≤ j ≤ 2n where

A j
k =

{
Ak ∪ S j, if k = i

Ak \ S j, if k �= i.

We show at least one of these allocations has a higher value for ex{2/5} than A. Since v{2/5}
i is XOS, by Lemma 6.1 we have

2n∑
j=1

(
v{2/5}
k (Ak) − v{2/5}

k (Ak \ S j)
)

≤ v{2/5}
k (A j)

for every ak �= ai and thus

2n∑
j=1

v{2/5}
k (A j

k) =
2n∑
j=1

v{2/5}
k (A j \ S j)

≥ 2nv{2/5}
k (Ak) − v{2/5}

k (Ak)

= (2n − 1)v{2/5}
k (Ak).

(20)

Moreover, since v{2/5}
i (Ai) < 1/5, we have∑

a j �=ai

v{2/5}
j (A j) >

∑
a j∈N

v{2/5}
j (A j) − 1/5

= ex{2/5}(A) − 1/5.

(21)

Furthermore, since v{2/5}
i (S j ∪ Ai) = 2/5 for every 1 ≤ j ≤ 2n, we have∑

ak �=ai

v{2/5}
k (A j

k) =
∑
ak∈N

v{2/5}
k (A j

k) − 2/5

= ex{2/5}(A j) − 2/5.

(22)

Finally, by combining Inequalities (20), (21), and (22) we have

2n∑
j=1

ex{2/5}(A j) =
2n∑
j=1

(2/5+
∑
ak �=ai

v{2/5}
k (A j

k))

= 4n/5 +
2n∑
j=1

∑
ak �=ai

v{2/5}
k (A j

k)

≥ 4n/5+
∑
ak �=ai

(2n − 1)v{2/5}
k (Ak)

≥ 4n/5+ (2n − 1)(ex{2/5}(A) − 1/5)

≥ 2n · ex{2/5}(A) + (4n − 2n + 1)/5− ex{2/5}(A)

≥ 2n · ex{2/5}(A) + (2n + 1)/5− ex{2/5}(A).

Now notice that since v{2/5}
k (Ak) ≤ 2/5, we have

ex{2/5}(A) =
n∑

k=1

v{2/5}
k (Ak)

≤
n∑

k=1

2/5

≤ 2n/5
12
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and thus
2n∑
j=1

ex{2/5}(A j) ≥ 2n · ex{2/5}(A) + (2n + 1)/5− ex{2/5}(A)

≥ 2n · ex{2/5}(A) + (2n + 1)/5− 2n/5

≥ 2n · ex{2/5}(A) + 1/5.

Therefore, ex{2/5}(A j) > ex{2/5}(A) + 1/10n holds for at least one A j which contradicts the maximality of A. �
6.2. Algorithm

In this section, we provide a polynomial time algorithm for finding a 1/8-MMS allocation for the fair allocation problem 
with XOS valuations. The algorithm is based on a similar idea that we argued for the proof of Theorem 3.5. Remark that 
our algorithm only requires access to demand-query and XOS oracles. It does not have any additional information about 
the maximin values. This makes the problem computationally harder since computing the maximin values is NP-hard [45]. 
We begin by giving a high-level intuition of the algorithm and show that we can overcome computational obstacles by 
combinatorial tricks. Consider the pseudo-code described in Algorithm 2.

Algorithm 2: Algorithm for finding a 1/8-MMS allocation.
Data: N , M, 〈v1, v2, . . . , vn〉

1 For every a j , scale v j to ensure MMS j = 1;
2 while there exist an agent ai and an item b j such that vi({b j}) ≥ 1/8 do
3 Allocate {b j} to ai ;
4 M = M \ b j ;
5 N = N \ ai ;

6 A = an arbitrary allocation of the items to the agents;
7 while min v{1/4}

j (A j) < 1/8 do
8 i = the agent who receives the lowest value in allocation A;
9 Find a set S such that: ex{1/4}(〈A1 \ S, A2 \ S, . . . , Ai−1 \ S, Ai ∪ S, Ai+1 \ S, . . . , An \ S〉) ≥ ex{1/4}(A) + 1/12n;

10 A = 〈A1 \ S, A2 \ S, . . . , Ai−1 \ S, Ai ∪ S, Ai+1 \ S, . . . , An \ S〉;
11 For every ai ∈ N allocate Ai to ai ;

As we show in Section 6.2.1, Command 9 of the algorithm is always doable. More precisely, there always exists a set S
that holds in the condition of Command 9. Notice that in every step of the algorithm, ex{1/4}(A) is increased by at least 
1/12n and this value is bounded by 1/4 · n = n/4. Therefore the algorithm terminates after at most 3n2 steps and the 
allocation is guaranteed to be 1/8-MMS.

