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Abstract. In the Colonel Blotto game, which was initially introduced by Borel in 1921, two
colonels simultaneously distribute their troops across different battlefields. The winner of
each battlefield is determined independently by a winner-takes-all rule. The ultimate payoff
for each colonel is the number of battlefields won. The Colonel Blotto game is commonly
used for analyzing awide range of applications from theU.S. Presidential election to innova-
tive technology competitions to advertising, sports, and politics. There are persistent efforts
to find the optimal strategies for the Colonel Blotto game. However, the first polynomial-
time algorithm for that has very recently been provided by Ahmadinejad, Dehghani, Hajia-
ghayi, Lucier, Mahini, and Seddighin. Their algorithm consists of an exponential size linear
program (LP), which they solve using the ellipsoid method. Because of the use of the ellip-
soidmethod, despite its significant theoretical importance, this algorithm is highly imprac-
tical. In general, even the simplexmethod (despite its exponential running time in practice)
performs better than the ellipsoid method in practice. In this paper, we provide the first
polynomial-size LP formulation of the optimal strategies for the Colonel Blotto game using
linear extension techniques. Roughly speaking, we consider the natural representation of
the strategy space polytope and transform it to a higher dimensional strategy space, which
interestingly has exponentially fewer facets. In other words, we add a few variables to the
LP such that, surprisingly, the number of constraints drops down to a polynomial. We use
this polynomial-size LP to provide a simpler and significantly faster algorithm for finding
optimal strategies of the Colonel Blotto game.We further show this representation is asymp-
totically tight, which means there exists no other linear representation of the strategy space
with fewer constraints. We also extend our approach to multidimensional Colonel Blotto
games, in which players may have different sorts of budgets, such as money, time, human
resources, etc. By implementing this algorithm, we are able to run tests that were previously
impossible to solve in a reasonable time. This information allows us to observe some inter-
esting properties of Colonel Blotto; for example, we find out the behavior of players in the
discretemodel is very similar to the continuousmodel Roberson solved.
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[Grant IIS-1546108], NSF AF:Medium [Grant CCF-1161365], DARPA GRAPHS/AFOSR [Grant
FA9550-12-1-0423], and another DARPA SIMPLEX grant.
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1. Introduction
In the U.S. presidential voting system, the President is
elected by the electoral college. Each state has a num-
ber of electoral votes, and the candidate who receives
the majority of electoral votes is elected as the Presi-
dent of the United States. In all states except Maine
and Nebraska, a winner-takes-all rule determines the
electoral votes. The candidate who receives the major-
ity of votes in a state obtains all the electoral votes of
that state. Because the President is not elected by
national popular vote directly, any investment of cam-
paigning in states that are highly biased toward one

party can be considered a waste. For example, a Demo-
cratic candidate can usually count on the electoral votes of
more liberal states such as California, Massachusetts, and
New York and a Republican candidate can usually count
on the electoral votes of more conservative states such as
Texas, Mississippi, and South Carolina. This highlights
the importance of the more politically neutral states.
These states, known as swing states or battleground states,
are the main targets of a campaign during the election.
For example, the main battleground states of the 2012
U.S. Presidential election were Colorado, Florida, Iowa,
New Hampshire, North Carolina, Ohio, Virginia, and
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Wisconsin. Therefore, the following questions seem to be
essential: How can a national campaign distribute its
resources, such as time, people, and money, across differ-
ent battleground states? What is the outcome of the game
between two parties?

Alternatively, consider a similar type of competition
between two companies that are developing new tech-
nologies. These companies need to distribute their
efforts across different markets. The winner of each
market becomes the market leader and takes almost
all the benefits of the corresponding market (Kove-
nock and Roberson 2012). For example, consider the
competition between Samsung and Apple, in which
both invest in developing products, such as cell-
phones, tablets, and laptops, with different specifica-
tions. Each product has its own specific market, and
the most viable brand leads that market. Again, a stra-
tegic planner with limited resources faces a similar
question: what would be the best strategy for allocat-
ing the resources across different markets?

1.1. Colonel Blotto Game
The Colonel Blotto game, which was first introduced by
Borel (1921), provides a model to study the aforemen-
tioned problems. The game was subsequently discussed
in an issue of Econometria (Borel 1953; Fréchet 1953a, b;
von Neumann and Fréchet 1953). Although the Colonel
Blotto model initially was proposed to study a war strat-
egy, it has since been used to analyze the competition in
contexts such as sports, advertising, and politics (Myerson
1993, Laslier and Picard 2002, Merolla et al. 2005, Kove-
nock and Roberson 2012, Chowdhury et al. 2013). In the
original Colonel Blotto game, two colonels fight against
each other over different battlefields. Theymust simultane-
ously divide their troops among different battlefields with-
out knowing the actions of their opponent. A colonel wins
a battlefield if and only if the number of the colonel’s
troops exceeds the number of troops of the opponent. The
colonel’s final payoff is the number of battlefields won.

