
Coded Hate Speech Detection
via Contextual Information

Depeng Xu1, Shuhan Yuan2(B), Yueyang Wang3, Angela Uchechukwu Nwude1,
Lu Zhang1, Anna Zajicek1, and Xintao Wu1

1 University of Arkansas, Fayetteville, AR 72701, USA
{depengxu,aunwude,lz006,azajicek,xintaowu}@uark.edu

2 Utah State University, Logan, UT 84322, USA
shuhan.yuan@usu.edu

3 Paycom Software, Inc., Oklahoma City, OK 73142, USA
Yueyang.wang@paycomonline.com

Abstract. Hate speech on online social media seriously affects the expe-
rience of common users. Many online social media platforms deploy auto-
matic hate speech detection programs to filter out hateful content. To
evade detection, coded words have been used to represent the targeted
groups in hate speech. For example, on Twitter, “Google” is used to indi-
cate African-Americans, and “Skittles” is used to indicate Muslim. As a
result, it would be difficult to determine whether a hateful text including
“Google” targets African-Americans or the search engine. In this paper,
we develop a coded hate speech detection framework, called CODE, to
detect hate speech by judging whether coded words like Google or Skit-
tles are used in the coded meaning or not. Based on a proposed two-layer
structure, CODE is able to detect the hateful texts with observed coded
words as well as newly emerged coded words. Experimental results on a
Twitter dataset show the effectiveness of our approach.

Keywords: Coded hate speech · Few-shot learning

1 Introduction

Online social media bring people together and encourage people to share their
thoughts freely. However, due to the openness of social media, some users mis-
use the platforms to promote hateful language. As a result, hate speech, which
“expresses hate or encourages violence towards a person or group based on
characteristics such as race, religion, sex, or sexual orientation”1, unfortunately
becomes a common phenomenon on online social media. Hate speech on online
social media not only seriously affects the experience of regular users, but also
could lead to a real-world consequence. Currently, many online social media,
such as Facebook and Twitter, have a policy prohibiting hate speech. Users who
violate the policy could result in permanent account suspension.
1 https://dictionary.cambridge.org/dictionary/english/hate-speech.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
J. Gama et al. (Eds.): PAKDD 2022, LNAI 13280, pp. 93–105, 2022.
https://doi.org/10.1007/978-3-031-05933-9_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-05933-9_8&domain=pdf
https://dictionary.cambridge.org/dictionary/english/hate-speech
https://doi.org/10.1007/978-3-031-05933-9_8

94 D. Xu et al.

These companies also deploy programs to automatically filter out hateful
content. In early 2016, Google unveiled a tech incubator Jigsaw to reduce online
hate and harassment. In response to these programs, trolls started the “Oper-
ation Google Campaign”, which replaces racial slurs with names of technology
brands and products. For example, when racists publish hate speech to attack
African-American, instead of using the n-word that can be easily detected, they
use the word “Google” to represent African-American, such as “worthless google,
kill yourself”2. Since then, more coded words are proposed to represent differ-
ent targeted groups to avoid the censorship of hate speech. Table 1 shows some
coded words and their corresponding targeted groups. We call such hate speech
using coded words the coded hate speech.

Table 1. Commonly-used coded words

Coded word Targeted group Coded word Targeted group

Google African-American Butterfly Gay

Skittles Muslim Car Salesman Liberal

Pepe Alt-right Bing Asian

M&M Mexican & Muslim Yahoo Mexican

By replacing the targeted groups with specific coded words, it becomes an
uneasy task to detect whether a text is hateful or not because it is difficult to
determine whether these words are in the coded meanings. In this paper, we
detect the hateful texts by distinguishing the meanings of coded words based
on their contexts. Specifically, we consider coded words as a special case of
polysemy, i.e., a single word is associated with two or more different meanings.
In our case, each coded word is associated with a regular meaning, e.g., Google
is a search engine, and Skittles is a brand of candies, and also a coded meaning,
e.g., African-American or Muslin. We consider that if a coded word is in its
coded meaning, the text containing the coded word expresses hate.

