
Artificial Intelligence 303 (2022) 103633
Contents lists available at ScienceDirect

Artificial Intelligence

www.elsevier.com/locate/artint

Fair allocation of indivisible goods: Beyond additive

valuations✩

Mohammad Ghodsi a,b, MohammadTaghi HajiAghayi c,1, Masoud Seddighin b,∗,
Saeed Seddighin c, Hadi Yami c

a Sharif University of Technology, Iran
b School of Computer Science, Institute for Research in Fundamental Sciences (IPM), P. O. Box: 19395 - 5746, Tehran, Iran
c University of Maryland, College Park, United States of America

a r t i c l e i n f o a b s t r a c t

Article history:
Received 6 October 2020
Received in revised form 7 November 2021
Accepted 10 November 2021
Available online 17 November 2021

Keywords:
Fairness
Maximin-share
Approximation
Submodular
XOS
Subadditive

We conduct a study on the problem of fair allocation of indivisible goods when maximin
share [1] is used as the measure of fairness. Most of the current studies on this notion
are limited to the case that the valuations are additive. In this paper, we go beyond
additive valuations and consider the cases that the valuations are submodular, fractionally
subadditive, and subadditive. We give constant approximation guarantees for agents with
submodular and XOS valuations, and a logarithmic bound for the case of agents with
subadditive valuations. Furthermore, we complement our results by providing close upper
bounds for each class of valuation functions. Finally, we present algorithms to find such
allocations for submodular and XOS settings in polynomial time.

© 2021 Elsevier B.V. All rights reserved.

1. Introduction

Fair division is a fundamental problem that has received significant attention in economics, political science, mathemat-
ics, and more recently in computer science [3–5,1,6–10]. In this problem, for a reasonable notion of fairness, the goal is
to divide a resource among a set of n agents in a fair manner. Initially, the resource was considered to be a cake (that
is, a heterogeneous infinity divisible resource) and the problem was called cake-cutting [4]. To evaluate fairness in a cake-
cutting problem, several notions of fairness have been suggested, the most famous of which are proportionality [4] and
envy-freeness [8]. A division is called proportional, if the total value of the allocated pieces to each agent is at least 1/n
fraction of his total value for the entire cake. In an envy-free division, no agent wishes to exchange his share with another
agent, i.e., every agent’s valuation for his share is at least as much as his valuation for the other agents’ shares.

In the past decade, a new line of research focuses on the case that the resource is a set of indivisible goods. Unfortunately,
most of the classic fairness notions are tailored to the cake-cutting problem and none of them can be guaranteed beyond
the divisible case. For example, despite many strong positive results for guaranteeing the envy-freeness and proportionality
in the cake-cutting problem [11,5,6,12], none of these notions can be either exactly or approximately2 guaranteed in the

✩ The results in this paper have previously appeared at the nineteenth ACM conference on Economics and Computation (ACM EC’18) [2].
* Corresponding author.

E-mail address: seddighin.masood@gmail.com (M. Seddighin).
1 Supported by the NSF BIGDATA Grant No. 1546108, NSF SPX Grant No. 1822738, and NSF AF Grant No. 2114269.
2 Here by approximation we mean multiplicative approximation.
https://doi.org/10.1016/j.artint.2021.103633
0004-3702/© 2021 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.artint.2021.103633
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/artint
http://crossmark.crossref.org/dialog/?doi=10.1016/j.artint.2021.103633&domain=pdf
mailto:seddighin.masood@gmail.com
https://doi.org/10.1016/j.artint.2021.103633

M. Ghodsi, M. HajiAghayi, M. Seddighin et al. Artificial Intelligence 303 (2022) 103633
case of indivisible items. Consider allocating a single indivisible item to n agents. Since this item is indivisible, one agent
receives this item and the rest of the agents receive no item. Hence, there is no way to guarantee proportionality or any
approximation of it for the agents that receive no item. This led the community to develop more relaxed fairness notions
that align with the allocation of indivisible goods. In the past decade, several different criteria are defined for the case of
indivisible items, e.g., envy-freeness up to one good (EF1), envy-freeness up to any good (EFX), proportional up to one good
(Prop1), and maximin-share (MMS) [13,1,14].

In this paper, we investigate the maximin-share (MMS) notion. This notion is introduced by Budish [1] as a relaxation of
proportionality for the case of indivisible goods. Imagine the following cut-and-choose game: we ask an agent ai to partition
the items into n bundles and then ask the rest of the agents to choose a bundle before agent ai . In the worst-case scenario,
the least preferred bundle remains for agent ai . The maximin share of ai is the largest value he can guarantee herself in
this game in the worst-case scenario.

Formally, for a set M of goods, agent ai the maximin-share value of agent ai , denoted by MMSi is defined as

MMSi = max
(π1,π2,...,πn)∈�

min
j

vi(π j),

where � is the set of all partitions of M into n bundles and vi(π j) is the valuation of agent ai for bundle π j . An allocation
is then said to be MMS, if it guarantees each agent ai a bundle with value at least MMSi .

Contrary to optimistic views about guaranteeing MMS, a counterexample by Kurokawa, Procaccia, and Wang [9] shows
that some instances admit no MMS allocation. On the positive side, it is shown that a 2/3-MMS allocation (allocation that
guarantees each agent ai a bundle with a value at least 2MMSi/3) always exists [9]. Improving the approximation factor
for guaranteeing MMS has become an intriguing direction since 2014. The current best known approximation factor for the
additive setting is 3/4 +o(1) by Grag and Taki [15]. From the algorithmic viewpoint, the best polynomial time approximation
guarantee for MMS is improved in series of studies to 2/3 − ε [16], 2/3 [17], 3/4 − ε [2], and 3/4 [18]. On the negative
side, for three agents and nine items, Feige, Sapir, and Tauber [19] design an instance in which at least one agent does not
get more than a 39

40 fraction of her maximin share. For n ≥ 4 agents, they show examples in which at least one agent does
not get more than a 1 − 1

n4
fraction of her maximin share.

Although most early investigations on maximin-share focus on the additive settings, it is very natural to extend the
definition to other classes of set functions. For instance, it is quite natural to expect that an agent prefers to receive two
items of value 400, rather than receiving 1000 items of value 1. Such a constraint cannot be imposed in the additive setting.
However, submodular functions which encompass k-demand valuations are strong tools for modeling these constraints.
Such generalizations have been made to many similar problems, including the Santa Claus max-min fair allocation, welfare
maximization and Nash social welfare maximization [20–25]. The most common classes of set functions that have been studied
before are submodular, XOS, and subadditive functions. In this paper, we consider the fair allocation problem when the
agents’ valuations are in each of these classes. In contrast to the additive setting in which finding a constant MMS allocation
is trivial, the problem becomes much more subtle even when the agents’ valuations are monotone submodular. Independent
of this work, Barman et al. [17] prove the existence of a 1/10-MMS allocation for monotone submodular valuations and
provide a polynomial-time 1/30-MMS allocation algorithm for that setting. In this paper, we propose algorithms with the
approximation guarantee of 1/3 for submodular, 1/5 for XOS, and logarithmic for subadditive valuations. In Section 2 we
review some mathematical background and basic definitions related to our work. Next, In Section 3 we discuss our results
and techniques in detail.

2. Preliminaries

Throughout this paper we assume the set of agents is denoted by N and the set of items is referred to by M. Let |N | = n
and |M| = m, we refer to the agents by ai and to the items by bi , i.e., N = {a1, a2, . . . , an} and M = {b1, b2, . . . , bm}. We
denote the valuation of agent ai for a set S of items by vi(S). Our interest is in valuation functions that are monotone and
non-negative. More precisely, we assume vi(S) ≥ 0 for every agent ai and set S ⊆M, and for every two sets S1 and S2 we
have

∀ai ∈ N vi(S1 ∪ S2) ≥ max{vi(S1), vi(S2)}.
Due to obvious impossibility results for the general valuation functions,3 we restrict our attention to three classes of set

functions:

• Submodular: Given a ground set G , A function f : 2G →R is submodular if for every two sets S1, S2 ∈ G ,

f (S1) + f (S2) ≥ f (S1 ∪ S2) + f (S1 ∩ S2).

3 If the valuation functions are not restricted, no approximation guarantee can be achieved. For instance consider the case where we have two agents
and 4 items. Agent a1 has value 1 for sets {b1, b2} and {b3, b4} and 0 for the rest of the sets. Similarly, agent a2 has value 1 for sets {b1, b3} and {b2, b4}
and 0 for the rest of the sets. In this case, no allocation can provide both of the agents with sets which are of non-zero value to them.
2

M. Ghodsi, M. HajiAghayi, M. Seddighin et al. Artificial Intelligence 303 (2022) 103633
• Fractionally Subadditive (XOS): Given a ground set G , an XOS function f : 2G → R can be shown via a finite set of
additive functions { f 1, f 2, . . . , f α} where f (S) = maxα

i=1 f i(S) for any set S ⊆ G .
• Subadditive: Given a ground set G , a set function f : 2G →R is subadditive if for every two sets S1, S2 ⊆ G ,

f (S1) + f (S2) ≥ f (S1 ∪ S2).

For additive functions, it is reasonable to assume that the value of the function for every element is given in the input.
However, representing other classes of set functions requires access to oracles. For submodular functions, we assume we
have access to value-query oracle defined below. For XOS and subadditive settings, we use a stronger oracle which is called
demand-query oracle. In addition to this, we consider a special oracle for XOS functions which is called XOS oracle. Access
to query oracles for submodular functions, XOS oracle for XOS functions, and demand oracles for XOS and subadditive
functions are quite common and have been very fruitful in the literature [26,23,24,27–30]. In what follows, we formally
define the oracles:

• Value-query oracle: Given a function f , a value-query oracle Oval is an algorithm that receives a set S as input and
computes f (S) in time O (1).

• Demand-query oracle: Given a function f , a demand-query oracle Odem is an algorithm that receives a sequence of
prices p1, p2, . . . , pn as input and finds a set S such that

f (S) −
∑
e∈S

pe

is maximized. We assume the running time of the algorithm is O (1).
• XOS oracle: (defined only for an XOS function f) Given a set S of items, it returns the additive representation of the

function that is maximized for S . In other words, it reveals the contribution of each item in S to the value of f (S).

Maximin-share As mentioned before, the maximin-share of agent ai , denoted by MMSi is defined as follows:

MMSi = max
π1,π2,...,πn∈�

min
1≤ j≤n

vi(π j),

where � is the set of all partitions of M into n bundles. Throughout this paper, we suppose without loss of generality that
the valuations are scaled so that for every agent ai we have MMSi = 1.

An allocation of items to the agents is a collection A = 〈A1, A2, . . . , An〉 where Ai is the bundle allocated to agent ai .
For an allocation A, we have

⋃
Ai = M and Ai ∩ A j = ∅ for every two agents ai, a j ∈ N . An allocation A is α-MMS, if

every agent ai receives a subset of the items whose value to that agent is at least α times MMSi . Given our assumption that
MMSi = 1 for every agent ai , we can say an allocation is α-MMS if and only if for every agent ai ∈N ,

vi(Ai) ≥ α.