Colonel Blotto is a zero-sum game, but the fact that
the number of pure strategies of the agents is expo-
nential in the numbers of troops and battlefields
makes finding optimal strategies quite hard. There
have been several attempts at solving variants of the
problem since 1921 (Tukey 1949; Blackett 1954, 1958;
Bellman 1969; Shubik and Weber 1981; Roberson 2006;
Kvasov 2007; Hart 2008; Golman and Page 2009;
Kovenock and Roberson 2012; Weinstein 2012). Most
of these works consider special cases of the problem.
For example, many results in the literature relax the
integrality constraints of the problem and study a con-
tinuous version of the problem in which troops are
divisible. For example, Borel and Ville (1938) propose
the first solution for three battlefields. Gross and Wag-
ner (1950) generalize this result for any number of bat-
tlefields. However, they assume both colonels have the

same number of troops. Roberson (2006) computes the
optimal strategies of the Blotto games in the continuous
version of the problem in which all the battlefields have
the same weight; that is, the game is symmetric across
the battlefields. Hart (2008) considers the symmetric
discrete version and solves it for some special cases.

Recently, Ahmadinejad et al. (2016) brought renewed
attention to this problem. They obtain exponential-size
linear programs (LPs) and then provide a clever use of
the ellipsoid method for finding the optimal strategies in
polynomial time. Although, theoretically, the ellipsoid
method is a powerful tool with deep consequences in
complexity and optimization, it is “too inefficient to be
used in practice” (Korte and Vygen 2008). Interior point
methods and the simplex algorithm (even though it has
exponential running time in the worst case) are “far
more efficient” (Korte and Vygen 2008). Thus, a practical
algorithm for finding optimal strategies for Blotto-type
games remained an open problem until now.

This is the first work to provide a polynomial-size LP
for finding the optimal strategies of the Colonel Blotto
game. Whereas Ahmadinejad et al. (2016) use an LP
with an exponential number of constraints, our LP for-
mulation has only O(n2K) constraints, where n denotes
the number of troops and K denotes the number of bat-
tlefields. Consequently, we provide a simpler and signif-
icantly faster algorithm using the polynomial-size LP.
Furthermore, we show that our LP representation is
asymptotically tight. The rough idea behind obtaining a
polynomial-size LP is the following: given a polytope P
with exponentially many facets, we transform P to
another polytope Q in a higher dimensional space,
which has polynomially many facets. We do so by intro-
ducing new variables to the LP in order to reduce the
number of constraints to a polynomial. We callQ a linear
extension of P. The minimum number of facets of any lin-
ear extension is called the extension complexity. We show
that the extension complexity of the polytope of the opti-
mal strategies of the Colonel Blotto game is Θ(n2K). In
other words, there exists no LP formulation for the poly-
tope of maximin strategies of the Colonel Blotto game
with fewer thanΘ(n2K) constraints.

Further, we extend our approach to the multire-
source Colonel Blotto (MRCB) game. In the MRCB, each
player has different types of resources. Again, the
players distribute their budgets across battlefields.
Thus, each player allocates a vector of resources to
each battlefield. The outcome in each battlefield is a
function of both players’ resource vectors allocated to
that battlefield. MRCB models a natural and realistic
generalization of the Colonel Blotto game. For exam-
ple, in the U.S. Presidential elections, campaigns dis-
tribute different resources, such as people, time, and
money, among different states. We provide an LP for-
mulation for finding optimal strategies in MRCB with
Θ(n2cK) constraints and Θ(n2cK) variables, where c is
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the number of different types of resources. We prove
this result is tight (up to constant factors) because the
extension complexity of MRCB isΘ(n2cK).

By implementing our LP, we observe the payoff of
players in the continuous version considered by Rober-
son (2006), which closely predicts the game’s outcome
in our model’s auctionary and symmetric versions, in
which an auctionary model is depicted as an instance of
the Colonel Blotto game in which a player wins a battle-
field if and only if the player allocates more troops to it.

2. Preliminaries
The Colonel Blotto game is played between two play-
ers to which we refer as players A and B. The number of
battlefields is denoted by K, and the number of troops of
players A and B are, respectively, denoted by n and m.
Also, in some cases, we abuse the notation and use n to
denote the number of troops of an unknown player.

A pure strategy of each player is a partitioning of
troops over the battlefields. That is, any pure strategy of
player A (respectively, player B) can be represented by
a vector x � (x1, : : : ,xk) of length k of nonnegative num-
bers, where ∑

i∈[k]xi � n (∑i∈[k]xi �m). Moreover, each
pure strategy is a probability distribution over the set of
pure strategies. LetRA andRB denote the set of all pos-
sible mixed strategies of A and B in a Nash equilibrium.
Moreover, a player’s maximin strategy is a strategy that
maximizes the minimum gain that can be achieved.

At some points in this paper, we use an alternative
representation of mixed strategies that assigns proba-
bilities to any pair of battlefield and troop count. More
precisely, we map a mixed strategy x of player A to
GA(x) � x̂ ∈ [0, 1]d(A), where d(A) � K × (n+ 1). We may
abuse this notation for convenience and use x̂i,j to
show the probability with which the mixed strategy x
puts j troops in the ith battlefield. Note that this map-
ping is not one to one. Similarly, we define GB(x) to
map a mixed strategy x of player B to a point in
[0, 1]d(B), where d(B) � K × (m+ 1). We define PA � {x̂ |
∃x ∈RA,GA(x) � x̂} and PB � {x̂ | ∃x ∈RB,GB(x) � x̂} to
be the set of all Nash equilibrium strategies in the new
space for A and B, respectively.