Given a training dataset T consisting of regular and hateful texts and col-
lected with a set of coded words C, we aim to build a classifier that is able to:
1) detect the hateful texts with some observed coded words in C; and 2) detect
the hateful texts with new coded words. To achieve these goals, there are three
challenges: 1) how to represent the coded word with two different meanings; 2)
how to detect whether a coded word is used in its coded or regular meaning; 3)
how to detect new coded words without collecting new labeled texts.

In this work, we propose a COded hate speech DEtection (CODE) frame-
work, which is able to detect the observed coded words C as well as newly
emerged coded words. CODE makes use of Embeddings from Language Models
(ELMo) [10] as the pre-trained word embedding model to derive the contex-
tual embeddings of coded words. ELMo is capable of handling the polysemy by
2 https://knowyourmeme.com/memes/events/operation-google.

https://knowyourmeme.com/memes/events/operation-google

Coded Hate Speech Detection via Contextual Information 95

representing a word in different texts with different word embeddings. CODE
then applies transformations on the derived embeddings via a two-layer structure
(general and specific layers) to detect the meaning of a coded word. In particular,
the general layer derives a generalized coded meaning anchor based on all the
observed coded hate speech and makes the coded words in the coded meanings
close to the anchor. We then expect a new coded word in the coded meaning also
close to this generalized coded meaning anchor. The specific layer then derives
the specialized coded meaning anchor for each observed coded word to detect
whether a coded word is used in its coded meaning. Experimental results on a
collected Twitter dataset indicate that CODE can detect hate speech by distin-
guishing the coded and regular meanings of coded words, even the new coded
words without collecting new training samples.

2 Related Work

Hate speech detection has attracted increasing attention in recent years [2,14].
Research in [3] develops a semantic dictionary of hate domain and uses a rule-
based classifier to detect hate speech. Research in [1,16] uses a bag-of-word
model to derive the features of hate speech and then adopt classical machine
learning models such as SVM, logistic regression, random forests to detect the
hate speech. Recently, deep learning models, such as recurrent neural networks
or deep auto-encoder, are also proposed for hate speech detection [9,11–13,15].

There are few studies focusing on coded hate speech detection. Research in [6]
composes a balanced dataset and adopt SVM to predict the coded hate tweets.
In this work, we consider the problem of coded hate speech detection given both
regular and hateful tweets while only a small number of coded hate tweets is
available for training, which is closer to the real-world scenario. Research in [7]
aims at identifying coded words from hateful tweets with a known coded word.
The proposed approach can only detect the coded words that co-occur with the
known coded word within the same corpus. Meanwhile, it cannot detect whether
a coded word is used in the coded or regular meaning given a new tweet.

3 Method

Given a set of coded words C and related hateful texts T h and regular texts
T r, for each coded word c ∈ C, there are associated hateful texts T h

c ⊂ T h and
regular texts T r

c ⊂ T r. Note that in most cases, the coded word is still used as
its regular meaning, i.e., |T r

c | > |T h
c |. In this work, we aim to detect a hateful

text by determining whether an observed coded word c ∈ C or a new coded word
c /∈ C in the text is in the coded meaning based on the training corpus {T r, T h}.

We propose a COded hate speech DEtection (CODE) framework as shown
in Fig. 1. CODE uses ELMo to derive contextual embeddings for coded words
and then applies transformations on the derived embeddings via a two-layer
structure. CODE derives generalized coded and regular meaning anchors and
makes the coded words with coded meanings close to the coded meaning anchor

96 D. Xu et al.

and away from the regular meaning anchor by training on T r and T h. We expect
if a new coded word c /∈ C is in its coded meaning, it should be also close to the
generalized coded meaning anchor. For the observed coded word c ∈ C, we have
the specific texts T r

c and T h
c . CODE further derives the specialized coded and

regular meaning anchors for each observed coded word c based on T r
c and T h

c

so that CODE can leverage the specialized anchors to detect the hate speech.

Fig. 1. The proposed CODE framework

3.1 Coded Word Representation

We use word embeddings to represent coded words. However, the traditional
word embedding approaches, such as word2vec, usually represent one word by
one embedding, which is unable to capture different meanings of coded words
[8]. In this work, we use ELMo to derive the coded word embeddings, which
addresses the issue of polysemy by representing each word based on its context
[10]. As a result, one word has different representations in different contexts. We
represent the coded word c in a text t as et,c = ELMot(c).