Lemma 2.1 represents a well-known and very useful structural property of maximin-share notion proved by Amanitidis
et al. [16]. Throughout this paper, we frequently use this property.

Lemma 2.1 ([16]). Assuming that the goal is to find an α-MMS allocation, we can suppose without loss of generality that for every
item b j and every agent ai we have

vi({b j}) < α.

The reason that Lemma 2.1 holds is that, if an item is worth at least α to an agent, we can allocate it to him and solve
the problem for the rest of the items and the rest of the agents. We remark that Lemma 2.1 holds for all the valuation
classes, including submodular, XOS, and subadditive valuations.

3. Our results and techniques

We begin with submodular set functions. First, we show that in some instances with submodular valuations, no allocation
is better than 3/4-MMS.

Theorem 3.1. For any n ≥ 2, there exists an instance of the fair allocation problem with n agents with submodular valuations where
no allocation is better than 3/4-MMS.

We show Theorem 3.1 by a counterexample. In this counterexample, we have n agents and 2n items. Moreover, the
valuation functions of the first n − 1 agents are the same, but the last agent has a slightly different valuation function
3

M. Ghodsi, M. HajiAghayi, M. Seddighin et al. Artificial Intelligence 303 (2022) 103633
that makes it impossible to find an allocation that is better than 3/4-MMS. The number of agents in this example can be
arbitrarily large.

Next, in Section 5, we show that when the valuations of the agents are submodular, guaranteeing a 1/3-MMS is always
possible. In addition, we show, given access to value-query and demand-query oracles, one can find such an allocation in
polynomial time. We further complement our result by showing that a 3/4-MMS is the best guarantee that one can hope to
achieve in this setting. This is in contrast to the additive setting for which the only upper bound is that 3940 -MMS allocation
is not always possible [19]. We begin by stating an existential proof.

Theorem 3.2. Every fair allocation problem in which the agents have submodular valuations admits a 1/3-MMS allocation.

To prove Theorem 3.2, first, by Lemma 2.1 we assume without loss of generality that MMSi = 1 for every agent ai ∈ N .
Next, for a given a function f (·), we define the ceiling function f {x}(·) as follows:

f {x}(S) = min{x, f (S)} ∀S ⊆ ground(f).

An important property of the ceiling functions is that they preserve submodularity, fractionally subadditivity, and subaddi-
tivity (see Lemma 5.2). Accordingly, we define the bounded welfare of an allocation A as∑

v{2/3}
i (Ai).

Given that, we show an allocation that maximizes the bounded welfare is 1/3-MMS. To this end, let A be an allocation with
the maximum bounded welfare and suppose for the sake of contradiction that in such an allocation, an agent ai receives a
bundle that is worth less than 1/3 to him. Since MMSi = 1, agent ai can divide the items into n sets, where each set is worth
at least 1 to him. For a valuation function V , define the contribution of an item b j in set S (b j ∈ S) as v(S) − v(S \ {b j}).
Now, we randomly select an element b j which is not allocated to ai . By the properties of submodular functions, we show
that if we allocate b j to ai , the expected contribution of b j to the bounded valuation function of ai would be more than
the currently expected contribution of b j to the bounded welfare of the allocation. Therefore, there exists an item b j such
that if we allocate that item to agent ai , the total bounded welfare of the allocation will be increased. This contradicts the
optimality of the allocation.

Notice that Theorem 3.2 is only an existential proof. A natural approach to finding such a solution is to start with an
arbitrary allocation and iteratively increase its bounded welfare until it becomes 1/3-MMS. The main challenge though is
that we do not even know what the MMS values are. Furthermore, unlike the additive setting, we do not have any PTAS
algorithm that provides us a close estimate of these values. To overcome this challenge, we propose a combinatorial trick
to guess these values without incurring any additional factor to our guarantee. The high-level idea is to start with large
numbers as estimates to the MMS values. Every time we run the algorithm on the estimated values, it either finds the
desired allocation or reports that the maximin-share value of an agent is misrepresented by at least a multiplicative factor.
Given this, we divide the maximin-share value of that agent by that factor and continue with the new estimates. Therefore,
at every step of the algorithm, we are guaranteed that our estimates are not less than the actual MMS values. Based on this,
we show that the running time of the algorithm is polynomial and that the resulting allocation has the desired properties.
The reader can find a detailed discussion in Section 5.

Theorem 3.3. Given access to value-query oracles, one can find a 1/3-MMS allocation for agents with submodular valuations in
polynomial time.

We also study the problem with fractionally subadditive (XOS) agents. Similar to the submodular setting, we provide an
upper bound on the quality of any allocation in the XOS setting. We show Theorem 3.4 by a counterexample.

Theorem 3.4. For any n > 1, there exists an instance of the fair allocation problem with n agents with XOS valuations where no
allocation is better than 1/2-MMS.

Next, we state the main theorem of this section.

Theorem 3.5. The fair allocation problem with XOS valuations admits a 1/5-MMS allocation.

Our approach for proving Theorem 3.5 is similar to the proof of Theorem 3.2. Again, we scale the valuations to make
sure MMSi = 1 for all the agents and define the notion of bounded welfare, but this time as

∑
v{2/5}
i (Ai). However, as XOS

functions do not adhere to the nice structure of submodular functions, we use a different analysis to prove this theorem.
Let A be an allocation with the maximum bounded welfare. In case all agents receive a value of at least 1/5, the proof is
complete. Otherwise, let ai be an agent that receives a set of items whose value to him is less than 1/5. In contrast to the
submodular setting, giving no item alone to ai can guarantee an increase in the bounded welfare of the allocation. However,
4

M. Ghodsi, M. HajiAghayi, M. Seddighin et al. Artificial Intelligence 303 (2022) 103633
this time, we show there exists a set S of items such that if we take them back from their recipients and instead allocate
them to agent ai , the bounded welfare of the allocation increases. The reason this holds is the following: since MMSi = 1,
agent ai can split the items into 2n sets where every set is worth at least 2/5 to ai (see Lemma 6.2). Moreover, since
the valuation functions are XOS, we show that giving one of these 2n sets to ai will increase the bounded welfare of the
allocation. Therefore, if A is maximal, then A is also 1/5-MMS.

Finally, we show that a 1/8-MMS allocation in the XOS setting can be found in polynomial time. Our algorithm only
requires access to demand-query and XOS oracles. Note that this bound is slightly worse than our existential proof due to
computational hardness. However, the blueprint of the algorithm is based on the proof of Theorem 3.5.

Theorem 3.6. Given access to demand-query and XOS oracles, there exists a polynomial time algorithm that finds a 1/8-MMS allo-
cation for agents with XOS valuations.

We start with an arbitrary allocation and increase the bounded welfare until the allocation becomes 1/8-MMS. The catch
is that if the allocation is not 1/8-MMS, then there exists an agent ai and a set S of items such that if we take back
these items from their current recipients and allocate them to agent ai , the bounded welfare of the allocation increases. To
increase the bounded welfare, two computational barriers need to be lifted. First, similar to the submodular setting, we do
not have any estimates for the MMS values. Analogously, we resolve the first issue by iteratively guessing the MMS values.
The second issue is that in every step of the algorithm, we have to find a set S of items to allocate to an agent ai that
increases the bounded welfare. Such a set S cannot be trivially found in polynomial time. That is where the demand-query
and XOS oracles take part. In Section 6.2.1 we show how to find such a set in polynomial time. The high-level idea is the
following: first, by accessing the XOS oracles, we determine the contribution of every item to the bounded welfare of the
allocation. Next, we set the price of every element equal to three times the contribution of that element to the bounded
welfare and run the demand-query oracle to find which subset has the highest profit for agent ai . We show this subset has
a value of at least 1/4 to ai . Next, we sort the elements of this set based on the ratio of contribution to the overall value
of the set over the price of the item and select a prefix for them that has a value of at least 1/4 to ai . Finally, we argue
that allocating this set to ai increases the bounded welfare of the allocation by at least some known lower bound. This,
combined with the combinatorial trick to guess the MMS values, gives us a polynomial time algorithm to find a 1/8-MMS
allocation.

Note that, an immediate corollary of Theorems 3.3 and 3.6 is a polynomial time algorithm for approximating the
maximin-share value of an agent with a submodular or XOS valuation function within factors 1/3 and 1/8, respectively.

Finally, we investigate the problem when the agents are subadditive and present an existential proof based on a well-
known reduction to the XOS setting.

Theorem 3.7. Any fair allocation problem in which the agents have subadditive valuations admits a 1/10�logm�-MMS allocation.

4. Upper-bounds

We begin by presenting our impossibility results for submodular and XOS valuations. First, we give an example that
shows that the best guarantee that we can achieve for submodular valuations is upper bounded by 3/4. Next, we modify
this example to prove that the best guarantee that we can achieve for XOS valuations is upper bounded by 1/2. Our
counterexample is generic; we show this result for any number of agents.

Theorem 3.1. For any n ≥ 2, there exists an instance of the fair allocation problem with n agents with submodular valuations where
no allocation is better than 3/4-MMS.

Proof. We construct an instance of the problem that does not admit any 3/4 + ε-MMS allocation. To this end, let n be the
number of agents and M = {b1, b2, . . . , bm} where m = 2n. Furthermore, let f : 2M →R be as follows:

f (S) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

0, if |S| = ∅
1, if |S| = 1

2, if |S| > 2

2, if S = {b2i,b2i−1} for some 1 ≤ i ≤ n

3/2, if |S| = 2 and S �= {b2i,b2i−1} for any 1 ≤ i ≤ n.

In what follows we show that f is submodular. To this end, suppose for the sake of contradiction that there exist sets S
and S ′ such that S ⊆ S ′ and for some element bi we have:

f (S ′ ∪ {bi}) − f (S ′) > f (S ∪ {bi}) − f (S). (1)

Since f is monotone and S ′ �= S , f (S ′ ∪ {bi}) − f (S ′) > 0 holds and thus S ′ cannot have more than two items. Therefore,
S ′ contains at most two items and thus S is either empty or contains a single element. If S is empty, then adding every
5

M. Ghodsi, M. HajiAghayi, M. Seddighin et al. Artificial Intelligence 303 (2022) 103633
element to S has the highest increase in the value of S and thus Inequality (1) doesn’t hold. Therefore, S contains a single
element and S ′ contains exactly two elements. Thus, f (S) = 1 and f (S ′) ≥ 3/2. Therefore, f(S ∪{bi}) − f (S) ≥ 1/2 and
f (S ′ ∪ {bi}) − f (S ′) ≤ 1/2 which contradicts Inequality (1).

Now, for agents a1, a2, . . . , an−1 we set vi = f and for agent an we set vn = f (inc(S)) where bi is in inc(S) if and only if
either i > 1 and bi−1 ∈ S or i = 1 and bm ∈ S . Clearly, for every agent ai we have MMSi = 2.

