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We study the phenomenon of Hilbert space fragmentation in isolated Hamiltonian and Floquet quantum

systems using the language of commutant algebras, the algebra of all operators that commute with each

local term that appears in the Hamiltonian or each local gate of the circuit. We provide a precise definition

of Hilbert space fragmentation in this formalism as the case where the dimension of the commutant algebra

grows exponentially with the system size. Fragmentation can, hence, be distinguished from systems with

conventional symmetries such as U(1) or SU(2), where the dimension of the commutant algebra grows

polynomially with the system size. Furthermore, the commutant algebra language also helps distinguish

between “classical” and “quantum” Hilbert space fragmentation, where the former refers to fragmentation

in the product state basis. We explicitly construct the commutant algebra in several systems exhibiting

classical fragmentation, including the t − Jz model and the spin-1 dipole-conserving model, and we

illustrate the connection to previously studied “statistically localized integrals of motion.” We also revisit

the Temperley-Lieb spin chains, including the spin-1 biquadratic chain widely studied in the literature, and

show that they exhibit quantum Hilbert space fragmentation. Finally, we study the contribution of the full

commutant algebra to the Mazur bounds in various cases. In fragmented systems, we use expressions for

the commutant to analytically obtain new or improved Mazur bounds for autocorrelation functions of local

operators that agree with previous numerical results. In addition, we are able to rigorously show the

localization of the on-site spin operator in the spin-1 dipole-conserving model.
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I. INTRODUCTION

The study of ergodicity and its breaking in isolated

quantum systems is a subject of active research. Ergodicity

in isolated quantum systems is defined by the eigenstate

thermalization hypothesis (ETH), a conjecture about the

matrix elements of local operators in between the eigen-

states of the Hamiltonian [1,2]. Restricting to diagonal

matrix elements, which is sometimes referred to as diagonal

ETH [3], it states that the expectation value of any local

operator in eigenstates of the Hamiltonian is a smooth

function of energy, determined by its thermal expectation

value in an appropriate Gibbs density matrix [4–6]. Its

strong version, known as strong ETH, states that all

eigenstates satisfy diagonal ETH, whereas its weak version,

known as weak ETH, states that almost all eigenstates

satisfy diagonal ETH, which allows for a small (measure-

zero) set of eigenstates to violate it. While strong ETH is

believed to hold in generic isolated quantum systems, its

complete violations (i.e., violations of strong and weak

ETH) are well known in two cases. First are integrable

systems, where an extensive number of conserved quan-

tities lead to quasiparticle descriptions and complete

solvability of the spectrum. Second are many-body local-

ized systems, where strong disorder or quasiperiodicity

results in the existence of emergent integrals of motion that

lead to localized eigenstates throughout the spectrum,

although its stability for large system sizes in more than

one dimension is a subject of much debate [7,8].

In addition to complete violations, several examples of

partial violations of ETH have been recently found. One

such family of examples is comprised of quantum scarred

systems, which possess a small number of “quantum scars,”

i.e., ETH-violating eigenstates amidst a sea of ETH-

satisfying eigenstates. The quantum scars in all such

systems form a measure-zero set of eigenstates in the

thermodynamic limit, and weak ETH is satisfied while
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strong ETH is violated. Nevertheless, quantum scars have a

striking impact on the dynamics of particular initial states

including in systems with experimental relevance, as seen

in Rydberg atom experiments [9,10]. Several examples of

exactly solvable quantum scars are found in the literature

[11], including ones with equally spaced towers of states

[12–24] that lead to perfect revivals from particular initial

states. Many of these examples can be captured by unified

formalisms [18,20–25] which typically involve starting

from a highly symmetric Hamiltonian and adding pertur-

bations that preserve some of its eigenstates.