3.2 Transformation Layers

After obtaining et,c, we aim to detect whether the coded word c is in its coded
meaning. CODE consists of one general layer and one specific layer, both of which
make transformations to separate the regular and coded meanings of coded words
in the embedding space.

Coded Hate Speech Detection via Contextual Information 97

General Layer. The general layer of CODE is to identify the generalized coded
meanings. In general, for different coded words, although the regular meanings
could be different, the coded meanings should be all alike since they all express
the social hate towards specific groups. Based on this hypothesis, we first derive
prototype representations to represent the regular and coded meanings by using
ELMo on T r and T h. Then, we adopt a neural network as the general layer
to apply a transformation on the original embedding as well as the prototypes.
After we apply the transformation, we consider the transformed prototype rep-
resentations of regular and coded meanings as the generalized regular and coded
meaning anchors, respectively. The objective is to make the transformed coded
word embedding in different meanings close to their corresponding anchors. For
example, if “Google” is used to indicate the African-American in a text, we aim
to make it close to the coded meaning anchor. Because the generalized coded
meaning anchor is derived from several coded words C, the anchor should rep-
resent the generalized coded meaning. Hence, after training, given a new coded
word c /∈ C, if the coded word is used in its coded meaning, we expect the trans-
formed embedding has a smaller distance to the coded meaning anchor compared
with the distance to the regular meaning anchor.

More specifically, given a set of regular and hateful texts T r and T h, we first
adopt ELMo to obtain the word embeddings et,c of the coded word c in text
t. Note that for ELMo, the coded word has a unique word embedding for each
text t. Based on the obtained coded word embedding, we consider the centroid
of coded word embeddings in regular or coded meaning as the corresponding
prototype representation. Symbolically, the prototype representations of regular
meaning and coded meaning of a set of coded words C are computed by a mean
operation, respectively:

ēr =
1

∑

c∈C
|T r

c |
∑

c∈C,t∈T r
c

et,c ēh =
1

∑

c∈C
|T h

c |
∑

c∈C,t∈T h
c

et,c, (1)

where ēr and ēh indicate the prototype representations of regular and coded
meanings, respectively.

Then, we aim to map the coded word embedding derived from each text close
to the prototype representation based on its meaning via a neural network. To
this end, we adopt a neural network g to make a transformation on the coded
word embedding in each text t as well as the prototype representations:

gt,c = gθ(et,c) ḡr = gθ(ēr) ḡh = gθ(ēh), (2)

where θ indicates the parameters of the neural network g. We consider ḡr and
ḡh as the generalized regular and coded meaning anchors, respectively.

In order to separate ḡr and ḡh and to make the coded word embedding gt,c

close to the corresponding anchor, the objective of the neural network gθ is to
make the word embedding in the coded meaning (regular meaning) close to the
generalized coded meaning anchor (regular meaning anchor) and far from the

98 D. Xu et al.

regular meaning anchor (coded meaning anchor). To this end, we propose the
following triplet loss function to train the neural network gθ:

Ltri =
1

∑

c∈C
|T h

c |
∑

c∈C,t∈T h
c

max{d(ḡh,gt,c)−d(ḡr,gt,c)+α, 0}

+
1

∑

c∈C
|T r

c |
∑

c∈C,t∈T r
c

max{d(ḡr,gt,c) − d(ḡh,gt,c) + α, 0},

(3)

where α is the margin and d(x,y) = ‖x − y‖2.
Besides the triplet loss, as discussed above, for the coded hate speech, if

the coded words are in the coded meanings, they should group together in the
embedding space because the contexts of different coded words are similar, i.e.,
expressing the social hate. To this end, we further aim to minimize the distance
between the word embedding in coded meaning gt,c and the generalized coded
meaning anchor ḡh based on the mean squared loss:

Lmse =
1

∑

c∈C
|T h

c |
∑

c∈C,t∈T h
c

(gt,c − ḡh)2. (4)

Finally, the objective function for the general layer is defined as:

Lg = Ltri + λLmse, (5)

where λ is a hyper-parameter.