Multiresource Colonel Blotto is a generalization of
Colonel Blotto in which each player may have differ-
ent types of resources. In MRCB, there are K battle-
fields and c resource types. Players simultaneously
distribute all their resources of all types over the bat-
tlefields. Let ni and mi denote the number of resources
of type i player A and B, respectively, have. A pure
strategy of a player would be a partition of resources
over battlefields. In other words, let xi,j and yi,j denote
the amount of resources of type j that players A and
B, respectively, put in battlefield i. A vector x �
〈x1,1, : : : ,xK,c〉 is a pure strategy of player A if ∑K

i�1xi,j �

nj for any 1 ≤ j ≤ c. Similarly a vector y � 〈y1,1, : : : ,yK,c〉
is a pure strategy of player B if ∑K

i�1yi,j �mj for any
1 ≤ j ≤ c. Let U(x,y) and V(x,y) denote the payoffs of
A and B and let Ui(x,y) and Vi(x,y) show their payoff
over the ith battlefield, respectively. Note that

U(x,y) �∑K
i�1

Ui(x,y)

and

V(x,y) �∑K
i�1

Vi(x,y):

On the other hand, because MRCB is a zero-sum
game, we have Ui(x,y) � −Vi(x,y). Similar to Colonel
Blotto, we define RA

M and RB
M to denote the set of all

possible mixed strategies of A and B in a Nash equili-
brium of MRCB. Moreover, for any mixed strategy x
for player A, we define the mapping GA

M(x) � x̂ ∈
[0, 1]dM(A), where dM(A) � K × (n1 + 1): : :× (nc + 1). By
x̂i,j1,: : : ,jc , we mean the probability that, in using mixed
strategy x, player A puts jt amount of resource type t
in the ith battlefield for any t, where 1 ≤ t ≤ c. We also

define the same mapping GB
M(x) � x̂ ∈ [0, 1]dM(B) for

player B, where dM(B) � K × (m1 + 1): : :× (mc + 1).
Finally, we define PM

A � {x̂ | ∃x ∈RA
M,GA

M(x) � x̂} and
PM

B � {x̂ | ∃x ∈RB
M,GB

M(x) � x̂} to be the set of all
Nash equilibrium strategies after the mapping.

3. LP Formulation
In this section, we first go over some of the LP formula-
tions used in the literature and investigate their shortcom-
ings. We then provide a new representation of the strat-
egy space and design our polynomial-size LP using that.

The conventional approach to formulate the mixed
strategies of a game is to represent every strategy by a
vector of probabilities over the pure strategies. More
precisely, a mixed strategy of a player is denoted by a
vector of size equal to the number of the player’s pure
strategies, whose every element indicates the likeli-
hood of taking a specific action in the game. The only
constraint to which this vector adheres is that the
probabilities are nonnegative and add up to one.

Note that, in zero-sum games such as Colonel
Blotto, the game is in Nash equilibrium if and only if
both players play a maximin strategy. Therefore, the
conventional formulation of the equilibria of Blotto
results in the following LP:

max u
s:t: x ∈ RA

U(x, y) ≥ u ∀y ∈ RB (1)

However, in this LP, the number of both variables
and constraints are exponential. Note that the variable
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x in the LP is a vector, and its size is equal to the num-
ber of pure strategies of player A, which is (n+K−1K−1 ).
Moreover, the number of constraints is (m+K−1

K−1 ), which

is equal to the number of pure strategies of player B.
To overcome this hardness, Ahmadinejad et al.

(2016) propose a more concise representation that
reduces the number of variables to a polynomial.
They have a variable for any battlefield I and any
number of troops x, which denotes the probability of
allocating x troops to battlefield i. As a result, the
length of the representation reduces the number of
pure strategies to (n+ 1)K for player A and (m+ 1)K
for player B. This is indeed followed by a key observa-
tion: given the corresponding representations of the
strategies of both players, one can determine the out-
come of the game regardless of the actual strategies.
In other words, the information stored in the repre-
sentations of the strategies suffices to determine the
outcome of the game. This new representation helps
Ahmadinejad et al. (2016) to decrease the number of
variables to a polynomial. However, they still have
exponentially many constraints.

In Section 3.1, we go beyond this concise represen-
tation and provide a new representation of the strat-
egy space, which is based on what we call layered
graphs. We then design our polynomial-size LP based
on that. Finally, in Section 3.2, we show that our for-
mulation is near optimal. In other words, we show
that any linear program that formulates the equilibria
of Blotto has to have as many linear constraints as the
number of constraints in our formulation within a
constant factor. We show this via the rectangle cover-
ing lower bound proposed by Yannakakis (1991).

3.1. Polynomial-Size LP
Our main LP includes two sets of constraints:membership
and payoff constraints. Membership constraints guaran-
tee that we obtain a mixed strategy, and payoff con-
straints guarantee that this strategy minimizes the

maximum utility of the other player. To write our LP,
we start by defining a layered graph for each player and
show that any mixed strategy of a player can be mapped
to a particular flow in the player’s layered graph.

Definition 1 (Layered Graph). For an instance of a
Blotto game with K battlefields, we define a layered
graph for a player with n troops as follows: The lay-
ered graph has K+ 1 layers and n+ 1 vertices in each
layer. Let vi,j denote the jth vertex in the ith layer
(0 ≤ i ≤ K and 0 ≤ j ≤ n). For any 1 ≤ i ≤ K, there exists
a directed edge from vi−1,j to vi,l iff 0 ≤ j ≤ l ≤ n. We
denote the layered graphs of players A and B by LA

and LB, respectively.
Based on the definition of layered graph we define

canonical paths as follows.

Definition 2 (Canonical Path). A canonical path is a
directed path in a layered graph that starts from v0,0
and ends at vK,n.