Another family of recently discovered violations of

ETH is Hilbert space fragmentation found in constrained

Hamiltonian systems as well as random unitary circuits,

which is the focus of this work. The term typically refers to

the phenomenon where the system possesses exponentially

many dynamically disconnected subspaces, referred to as

Krylov subspaces. To be more precise, the Hilbert spaceH

of any isolated quantum system can be generically

described as

H ¼ ⨁
K

α¼1

Kα; Kα ≔ spantfUtjψαig; ð1Þ

where Ut is the unitary governing the time evolution (i.e.,

e−iHt for systems with Hamiltonian H), spantfUtjψαig
denotes the subspace spanned by time evolution of the state

jψαi, and K is the number of Krylov subspaces of the

system. While the decomposition of Eq. (1) is trivial if

jψαi’s are eigenstates of U, typical examples of Hilbert

space fragmentation focus on cases where jψαi’s are

“simple” states (e.g., product states). The existence of

dynamically disconnected subspaces is also not surprising

in the presence of symmetries, and jψαi’s in Eq. (1) differ

by some symmetry quantum numbers that are preserved

under time evolution. However, Hilbert space fragmenta-

tion differs from regular symmetries in two important ways.

First, in the case of conventional symmetries, the number of

Krylov subspaces K either stays constant or grows poly-

nomially with increasing system size, whereas it grows

exponentially in fragmented systems; e.g.,K ∼ expðcLÞ for
one-dimensional systems with L sites. Second, the Krylov

subspaces in fragmentation systems Kα do not seem to be

distinguished by quantum numbers corresponding to any

obvious local symmetries of the Hamiltonian H. The

phenomenon of Hilbert space fragmentation is explicitly

pointed out in the context of dipole-moment-conserving

models [26–28], although similar phenomena are known or

implicitly assumed in earlier literature [29–37]. The Krylov

subspaces fKαg can have any dimension, ranging from

one-dimensional “frozen” product states [27,28], where all

terms of the Hamiltonian act trivially, to ones with

exponentially large dimension that can be studied in terms

of a restricted effective Hamiltonian [38,39].

From the perspective of the full Hilbert spaceH (within a

quantum number sector of a “conventional” symmetry),

fragmented systems always violate ETH, with nonthermal

eigenstates constituting either zero or nonzero measure of

all eigenstates, referred to as violations of strong or weak

(and, hence, also strong) ETH, respectively [27]. Referring

to the dimension of the largest Krylov subspace as Dmax ≔

maxαfdimðKαÞg and the Hilbert space dimension as

D ≔ dimðHÞ, Ref. [27] further classifies fragmented sys-

tems into two classes: strongly fragmented and weakly

fragmented, where Dmax=D→ 0 and Dmax=D→ 1, respec-

tively, in the thermodynamic limit. Weakly fragmented

systems have a dominant Krylov subspace in the thermo-

dynamic limit, and, hence, while they violate strong ETH

due to the small Krylov subspaces, they satisfy weak ETH.

These systems share a lot of phenomenology with quantum

many-body scars. Strongly fragmented systems, on the

other hand, do not have a dominant Krylov subspace and,

hence, violate weak ETH as well. Nevertheless, signatures

of ETH within sufficiently large Krylov subspaces Kα

(referred to as Krylov-restricted thermalization [11,38]) are

found in models exhibiting both strong and weak Hilbert

space fragmentation [38,40,41], provided the Hamiltonian

restricted to the studied Krylov subspace is nonintegrable

and not many-body localized [42,43]. Several examples of

Hilbert space fragmentation that do not involve dipole-

conserving models are found in Refs. [40,41,44–50].

In spite of several examples of Hilbert space fragmen-

tation, many aspects about fragmentation remain vague or

unanswered. Since the existence of Krylov subspaces of

the form of Eq. (1) by definition implies that the

Hamiltonian is block diagonal in a certain basis, an

obvious question that arises is whether the system has

nonobvious nonlocal conserved quantities. While the

existence and construction of such nonobvious conserved

quantities are well known in the study of quantum

integrable systems, Hilbert space fragmentation differs

from quantum integrability, since it is completely deter-

mined by the local terms of the Hamiltonian and does not

require additional symmetries such as translation invari-

ance that are key to integrability. That is, in all examples

that define the fragmentation concept, if a Hamiltonian of

the form H ¼ P

j ĥj shows Hilbert space fragmentation,

where ĥj denotes a local few-site term, so does the entire

family of Hamiltonians H ¼ P

j Jjĥj, where Jj’s are

arbitrary coefficients. An important step toward under-

standing the nature of conserved quantities in fragmented

systems is made in Ref. [44]. It turns out that highly

nonlocal conserved operators, called “statistically local-

ized integrals of motion” (SLIOMs) uniquely label all the

different Krylov subspaces in certain fragmented systems.