Specific Layer. The general layer mainly derives the generalized coded meaning
anchor to detect the coded hate speech. Because we have the labeled corpus for
each coded word c ∈ C, we can leverage the regular and hateful texts related with
each coded word, T r

c and T h
c , to further improve the performance of specific hate

speech detection. To this end, we propose the specific layer to detect whether a
coded word c ∈ C is in its coded meaning. In the specific layer, we derive the
prototype representations of regular and coded meanings for each coded word c,
respectively, and then adopt another neural network to finetune the coded word
representation to make it close to the corresponding prototype.

Given a coded word c ∈ C, we adopt the mean operation to derive prototype
representations of regular and coded meanings, ēr

c and ēh
c , respectively.

ēr
c =

1
|T r

c |
∑

t∈T r
c

et,c ēh
c =

1
|T h

c |
∑

t∈T h
c

et,c. (6)

Then, given et,c, ēr
c and ēh

c , we first use general layer to derive gt,c by Eq. (2).
Similarly, we have ḡr

c = gθ(ēr
c), ḡh

c = gθ(ēh
c). After that, we adopt a neural

network fωc
to further derive the specialized representation for c ∈ C.

st,c = fωc
(gt,c) s̄r

c = fωc
(ḡr

c) s̄h
c = fωc

(ḡh
c). (7)

It is worth noting that to achieve the specific hate speech detection, we train
a unique neural network fωc

for each coded word c. We consider s̄r
c and s̄h

c as
the specialized regular and coded meaning anchors for the coded word c.

Coded Hate Speech Detection via Contextual Information 99

To train the neural network, for each coded word c, we adopt the triplet loss
as the objective function to make st,c close to the corresponding anchors.

Ls,c =
1

|T h
c |

∑

t∈T h
c

max{d(s̄h
c , st,c) − d(s̄r

c , st,c) + α, 0}

+
1

|T r
c |

∑

t∈T r
c

max{d(s̄r
c , st,c) − d(s̄h

c , st,c) + α, 0}.

(8)

Overall, CODE is trained in an end-to-end manner. The complete objective
function is defined as below:

L = Lg + λ′
∑

c∈C
Ls,c, (9)

where λ′ is a hyperparameter to balance two layers.

3.3 Coded Hate Speech Detection

CODE can detect the hateful texts with observed and new coded words.

Coded Hate Speech Detection on Observed Coded Words. Given a new
text t with an observed coded word c ∈ C, CODE derives the coded word repre-
sentation st,c from the specific layer and then compares the distances from st,c to
the specialized regular and coded meaning anchors (s̄r

c and s̄h
c), respectively. If

the coded word representation is closer to the specialized coded meaning anchors,
i.e., d(s̄h

c , st,c) < d(s̄r
c , st,c), the text t will be predicted as hate speech.

Coded Hate Speech Detection on New Coded Words. Given a new
text t with a new coded word c /∈ C, CODE leverages the general layer for
coded meaning detection because there is no specialized network built for the
new coded word. First, CODE derives the coded word representation gt,c from
the general layer. It then compares the distances from gt,c to the generalized
regular and coded meaning anchors (ḡr and ḡh), respectively. If the coded
word representation is closer to the generalized coded meaning anchor, i.e.,
d(ḡh,gt,c) < d(ḡr,gt,c), CODE will predict the text t as hate speech.

4 Experiments

4.1 Experimental Setup

Coded Hate Speech Corpus. In this work, we evaluate our approach by using
the coded hate speech on Twitter. We first collect two sets of tweets, i.e., the
benign and hateful tweets, for several selected coded words shown in Table 2. In
benign tweets, the coded word is used in its regular meaning, while in hateful
tweets, the coded word is used in coded meaning targeting a specific group. In
order to collect benign and hateful tweets, we combine different sets of keywords

100 D. Xu et al.

with the coded word as query words to search tweets on Twitter, where the query
words are chosen based on the regular and coded meanings of the coded word. For
example, given the coded word Skittles, for crawling benign tweets, we compose
a set of query words, including pack, eat, and kid, while for crawling hateful
tweets, we use query words, such as Muslim, refugee, and terrorist combining
with Skittles. By using this strategy, we collected 10000 benign tweets and 6342
hateful tweets. The detailed information of collected benign and hateful tweets
for each coded word is shown in Table 2.