That said, there are two major computational obstacles in the way of running Algorithm 2. Firstly, finding a set S that 
satisfies the condition of Command 9 can not be trivially done in polynomial time. Second, scaling the valuation functions 
to ensure MMSi = 1 for all agents is NP-hard and cannot be done in polynomial time unless P=NP. To overcome the former, 
in Section 6.2.1 we provide an algorithm for finding such a set S in polynomial time. Next, in Section 6.2.2, we present 
a combinatorial trick to run the algorithm in polynomial time without having to deal with NP-hardness of scaling the 
valuation functions.

6.2.1. Executing command 9 in polynomial time
In this section we present an algorithm to execute Command 9 of Algorithm 2. We show that such a procedure can be 

implemented via demand-query oracles.
Let for every b j /∈ Ai , c j be the amount of contribution that b j makes to ex{1/4}(A). We set pe = 3(n/(n − 1))ce and 

ask the demand-query oracle of vi to find a set S that maximizes vi(S) − ∑
b j∈S p j . Via a trivial calculation, one can show 

that vi(S) − ∑
b j∈S p j ≥ 1/4 holds for at least one set of items. The reason this is correct is that one can divide the items 

into n partitions where each is worth at least 1 to ai . Moreover, the summation of prices for the items is bounded by 
3n/(n − 1) · (∑ j �=i v

{1/4}
j (A j)) ≤ 3n/4. Therefore, for at least one of those partitions vi(S) − ∑

b j∈S p j is at least 1/4. Thus, 
the set that the oracle reports is worth at least 1/4 to ai .

Now, let S∗ be the set that the oracle reports and for every b j ∈ S∗ , c∗
j be the contribution of b j to vi(S∗). We sort the 

items of S∗ based on c∗
j − p j in non-increasing order. Next, we start with an empty bag and add the items in their order to 

the bag until the total value of the items in the bag to ai reaches 1/4. Since the value of every item alone is bounded by 
1/8, the total value of the items in the bag to ai is bounded by 3/8. Thus the contribution of those items to ex{1/4}(A) is at 
most (3/8)/(3n/(n − 1)) ≤ 1/8 − 1/(10n). Therefore, removing items of the bag from other allocations and adding them to 
Ai , increases ex{1/4}(A) by at least 1/10n.

We remark that one can use the same argument to prove this even if MMSi ≥ 1/(1 + 1/10n).
13
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6.2.2. Running Algorithm 2 in polynomial time
As mentioned above, scaling valuation functions to ensure MMSi = 1 for every agent ai is an NP-hard problem since 

determining the maximin values is hard even for additive agents [9]. Therefore, unlike Section 6.2.1, in this section we 
massage the algorithm to make it executable in polynomial time.

Suppose an oracle gives us the maximin values of the agents. Provided that we can run Command 9 of Algorithm 2 in 
polynomial time, we can find a 1/8-MMS allocation in polynomial time. Therefore, in case the oracle reports the actual 
maximin values, the solution is trivial. However, what if the oracle has an error in its calculations? There are two possibili-
ties: (i) Algorithm 2 terminates and finds an allocation which is 1/8-MMS with respect to the reported maximin values. (ii) 
The algorithm fails to execute Command 9, since no such set S holds in the condition of Command 9. The intellectual merit 
of this section boils down to investigation of the case when algorithm fails to execute Command 9. We show that this only 
happens due to an overly high misrepresentation of the maximin value for agent ai . Note that ai is the agent who receives 
the lowest value in the last cycle of the execution.

Observation 6.1. Given 〈d1, d2, . . . , dn〉 as an estimate for the maximin values, if Algorithm 2 fails to execute Command 9 for an agent 
ai , then we have

di ≥ (1 + 1/10n)MMSi .

Proof of Observation 6.1 follows from the argument of Section 6.2.1. More precisely, as mentioned in Section 6.2.1, such 
a set S exists, if MMSi ≥ 1/(1 +1/10n). Thus, given that the procedure explained in Section 6.2.1 fails to find such a set, one 
can conclude that the reported value for MMSi is at least (1/(1 + 1/10n)) times its actual value. Based on Observation 6.1, 
we propose Algorithm 3 for implementing a maximin oracle.