The crux of the argument is that for any allocation of the items to the agents, someone receives a value of at most
3/2. In case an agent receives fewer than two items, his valuation for his items would be at most 1. Similarly, if an
agent receives more than two items, someone has to receive fewer than 2 items and the proof is complete. Therefore, the
only case to investigate is where everybody receives exactly two items. We show in such cases, min vi(Ai) = 3/2 for all
possible allocations. If all agents a1, a2, . . . , an−1 receive two items whose value for them is exactly equal to 2, then by the
construction of f , the value of the remaining items is also equal to 2 to them. Thus, an ’s valuation for the items he receives
is equal to 3/2. �

Remark that one could replace function f with an XOS function

g(S) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

0, if |S| = ∅
1, if |S| = 1

2, if |S| > 2

2, if S = {b2i,b2i−1} for some 1 ≤ i ≤ n

1, if |S| = 2 and S �= {b2i,b2i−1} for any 1 ≤ i ≤ n,

and make the same argument to achieve a 1/2-MMS upper bound for XOS and subadditive valuations.

Theorem 3.4. For any n > 1, there exists an instance of the fair allocation problem with n agents with XOS valuations where no
allocation is better than 1/2-MMS.

5. Submodular valuations

Most of the studies on maximin-share are limited to the agents with additive valuations [15,16,9]. In the real world,
however, valuation functions are usually more complex than additive ones. As an example, imagine an agent is interested in
at most k items. More precisely, he is indifferent between receiving k items or more than k items. Such a valuation function
is called k-demand and cannot be modeled by additive functions. k-demand functions are a subclass of submodular set
functions which have been extensively studied in the literature of different contexts, e.g., optimization, mechanism design,
and game theory [31–37,30]. To the best of our knowledge, the only result for the maximin-share notion beyond additive
valuations is the work of Barman and Krishna Murthy [17] wherein the authors prove the existence of 1/10-MMS allocation
for agents with submodular valuations.4

In this section we provide an existential proof to a 1/3-MMS allocation when the valuations are submodular. Due to the
algorithmic nature of the proof, we show in Section 5.1 that such an allocation can be computed in time poly(n, m). We
emphasize that we scale the valuation functions to ensure MMSi = 1 for every agent ai .

We begin by introducing the ceiling functions.

Definition 5.1. Given a set function f : ground(f) →R+ , we define f {x}(·) as follows:

f {x}(S) =
{
f (S), if f (S) ≤ x

x, if f (S) > x.

Observation 5.1. f {x}(S) ≤ x for every given S.

Observation 5.2. f {x}(S) ≤ f (S) for every given S.

An important property of the ceiling functions is that they preserve submodularity, fractionally subadditivity, and subad-
ditivity as we show in Lemma 5.2.

Lemma 5.2. For any real number x ≥ 0, we have:

1. Given a submodular set function f (·), f {x}(·) is submodular.

4 In the journal version of this paper, this factor is improved to 0.21.
6

M. Ghodsi, M. HajiAghayi, M. Seddighin et al. Artificial Intelligence 303 (2022) 103633
2. Given an XOS set function f (·), f {x}(·) is XOS.
3. Given an subadditive set function f (·), f {x}(·) is also subadditive.

Proof. First Claim: By definition of submodular functions, for given sets A and B we have:

f (A ∪ B) ≤ f (A) + f (B) − f (A ∩ B).

We prove that f {x}(·) is a submodular function in three different cases:

First Case: let both f (A) and f (B) be at least x. According to Observation 5.1, f {x}(A ∪ B) and f {x}(A ∩ B) are bounded
by x. Therefore, f {x}(A ∪ B) + f {x}(A ∩ B) ≤ 2x, which yields:

f {x}(A ∪ B) + f {x}(A ∩ B) ≤ f {x}(A) + f {x}(B).

Second Case: in this case one of f (A) and f (B) is at least x. We have f (A ∪ B) ≥ x and f (A ∩ B) is no more than max
{ f (A), f (B)}. As a result f {x}(A ∪ B) and one of f {x}(A) or f {x}(B) are equal to x which yields:

f {x}(A ∪ B) + f {x}(A ∩ B) ≤ f {x}(A) + f {x}(B)

Third Case: in this case both f (A) and f (B) are less than x, and f (A ∩ B) is less than x too. Since f {x}(A) = f (A),
f {x}(B) = f (B), f {x}(A ∩ B) = f (A ∩ B), according to Observation 5.2, f {x}(A ∪ B) ≤ f (A ∪ B) holds. Since f (·) is a submodular
function, we conclude that:

f {x}(A ∪ B) ≤ f {x}(A) + f {x}(B) − f {x}(A ∩ B).

Second Claim: Since f (·) is an XOS set function, by definition, there exists a finite set of additive functions { f1, f2, . . . , fα}
such that

f (S) = α
max
i=1

f i(S)

for any set S ⊆ ground(f). With that in hand, for a given real number x, we define an XOS set function g(·), and show g(·)
is equal to f {x}(·).

We define g(·) on the same domain as f (·). Moreover, based on { f1, f2, . . . , fα}, we define a finite set of additive
functions {g1, g2, . . . , gβ} that describe g . More precisely, for each set S in domain of f (·) we define a new additive function
like gγ in g(·) as follows: Without loss of generality let fδ be the function which maximizes f (S). For each bi /∈ S let
gγ (bi) = 0. Furthermore, for each bi ∈ S if f (S) ≤ x let gγ (bi) = fδ(bi), and otherwise let gγ (bi) = x

f (S) fδ(bi).

We claim that g(·) is equivalent to f {x}(·), which implies f {x}(·) is an XOS function. g(·) and f {x}(·) are two functions
which have equal domains. First, we prove that g(S) ≤ f (S) for any given set S . According to construction of g(·), for each
additive function in g(·) such gγ , there is at least one additive function in f (·) such fδ where gγ (bi) ≤ fδ(bi) for each
bi ∈M. Therefore, for any given set S we have:

g(S) ≤ f (S) (2)

Now, according to the construction of g(·), for any given set S where f (S) ≤ x, we have a function gγ (S) = f (S), and where
f (S) > x, we have a function gγ (S) = x. Therefore, we can conclude that:

g(S) ≥ f {x}(S) (3)

For any given set S where f (S) ≤ x, according to the definition of f {x}(·), f (S) = f {x}(S), and using Inequalities (2) and
(3) we argue that f {x}(S) = g(S). Moreover, according to the construction of g(·), g(S) ≤ x for any given set S . Therefore,
for any given set S where f (S) > x, according to the definition of f {x}(·) and Inequality (3), f {x}(S) = g(S) = x. As a result,
by considering these two cases we argue that f {x}(·) and g(·) are equivalent, which shows f {x}(·) is an XOS function.

Third Claim: In this claim, we use a similar argument to the first claim. By definition of subadditive functions for any given
sets A and B , we have:

f (A ∪ B) ≤ f (A) + f (B).

We prove that f {x}(·) meets the definition of subadditive functions by considering two different cases. In the first case at
least one of f (A) and f (B) is at least x, and in the second case both f (A) and f (B) is less than x.

First Case: In this case f {x}(A) + f {x}(B) is at least x. Since f {x}(S) ≤ x for any given set S , f {x}(A ∪ B) ≤ x. Therefore,

f {x}(A ∪ B) ≤ f {x}(A) + f {x}(B).
7

M. Ghodsi, M. HajiAghayi, M. Seddighin et al. Artificial Intelligence 303 (2022) 103633
Second Case: Since f {x}(A ∪ B) ≤ f (A ∪ B), f (A ∪ B) ≤ f (A) + f (B), f (A) = f {x}(A), and f (B) = f {x}(B), we have:

f {x}(A ∪ B) ≤ f {x}(A) + f {x}(B). �
The idea behind the existence of a 1/3-MMS allocation is simple: let A = 〈A1, A2, . . . , An〉 be an allocation of items to

the agents that maximizes the following expression:∑
ai∈N

v{2/3}
i (Ai). (4)

We refer to Expression (4) by ex{2/3}(A). We prove vi(Ai) ≥ 1/3 for every agent ai ∈ N . The main ingredients of the proof
are Lemmas 2.1, 5.3 and 5.4.

Lemma 5.3. Let S1, S2, . . . , Sk be k disjoint sets and f1, f2, . . . , fk be k submodular functions. We remove an element e from
⋃

Si
uniformly at random to obtain sets S∗

1 = S1 \ {e}, S∗
2 = S2 \ {e}, . . . , S∗

k = Sk \ {e}. In this case we have

E[
∑

f i(S
∗
i)] ≥

∑
f i(Si)

|⋃ Si | − 1

|⋃ Si| .

Proof. Since f (·) is submodular, according to the definition of submodular functions, for every given sets X and Y in
domain of f (·) with X ⊆ Y and every x ∈M \ Y we have:

f (X ∪ {x}) − f (X) ≥ f (Y ∪ {x}) − f (Y) (5)

Let Si = {e1, e2, . . . , eα}, T0 = ∅, and T j = {e1, e2, . . . , e j}, for every 1 ≤ j ≤ α. Since T j ⊆ Si for each 0 ≤ j ≤ α and f i is
a submodular function, according to Inequality (5) we have:∑

1≤ j≤α

f i(Si \ T j−1) − f i(Si \ T j) ≥
∑

1≤ j≤α

f i(Si) − f i(Si − e j). (6)

Since f i(Si) = ∑
1≤ j≤α f i(Si \ T j−1) − f i(Si \ T j), we can rewrite Inequality (6) for every 1 ≤ i ≤ k as follows:

f i(Si) ≥
∑
e∈Si

f i(Si) − f i(Si − e). (7)

For every 1 ≤ i ≤ k we can rewrite Inequality (7) as follows:∑
e∈si

f i(Si − e) ≥ (|Si| − 1) f i(Si) (8)

By adding (| ⋃ Si | − |Si |) f i(Si) to the both sides of Inequality (8), we have:

(|
⋃

Si| − |Si|) f i(Si) +
∑
e∈Si

f i(Si − e) =
∑

e∈⋃
Si

f i(Si \ {e})

≥ (|
⋃

Si| − 1) f i(Si)

(9)

Since Inequality (9) holds for every 1 ≤ i ≤ k, we can sum up both sides of Inequality (9) as follows:∑
1≤i≤k

∑
e∈⋃

Si

f i(Si − e) ≥
∑

1≤i≤k

(|
⋃

Si| − 1) f i(Si) (10)

By dividing both sides of Inequality (10) over 1/| ⋃ Si | we obtain:

1

|⋃ Si| (
∑

e∈⋃
Si

∑
1≤i≤k

f i(Si − e)) = E[
∑

1≤i≤k

f i(S
∗
i)]

≥
∑

1≤i≤k

f i(Si)
|⋃ Si| − 1

|⋃ Si | . �
(11)

Lemma 5.4. Let f be a submodular function and S1, S2, . . . , Sk be k disjoint sets such that f (Si) ≥ 1 for every set Si . Moreover, let
S ⊆ ⋃

Si be a set such that f (S) < 1/3. If we pick an element {e} of ⋃ Si \ S uniformly at random, we have:

E[f (S ∪ {e}) − f (S)] ≥ 2k/3⋃ .
| Si \ S|
8

M. Ghodsi, M. HajiAghayi, M. Seddighin et al. Artificial Intelligence 303 (2022) 103633
Proof. Similar to the proof of Lemma 5.3, we use Inequality (5) as a definition of submodular functions. Let S ′
i = Si \ S =

{e1, e2, . . . , eα}, T0 = S , and T j = S ∪{e1, e2, . . . , e j} for 1 ≤ j ≤ α. According to f (S) < 1/3, f (S ∪ S ′
i) ≥ 1, and Inequality (5)

as a definition of submodular functions, we have:

2/3 < f (S ∪ S ′) − f (S)

=
∑

1≤ j≤α

f (T j−1 ∪ {e j}) − f (T j−1)

≤
∑
e∈S ′

i

f (S ∪ {e}) − f (S).