Table 2. The information of crawled benign and hateful tweets in the collection and
the adopted training corpus size for each coded word

c Benign Hateful Time period |T r
c | |T h

c |
Google 10000 69 09/20/16-04/09/18 300 20

M&M 10000 520 09/20/16-09/26/19 300 50

Pepe 10000 6499 08/16/17-09/26/19 300 50

Butterfly 10000 618 11/12/09-09/21/19 300 50

Skittles 10000 6342 09/20/16-10/01/19 0 0

Evaluation Tasks. We evaluate our model on two tasks. (1) Coded hate speech
detection on observed coded words. We build a training corpus consisting of the
coded words “Google”, “M&M”, “Pepe”, and “Butterfly”. We train a model
with this corpus and evaluate its performance on new tweets containing these
observed words. (2) Coded hate speech detection on a new coded word. Using
the model built on observed coded words, we detect coded hate speech on new
tweets containing an unobserved coded word, “Skittles”.

As shown in Table 2, in order to simulate the unbalanced nature of coded
hate speech, for the coded word, Google, we adopt 300 regular and 20 hateful
tweets as labeled texts in training. For coded words, M&M, Pepe, and Butterfly,
we adopt 300 regular and 50 hateful tweets in training. The remaining tweets in
our collection for each coded word all serve as the testing set.

Hyperparameters. We adopt the pre-trained ELMo model3 to derive coded
word contextual embeddings. The dimension of coded word embeddings et,c

is 2048. The dimension of the transformed general embeddings gt,c is 1024.
The dimension of the transformed word specific embeddings st,c is 512. The
hyperparameters λ and λ′ are set to 1 in default unless specified otherwise. Both
neural networks gθ and fθ are fully connected networks with one hidden layer.

Baselines. We compare CODE with following baselines. (1) LSTM [4], which
is a deep learning based binary classifier; (2) ELMo, which is based on the
raw embeddings derived from ELMo and uses the same distance-based approach

3 https://github.com/allenai/allennlp/blob/v0.9.0/tutorials/how to/elmo.md.

https://github.com/allenai/allennlp/blob/v0.9.0/tutorials/how_to/elmo.md

Coded Hate Speech Detection via Contextual Information 101

proposed in this work to detect coded hate speech. The purpose is to show the
advantage of our two-layer framework; (3) S model, which removes the general
layer and train the neural network for each coded word separately to detect
coded hate speech as a comparison to show the advantage of the general layer.

Table 3. Experimental results on coded hate speech detection for the observed (Google,
M&M, Pepe, and Butterfly) and unobserved (Skittles) coded words in terms of precision
(P), recall (R) and F1-score (F1)

Model Google M&M Pepe Butterfly Skittles

P R F1 P R F1 P R F1 P R F1 P R F1

LSTM 0.589 0.524 0.555 0.579 0.392 0.468 0.937 0.489 0.643 0.933 0.997 0.963 0.674 0.548 0.605

ELMo 1.000 0.490 0.658 0.437 0.871 0.582 0.854 0.592 0.699 0.957 1.000 0.978 0.573 0.863 0.689

S model 0.821 0.653 0.727 0.600 0.758 0.670 0.919 0.558 0.694 0.957 1.000 0.978 - - -

CODE 0.889 0.653 0.753 0.630 0.715 0.670 0.871 0.664 0.754 0.959 1.000 0.979 0.689 0.855 0.763

4.2 Experimental Results

Coded Hate Speech Detection on Observed Coded Words. Table 3 shows
experimental results on coded hate speech detection for each observed coded
word, Google, M&M, Pepe, and Butterfly. For most coded words, our approach
significantly outperforms the LSTM model. For LSTM, it usually requires a large
amount of training data and a relatively balanced dataset between positive and
negative labels. However, it is mostly not the case when we are dealing with
coded hate speech. In comparison to ELMo, the post-transformation models (S
model and CODE) have improvement on the F1-score. It indicates that training
a coded hate speech detection transformation could further separate the coded
word embeddings in regular and coded meanings than the original coded word
embeddings by the pre-trained ELMo. For the coded word “Butterfly”, all models
have a nearly perfect performance on coded hate speech detection, which means
“Butterfly” in regular meanings and coded meanings are already separated in the
original embedding space. However, for other coded words in our experiments,
making the transformation on original coded word embeddings can boost the
performance on coded hate speech detection with a large margin. In CODE, the
transformation on the general layer leverages more training data from multiple
coded words, which creates a better context of hateful tweets. The specific layer
embedding further combines contexts specifically related to each coded word to
further improve the model performance. Hence, CODE has the best performance
in terms of the F1-score for all words.