Figure 1 shows a layered graph and a canonical
path. Next, we give a one-to-one mapping between
canonical paths and pure strategies.

Lemma 1. Each pure strategy for a player is equivalent to
exactly one canonical path in the layered graph of that
player and vice versa.

Proof. Because the edges in the layered graph exist
only between two consecutive layers, each canonical
path contains exactly K edges. Let p be an arbitrary
canonical path in the layered graph of a player with n
troops. In the equivalent pure strategy, put li troops in
the battlefield i if p contains the edge between vi−1,j
and vi,j+li for some j. By definition of the layered
graph, we have li ≥ 0. Also, because p starts from v0,0
and ends in vK,n, we have ∑K

i�0li � n. Therefore, this
strategy is indeed a pure strategy.

On the other hand, let s be a valid pure strategy,
and let si denote the total number of troops in battle-
fields 1 to i in strategy s. We claim that the set of edges

Figure 1. Illustration of Our Layer Graphs

(a) (b) (c)

0.3

0.3

0.4

0.4

0.7

0.3

0.3

0.3

Notes. (a) A layered graph for a player with three troops playing over three battlefields. (b) A canonical path corresponding to a pure strategy in
which the player puts no troops on the first battlefield, one troop on the second one, and two troops on the third one is shown. (c) A flow of size
one, which is a representation of a mixed strategy consisting of three pure strategies with probabilities 0.3, 0.4, and 0.3.
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between vi−1,si−1 and vi,si for 1 ≤ i ≤ K is a canonical
path. Note that s0 � 0 and sK � n. Also, the endpoint of
any such edge is the starting point of the edge chosen
from the next layer, so we have constructed a valid
canonical path. w

So far, it is clear how layered graphs are related to
pure strategies using canonical paths. Now, we explain
the relation between mixed strategies and flows of size
one in which v0,0 is the source and vK,n is the sink. One
approach to formulate the mixed strategies of a game is
to represent every strategy by a vector of probabilities
over the pure strategies. Because, based on Lemma 1,
each pure strategy is equivalent to a canonical path in
the layered graph, for any pure strategy s with proba-
bility P(s) in a mixed strategy, we assign a flow of size
P(s) to the corresponding canonical paths of s in the lay-
ered graph. All these paths begin and end in v0,0 and
vK,n, respectively. Therefore, because

∑P(s) � 1 for all
pure strategies of a mixed strategy, the size of the corre-
sponding flow is exactly one.

Corollary 1. For any mixed strategy of a player with n
troops, there is exactly one corresponding flow from vertex
v0,0 to vK,n in the layered graph of that player.

Note that, although wemap any given mixed strategy
to a flow of size one in the layered graph, this is not a
one-to-one mapping because several mixed strategies
can be mapped to the same flow. However, in the fol-
lowing lemma, we show that this mapping is surjective.

Lemma 2. For any flow of size one from v0,0 to vK,n in the
layered graph of a player with n troops, there is at least one
mixed strategy of that player with a polynomial-size sup-
port that is mapped to this flow.

Proof. A flow path is a flow over only one path from
source to sink. We can decompose any given flow to
polynomially many flow paths from source to sink.
One algorithm to find such a decomposition finds a
path p from source to sink in each step and subtracts
the minimum passing flow through its edges from
every edge in p. The steps are repeated until there is
no flow from source to sink. Because the flow passing
through at least one edge becomes zero at each step, the
total number of these paths does not exceed the total
number of edges in the graph. This means the number
of flow paths in the decomposition is polynomial.

Now, given a flow of size one from v0,0 to vK,n, we
can basically decompose it into polynomially many
flow paths using the aforementioned algorithm. The
paths over which these flow paths are defined corre-
spond to pure strategies, and the amount of flow pass-
ing through each corresponds to its probability in the
mixed strategy. w

Using the flow representation for mixed strategies
and the shown properties for it, we give the first LP

with polynomially many constraints and variables to
find a maximin strategy for any player in an instance of
Colonel Blotto. Our LP consists of two sets of con-
straints. The first set (membership constraints) ensures
we have a valid flow of size one. This means we are
able to map the solution to a valid mixed strategy. The
second set of constraints is needed to ensure the mini-
mum payoff of the player for which we are finding the
maximin strategy is at least u. By maximizing u, we get
a maximin strategy. In the following theorem, we prove
that it is possible to formulate PA using polynomially
many constraints and variables. Note that one can
swap n andm and use the same LP to formulate PB.

Theorem 1. In an instance of Colonel Blotto with K battle-
fields and at most n troops for each player, PA can be for-
mulated with Θ(n2K) constraints andΘ(n2K) variables.
Proof. The high-level representation of our LP is as
follows:

max u
s:t: x̂ is a mixed strategy for player A

V(x̂, ŷ) ≤ −u for all mixed strategies
ŷ of player B:

(2)

The strategies x̂ and ŷ are represented using a flow of
size one in the layered graph of players A and B,
respectively. In Lemma 2, we prove that any valid flow
representation can be mapped to a mixed strategy.

To ensure we a have a valid flow of size one from
v0,0 to vK,n in LA (recall that LA denotes the layered
graph of player A), we use the classic LP representa-
tion of flow (Cormen et al. 2009). That is, not having
any negative flow and the total incoming flow of each
vertex must be equal to its total outgoing flow except
for the source and the sink. We denote the amount of
flow passing through the edge from vk,i to vk+1,j by
variable Fk,i,j. The exact membership constraints are
shown in part (a) of linear programMainLP.