(12)

Similar to Inequality (10), we can rewrite Inequality (12) with a summation, since Inequality (12) holds for any 1 ≤ i ≤ k.

2k/3 <
∑

1≤i≤k

∑
e∈S ′

i

f (S ∪ {e}) − f (S) (13)

By dividing both sides of Inequality (13) over 1/| ⋃ Si \ S| we have:

2k/3

|⋃ Si \ S| <
1

|⋃ Si \ S| (
∑

1≤i≤k

∑
e∈S ′

i

f (S ∪ {e}) − f (S))

= E[f (S ∪ {e}) − f (S)] �
(14)

Next, we show the fair allocation problem with submodular valuations admits a 1/3-MMS allocation.

Theorem 3.2. Every fair allocation problem in which the agents have submodular valuations admits a 1/3-MMS allocation.

Proof. Since our goal is to prove 1/3 approximation guarantee, by Lemma 2.1 we can assume that the value of each item
for each agent is less than 1/3. Let A be an allocation that maximizes ex{2/3} . Suppose for the sake of contradiction that
vi(Ai) < 1/3 for some agent ai . In this case we select an item br from M \ Ai uniformly at random to create a new
allocation Ar as follows:

Ar
j =

{
A j \ {br}, if i �= j

A j ∪ {br} if i = j.

In the rest we show E[ex{2/3}(Ar)] > ex{2/3}(A) which contradicts the maximality of A. Note that by Lemma 5.3 the
following inequality holds:

E[
∑
j �=i

v{2/3}
j (Ar

j)] ≥
∑
j �=i

v{2/3}
j (A j)

|M \ Ai| − 1

|M \ Ai| . (15)

Moreover, by Lemma 5.4 we have

E[vi(A
r
i) − vi(Ai)] ≥ 2n/3

|M \ Ai | . (16)

Inequality (15) along with Inequality (16) shows

E[ex{2/3}(Ar)] =E[
∑
j �=i

v{2/3}
j (Ar

j)] +E[vi(A
r
i)]

≥
∑
j �=i

v{2/3}
j (A j)

|M \ Ai| − 1

|M \ Ai| +E[vi(A
r
i)]

≥
∑
j �=i

v{2/3}
j (A j)

|M \ Ai| − 1

|M \ Ai| + 2n/3

|M \ Ai| + vi(Ai)

≥
∑
j �=i

v{2/3}
j (A j)

|M \ Ai| − 1

|M \ Ai| + 2n/3

|M \ Ai| + v{2/3}
i (Ai)

≥
∑
j �=i

v{2/3}
j (A j)

|M \ Ai| − 1

|M \ Ai| + 2n/3

|M \ Ai| + v{2/3}
i (Ai)

|M \ Ai| − 1

|M \ Ai |

= ex{2/3}(A)
|M \ Ai| − 1 + 2n/3

.

(17)
|M \ Ai| |M \ Ai|
9

M. Ghodsi, M. HajiAghayi, M. Seddighin et al. Artificial Intelligence 303 (2022) 103633
Recall that by Lemma 2.1, the value of agent ai for any item alone is bounded by 1/3 and thus E[vi(Ar
i) − vi(Ai)] =

E[v{2/3}
i (Ar

i) − v{2/3}
i (Ai)]. Notice that by the definition, v{2/3}

j is always bounded by 2/3 and also vi(Ai) < 1/3, therefore,
ex{2/3}(A) ≤ 2n/3 − 1/3 and thus

E[ex{2/3}(Ar)] ≥ ex{2/3}(A)
|M \ Ai| − 1

|M \ Ai | + 2n/3

|M \ Ai|
≥ ex{2/3}(A) + 1/3

|M \ Ai|
≥ ex{2/3}(A) + 1/3m. �

(18)

5.1. Algorithm

In this section we give an algorithm to find a 1/3-MMS allocation for submodular valuations. We show our algorithm
runs in time poly(n, m).

For simplicity, we assume for every agent ai , MMSi is given as input to the algorithm. However, computing MMSi alone is
an NP-hard problem. That said, we show in Section 6.2.2 that such a computational barrier can be lifted by a combinatorial
trick. We refer the reader to Section 6.2.2 for a more detailed discussion. The procedure is illustrated in Algorithm 1.

Algorithm 1: Finding a 1/3-MMS allocation for submodular valuations.
Data: N , M, 〈v1, v2, . . . , vn〉, 〈MMS1, MMS2, . . . , MMSn〉

1 For every a j , scale v j to ensure MMS j = 1;
2 while there exist an agent ai and an item b j such that vi({b j}) ≥ 1/3 do
3 Allocate {b j} to ai ;
4 M = M \ b j ;
5 N = N \ ai ;

6 A = an arbitrary allocation of the items to the agents;
7 while min v{2/3}

j (A j) < 1/3 do
8 i = the agent who receives the lowest value in allocation A;
9 Find an item be such that: ex(〈A1 \ {be}, A2 \ {be}, . . . , Ai−1 \ {be}, Ai ∪ {be}, Ai+1 \ {be}, . . . , An \ {be}〉) ≥ ex(A) + 1/3m;

10 A = 〈A1 \ {be}, A2 \ {be}, . . . , Ai−1 \ {be}, Ai ∪ {be}, Ai+1 \ {be}, . . . , An \ {be}〉;
11 For every ai ∈ N allocate Ai to ai ;

Based on Theorem 3.2, one can show that in every iteration of the algorithm value of ex{2/3}(A) is increased by at
least 1/3m. Moreover, such an element be can be easily found by iterating over all items in time O (m). Furthermore, the
number of iterations of the algorithm is bounded by 2nm, since ex{2/3}(A) is bounded by 2n/3. Therefore, Algorithm 1 finds
a 1/3-MMS allocation in time poly(n, m).

Theorem 3.3. Given access to value-query oracles, one can find a 1/3-MMS allocation for agents with submodular valuations in
polynomial time.

As a corollary of Theorem 3.3, one can show that the problem of finding the maximin value of a submodular function
admits a 3 approximation algorithm.

Corollary 5.5. For a given submodular valuation function vi , we can in polynomial time split the elements of ground set into n disjoint
sets S1, S2, . . . , Sn such that

vi(S j) ≥ MMSi/3

for every 1 ≤ j ≤ n.

6. XOS valuations

The class of fractionally subadditive (XOS) set functions is a superclass of submodular functions. These functions too,
have been the subject of many studies in recent years [38,39,23,40–43,28,44]. Similar to submodular functions, in this
section, we show a 1/5-MMS allocation is possible when all agents have XOS valuations. Furthermore, we complement our
proof by providing a polynomial algorithm to find a 1/8-MMS allocation in Section 6.2.
10

M. Ghodsi, M. HajiAghayi, M. Seddighin et al. Artificial Intelligence 303 (2022) 103633
6.1. Existential proof

In this section we show every instance of the fair allocation problem with XOS valuations admits a 1/5-MMS allocation.
Without loss of generality, we assume MMSi = 1 for every agent ai . Recall the definition of ceiling functions. As stated in
Lemma 5.2, for every XOS function f and every real number x ≥ 0, f x is also XOS. The proof of this section is similar
to the result of Section 5. However, the details are different since XOS functions do not adhere to the special structure of
submodular functions. For every allocation A, we define ex{2/5}(A) as follows:

ex{2/5}(A) =
∑
ai∈N

v{2/5}
i (Ai).

Now let A = 〈A1, A2, . . . , An〉 be an allocation of items to the agents that maximizes ex{2/5} . Provided that the problem
is 1/5-irreducible, we show A is a 1/5-MMS allocation. Before we proceed to the main proof, we state Lemmas 6.1, and 6.2
as auxiliary observations.

Lemma 6.1. Let f (·) be an XOS set function and let S ⊆ ground(f). If we divide S into k (possibly empty) sets S1, S2, . . . , Sk then

k∑
i=1

(
f (S) − f (S \ Si)

)
≤ f (S).

Proof. According to the definition of XOS function, f (·) is an XOS function with a finite set of additive functions
{g1, g2, . . . , gα} where f (S) = maxα

i=1 gi(S) for any set S ∈ ground(f). Let g j(·) be the additive function which maximizes S .
Let g j(S1) = α1, g j(S2) = α2, . . . , g j(Sk) = αk , which yields f (S) = ∑

αi . Since g j(Si) = αi , f (S \ Si) ≥ f (S) − αi . Therefore,
we have:∑

f (S) − f (S \ Si) ≤
∑

f (S) − (f (S) − αi)

= f (S). � (19)

By Lemma 2.1, to prove the approximation ratio of 1/5, we can assume without loss of generality that the value of every
item for an agent is bounded by 1/5. For XOS functions, in Lemma 6.2 we prove another important property.

Lemma 6.2. Assume that the value of each item for each agent is less than 1/5. Then, for a given agent ai we can divide the items into
2n sets S1, S2, . . . , S2n such that

vi(S j) ≥ 2/5

for every 1 ≤ j ≤ 2n.

Proof. According to the definition of MMS, we know that ai can divide items to n sets P = 〈P1, P2, . . . , Pn〉 such that
Vi(P j) ≥ 1 for any P j . The catch is that ai can divide each of these n sets to two disjoint sets such that the value of each
of these new sets be at least 2/5 to him. Let T = {b1, b2, . . . , bγ } be one of these n sets, and g j(·) be an additive function
which maximizes Vi(T). Let Tk = {b1, b2, . . . , bk} for any 1 ≤ k ≤ γ . Since the value of any item is less than 1/5 to ai , there
is a set Tk among T1 to Tγ where 2/5 ≤ g j(Tk) < 3/5. Since g j(·) is one of additive functions of XOS function Vi , we have
Vi(Tk) ≥ 2/5. Moreover, since g j(Tk) < 3/5, g j(T \ Tk) ≥ 2/5, which yields Vi(T \ Tk) ≥ 2/5. As a conclusion, we can divide
each of n sets to two disjoint sets with at least 2/5 value to ai . �

Next we prove the main theorem of this section.

Theorem 3.5. The fair allocation problem with XOS valuations admits a 1/5-MMS allocation.