However, the construction of SLIOMs there does not

directly extend to all systems exhibiting fragmentation,

and it is natural to wonder if SLIOMs are generic to

systems exhibiting fragmentation. Furthermore, in all
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systems exhibiting fragmentation of the form of Eq. (1),

the projectors onto the Krylov subspaces fKαg are

conserved quantities, which are conserved by definition,

and it is not clear if and how they are related to SLIOMs.

In this work, we resolve these questions by studying

fragmentation in the language of so-called commutant

algebras, which is the algebra of conserved quantities

[also known as integrals of motion (IOMs)] for an entire

family of Hamiltonians. For the family H ¼
P

j Jjĥj
discussed above, the commutant algebra is the algebra

of all operators that commute with all ĥj’s. This formalism

allows us to compare and contrast fragmentation versus

conventional symmetries and also makes clear the relation

between SLIOMs and the Krylov subspace projectors,

both of which are conserved quantities and, hence, just

different “vectors” in a uniquely defined commutant

algebra associated with local terms in the Hamiltonian.

Another important aspect that is seldom discussed is the

basis in which fragmentation occurs. Most examples of

Hilbert space fragmentation are in the product state basis,

i.e., where jψαi’s in Eq. (1) are product states. This means

that the phenomenon is essentially classical in nature and

also exists in classical Markov processes with the same set

of allowed local transitions, which is, in fact, discussed in

previous works [29,51]. This leads us to wonder if a truly

quantum version of fragmentation can exist, which would

be the case if fragmentation happens in a nonobvious

entangled basis such that some of the jψαi’s in Eq. (1)

necessarily need to have entanglement. Naively allowing

for nonproduct state basis without a more precise definition

of fragmentation is not helpful, since for any finite-size

system the eigenstates are themselves one-dimensional

dynamically disconnected Krylov subspaces, which leads

to the meaningless conclusion that all finite-size systems

are fragmented. Similar confusions also exist for the

definition of quantum integrability in finite-size systems,

as discussed in Refs. [52,53]. Hence, we first need a precise

rigorous definition of fragmentation, which we provide in

this work using the language of commutant algebras. This

also allows us to distinguish between classical fragmenta-

tion in the product state basis and quantum fragmentation in

entangled bases, and we find models that exist in the

literature that are examples of the latter.

The rest of this paper is organized as follows. In Sec. II,

we introduce the concept of commutant algebras, which is

central to our discussion of Hilbert space fragmentation,

and we discuss examples of conventional symmetries in

this language. In Sec. III, we work out the Hilbert space

fragmentation of the t − Jz model in the language of

commutant algebras and also illustrate the connections

between the commutant algebras and previously con-

structed SLIOMs in the 1D t − Jz model with open

boundary conditions. In Sec. IV, we similarly demonstrate

the fragmentation in yet another model, which we refer to

as the pair-flip (PF) model, where the definition of SLIOMs

is not a priori clear. While these models are examples of

“classical fragmentation” in the product state basis, in

Sec. V, we study the Temperley-Lieb (TL) spin chains,

which we show are examples of models exhibiting quantum

fragmentation in an entangled basis; a distinguishing

feature of the TL family is that its commutant algebra is

non-Abelian, while classical fragmentation examples have

Abelian commutant algebras. In Sec. VI, we discuss the

well-known strongly fragmented spin-1 dipole-conserving

model [27,44] in the commutant algebra language, and we

analytically construct and count the full commutant.