Coded Hate Speech Detection on a New Coded Word. The last col-
umn of Table 3 shows experimental results on coded hate speech detection for
the unobserved coded word, “Skittles”. Tweets containing “Skittles” are not in
the training set. The predictions are made by models trained on other words.
Similar to the first task, LSTM does not have the best performance due to the

102 D. Xu et al.

same issues. The embeddings by ELMo before any transformation already can
achieve 0.689 F1-score. It indicates that there is a similarity in the context of the
hateful tweets across different coded words. The general layer transformation in
our approach further extracts the hateful context into a general layer embed-
ding, which has the best performance of 0.763 on the new coded hate detection.
The S model is not applicable here because it can only detect observed coded
words. However, if we compare CODE with the S model trained only on tweets
containing Skittles (F1-score: 0.702), our approach, which benefits from more
training tweets, even outperforms it.

(a) et,c, ēr, ēh of C (b) gt,c, ḡr, ḡh of C

(c) et,c, ēr
c , ē

h
c of “Google” (d) st,c, s̄rc , s̄

h
c of “Google”

Fig. 2. The visualizations of coded word embeddings. The red and black colors indicate
the coded and regular meanings, respectively. The triangles pointing down, up, left,
and right indicate Google, M&M, Pepe, and Butterfly, respectively. The stars indicate
the respected prototypes of coded/regular meanings. (Color figure online)

Visualization. We randomly select 300 regular tweets and 50 coded hateful
tweets from the testing set for each coded word. We adopt TSNE [5] to project
coded word embeddings to a two-dimensional space and visualize regular and
coded meanings of each word in the corpus. Figures 2 (a) and (b) show the
visualization results of regular and coded meanings as well as two prototype
representations before and after the transformations. We can observe that before
conducting the general layer transformation on the contextual embeddings, the
embeddings of regular and coded meanings are mixed within the same words,
and the prototypes of regular and coded meanings are also close to each other.

Coded Hate Speech Detection via Contextual Information 103

The embedding space is divided by words. There is no obvious general trend
to detect hateful meanings for all words. After conducting the general layer
transformation, the coded word embeddings in regular and coded meanings are
clearly separated, and the prototypes of the two meanings are also separated.
Meanwhile, most of the coded word embeddings in coded meanings are close to
the prototype of coded meaning regardless of the regular meaning of the coded
words, which meets our assumption that all hateful tweets have similar hateful
contexts. The embedding space is divided by hateful or regular meanings. It
indicates that our model exploits the common space for all coded words in the
direction of hatefulness. We use the coded word “Google” as an example for the
coded word specific layer embedding visualization. Figures 2 (c) and (d) show the
visualization results of regular and coded meanings before and after two layers
of transformations. After the transformations, the regular and coded meanings
of “Google” are better separated in the new embedding space.

Table 4. Parameter sensitivity of λ and λ′ on observed (average of all observed words)
and unobserved (Skittles) coded words

(λ, λ′) Observed Skittles

P R F1 P R F1

(1, 1) 0.718 0.819 0.763 0.689 0.855 0.763

(0.1, 1) 0.807 0.734 0.768 0.703 0.803 0.750

(10, 1) 0.608 0.874 0.718 0.660 0.911 0.765

(1, 0.1) 0.683 0.834 0.751 0.705 0.874 0.781

(1, 10) 0.783 0.779 0.781 0.685 0.819 0.746

Parameter Sensitivity. We also evaluate the parameter sensitivity of λ and λ′

defined in Eqs. (5) and (9), respectively. We evaluate on observed (average of all
observed words) and unobserved (Skittles) coded words. The results are shown
in Table 4. λ controls the relative weight of MSE loss in comparison to triplet
loss in the general layer. We change λ while keeping λ′ = 1. When λ = 0.1,
F1-score of the unobserved word decreases. When λ = 10, the average F1-score
of the observed words decreases.

λ′ controls the relative weight of the loss for specific layer in comparison
to general layer in the overall objective function. We change λ′ while keeping
λ = 1. As λ′ controls the trade-off of generalization and specialization of the
whole model, the increase of λ′ = (0.1, 1, 10) increases the average F1-score of
the observed words but decreases F1-score of the unobserved word.