Proof. Consider an allocation A = 〈A1, A2, . . . , An〉 of items to the agents that maximizes ex{2/5} . We show that such an
allocation is 1/5-MMS. Suppose for the sake of contradiction that there exists an agent ai who receives a set of items which
are together worth less than 1/5 to him. More precisely,

v{2/5}
i (Ai) = vi(Ai) < 1/5.

Recall that by Lemma 2.1, the value of each item to each agent is less than 1/5, and therefore by Lemma 6.2, we can divide
the items into 2n sets S1, S2, . . . , S2n such that vi(S j) ≥ 2/5 for every 1 ≤ j ≤ 2n. Note that in this case, v{2/5}

i (S j) = 2/5

follows from the definition. Moreover by monotonicity, v{2/5}
(S j ∪ Ai) = 2/5 holds for every j.
i

11

M. Ghodsi, M. HajiAghayi, M. Seddighin et al. Artificial Intelligence 303 (2022) 103633
Now consider 2n allocations A1, A2, . . . , A2n such that

A j = 〈A j
1, A

j
2 . . . , A j

n〉
for every 1 ≤ j ≤ 2n where

A j
k =

{
Ak ∪ S j, if k = i

Ak \ S j, if k �= i.

We show at least one of these allocations has a higher value for ex{2/5} than A. Since v{2/5}
i is XOS, by Lemma 6.1 we have

2n∑
j=1

(
v{2/5}
k (Ak) − v{2/5}

k (Ak \ S j)
)

≤ v{2/5}
k (A j)

for every ak �= ai and thus

2n∑
j=1

v{2/5}
k (A j

k) =
2n∑
j=1

v{2/5}
k (A j \ S j)

≥ 2nv{2/5}
k (Ak) − v{2/5}

k (Ak)

= (2n − 1)v{2/5}
k (Ak).

(20)

Moreover, since v{2/5}
i (Ai) < 1/5, we have∑

a j �=ai

v{2/5}
j (A j) >

∑
a j∈N

v{2/5}
j (A j) − 1/5

= ex{2/5}(A) − 1/5.

(21)

Furthermore, since v{2/5}
i (S j ∪ Ai) = 2/5 for every 1 ≤ j ≤ 2n, we have∑

ak �=ai

v{2/5}
k (A j

k) =
∑
ak∈N

v{2/5}
k (A j

k) − 2/5

= ex{2/5}(A j) − 2/5.

(22)

Finally, by combining Inequalities (20), (21), and (22) we have

2n∑
j=1

ex{2/5}(A j) =
2n∑
j=1

(2/5+
∑
ak �=ai

v{2/5}
k (A j

k))

= 4n/5 +
2n∑
j=1

∑
ak �=ai

v{2/5}
k (A j

k)

≥ 4n/5+
∑
ak �=ai

(2n − 1)v{2/5}
k (Ak)

≥ 4n/5+ (2n − 1)(ex{2/5}(A) − 1/5)

≥ 2n · ex{2/5}(A) + (4n − 2n + 1)/5− ex{2/5}(A)

≥ 2n · ex{2/5}(A) + (2n + 1)/5− ex{2/5}(A).

Now notice that since v{2/5}
k (Ak) ≤ 2/5, we have

ex{2/5}(A) =
n∑

k=1

v{2/5}
k (Ak)

≤
n∑

k=1

2/5

≤ 2n/5
12

M. Ghodsi, M. HajiAghayi, M. Seddighin et al. Artificial Intelligence 303 (2022) 103633
and thus
2n∑
j=1

ex{2/5}(A j) ≥ 2n · ex{2/5}(A) + (2n + 1)/5− ex{2/5}(A)

≥ 2n · ex{2/5}(A) + (2n + 1)/5− 2n/5

≥ 2n · ex{2/5}(A) + 1/5.

Therefore, ex{2/5}(A j) > ex{2/5}(A) + 1/10n holds for at least one A j which contradicts the maximality of A. �
6.2. Algorithm

In this section, we provide a polynomial time algorithm for finding a 1/8-MMS allocation for the fair allocation problem
with XOS valuations. The algorithm is based on a similar idea that we argued for the proof of Theorem 3.5. Remark that
our algorithm only requires access to demand-query and XOS oracles. It does not have any additional information about
the maximin values. This makes the problem computationally harder since computing the maximin values is NP-hard [45].
We begin by giving a high-level intuition of the algorithm and show that we can overcome computational obstacles by
combinatorial tricks. Consider the pseudo-code described in Algorithm 2.

Algorithm 2: Algorithm for finding a 1/8-MMS allocation.
Data: N , M, 〈v1, v2, . . . , vn〉

1 For every a j , scale v j to ensure MMS j = 1;
2 while there exist an agent ai and an item b j such that vi({b j}) ≥ 1/8 do
3 Allocate {b j} to ai ;
4 M = M \ b j ;
5 N = N \ ai ;

6 A = an arbitrary allocation of the items to the agents;
7 while min v{1/4}

j (A j) < 1/8 do
8 i = the agent who receives the lowest value in allocation A;
9 Find a set S such that: ex{1/4}(〈A1 \ S, A2 \ S, . . . , Ai−1 \ S, Ai ∪ S, Ai+1 \ S, . . . , An \ S〉) ≥ ex{1/4}(A) + 1/12n;

10 A = 〈A1 \ S, A2 \ S, . . . , Ai−1 \ S, Ai ∪ S, Ai+1 \ S, . . . , An \ S〉;
11 For every ai ∈ N allocate Ai to ai ;

As we show in Section 6.2.1, Command 9 of the algorithm is always doable. More precisely, there always exists a set S
that holds in the condition of Command 9. Notice that in every step of the algorithm, ex{1/4}(A) is increased by at least
1/12n and this value is bounded by 1/4 · n = n/4. Therefore the algorithm terminates after at most 3n2 steps and the
allocation is guaranteed to be 1/8-MMS.

That said, there are two major computational obstacles in the way of running Algorithm 2. Firstly, finding a set S that
satisfies the condition of Command 9 can not be trivially done in polynomial time. Second, scaling the valuation functions
to ensure MMSi = 1 for all agents is NP-hard and cannot be done in polynomial time unless P=NP. To overcome the former,
in Section 6.2.1 we provide an algorithm for finding such a set S in polynomial time. Next, in Section 6.2.2, we present
a combinatorial trick to run the algorithm in polynomial time without having to deal with NP-hardness of scaling the
valuation functions.

6.2.1. Executing command 9 in polynomial time
In this section we present an algorithm to execute Command 9 of Algorithm 2. We show that such a procedure can be

implemented via demand-query oracles.
Let for every b j /∈ Ai , c j be the amount of contribution that b j makes to ex{1/4}(A). We set pe = 3(n/(n − 1))ce and

ask the demand-query oracle of vi to find a set S that maximizes vi(S) − ∑
b j∈S p j . Via a trivial calculation, one can show

that vi(S) − ∑
b j∈S p j ≥ 1/4 holds for at least one set of items. The reason this is correct is that one can divide the items

into n partitions where each is worth at least 1 to ai . Moreover, the summation of prices for the items is bounded by
3n/(n − 1) · (∑ j �=i v

{1/4}
j (A j)) ≤ 3n/4. Therefore, for at least one of those partitions vi(S) − ∑

b j∈S p j is at least 1/4. Thus,
the set that the oracle reports is worth at least 1/4 to ai .

Now, let S∗ be the set that the oracle reports and for every b j ∈ S∗ , c∗
j be the contribution of b j to vi(S∗). We sort the

items of S∗ based on c∗
j − p j in non-increasing order. Next, we start with an empty bag and add the items in their order to

the bag until the total value of the items in the bag to ai reaches 1/4. Since the value of every item alone is bounded by
1/8, the total value of the items in the bag to ai is bounded by 3/8. Thus the contribution of those items to ex{1/4}(A) is at
most (3/8)/(3n/(n − 1)) ≤ 1/8 − 1/(10n). Therefore, removing items of the bag from other allocations and adding them to
Ai , increases ex{1/4}(A) by at least 1/10n.

We remark that one can use the same argument to prove this even if MMSi ≥ 1/(1 + 1/10n).
13

M. Ghodsi, M. HajiAghayi, M. Seddighin et al. Artificial Intelligence 303 (2022) 103633
6.2.2. Running Algorithm 2 in polynomial time
As mentioned above, scaling valuation functions to ensure MMSi = 1 for every agent ai is an NP-hard problem since

determining the maximin values is hard even for additive agents [9]. Therefore, unlike Section 6.2.1, in this section we
massage the algorithm to make it executable in polynomial time.

Suppose an oracle gives us the maximin values of the agents. Provided that we can run Command 9 of Algorithm 2 in
polynomial time, we can find a 1/8-MMS allocation in polynomial time. Therefore, in case the oracle reports the actual
maximin values, the solution is trivial. However, what if the oracle has an error in its calculations? There are two possibili-
ties: (i) Algorithm 2 terminates and finds an allocation which is 1/8-MMS with respect to the reported maximin values. (ii)
The algorithm fails to execute Command 9, since no such set S holds in the condition of Command 9. The intellectual merit
of this section boils down to investigation of the case when algorithm fails to execute Command 9. We show that this only
happens due to an overly high misrepresentation of the maximin value for agent ai . Note that ai is the agent who receives
the lowest value in the last cycle of the execution.

Observation 6.1. Given 〈d1, d2, . . . , dn〉 as an estimate for the maximin values, if Algorithm 2 fails to execute Command 9 for an agent
ai , then we have

di ≥ (1 + 1/10n)MMSi .

Proof of Observation 6.1 follows from the argument of Section 6.2.1. More precisely, as mentioned in Section 6.2.1, such
a set S exists, if MMSi ≥ 1/(1 +1/10n). Thus, given that the procedure explained in Section 6.2.1 fails to find such a set, one
can conclude that the reported value for MMSi is at least (1/(1 + 1/10n)) times its actual value. Based on Observation 6.1,
we propose Algorithm 3 for implementing a maximin oracle.

Algorithm 3: Implementing a maximin oracle.
Data: N , M, 〈v1, v2, . . . , vn〉

1 for every ai ∈ N do
2 di ← vi(M);

3 while true do
4 Run Algorithm 2 assuming maximin values are d1, d2, . . . , dn;
5 if the Algorithm fails to run Command 9 for an agent ai then
6 di ← di/(1 + 1/10n);

7 else
8 Report the allocation and terminate the algorithm;

Note that in the beginning of the algorithm, we set di = vi(M) which is indeed greater than or equal to MMSi . By
Lemma 6.1, every time we decrease the value of di for an agent ai , we preserve the condition di ≥ MMSi for that agent.
Therefore, in every step of the algorithm, we have di ≥ MMSi and thus the reported allocation which is 1/8-MMS with
respect to di ’s is also 1/8-MMS with respect to true maximin values. Thus, the algorithm provides a correct 1/8-MMS
allocation in the end. All that remains is to show the running time of the algorithm is polynomial.

Notice that every time we decrease di for an agent ai , we multiply this value by 1/(1 +1/10n), hence the number of such
iterations is polynomial in n, unless the valuations are super-exponential in n. Since we always assume the input numbers
are represented by poly(n) bits, the number of iterations is bounded by poly(n) and hence the algorithm terminates after a
polynomial number of steps.