Finally, in Sec. VII, we study the effect of the full

commutant algebra on the Mazur bounds for autocorrela-

tion functions of local operators, and we illustrate standard

results for conventional symmetries. Furthermore, as a

result of our analytical understanding of the full commu-

tant, we are able to analytically compute the Mazur bounds

in detail in many of the fragmented models. In the t − Jz
model with open and periodic boundary conditions, we

show that the commutant provides improved bounds that

are not fully captured by SLIOMs, and we also analytically

recover many of the numerical results of Ref. [44]. In the

spin-1 dipole-conserving model, we are able to analytically

compute a large part of the full Mazur bound, which

rigorously proves the localization of the on-site spin

operator. We also present numerical and analytical results

of enhanced Mazur bounds corresponding to certain local

operators in the PF and TL models. We conclude with open

questions in Sec. VIII.

II. COMMUTANT ALGEBRAS

A. Definition and properties

As discussed in the previous section, Hilbert space

fragmentation depends only on the local terms of the

Hamiltonian, and the Hilbert space decomposition of

Eq. (1) is the same for a family of Hamiltonians H:

H ¼
X

j

Jjĥj; ð2Þ

where ĥj is a strictly local (generically multisite) operator in

the vicinity of site j such that ĥi and ĥj for i ≠ j need not

commute and Jj are arbitrary coefficients. Since we are

interested in the block-diagonal structure of the family of

Hamiltonians in Eq. (2) that does not depend on local

couplings (similar in this aspect to conventional on-site

symmetries), we are interested in operators Ô that commute

with each term, i.e.,

½ĥj; Ô� ¼ 0 ∀ j: ð3Þ

We refer to such operators Ô either as conserved quantities

or IOMs associated with the family of Hamiltonians of

Eq. (2). Denoting the set of operators Ô that satisfy Eq. (3)
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as C, we note that operators in C form a closed associative

algebra, i.e.,

Ô1 ∈ C; Ô2 ∈ C

⇒

�
α1Ô1 þ α2Ô2 ∈ C

Ô1Ô2; Ô2Ô1 ∈ C
for any α1; α2 ∈ C; ð4Þ

and, hence, we refer to C as the commutant algebra. If the

family of systems contains several types of terms, e.g.,

Hamiltonians H ¼
P

j Jjĥj þ
P

jKjĝj with arbitrary

coefficients Jj and Kj, we define the commutant as the

algebra of operators Ô that individually commute with all

types of local terms, i.e., ½ĥj; Ô� ¼ ½ĝj; Ô� ¼ 0 for all j.

This definition also implies that operators in the commutant

commute with unitary circuits U built by local gates using

the same terms fĥjg such as

U ¼
Y

j

exp ð−iJjĥjÞ; ð5Þ

where the ordering of terms in the product in U does not

matter for the commutant considerations (but, of course,

matters for specific model instances). Hence, while we

explicitly describe only Hamiltonian systems in this work,

all of our results also hold for unitary circuits of the form

of Eq. (5).

An alternate equivalent definition of C involves the

algebra A generated by arbitrary linear combinations of

arbitrary products of the terms of the Hamiltonian fĥjg, and
we refer to this as “bond algebra” [54–56], since the

Hamiltonian terms are typically associated with bonds on

the lattice, although we sometimes include single- or

multisite Hamiltonian terms. While the identity operator

1 is not necessarily generated by these terms, we can

always add it to the definition ofA, since adding a constant

to the family of Hamiltonians does not affect their sym-

metries. Denoting the algebra of all linear operators on the

(finite-dimensional) Hilbert space H as LðHÞ, both A and

C are subalgebras of LðHÞ. As a consequence of Eq. (3),

the commutant algebra C is the centralizer of the algebraA

in LðHÞ. [57] Note that A and C are both associative

algebras that contain the 1 operator. Furthermore, A is

generated starting from Hermitian ĥj’s, and A and C are

also closed under Hermitian conjugation (i.e., Ô† ∈ A=C if

Ô ∈ A=C). Because of these properties, A and C are

examples of von Neumann algebras [58,59]. von

Neumann algebras are subject to the double-commutant

theorem [58,59], which states that A and C are centralizers

of each other in LðHÞ. Hence, the centers of the algebrasA
and C coincide, given by Z ≔ A ∩ C. [60] All these

algebras are depicted in Fig. 1.