On the other hand, we maximize the guaranteed
payoff of player A by bounding the maximum possi-
ble payoff of player B. To do this, first note that, for
any given strategy of player A, there exists a pure
strategy for player B that maximizes the payoff. Let
Pk,j denote the probability that player A puts j troops
in the kth battlefield. Figure 2 shows the value of Pk,j

for the illustrated examples in Figure 1. We can com-
pute these probabilities using the variables defined in
the previous constraints as follows:

Pk,j �
∑n−j
i�0

Fk,i,i+j: (3)

By having these probabilities, we can compute the
expected payoff that player B gets over battlefield k
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when putting j troops in it. Moreover, consider a given
canonical path p in LB and let sp be the pure strategy of
player B, equivalent to p. We use Wk,i to denote the
expected payoff of player B over battlefield k when
putting i troops in it. This means the expected payoff
of playing strategy sp is

∑Wk,j−i for any k, i, and j such
that there exists an edge from vk,i to vk+1,j in p. It is pos-
sible to computeWk,i using the following equation:

Wk,i �
∑n
l�0

Pk,l × Vk(i, l) ∀k, 1 ≤ t ≤ K: (4)

Note that both equations to compute Pk,i and Wk,i are
linear and can be computed in our LP. Assume Wk,i is
the weight of the edge from vk,j to vk+1,i+j in LB. Given
the probability distribution of player A (which we
denote by Pk,i), the problem of finding the pure strat-
egy of B with the maximum possible expected payoff
is equivalent to finding a path from v0,0 to vK,m with
maximum weight.

To find the path with maximum weight from v0,0 to
vK,m, we define an LP variable Dk,i, where its value is
equal to the weight of the maximum weighted path
from v0,0 to vk,i, and we update it using a simple
dynamic programming–like constraint:

Dk,i ≥Dk−1,j +Wk−1,i−j ∀i, j : 0 ≤ j ≤ i ≤m:

The maximum weighted path from v0,0 to vK,m is equal
to the value of DK,m. The detailed constraints are shown
in part (b) of linear programMainLP.

max u (MainLP)
subject to

(a)

Σl
i�0Fk,i,l � Σn

j�lFk+1,l,j ∀k, l : 1 ≤ k ≤ K− 1, 0 ≤ l ≤ n

Fk,i,j ≥ 0 ∀k, i, j : 1 ≤ k ≤ K, 0 ≤ i ≤ j ≤ n

Σn
j�lF1,l,j � 0 ∀l : 0 < l ≤ n

Σn
j�0F1,0,j � 1

Σn
j�0FK,j,n � 1

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(b)

Pk,i � Σ
n−j
i�0Fk,i,i+j ∀k, j : 1 ≤ k ≤ K, 0 ≤ j ≤ n

Wk,i � Σn
l�0Pk,l × Vk(i, l) ∀k, i : 1 ≤ k ≤ K, 0 ≤ i ≤m

D0,i � 0 ∀i : 0 ≤ i ≤m
Dk,i ≥Dk−1,j +Wk−1,i−j ∀i, j : 0 ≤ j ≤ i ≤m
DK,m ≤ −u

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
Note that the number of variables we use in linear
programMainLP is as follows:

• Variables of type Fk,i,l:Θ(n2K).
• Variables of type Pk,i:Θ(nK).
• Variables of typeWk,i:Θ(mK).
• Variables of typeDk,i:Θ(mK).

Therefore, the total number of variables is Θ(n2K).
Also, note that the number of nonnegativity con-
straints (Fk,i,j ≥ 0) is more than any other constraints
and is Θ(n2K); therefore, the total number of con-
straints is also Θ(n2K). w

To obtain a mixed strategy for player A, it suffices
to run linear program MainLP and find a mixed strat-
egy of A that is mapped to the flow it finds. Note that,
based on Lemma 2, such mixed strategy always exists.
Afterward, we do the same for player B by simply
substituting n and m in the LP.

3.2. Lower Bound
A classic approach to reduce the number of linear con-
straints needed to describe a polytope is to do it in a
higher dimension. More precisely, adding extra varia-
bles might reduce the number of facets of a polytope.
This means a complex polytope may be much simpler
in a higher dimension. This is exactly what we did in
Section 3.1 to improve the Ahmadinejad et al. (2016)
algorithm. In this section, we prove that any LP for-
mulation that describes solutions of a Blotto game
requires at least Θ(n2K) constraints, no matter what
the dimension is. This proves the given LP in Section
3.1 is tight up to constant factors.

The minimum needed number of constraints in any
formulation of a polytope P is called the extension
complexity of P, denoted by xc(P). It is usually not
easy to prove a lower bound directly on the extension
complexity because all possible formulations of the
polytope must be considered. A very useful technique
given by Yannakakis (1991) is to prove a lower bound
on the nonnegative rank of the slack matrix of P, which
is proven to be equal to xc(P). One can define the slack
matrix over any formulation of P so that its nonnega-
tive rank is equal to xc(P), which means one does not
have to worry about all possible formulations. To prove
this lower bound, we use a method called rectangle
covering lower bound, already given in Yannakakis’s
(1991) paper. We now formally define some of the con-
cepts we use.