Theorem 3.6. Given access to demand-query and XOS oracles, there exists a polynomial time algorithm that finds a 1/8-MMS allo-
cation for agents with XOS valuations.

A consequence of Theorem 3.6 is an 8-approximation algorithm for determining the maximin value of an agent with
XOS valuation.

Corollary 6.3. For a given XOS valuation function vi , we can in polynomial time split the elements of ground set into n disjoint sets
S1, S2, . . . , Sn such that

vi(S j) ≥ MMSi/8

Proof. We construct an instance of the fair allocation problem with n agents, all of whom have a valuation function equal
to f . We find a 1/8-MMS allocation of the items to the agents in polynomial time and report the minimum value that an
agent receives as output.

The 1/8 guarantee follows from the fact that every agent receives a subset of values that are worth 1/8-MMSi to him. �

14

M. Ghodsi, M. HajiAghayi, M. Seddighin et al. Artificial Intelligence 303 (2022) 103633
Remark 6.4. A similar procedure can also be used to overcome the challenge of computing the maximin values for the algorithm
described in Section 5.1.

7. Subadditive valuations

In this section, we present an existential proof based on a well-known reduction from subadditive setting to the XOS
setting (see [39] for example). More precisely, we show for every subadditive set function f (·), there exists an XOS function
g(·), where g is dominated by f but the maximin value of g is within a logarithmic factor of the maximin value of f . We
begin with an observation. Suppose we are given a subadditive function f on set ground(f), and we wish to approximate
f with an additive function g which is dominated by f . In other words, we wish to find an additive function g such that

∀S ⊆ ground(f) g(S) ≤ f (S)

and g(ground(f)) is maximized. One way to formulate g is via a linear program. Suppose ground(f) = {b1, b2, . . . , bm} and
let g1, g2, . . . , gm be m variables that describe g in the following way:

∀S ⊆ ground(f) g(S) =
∑
bi∈S

gi .

Based on this formulation, we can find the optimal additive function g by LP (23).

maximize:
∑

bi∈ground(f)

gi (23)

subject to:
∑
bi∈S

gi ≤ f (S) ∀S ⊆ ground(f)

gi ≥ 0 ∀bi ∈ ground(f)

We show the objective function of LP (23) is lower bounded by f (ground(f))/ logm. The basic idea is to first write
the dual program and then based on a probabilistic method, lower bound the optimal value of the dual program by
f (ground(f))/ logm.

Lemma 7.1. The optimal solution of LP (23) is at least f (ground(f))/ logm.

Proof. To prove the lemma, we write the dual of LP (23) as follows:

minimize:
∑

S⊆ground(f)

αS f (S) (24)

subject to:
∑
S�bi

αS ≥ 1 ∀bi ∈ ground(f)

αS ≥ 0 ∀S ⊆ ground(f)

By the strong duality theorem, the optimal solutions of LP (23) and LP (24) are equal. Next, based on the optimal solution
of LP (24), we define a randomized procedure to draw a set of elements: We start with an empty set S∗ and for every set
S ⊆ ground(f) we add all elements of S to S∗ with probability αS . Since f is subadditive, the marginal increase of f (S∗)
by adding elements of a set S to S∗ is bounded by f (S) and thus the expected value of f (S∗) is bounded by the objective
of LP (24). In other words:

E[f (S∗)] ≤
∑

S⊆ground(f)

αS f (S) (25)

We remark that we repeat this procedure for all subsets of ground(S) independently and thus for every bi ∈ ground(f), ∑
S�bi αS ≥ 1 holds, we have

PR[bi ∈ S∗] ≥ 1− 1/e � 0.632121 > 1/2 (26)

for every element bi ∈ ground(S). Now, with the same procedure, we draw �logm� + 2 sets S∗
1, S

∗
2, . . . , S

∗
�logm�+2 indepen-

dently. We define Ŝ = ⋃
S∗ . By Inequality (26) and the union bound we show
i

15

M. Ghodsi, M. HajiAghayi, M. Seddighin et al. Artificial Intelligence 303 (2022) 103633
PR[Ŝ = ground(f)] ≥ 1−
∑

bi∈ground(i)

PR[bi /∈ Ŝ]

= 1−
∑

bi∈ground(i)

PR[bi /∈ S∗
1 and bi /∈ S∗

1 and . . . and bi /∈ S∗
�logm�+2]

= 1−
∑

bi∈ground(i)

�logm�+2∏
j=1

PR[bi /∈ S∗
j]

≥ 1−
∑

bi∈ground(i)

�logm�+2∏
j=1

1/2

= 1−
∑

bi∈ground(i)

�logm�+2∏
j=1

PR[bi /∈ S∗
j]

≥ 1−
∑

bi∈ground(i)

1/4m

= 1− 1/4

= 3/4

and thus E[f (Ŝ)] ≥ 3/4 f (ground(f)). On the other hand, by the linearity of expectation and the fact that f is subadditive
we have:

E[f (Ŝ)] = E[f (
⋃

S∗
i)]

≤E[
∑

f (S∗
i)]

≤ (�logm� + 2)(
∑

S⊆ground(f)

αS f (S)).

Therefore
∑

S⊆ground(f) αS f (S) ≥ 3/4 f (ground(f))/(�logm� + 2), which means∑
S⊆ground(f)

αS f (S) ≥ f (ground(f))/(2�logm�)

for a big enough m. This shows the optimal solution of LP (23) is lower bounded by f (ground(f))/(2�logm�) and the proof
is complete. �

In what follows, based on Lemma 7.1, we provide a reduction from subadditive valuations to XOS valuations. An imme-
diate corollary of Lemma 7.1 is the following:

Corollary 7.2 (of Lemma 7.1). For any subadditive valuation function Vi and integer number n, there exists an XOS function V ′
i such

that

V ′
i (S) ≤ Vi(S) ∀S ⊆ M

and

MMS′
i ≥ MMSi/2�logm�

Based on Theorem 3.5 and Corollary 7.2 one can show that a 1/10�logm�-MMS allocation is always possible for subad-
ditive valuations.

Theorem 3.7. Any fair allocation problem in which the agents have subadditive valuations admits a 1/10�logm�-MMS allocation.

8. Related work

As mentioned, maximin-share was introduced by Budish [1] and since then has been the subject of many studies [2,
46–52,16,9]. Other than the results we mentioned in the introduction, there are results that consider maximin-share for
different allocation scenarios. For example, Kurokawa et al. [48] show that when the valuations are drawn at random, an
16

M. Ghodsi, M. HajiAghayi, M. Seddighin et al. Artificial Intelligence 303 (2022) 103633
allocation with maximin-share guarantee exists with a high probability, and it can be found in polynomial time. Bouveret
and Lemaître in [53] show that for the restricted cases when the valuations of the agents come from {0, 1}, or when the
number of items is smaller than n +3, an MMS allocation is guaranteed to exist. For the case of 3 agents, the approximation
factor is improved from 2/3 in series of work to 3/4 [9], 7/8 [16], and 8/9 [47].

There are other studies that extend maximin-share to more general settings. Similar to classic fairness notions, the
weighted version of MMS (WMMS) is also considered [49]. The current best approximation guarantee for WMMS is 1/2 by
Farhadi et al. [49]. Gourvès and Monnot [47] also extend the maximin share problem to the case that the goods collectively
received by the agents satisfy a matroidal constraint. They prove that for this case, a 1/2-MMS allocation is always possible.

It is worth mentioning that other than maximin share, there are other fairness criteria that attracted considerable at-
tention, especially in recent years: envy-free up to one good (EF1) and envy-free up to any good (EFX). In these settings,
we seek to find allocations with limited (but not necessarily zero) envy between the agents [54,55,14]. Also, recent studies
have established a connection between Nash Social Welfare (NSW) and these fairness criteria [55,14]. NSW is defined as the
geometric mean of the agents’ utilities. Maximizing NSW has been the subject of many recent studies [55–58].

Subsequent work
To the best of our knowledge, all the results in this paper are currently the best approximation guarantees for MMS

beyond the additive setting. For a special case of XOS setting where the valuations form hereditary (or downward closed)
set system, Li and Vetta improved the approximation factor to 11/30. For additive setting, the recently best approximation
guarantee is the work of Garg and Taki [18] that prove the approximation guarantee of 3/4 + o(1) for the additive setting.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have
appeared to influence the work reported in this paper.

References

[1] E. Budish, The combinatorial assignment problem: approximate competitive equilibrium from equal incomes, J. Polit. Econ. 119 (6) (2011) 1061–1103.
[2] M. Ghodsi, M. HajiAghayi, M. Seddighin, S. Seddighin, H. Yami, Fair allocation of indivisible goods: improvements and generalizations, in: Proceedings

of the 2018 ACM Conference on Economics and Computation, ACM, 2018, pp. 539–556.
[3] S.J. Brams, A.D. Taylor, An envy-free cake division protocol, Am. Math. Mon. (1995) 9–18.
[4] H. Steinhaus, The problem of fair division, Econometrica 16 (1) (1948).
[5] S.J. Brams, A.D. Taylor, Fair Division: From Cake-Cutting to Dispute Resolution, Cambridge University Press, 1996.
[6] L.E. Dubins, E.H. Spanier, How to cut a cake fairly, Am. Math. Mon. (1961) 1–17.
[7] I. Bezáková, V. Dani, Allocating indivisible goods, ACM SIGecom Exch. 5 (3) (2005) 11–18.
[8] D.K. Foley, Resource allocation and the public sector, Yale Economic Essays.
[9] D. Kurokawa, A.D. Procaccia, J. Wang, Fair enough: guaranteeing approximate maximin shares, J. ACM 65 (2) (2018) 8.

[10] R.J. Lipton, E. Markakis, E. Mossel, A. Saberi, On approximately fair allocations of indivisible goods, in: Proceedings of the 5th ACM Conference on
Electronic Commerce, ACM, 2004, pp. 125–131.