Algorithm 3: Implementing a maximin oracle.
Data: N , M, 〈v1, v2, . . . , vn〉

1 for every ai ∈ N do
2 di ← vi(M);

3 while true do
4 Run Algorithm 2 assuming maximin values are d1, d2, . . . , dn;
5 if the Algorithm fails to run Command 9 for an agent ai then
6 di ← di/(1 + 1/10n);

7 else
8 Report the allocation and terminate the algorithm;

Note that in the beginning of the algorithm, we set di = vi(M) which is indeed greater than or equal to MMSi . By 
Lemma 6.1, every time we decrease the value of di for an agent ai , we preserve the condition di ≥ MMSi for that agent. 
Therefore, in every step of the algorithm, we have di ≥ MMSi and thus the reported allocation which is 1/8-MMS with 
respect to di ’s is also 1/8-MMS with respect to true maximin values. Thus, the algorithm provides a correct 1/8-MMS
allocation in the end. All that remains is to show the running time of the algorithm is polynomial.

Notice that every time we decrease di for an agent ai , we multiply this value by 1/(1 +1/10n), hence the number of such 
iterations is polynomial in n, unless the valuations are super-exponential in n. Since we always assume the input numbers 
are represented by poly(n) bits, the number of iterations is bounded by poly(n) and hence the algorithm terminates after a 
polynomial number of steps.

Theorem 3.6. Given access to demand-query and XOS oracles, there exists a polynomial time algorithm that finds a 1/8-MMS allo-
cation for agents with XOS valuations.

A consequence of Theorem 3.6 is an 8-approximation algorithm for determining the maximin value of an agent with 
XOS valuation.

Corollary 6.3. For a given XOS valuation function vi , we can in polynomial time split the elements of ground set into n disjoint sets 
S1, S2, . . . , Sn such that

vi(S j) ≥ MMSi/8

Proof. We construct an instance of the fair allocation problem with n agents, all of whom have a valuation function equal 
to f . We find a 1/8-MMS allocation of the items to the agents in polynomial time and report the minimum value that an 
agent receives as output.

The 1/8 guarantee follows from the fact that every agent receives a subset of values that are worth 1/8-MMSi to him. �
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Remark 6.4. A similar procedure can also be used to overcome the challenge of computing the maximin values for the algorithm 
described in Section 5.1.

7. Subadditive valuations

In this section, we present an existential proof based on a well-known reduction from subadditive setting to the XOS
setting (see [39] for example). More precisely, we show for every subadditive set function f (·), there exists an XOS function 
g(·), where g is dominated by f but the maximin value of g is within a logarithmic factor of the maximin value of f . We 
begin with an observation. Suppose we are given a subadditive function f on set ground( f ), and we wish to approximate 
f with an additive function g which is dominated by f . In other words, we wish to find an additive function g such that

∀S ⊆ ground( f ) g(S) ≤ f (S)

and g(ground( f )) is maximized. One way to formulate g is via a linear program. Suppose ground( f ) = {b1, b2, . . . , bm} and 
let g1, g2, . . . , gm be m variables that describe g in the following way:

∀S ⊆ ground( f ) g(S) =
∑
bi∈S

gi .

Based on this formulation, we can find the optimal additive function g by LP (23).

maximize:
∑

bi∈ground( f )

gi (23)

subject to:
∑
bi∈S

gi ≤ f (S) ∀S ⊆ ground( f )

gi ≥ 0 ∀bi ∈ ground( f )

We show the objective function of LP (23) is lower bounded by f (ground( f ))/ logm. The basic idea is to first write 
the dual program and then based on a probabilistic method, lower bound the optimal value of the dual program by 
f (ground( f ))/ logm.

Lemma 7.1. The optimal solution of LP (23) is at least f (ground( f ))/ logm.

Proof. To prove the lemma, we write the dual of LP (23) as follows:

minimize:
∑

S⊆ground( f )

αS f (S) (24)

subject to:
∑
S�bi

αS ≥ 1 ∀bi ∈ ground( f )

αS ≥ 0 ∀S ⊆ ground( f )

By the strong duality theorem, the optimal solutions of LP (23) and LP (24) are equal. Next, based on the optimal solution 
of LP (24), we define a randomized procedure to draw a set of elements: We start with an empty set S∗ and for every set 
S ⊆ ground( f ) we add all elements of S to S∗ with probability αS . Since f is subadditive, the marginal increase of f (S∗)
by adding elements of a set S to S∗ is bounded by f (S) and thus the expected value of f (S∗) is bounded by the objective 
of LP (24). In other words:

E[ f (S∗)] ≤
∑

S⊆ground( f )

αS f (S) (25)

We remark that we repeat this procedure for all subsets of ground(S) independently and thus for every bi ∈ ground( f ), ∑
S�bi αS ≥ 1 holds, we have