Figure 2. (a) Pk,i for the Pure Strategy Specified in Figure 1(b)
and (b) Pk,i for the Mixed Strategy Specified in Figure 1(c)

(a) (b)

0 0 1

1 0 0

0 1 0

0

0

0

0.3 0.7 0

0.3 0 0.4

0.7 0 0.3

0

0.3

0

Note. The rows correspond to battlefield and the columns correspond
to the number of troops.
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Definition 3 (Extension Complexity). Extension com-
plexity xc(P) of a polytope P is the smallest number of
facets of any other polytope Q that has a linear projec-
tion function π with π(Q) � P.

The next concept we need is that of a slack matrix,
which is a matrix of nonnegative real values in which
its columns correspond to vertices of P and its rows
correspond to its facets. The value of each element of
a slack matrix is basically the distance of the vertex
corresponding to its column from the facet corre-
sponding to its row.

Definition 4 (Slack Matrix). Let {v1, : : : ,vv} be the set of
vertices of P, for a matrix A and a vector b. Let {x ∈
R

n | Ax ≤ b} be the description of P. The slack matrix
SP of P is defined by SPij � bi −Aivj.

Also, the nonnegative rank of a matrix S is the mini-
mum number m such that S can be factored into two
nonnegative matrices F and V with dimensions f × m
and m × v.

Definition 5 (Nonnegative Rank). We define the non-
negative rank rk+(S) of a matrix S with f rows and v
columns as

rk+(S) �min m | ∃F ∈ R
f×m
≥0 ,V ∈ R

m×v
≥0 : S � FV

{ }
: (5)

Yannakakis (1991) proves that xc(P) � rk+(SP). Therefore,
instead of proving a lower bound on the extension com-
plexity of P, it only suffices to prove a lower bound on
the nonnegative rank of the corresponding slack matrix.
As mentioned before, to do so, we use the rectangle cov-
ering lower bound. A rectangle covering for a given non-
negative matrix S is the minimum number of rectangles
needed to cover all the positive elements of S and none of
its zeros (Figure 3), formally defined as follows.

Definition 6 (Rectangle Covering). For a polytope P,
the rectangle covering number of P is the smallest
number of combinatorial rectangles R1,R2, : : : ,Rs such
that SPi,j > 0 if and only if (i, j) ∈⋃

Rk. A combinatorial

rectangle R is made by a subset I of rows and J of the
columns, where (i, j) ∈ R if and only if i ∈ I and j ∈ J.
Yannakakis (1991) shows that the number of rectan-

gles in a minimum rectangle covering can never be
greater than rk+(S) using a very simple proof. This
means that any lower bound of it is also a lower
bound of the actual rk+(S). This is the technique we
use in the proof of the following lemma, which is
used later to prove the main theorem.

In the following lemma, we use the membership
polytope to refer to the set of all strategy points for a
player.

Lemma 3. The extension complexity of the membership
polytope of a player in an instance of Blotto with K battle-
fields and n troops for each player is at least Θ(n2K).
Proof. Assume without loss of generality (w.l.o.g.)
that we are trying to describe the polytope P of all
valid strategies of player A. One way of describing
this polytope is explained in the LP described in Sec-
tion 3.1. Now, from its membership constraints, only
consider the ones that ensure the nonnegativity of the
flow passing through the edges of the layered graph
of player A:
Fi,j,t ≥ 0 for all i, j, t such that

0 ≤ i ≤ K − 1; and 0 ≤ j ≤ j + t ≤ n:
(6)

From now on, only consider the part of the slack
matrix corresponding to these constraints (we may
occasionally call it the slack matrix). Its columns, as
mentioned before, correspond to the vertices of the
polytope, which, in this case, are all possible pure
strategies of player A. Also, its rows correspond to the
mentioned constraints. Recall that any pure strategy is
a canonical path in the layered graph of player A.
Note that the slack matrix element corresponding to
any arbitrarily chosen nonnegativity constraint e ≥ 0
and any arbitrary vertex vj corresponding to a pure
strategy S, is zero iff the equivalent canonical path of
S does not contain e and is one if it does because the
elements of the slack matrix are calculated using the

Figure 3. (a) A Sample Matrix; (b) Here, We Change Any Nonnegative Value in theMatrix of (a) to “+”; (c) All These Nonnega-
tive Elements Are Covered by the Minimum Possible Number of Rectangles

4 0 1 7

2 5 2 9

0 1 0 3

0 5 4 1

0 + 0 +

0 + + +

+ 0 + +

+ + + +

0 + 0 +

0 + + +

+ 0 + +

+ + + +

+ +

+ +

+ ++ +

+

+

+

+

(a) (b) (c)

Note. Note that the nonnegative rank of the matrix in (a) cannot be less than five (the number of rectangles).
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formula SPij � bi −Aivj. In this case, b is always zero,
and Aivj is –1 iff S contains the edge in the constraint
and is zero otherwise. This implies that the only
entries of the slack matrix are zero and one.