Note that, throughout this work, we reserve the use of

“commutant” to denote C and use “centralizer” to denote

the algebra that commutes with the given algebra.

Furthermore, we always restrict ourselves to systems with

tensor product Hilbert spaces with total dimension D.

Hence, we do not attempt to distinguish between the

algebra and its D-dimensional representation, and we

always mean the latter when we say the former. The

operators in the commutant C then have a naturally defined

Hilbert-Schmidt inner product, and we can construct an

orthonormal basis of C. The number of such basis elements

is referred to as the dimension of the commutant, denoted

by dimðCÞ. In general, this is distinct from the number of

generators of the algebra, which we denote by genðCÞ,
which is the minimal number of operators required to

generate the entire algebra by means of arbitrary sums and

products.

These algebras that are centralizers of each other can be

used to construct a virtual bipartition [61–63] of the Hilbert

space; i.e., the full Hilbert spaceH can be decomposed into

representations of A × C as follows [64,65]:

H ¼ ⨁
λ

ðHðAÞ
λ ⊗ H

ðCÞ
λ Þ; ð6Þ

where H
ðAÞ
λ and H

ðCÞ
λ denote Dλ and dλ dimensional

irreducible representations of the algebras A and C,

respectively. In Eq. (6), λ is a label that distinguishes

different parts of the Hilbert space on which operators in A

and C act irreducibly [66]; specific examples are discussed

FIG. 1. Depiction of the algebras studied in this work. LðHÞ
is the algebra of all linear operators on a finite-dimensional

Hilbert spaceH. The left solid circle is the “bond algebra” A, the

algebra generated by the local terms fĥjg of the family of

Hamiltonians H ¼ P

j Jjĥj. The right solid circle is the “com-

mutant algebra” C, the algebra of all elements that commute with

every element of A. A and C are centralizers of each other in

LðHÞ as a consequence of the double-commutant theorem [58].

Z ¼ A ∩ C is the center of both algebras. The dotted circle is a

maximal Abelian subalgebraM of C, which might not be unique.

Hilbert space fragmentation corresponds to the case when the

dimension of C grows exponentially with system size. When C

is Abelian (e.g., for classical fragmentation), by definition it is

equal to its center and maximal Abelian subalgebra; hence,

C ¼ M ¼ Z ⊆ A.
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in Sec. II B. Specifically, for each λ, the H
ðAÞ
λ ⊗ H

ðCÞ
λ

represents a subspace of dimension Dλdλ that can be

formally tensored such that operators of the bond algebra

A act only on the “degrees of freedom” in the first

factor while operators in the commutant algebra C

act only in the second factor. That is, for each λ, there

exists a tensored basis fjuλ;αi ⊗ jvλ;βig, α ¼ 1;…; Dλ,

β ¼ 1;…; dλ, in which operators ĥA ∈ A and ĥC ∈ C

act as ĥAjuλ;αi ⊗ jvλ;βi ¼
P

α0 M
λ
α;α0ðĥAÞjuλ;α0i ⊗ jvλ;βi

and ĥCjuλ;αi⊗ jvλ;βi¼
P

β0N
λ
β;β0ðĥCÞjuλ;αi⊗ jvλ;β0i, where

MλðĥAÞ and NλðĥCÞ are some Dλ ×Dλ and dλ × dλ
matrices, respectively. Operators ĥA and ĥC, thus, have
the matrix representations

ĥA ¼ ⨁
λ

½MλðĥAÞ ⊗ 1dλ �; ĥC ¼ ⨁
λ

½1Dλ
⊗ NλðĥCÞ�:

ð7Þ

Moreover, for each λ, A and C act in H
ðAÞ
λ and H

ðCÞ
λ as the

full matrix algebras of Dλ ×Dλ and dλ × dλ complex

matrices, respectively. As a consequence, the dimensions

of A and C are simply the dimensions of the subspaces of

matrices of the form of Eq. (7), and we obtain

dimðAÞ ¼
X

λ

D2
λ ; dimðCÞ ¼

X

λ

d2λ ; dimðHÞ ¼
X

λ

Dλdλ:

ð8Þ

Note that the representations in Eq. (7) also imply that any

operator ĥZ in the center Z of these algebras has the matrix

representation

ĥZ ¼ ⨁
λ

½cλðĥZÞð1Dλ
⊗ 1dλÞ�; cλðĥZÞ ∈ C: ð9Þ

The decomposition in Eq. (6) also characterizes the

Krylov subspaces, i.e., subspaces invariant under time

evolution, of the Hamiltonian H in Eq. (2). Since the

time-evolution unitary expð−iHtÞ is an element of the bond

algebra A, for each λ in Eq. (6), it acts only on the basis

elements of the first factor H
ðAÞ
λ while leaving the basis

elements of the second factor H
ðCÞ
λ invariant. Hence, for

each λ, we obtain dλ number of Dλ-dimensional subspaces

that are invariant under time evolution, which are precisely

the Krylov subspaces of Eq. (1). Note that in the above

discussion we are free to perform any change of bases in

H
ðAÞ
λ and H

ðCÞ
λ , and for dλ > 1 (which corresponds to non-

Abelian commutants and implies dλ-fold degeneracies in

the Hamiltonian spectrum—see below) we can have differ-

ent choices of degenerate Krylov subspaces.

The number of Krylov subspaces K can be expressed

only in terms of the dimensions of the irreducible repre-

sentations of C:

K ¼
X

λ

dλ ¼ dimðMÞ: ð10Þ

As we indicate in Eq. (10), the number of Krylov subspaces

is simply the dimension of the maximal Abelian subalgebra

of C, which we denote by M (there could be multiple

choices forM). This is evident in the matrix representation

of Eq. (7) in the basis of Eq. (6). Since M is the maximal

subspace of operators that are part of C and that commute

among themselves, using the fact that the maximal Abelian

subalgebra of the full matrix algebra is, up to a fixed basis

choice, its diagonal subalgebra (i.e., the algebra of all

diagonal matrices), we deduce that any operator ĥ ∈ M

has the matrix representation

ĥM ¼ ⨁
λ

½1Dλ
⊗ Nλ

diagðĥMÞ�; ð11Þ

where Nλ
diagðĥMÞ is a dλ × dλ diagonal matrix (and we

implicitly make an appropriate fixed basis choice that

depends on the M used). The dimension of the subspace

of matrices of the form of Eq. (11) is directly given by

Eq. (10). Using the tensored basis of fjuλ;αi ⊗ jvλ;βig given
by Eq. (6), the Krylov subspaces are uniquely labeled by

the states fjvλ;βig, which are simply the eigenvectors of the

matrices in Eq. (11). Hence, the Krylov subspaces can be

uniquely labeled by eigenvalues of a minimal set of

generators of M, which further justifies Eq. (10).

Finally, as evident in Eq. (7), the existence of these

invariant subspaces also implies that elements of the bond

algebra A, and, hence, all Hamiltonians, have a block-

diagonal structure in the tensored basis determined by

Eq. (6). Particularly, for each λ in Eq. (6), we obtain dλ
identical blocks of dimension Dλ. This leads to degener-

acies in the full spectrum when the commutant C is non-

Abelian, since it then admits irreducible representations

with dimensions dλ > 1.

B. Conventional examples

A wide spectrum of models usually studied in quantum

many-body physics, including those with symmetries, can

be described in terms of bond and commutant algebras. As

we discuss in this section, these range from nonintegrable

ones without any symmetry to completely solvable ones,

with symmetric ones lying between these two extremes.