[11] W. Stromquist, How to cut a cake fairly, Am. Math. Mon. 87 (8) (1980) 640–644.
[12] S. Even, A. Paz, A note on cake cutting, Discrete Appl. Math. 7 (3) (1984) 285–296.
[13] V. Conitzer, R. Freeman, N. Shah, Fair public decision making, in: Proceedings of the 2017 ACM Conference on Economics and Computation, 2017.
[14] I. Caragiannis, D. Kurokawa, H. Moulin, A.D. Procaccia, N. Shah, J. Wang, The unreasonable fairness of maximum Nash welfare, in: Proceedings of the

2016 ACM Conference on Economics and Computation, ACM, 2016, pp. 305–322.
[15] J. Garg, S. Taki, An improved approximation algorithm for maximin shares, Artif. Intell. (2021) 103547.
[16] G. Amanatidis, E. Markakis, A. Nikzad, A. Saberi, Approximation algorithms for computing maximin share allocations, ACM Trans. Algorithms 13 (4)

(2017) 52.
[17] S. Barman, S.K. Krishna Murthy, Approximation algorithms for maximin fair division, in: Proceedings of the 2017 ACM Conference on Economics and

Computation, ACM, 2017, pp. 647–664.
[18] J. Garg, S. Taki, An improved approximation algorithm for maximin shares, in: Proceedings of the 21st ACM Conference on Economics and Computation,

2020, pp. 379–380.
[19] U. Feige, A. Sapir, L. Tauber, A tight negative example for mms fair allocations, arXiv preprint, arXiv:2104 .04977.
[20] J. Garg, P. Kulkarni, R. Kulkarni, Approximating Nash social welfare under submodular valuations through (un)matchings, in: Proceedings of the Four-

teenth Annual ACM-SIAM Symposium on Discrete Algorithms, SIAM, 2020, pp. 2673–2687.
[21] W. Li, J. Vondrák, A constant-factor approximation algorithm for Nash social welfare with submodular valuations, arXiv preprint, arXiv:2103 .10536.
[22] M. Bateni, M. Hajiaghayi, M. Zadimoghaddam, Submodular secretary problem and extensions, ACM Trans. Algorithms 9 (4) (2013) 32.
[23] U. Feige, On maximizing welfare when utility functions are subadditive, SIAM J. Comput. 39 (1) (2009) 122–142.
[24] U. Feige, V.S. Mirrokni, J. Vondrak, Maximizing non-monotone submodular functions, in: Foundations of Computer Science, 2007, FOCS’07, 48th Annual

IEEE Symposium, IEEE, 2007, pp. 461–471.
[25] D. Golovin, Max-min fair allocation of indivisible goods.
[26] S. Dobzinski, N. Nisan, M. Schapira, Approximation algorithms for combinatorial auctions with complement-free bidders, in: Proceedings of the Thirty-

Seventh Annual ACM Symposium on Theory of Computing, ACM, 2005, pp. 610–618.
[27] U. Feige, J. Vondrak, Approximation algorithms for allocation problems: improving the factor of 1-1/e, in: Foundations of Computer Science, 2006,

FOCS’06, 47th Annual IEEE Symposium, IEEE, 2006, pp. 667–676.
[28] M. Feldman, N. Gravin, B. Lucier, Combinatorial auctions via posted prices, in: Proceedings of the Twenty-Sixth Annual ACM-SIAM Symposium on

Discrete Algorithms, Society for Industrial and Applied Mathematics, 2015, pp. 123–135.
[29] R.P. Leme, Gross substitutability: an algorithmic survey, Games Econ. Behav. 106 (2017) 294–316.
[30] J. Vondrák, Optimal approximation for the submodular welfare problem in the value oracle model, in: Proceedings of the Fortieth Annual ACM Sym-

posium on Theory of Computing, ACM, 2008, pp. 67–74.
17

http://refhub.elsevier.com/S0004-3702(21)00184-3/bib7263A5519EB87A3A8C3945017E29B178s1
http://refhub.elsevier.com/S0004-3702(21)00184-3/bib1156BCED01B49EA449BBACFFF12FB636s1
http://refhub.elsevier.com/S0004-3702(21)00184-3/bib1156BCED01B49EA449BBACFFF12FB636s1
http://refhub.elsevier.com/S0004-3702(21)00184-3/bib23C9702895EC759A00DDE7F3C44B5036s1
http://refhub.elsevier.com/S0004-3702(21)00184-3/bibC80DBE075076D32B19F8451FCFC392D9s1
http://refhub.elsevier.com/S0004-3702(21)00184-3/bib0896CD2A170F2CCA914D3D59E502D2E3s1
http://refhub.elsevier.com/S0004-3702(21)00184-3/bib878AB44BC576F3FFF475B55B6E47C97Ds1
http://refhub.elsevier.com/S0004-3702(21)00184-3/bib4C85DB02C82B54CD11B24BEDA2582B8Fs1
http://refhub.elsevier.com/S0004-3702(21)00184-3/bib634D842DF45D86EBAC0A7AE0170549C7s1
http://refhub.elsevier.com/S0004-3702(21)00184-3/bib1D43960706C4E7C7547949048B17B63Es1
http://refhub.elsevier.com/S0004-3702(21)00184-3/bib1D43960706C4E7C7547949048B17B63Es1
http://refhub.elsevier.com/S0004-3702(21)00184-3/bib7EF95769A42978578148667F819C00B3s1
http://refhub.elsevier.com/S0004-3702(21)00184-3/bibF63988EE1791B7B6AB5FA61C139A4DBAs1
http://refhub.elsevier.com/S0004-3702(21)00184-3/bib216E4F7F40EB3CEE2612DF9CC4BBC937s1
http://refhub.elsevier.com/S0004-3702(21)00184-3/bib0C564FC5175983E6ABF535C49A7B12DFs1
http://refhub.elsevier.com/S0004-3702(21)00184-3/bib0C564FC5175983E6ABF535C49A7B12DFs1
http://refhub.elsevier.com/S0004-3702(21)00184-3/bib3DAD0C9CAA32EA179938E30F3F6C8620s1
http://refhub.elsevier.com/S0004-3702(21)00184-3/bib612ADA036D29A0F698FACC61AA58F61Bs1
http://refhub.elsevier.com/S0004-3702(21)00184-3/bib612ADA036D29A0F698FACC61AA58F61Bs1
http://refhub.elsevier.com/S0004-3702(21)00184-3/bib7D21103BFD2FCFFE6BE5AC77273C8E31s1
http://refhub.elsevier.com/S0004-3702(21)00184-3/bib7D21103BFD2FCFFE6BE5AC77273C8E31s1
http://refhub.elsevier.com/S0004-3702(21)00184-3/bib7D1E1A16DA5B097346E15465F6752C80s1
http://refhub.elsevier.com/S0004-3702(21)00184-3/bib7D1E1A16DA5B097346E15465F6752C80s1
http://refhub.elsevier.com/S0004-3702(21)00184-3/bib4221F13F61EA03718DFEBD59F60DC9D1s1
http://refhub.elsevier.com/S0004-3702(21)00184-3/bibE66BB4A806F857757744BDE2616E1D3Ds1
http://refhub.elsevier.com/S0004-3702(21)00184-3/bibE66BB4A806F857757744BDE2616E1D3Ds1
http://refhub.elsevier.com/S0004-3702(21)00184-3/bibDD492DBFCEAC07ECD16FD94C68D19E25s1
http://refhub.elsevier.com/S0004-3702(21)00184-3/bib65B018045BDB6CF83C9D99BFF75656A4s1
http://refhub.elsevier.com/S0004-3702(21)00184-3/bib5B93905A38A7C3D3854E462EEECCF686s1
http://refhub.elsevier.com/S0004-3702(21)00184-3/bibB69A4CC7A94C936F3E5C6B2D0CF22ADEs1
http://refhub.elsevier.com/S0004-3702(21)00184-3/bibB69A4CC7A94C936F3E5C6B2D0CF22ADEs1
http://refhub.elsevier.com/S0004-3702(21)00184-3/bibF8EC9D95339A6D03AB9AC6A932EE51A3s1
http://refhub.elsevier.com/S0004-3702(21)00184-3/bibF8EC9D95339A6D03AB9AC6A932EE51A3s1
http://refhub.elsevier.com/S0004-3702(21)00184-3/bibDDFA60DB4D629FD76346205CA408D1EFs1
http://refhub.elsevier.com/S0004-3702(21)00184-3/bibDDFA60DB4D629FD76346205CA408D1EFs1
http://refhub.elsevier.com/S0004-3702(21)00184-3/bib956A5B6C3CF78C817D05B9CE7259CBC8s1
http://refhub.elsevier.com/S0004-3702(21)00184-3/bib956A5B6C3CF78C817D05B9CE7259CBC8s1
http://refhub.elsevier.com/S0004-3702(21)00184-3/bib065A87B88D7B7DCEB8EA06228A020F84s1
http://refhub.elsevier.com/S0004-3702(21)00184-3/bib6F5C33CA939639C4E5BB70E3D95F7EEFs1
http://refhub.elsevier.com/S0004-3702(21)00184-3/bib6F5C33CA939639C4E5BB70E3D95F7EEFs1

M. Ghodsi, M. HajiAghayi, M. Seddighin et al. Artificial Intelligence 303 (2022) 103633
[31] N. Buchbinder, M. Feldman, J. Naor, R. Schwartz, A tight linear time (1/2)-approximation for unconstrained submodular maximization, in: Foundations
of Computer Science (FOCS), 2012 IEEE 53rd Annual Symposium, IEEE, 2012, pp. 649–658.

[32] S. Fujishige, Submodular Functions and Optimization, vol. 58, Elsevier, 2005.
[33] A. Gupta, A. Roth, G. Schoenebeck, K. Talwar, Constrained non-monotone submodular maximization: offline and secretary algorithms, in: International

Workshop on Internet and Network Economics, Springer, 2010, pp. 246–257.
[34] G. Kim, E.P. Xing, L. Fei-Fei, T. Kanade, Distributed cosegmentation via submodular optimization on anisotropic diffusion, in: Computer Vision (ICCV),

2011 IEEE International Conference, IEEE, 2011, pp. 169–176.
[35] A. Krause, Sfo: a toolbox for submodular function optimization, J. Mach. Learn. Res. 11 (2010) 1141–1144.
[36] J. Lee, V.S. Mirrokni, V. Nagarajan, M. Sviridenko, Non-monotone submodular maximization under matroid and knapsack constraints, in: Proceedings

of the Forty-First Annual ACM Symposium on Theory of Computing, ACM, 2009, pp. 323–332.
[37] M. Minoux, Accelerated greedy algorithms for maximizing submodular set functions, in: Optimization Techniques, Springer, 1978, pp. 234–243.
[38] G. Christodoulou, A. Kovács, M. Schapira, Bayesian combinatorial auctions, in: International Colloquium on Automata, Languages, and Programming,

Springer, 2008, pp. 820–832.
[39] K. Bhawalkar, T. Roughgarden, Welfare guarantees for combinatorial auctions with item bidding, in: Proceedings of the Twenty-Second Annual ACM-

SIAM Symposium on Discrete Algorithms, Society for Industrial and Applied Mathematics, 2011, pp. 700–709.
[40] L. Blumrosen, S. Dobzinski, Welfare maximization in congestion games, in: Proceedings of the 7th ACM Conference on Electronic Commerce, ACM,

2006, pp. 52–61.
[41] V. Syrgkanis, Bayesian games and the smoothness framework, arXiv preprint, arXiv:1203 .5155.
[42] M. Feldman, H. Fu, N. Gravin, B. Lucier, Simultaneous auctions are (almost) efficient, in: Proceedings of the Forty-Fifth Annual ACM Symposium on

Theory of Computing, 2013, pp. 201–210.
[43] H. Fu, R. Kleinberg, R. Lavi, Conditional equilibrium outcomes via ascending price processes with applications to combinatorial auctions with item

bidding, in: ACM EC, 2012.
[44] I. Milchtaich, Congestion games with player-specific payoff functions, Games Econ. Behav. 13 (1) (1996) 111–124.
[45] L. Epstein, A. Levin, An efficient polynomial time approximation scheme for load balancing on uniformly related machines, Math. Program. 147 (1–2)

(2014) 1–23.
[46] T. Heinen, N.-T. Nguyen, T.T. Nguyen, J. Rothe, Approximation and complexity of the optimization and existence problems for maximin share, propor-

tional share, and minimax share allocation of indivisible goods, Auton. Agents Multi-Agent Syst. 32 (6) (2018) 741–778.
[47] L. Gourvès, J. Monnot, Approximate maximin share allocations in matroids, in: International Conference on Algorithms and Complexity, Springer, 2017,

pp. 310–321.
[48] D. Kurokawa, A.D. Procaccia, J. Wang, When can the maximin share guarantee be guaranteed?, in: Proceedings of the AAAI Conference on Artificial

Intelligence, Vol. 30, 2016.
[49] A. Farhadi, M. Hajiaghayi, M. Ghodsi, S. Lahaie, D. Pennock, M. Seddighin, S. Seddighin, H. Yami, Fair allocation of indivisible goods to asymmetric

agents, in: Proceedings of the 16th Conference on Autonomous Agents and MultiAgent Systems, International Foundation for Autonomous Agents and
Multiagent Systems, 2017, pp. 1535–1537.