We call any edge Fb,i,j with j− i > n
2 a long edge. A

canonical path may only contain at most one such
edge. On the other hand, any rectangle in the rectan-
gle covering is basically a set of vertices and a set of
constraints. Note that all the equivalent pure strat-
egies of those vertices must contain the edges over
which the constraints are defined. Therefore, no rec-
tangle can contain more than one constraint over long
edges. The number of long edges in the layered graph
is exactly

K n− 	n+12 

( )

n− 	n+12 
 + 1
( )
2

: (7)

Thus, the minimum number of rectangles to cover all
nonnegative elements of the slack matrix is at least of
the same size, and therefore, Θ(n2K). w

Theorem 2. In an instance of Colonel Blotto with K battle-
fields and n troops for each player, the extension complexity
of PA is Θ(n2K).
Proof. Assume the utility function is defined as fol-
lows:

U(x̂, ŷ) � 0 ∀x̂, ŷ: (8)

This means that any possible strategy is a maximin
strategy for both players. In particular, the polytope P
of all possible maximin strategies of any arbitrarily
chosen player of this game contains all possible valid
strategies. By Lemma 3, xc(P) is at least Θ(n2K). On
the other hand, in Section 3.1, we give an LP with
Θ(n2K) constraints to formulate the maximin poly-
tope. Therefore, its extension complexity is exactly
Θ(n2K). w

4. Multiresource Colonel Blotto
In this section, we explain how our results can be gener-
alized to solve the MRCB.We defineMRCB to be exactly
the same game as Colonel Blotto except, instead of hav-
ing only one type of resource (troops), players may have
any constant number of resource types. Examples of
resource types would be time, money, energy, etc.

To solve MRCB, we generalize some of the concepts
we define for Colonel Blotto. We first define general-
ized layered graphs and generalized canonical paths
as follows:

Definition 7 (Generalized Layered Graph). Consider a
player and let nj denote the total number of available
resources of the jth resource type that the player has.
The generalized layered graph of this player has K ×
n1 × : : : × nc vertices denoted by v(i, r1, : : : , rc) with a

directed edge from v(i, r1, : : : , rc) to v(i+ 1, r′1, : : : , rc) for
any i and 0 ≤ rj ≤ r′j ≤ nj for any 1 ≤ j ≤ c.

Definition 8 (Generalized Canonical Path). A general-
ized canonical path is defined over a generalized
layered graph and is a directed path from v0,0,: : : ,0 to
vK,n1,: : : ,nc .

By these generalizations, we can simply prove that
pure strategies of a player are equivalent to canonical
paths in the player’s generalized layered graph, and
there can be a surjective mapping from these mixed
strategies to flows of size one from v(0, : : : , 0) to
v(K,n1, : : : ,nc) using similar techniques we use in
Section 3.1.

Lemma 4. Each pure strategy for a player in an instance of
MRCB is equivalent to exactly one generalized canonical
path in the generalized layered graph of the player and vice
versa.

Lemma 5. For any flow f of size one from v(0, : : : , 0) to
v(K,n1, : : : ,nc) in the generalized layered graph of a player
with ni troops of type i, there is at least one mixed strategy
with a polynomial size support that is mapped to f.

Using these properties, we can prove the following
theorem.

Theorem 3. In an instance of MRCB, PM
A can be formu-

lated with O(n2cK) constraints andΘ(n2cK) variables.
Proof. The linear program would again look like this:

max u
s:t: x̂ is a mixed strategy for player A

V(x̂, ŷ) ≤ −u for all mixed strategies ŷ
of player B:

(9)

For the first set of constraints (membership con-
straints), we can use the flow constraints over the gen-
eralized layered graph of player A to make sure we
have a valid flow of size one from v(0, : : : , 0) to
v(K,n1, : : : ,nc). And, for the second constraint (payoff
constraint), we can find the maximum payoff of
player B using a very similar set of constraints to the
one described in Section 3.1 but over the generalized
layered graph of player B. w

We can also prove the following lower bound for
MRCB.

Theorem 4. In an instance of MRCB, the extension com-
plexity of PM

A is Θ(n2cK).
Proof. The proof is very similar to the proof of
Theorem 2. We only consider the rectangle covering
lower bound over the part of the slack matrix corre-
sponding to the nonnegativity of flow through edges
in the maximin problem. We call an edge from
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v(i, r1, : : : , rl−1,x, rl+1, : : : , rc) to v(i+ 1, r1, : : : , rl−1,y,
rl+1, : : : , rc) long if y− x > nl

2 . No generalized canonical
path may contain more than c long edges. Therefore,
no rectangle can cover more than c constraints. On the
other hand, there are Θ(n2cK) long edges in the lay-
ered graph. Because c is a constant number, the exten-
sion complexity is Ω(n2cK). Moreover, because we
already gave a possible formulation with O(n2cK) con-
straints in Theorem 4, the extension complexity is also
O(n2cK) and, therefore, Θ(n2cK). w

5. Experimental Results
We implemented the algorithm described in Section
3.1 using the simplex method to solve the LP. We ran
the code on a machine with a dual-core processor and
an 8-GB memory. The running time and the number
of constraints of the LP for each input are shown in
Table 1. Using this fast implementation, we were able
to run the code for different cases. In this section, we
report some of our observations, which mostly con-
firm the theoretical predictions.

An instance of Colonel Blotto is symmetric if the
payoff function is the same for all battlefields, or in
other words, for any pure strategies x and y for play-
ers A and B and for any two battlefields i and j, we
have Ui(x,y) �Uj(x,y). We call an instance of Colonel
Blotto auctionary if the player allocating more troops
in a battlefield wins it (gets more payoff over that bat-
tlefield). More formally, in an auctionary instance of
Colonel Blotto, if x and y are some pure strategies for
players A and B, respectively, then

Ui(x,y) �
+w(i), if xi > yi
0, if xi � yi
−w(i), otherwise:

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
Recall that xi and yi denote the amount of troops A
and B put in the ith battlefield, respectively.