5 Conclusion

In this paper, we have developed CODE to achieve coded hate speech detection
by determining whether the coded word is in its coded meaning or not. We treat

104 D. Xu et al.

each coded word as a polysemy and use ELMo to map the coded word in each
text to an embedding space. Based on that, we have developed a two-layer (gen-
eral layer and specific layer) transformation approach. The general layer derives
a generalized coded meaning anchor and makes the coded word in its coded
meaning close to the anchor, while the specific layer derives a specialized coded
meaning anchor for each observed coded word and also makes the specific coded
word in its coded meaning close to the specialized coded meaning anchor. CODE
can detect the hate speech with either observed or newly emerged coded words
by comparing the distance to the specialized or generalized anchor, separately.
Experimental results on a Twitter dataset show that our approach can effectively
detect coded hate speech and significantly outperform the baseline methods. In
the future, we plan to study how to identify newly emerged coded words based
on the existing coded hate speech corpus.

Acknowledgement. This work was supported in part by NSF grants 1564250,
1946391, and 2103829.

References

1. Davidson, T., Warmsley, D., Macy, M., Weber, I.: Automated hate speech detection
and the problem of offensive language. In: ICWSM (2017)

2. Fortuna, P., Nunes, S.: A survey on automatic detection of hate speech in text.
ACM Comput. Surv. 51(4) (2018)

3. Gitari, N.D., Zuping, Z., Damien, H., Long, J.: A lexicon-based approach for hate
speech detection. Int. J. Multimed. Ubiquit. Eng. 10(4), 215–230 (2015)

4. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8),
1735–1780 (1997)

5. van der Maaten, L., Hinton, G.: Visualizing data using t-SNE. J. Mach. Learn.
Res. 9, 2579–2605 (2008)

6. Magu, R., Joshi, K., Luo, J.: Detecting the hate code on social media. In: Eleventh
International AAAI Conference on Web and Social Media (2017)

7. Magu, R., Luo, J.: Determining code words in euphemistic hate speech using word
embedding networks. In: ALW (2018)

8. Mikolov, T., Chen, K., Corrado, G., Dean, J.: Efficient estimation of word repre-
sentations in vector space. arXiv preprint arXiv:1301.3781 (2013)

9. Mou, G., Ye, P., Lee, K.: SWE2: SubWord enriched and significant word empha-
sized framework for hate speech detection. In: Proceedings of the 29th ACM Inter-
national Conference on Information & Knowledge Management, pp. 1145–1154.
Association for Computing Machinery, New York, October 2020

10. Peters, M., et al.: Deep contextualized word representations. In: NAACL (2018)
11. Qian, J., ElSherief, M., Belding, E., Wang, W.Y.: Hierarchical CVAE for fine-

grained hate speech classification. In: EMNLP (2018)
12. Qian, J., ElSherief, M., Belding, E., Wang, W.Y.: Leveraging intra-user and inter-

user representation learning for automated hate speech detection. In: NAACL
(2018)

13. Rajamanickam, S., Mishra, P., Yannakoudakis, H., Shutova, E.: Joint modelling of
emotion and abusive language detection. In: ACL, May 2020

http://arxiv.org/abs/1301.3781

Coded Hate Speech Detection via Contextual Information 105

14. Schmidt, A., Wiegand, M.: A survey on hate speech detection using natural lan-
guage processing. In: Proceedings of the Fifth International Workshop on Natural
Language Processing for Social Media (2017)

15. Tran, T., et al.: HABERTOR: an efficient and effective deep hatespeech detector.
In: EMNLP, October 2020

16. Waseem, Z., Hovy, D.: Hateful symbols or hateful people? Predictive features for
hate speech detection on twitter. In: Proceedings of the NAACL Student Research
Workshop (2016)

	Coded Hate Speech Detection via Contextual Information
	1 Introduction
	2 Related Work
	3 Method
	3.1 Coded Word Representation
	3.2 Transformation Layers
	3.3 Coded Hate Speech Detection

	4 Experiments
	4.1 Experimental Setup
	4.2 Experimental Results

	5 Conclusion
	References