[50] H. Aziz, G. Rauchecker, G. Schryen, T. Walsh, Algorithms for max-min share fair allocation of indivisible chores, in: Proceedings of the AAAI Conference
on Artificial Intelligence, Vol. 31, 2017.

[51] G. Amanatidis, G. Birmpas, G. Christodoulou, E. Markakis, Truthful allocation mechanisms without payments: characterization and implications on
fairness, in: Proceedings of the 2017 ACM Conference on Economics and Computation, ACM, 2017, pp. 545–562.

[52] G. Amanatidis, G. Birmpas, E. Markakis, On truthful mechanisms for maximin share allocations, in: Proceedings of the Twenty-Fifth International Joint
Conference on Artificial Intelligence, AAAI Press, 2016, pp. 31–37.

[53] S. Bouveret, M. Lemaître, Characterizing conflicts in fair division of indivisible goods using a scale of criteria, Auton. Agents Multi-Agent Syst. 30 (2)
(2016) 259–290.

[54] B. Plaut, T. Roughgarden, Almost envy-freeness with general valuations, in: Proceedings of the Twenty-Ninth Annual ACM-SIAM Symposium on Discrete
Algorithms, SIAM, 2018, pp. 2584–2603.

[55] S. Barman, S.K. Krishnamurthy, R. Vaish, Finding fair and efficient allocations, in: Proceedings of the 2018 ACM Conference on Economics and Compu-
tation, 2018, pp. 557–574.

[56] S. Barman, S.K. Krishnamurthy, R. Vaish, Greedy algorithms for maximizing Nash social welfare, in: Proceedings of the 17th International Conference
on Autonomous Agents and MultiAgent Systems, 2018, pp. 7–13.

[57] N. Anari, T. Mai, S.O. Gharan, V.V. Vazirani, Nash social welfare for indivisible items under separable, piecewise-linear concave utilities, in: Proceedings
of the Twenty-Ninth Annual ACM-SIAM Symposium on Discrete Algorithms, SIAM, 2018, pp. 2274–2290.

[58] R. Cole, N. Devanur, V. Gkatzelis, K. Jain, T. Mai, V.V. Vazirani, S. Yazdanbod, Convex program duality, Fisher markets, and Nash social welfare, in:
Proceedings of the 2017 ACM Conference on Economics and Computation, ACM, 2017, pp. 459–460.
18

http://refhub.elsevier.com/S0004-3702(21)00184-3/bib47A80ECE6674B1477702980334811D6Ds1
http://refhub.elsevier.com/S0004-3702(21)00184-3/bib47A80ECE6674B1477702980334811D6Ds1
http://refhub.elsevier.com/S0004-3702(21)00184-3/bib8FEE322FE594791ADB1D0D1C14B6AA9Ds1
http://refhub.elsevier.com/S0004-3702(21)00184-3/bib4C4FFA941AFC10FEB82AE39FD30189F3s1
http://refhub.elsevier.com/S0004-3702(21)00184-3/bib4C4FFA941AFC10FEB82AE39FD30189F3s1
http://refhub.elsevier.com/S0004-3702(21)00184-3/bib00629050A0AF8B46695B8C78EA58BA92s1
http://refhub.elsevier.com/S0004-3702(21)00184-3/bib00629050A0AF8B46695B8C78EA58BA92s1
http://refhub.elsevier.com/S0004-3702(21)00184-3/bib0710BDCF2E7DF3A07D381D00A74D5ECCs1
http://refhub.elsevier.com/S0004-3702(21)00184-3/bibDD43E55DE22610B8CB848B7138DFE526s1
http://refhub.elsevier.com/S0004-3702(21)00184-3/bibDD43E55DE22610B8CB848B7138DFE526s1
http://refhub.elsevier.com/S0004-3702(21)00184-3/bib2313DF3DA314B51323AA4F85A84A1B0Cs1
http://refhub.elsevier.com/S0004-3702(21)00184-3/bibA4C1E3B8CB2692F54D2BDF8D8BD4D693s1
http://refhub.elsevier.com/S0004-3702(21)00184-3/bibA4C1E3B8CB2692F54D2BDF8D8BD4D693s1
http://refhub.elsevier.com/S0004-3702(21)00184-3/bibCE7DC71B46A12BE9443CA0DD4E1140F3s1
http://refhub.elsevier.com/S0004-3702(21)00184-3/bibCE7DC71B46A12BE9443CA0DD4E1140F3s1
http://refhub.elsevier.com/S0004-3702(21)00184-3/bibCA932A76E6A7E1D936BF4535FCBA83A8s1
http://refhub.elsevier.com/S0004-3702(21)00184-3/bibCA932A76E6A7E1D936BF4535FCBA83A8s1
http://refhub.elsevier.com/S0004-3702(21)00184-3/bib8D19C0321BCAA7310E2D12D18FD6222Bs1
http://refhub.elsevier.com/S0004-3702(21)00184-3/bibE4387F5C92189C705D169E209DAF9AFDs1
http://refhub.elsevier.com/S0004-3702(21)00184-3/bibE4387F5C92189C705D169E209DAF9AFDs1
http://refhub.elsevier.com/S0004-3702(21)00184-3/bibB4DDC951B0220B0071520BA167D464E6s1
http://refhub.elsevier.com/S0004-3702(21)00184-3/bibB4DDC951B0220B0071520BA167D464E6s1
http://refhub.elsevier.com/S0004-3702(21)00184-3/bibEFE8C8035A6FDB8E69B6562F3A36A361s1
http://refhub.elsevier.com/S0004-3702(21)00184-3/bibAAA9E470A909D6BD61F0765A9183FA7Cs1
http://refhub.elsevier.com/S0004-3702(21)00184-3/bibAAA9E470A909D6BD61F0765A9183FA7Cs1
http://refhub.elsevier.com/S0004-3702(21)00184-3/bib60E712D59A5A6A9BAD1A33EB74E9328Es1
http://refhub.elsevier.com/S0004-3702(21)00184-3/bib60E712D59A5A6A9BAD1A33EB74E9328Es1
http://refhub.elsevier.com/S0004-3702(21)00184-3/bibFAA1C3103654003A77C928DB470B1437s1
http://refhub.elsevier.com/S0004-3702(21)00184-3/bibFAA1C3103654003A77C928DB470B1437s1
http://refhub.elsevier.com/S0004-3702(21)00184-3/bibD4F282E7F6E6B6AAB2F6F28A8197A765s1
http://refhub.elsevier.com/S0004-3702(21)00184-3/bibD4F282E7F6E6B6AAB2F6F28A8197A765s1
http://refhub.elsevier.com/S0004-3702(21)00184-3/bibD7839B582C91712A17C37003040A4427s1
http://refhub.elsevier.com/S0004-3702(21)00184-3/bibD7839B582C91712A17C37003040A4427s1
http://refhub.elsevier.com/S0004-3702(21)00184-3/bibD7839B582C91712A17C37003040A4427s1
http://refhub.elsevier.com/S0004-3702(21)00184-3/bib317FF683309610C5E75B7590B11AAC65s1
http://refhub.elsevier.com/S0004-3702(21)00184-3/bib317FF683309610C5E75B7590B11AAC65s1
http://refhub.elsevier.com/S0004-3702(21)00184-3/bib0C3FF47A08BBF0B3373FE2A234FC3A44s1
http://refhub.elsevier.com/S0004-3702(21)00184-3/bib0C3FF47A08BBF0B3373FE2A234FC3A44s1
http://refhub.elsevier.com/S0004-3702(21)00184-3/bib50EE89E8415F400DA025E0126D9E86FFs1
http://refhub.elsevier.com/S0004-3702(21)00184-3/bib50EE89E8415F400DA025E0126D9E86FFs1
http://refhub.elsevier.com/S0004-3702(21)00184-3/bib22772E3AB28BEE2E926D759748763947s1
http://refhub.elsevier.com/S0004-3702(21)00184-3/bib22772E3AB28BEE2E926D759748763947s1
http://refhub.elsevier.com/S0004-3702(21)00184-3/bib6624CB1AB9A63968FDBE51B5329773F8s1
http://refhub.elsevier.com/S0004-3702(21)00184-3/bib6624CB1AB9A63968FDBE51B5329773F8s1
http://refhub.elsevier.com/S0004-3702(21)00184-3/bib29E8610E8446FA6FFE592E432402A7F5s1
http://refhub.elsevier.com/S0004-3702(21)00184-3/bib29E8610E8446FA6FFE592E432402A7F5s1
http://refhub.elsevier.com/S0004-3702(21)00184-3/bibE2CB85125FA67679EC1B5A6EE84F56E0s1
http://refhub.elsevier.com/S0004-3702(21)00184-3/bibE2CB85125FA67679EC1B5A6EE84F56E0s1
http://refhub.elsevier.com/S0004-3702(21)00184-3/bibC55E51A2E4CC6DFC8E04ADC684749BBEs1
http://refhub.elsevier.com/S0004-3702(21)00184-3/bibC55E51A2E4CC6DFC8E04ADC684749BBEs1
http://refhub.elsevier.com/S0004-3702(21)00184-3/bib96C9323DA6A241D1ED30A1F2F9F5E84Es1
http://refhub.elsevier.com/S0004-3702(21)00184-3/bib96C9323DA6A241D1ED30A1F2F9F5E84Es1

	Fair allocation of indivisible goods: Beyond additive valuations
	1 Introduction
	2 Preliminaries
	3 Our results and techniques
	4 Upper-bounds
	5 Submodular valuations
	5.1 Algorithm

	6 XOS valuations
	6.1 Existential proof
	6.2 Algorithm
	6.2.1 Executing command 9 in polynomial time
	6.2.2 Running Algorithm 2 in polynomial time

	7 Subadditive valuations
	8 Related work
	Declaration of competing interest
	References