Note that, in an auctionary Colonel Blotto, if
n ≥ (m+ 1)K, then by putting m+ 1 troops in each bat-
tlefield, player A wins all the battlefields and gets the
maximum possible overall payoff. On the other hand,
if n � m, the payoff of player A in any Nash equili-
brium is exactly zero because there is no difference
between player A and player B by definition of an
auctionary Colonel Blotto if n � m, and any strategy
for A can also be used for B and vice versa. W.l.o.g.,
we can ignore the case in which n <m. However, it is

Table 1. The Number of Constraints and the Running
Time of the Implemented Colonel Blotto LP for Different
Inputs

K n m Constraints Running time

10 20 20 3,595 0m3.575s
10 20 25 4,855 0m3.993s
10 20 30 6,365 0m6.695s
10 25 25 5,295 0m8.245s
10 25 30 6,805 0m7.502s
10 30 30 7,320 0m30.955s
15 20 20 5,065 0m14.965s
15 20 25 6,950 0m11.842s
15 20 30 9,210 0m24.196s
15 25 25 7,440 0m46.165s
15 25 30 9,700 0m31.714s
15 30 30 10,265 2m20.776s
20 20 20 6,535 0m46.282s
20 20 25 9,045 0m35.758s
20 20 30 12,055 0m38.507s
20 25 25 9,585 1m38.367s
20 25 30 12,595 0m51.795s
20 30 30 13,210 9m13.288s

Notes. The first column shows the number of battlefields; the second
and third columns show the number of troops of players A and B,
respectively. The number of constraints does not include the
nonnegativity constraints because, by default, every variable is
assumed to be nonnegative in the library we used.

Figure 4. (Color online) The y-Axis Is the Payoff of A in the Nash Equilibrium, and the x-Axis Shows the Value of n−m: (a) K �
6 andm � 10; (b) K � 6 and for Different Values ofm in the Range of 1 to 10, the Same Diagram as (a) Is Drawn; (c) the Same Plot
as (b) but for Different Values of K
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Notes. For instance, for the blue lines, K � 4; for the red lines, K � 6; for the green lines, K � 8; and for the purple lines, K � 10. In all examples, the
payoff function of player A over battlefield i is sgn(xi − yi), where xi and yi denote the number of troops A and B put in the ith battlefield,
respectively.
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not easy to guess the payoff of A in a Nash equili-
brium if m ≤ n < (m+ 1)K. After running the code for
different inputs, we noticed the growth of U with
respect to n (when m is fixed) has a common shape for
all inputs. Figure 4 shows the chart for different val-
ues of n, m, and k.

There have been several attempts to find an explicit
expression for the optimum payoff of players under
different conditions. For example, Roberson (2006)
considers the continuous version of Colonel Blotto
and solves it. Hart (2008) solves the symmetric and
auctionary model and solves it for some special cases.
Little is known about whether it is possible to com-
pletely solve the discrete version when the game is
symmetric and auctionary or not.

Interestingly, we observe that the payoff of players
in the symmetric and auctionary discrete version is
very close to the continuous version Roberson (2006)
considers. The payoffs are especially very close when
the number of troops is large compared with the num-
ber of battlefields, making the strategies more flexible
and more similar to the continuous version. Figure 5
compares the payoffs in the aforementioned models.
In Roberson’s (2006) model, in case of a tie, the player
with more resources wins, whereas in the normal
case, there is no such assumption; however, a tie
rarely happens because, by adding any small amount
of resources, the player losing the battlefield wins it.
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Théorie mathématique du bridge á la portée de tous, by Borel
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von Neumann J, Fréchet M (1953) Communication on the Borel

notes. Econometrica 21(1):124–127.
Weinstein J (2012) Two notes on the Blotto game. B.E. J. Theoretical

Econom. 12(1):1–13.
Yannakakis M (1991) Expressing combinatorial optimization

problems by linear programs. J. Comput. System Sci. 43(3):
441–466.

Soheil Behnezhad is a Motwani Postdoctoral Fellow at
Stanford University. Soheil’s research focus is on theoretical
computer science, and he specifically studies the foundations
of big data algorithms and algorithmic game theory.

Sina Dehghani is a postdoctoral fellow at Institute for
Research in Fundamental Sciences (IPM). He received his
PhD at the University of Maryland. His research interests
include algorithmic game theory, approximation algorithms,
and online algorithms.

Mahsa Derakhshan is a postdoctoral researcher at Prince-
ton University in the Department of Computer Science. Her

primary research interest is in algorithmic mechanism
design and algorithmic game theory. Mainly her research
revolves around designing algorithms and mechanisms for
resource allocation problems in the presence of uncertainty
and strategic behavior.

Mohammedtaghi Hajiaghayi is an ACM fellow, an IEEE
fellow, a Guggenheim fellow, an EATCS fellow, and the Jack
and Rita G. Minker Professor of Computer Science at the Uni-
versity of Maryland, College Park. His main area of research is
designing algorithmic frameworks. In particular, he designs
efficient online algorithms, game theory algorithms, approxima-
tion algorithms, fixed-parameter algorithms, and big data prac-
tical algorithms.

Saeed Seddighin is currently a research assistant profes-
sor at TTIC. He has a broad interest in theoretical computer
science and its applications in computational biology,
machine learning, economics, and artificial intelligence. The
emphasis of his research is on fine-grained algorithm design
and algorithmic game theory.

Behnezhad et al.: Fast and Simple Solutions of Blotto Games
Operations Research, Articles in Advance, pp. 1–11, © 2022 INFORMS 11


	s1
	s1A
	s2
	s3
	s3A
	s3B
	s4
	s5
	TF1