PR[bi ∈ S∗] ≥ 1− 1/e � 0.632121 > 1/2 (26)

for every element bi ∈ ground(S). Now, with the same procedure, we draw �logm� + 2 sets S∗
1, S

∗
2, . . . , S

∗
�logm�+2 indepen-

dently. We define Ŝ = ⋃
S∗ . By Inequality (26) and the union bound we show
i
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PR[ Ŝ = ground( f )] ≥ 1−
∑

bi∈ground(i)

PR[bi /∈ Ŝ]

= 1−
∑

bi∈ground(i)

PR[bi /∈ S∗
1 and bi /∈ S∗

1 and . . . and bi /∈ S∗
�logm�+2]

= 1−
∑

bi∈ground(i)

�logm�+2∏
j=1

PR[bi /∈ S∗
j ]

≥ 1−
∑

bi∈ground(i)

�logm�+2∏
j=1

1/2

= 1−
∑

bi∈ground(i)

�logm�+2∏
j=1

PR[bi /∈ S∗
j ]

≥ 1−
∑

bi∈ground(i)

1/4m

= 1− 1/4

= 3/4

and thus E[ f ( Ŝ)] ≥ 3/4 f (ground( f )). On the other hand, by the linearity of expectation and the fact that f is subadditive 
we have:

E[ f ( Ŝ)] = E[ f (
⋃

S∗
i )]

≤E[
∑

f (S∗
i )]

≤ (�logm� + 2)(
∑

S⊆ground( f )

αS f (S)).

Therefore 
∑

S⊆ground( f ) αS f (S) ≥ 3/4 f (ground( f ))/(�logm� + 2), which means∑
S⊆ground( f )

αS f (S) ≥ f (ground( f ))/(2�logm�)

for a big enough m. This shows the optimal solution of LP (23) is lower bounded by f (ground( f ))/(2�logm�) and the proof 
is complete. �

In what follows, based on Lemma 7.1, we provide a reduction from subadditive valuations to XOS valuations. An imme-
diate corollary of Lemma 7.1 is the following:

Corollary 7.2 (of Lemma 7.1). For any subadditive valuation function Vi and integer number n, there exists an XOS function V ′
i such 

that

V ′
i (S) ≤ Vi(S) ∀S ⊆ M

and

MMS′
i ≥ MMSi/2�logm�

Based on Theorem 3.5 and Corollary 7.2 one can show that a 1/10�logm�-MMS allocation is always possible for subad-
ditive valuations.

Theorem 3.7. Any fair allocation problem in which the agents have subadditive valuations admits a 1/10�logm�-MMS allocation.

8. Related work

As mentioned, maximin-share was introduced by Budish [1] and since then has been the subject of many studies [2,
46–52,16,9]. Other than the results we mentioned in the introduction, there are results that consider maximin-share for 
different allocation scenarios. For example, Kurokawa et al. [48] show that when the valuations are drawn at random, an 
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allocation with maximin-share guarantee exists with a high probability, and it can be found in polynomial time. Bouveret 
and Lemaître in [53] show that for the restricted cases when the valuations of the agents come from {0, 1}, or when the 
number of items is smaller than n +3, an MMS allocation is guaranteed to exist. For the case of 3 agents, the approximation 
factor is improved from 2/3 in series of work to 3/4 [9], 7/8 [16], and 8/9 [47].

There are other studies that extend maximin-share to more general settings. Similar to classic fairness notions, the 
weighted version of MMS (WMMS) is also considered [49]. The current best approximation guarantee for WMMS is 1/2 by 
Farhadi et al. [49]. Gourvès and Monnot [47] also extend the maximin share problem to the case that the goods collectively 
received by the agents satisfy a matroidal constraint. They prove that for this case, a 1/2-MMS allocation is always possible.

It is worth mentioning that other than maximin share, there are other fairness criteria that attracted considerable at-
tention, especially in recent years: envy-free up to one good (EF1) and envy-free up to any good (EFX). In these settings, 
we seek to find allocations with limited (but not necessarily zero) envy between the agents [54,55,14]. Also, recent studies 
have established a connection between Nash Social Welfare (NSW) and these fairness criteria [55,14]. NSW is defined as the 
geometric mean of the agents’ utilities. Maximizing NSW has been the subject of many recent studies [55–58].

Subsequent work
To the best of our knowledge, all the results in this paper are currently the best approximation guarantees for MMS

beyond the additive setting. For a special case of XOS setting where the valuations form hereditary (or downward closed) 
set system, Li and Vetta improved the approximation factor to 11/30. For additive setting, the recently best approximation 
guarantee is the work of Garg and Taki [18] that prove the approximation guarantee of 3/4 + o(1) for the additive setting.
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