1. No symmetries

We first consider Hamiltonians with no symmetries. In

this case, the only operator in the commutant C is the

identity operator 1, and, hence, dimðCÞ ¼ genðCÞ ¼ 1.

Since the bond algebra A is the centralizer of C,

A ¼ LðHÞ, the algebra of all operators on the Hilbert

space. Because of Eq. (8), this implies that λ in Eq. (6)

takes a single value with dλ ¼ 1, Dλ ¼ dimðHÞ, and

dimðAÞ ¼ ½dimðHÞ�2. As a consequence of Eq. (10), we

HILBERT SPACE FRAGMENTATION AND COMMUTANT … PHYS. REV. X 12, 011050 (2022)

011050-5



obtain K ¼ 1, which implies that the system has a single

dynamically disconnected Krylov subspace (i.e., the full

Hilbert space), as expected for systems without any

symmetry.

2. Abelian symmetries

We then consider a family of systems with an Abelian

symmetry, for example, one-dimensional spin-1=2XXZ
models with on-site magnetic fields, given by the family

of Hamiltonians

HXXZ ¼
XL

j¼1

½J⊥j ðSxjSxjþ1 þ S
y
jS

y
jþ1Þ þ JzjS

z
jS

z
jþ1� þ

XL

j¼1

hjS
z
j;

ð12Þ

where J⊥j ’s, J
z
j’s, and hj’s are arbitrary coefficients and we

use periodic boundary conditions (Lþ 1≡ 1). The XXZ
model is U(1) symmetric, and the associated conserved

quantity is the total spin Sztot ≔
P

L
j¼1 S

z
j. S

z
tot is part of the

commutant algebra C corresponding to the bond algebra A

generated by the terms fðSxjSxjþ1 þ S
y
jS

y
jþ1Þg and fSzjg of

the XXZ Hamiltonian of Eq. (12), since it commutes with

each of them, i.e.,

½SxjSxjþ1 þ S
y
jS

y
jþ1; S

z
tot� ¼ 0; ½Szj; Sztot� ¼ 0; 1 ≤ j ≤ L:

ð13Þ

The commutant algebra C is precisely the algebra spanned by

all powers of the operatorSztot alongwith the identity operator

1. Using the fact that ðSzjÞ2 ¼ 1=4, it is easy to see that

ðSztotÞLþ1 can be expressed in terms of lower powers of Sztot,

which shows that C is spanned by f1; Sztot; ðSztotÞ2;…;

ðSztotÞLg, and, hence, dimðCÞ ¼ Lþ 1. Furthermore, since

this is an example of an Abelian commutant (C ¼ Z), the

irreducible representations of C are one dimensional; i.e.,

dλ ¼ 1 for all λ in Eq. (6). As a consequence of Eq. (8), this

means that λ runs over (Lþ 1) values, which is consistent

with the fact that the total spin for a spin-1=2 system with L
spins can take only (Lþ 1) values (between−L=2 andL=2).
The bond algebra A admits irreducible representations of

dimensions Dλ ¼ ðL
λ
Þ (which is simply the number of

product states with Sztot ¼ L=2 − λ) such that
P

L
λ¼0Dλdλ ¼

2L ¼ dimðHÞ. Using Eq. (8), we can also obtain the

dimension of the bond algebra to be dimðAÞ ¼ ð2L
L
Þ.

3. Non-Abelian symmetries

We now illustrate the commutant algebra in a family of

systems with a non-Abelian symmetry, for example, the

one-dimensional spin-1=2 Heisenberg model, given by

HHeis ≔
X

j

JjS⃗j · S⃗jþ1: ð14Þ

The Heisenberg Hamiltonian is known to be SU(2) sym-

metric, and the three generators of SU(2) group

fSxtot; Sytot; Sztotg (where Sαtot ≔
P

L
j¼1 S

α
j for α ∈ fx; y; zg)

are all part of the commutant algebra C. That is, they satisfy

�

S⃗j · S⃗jþ1;
XL

i¼1

Sαi

�

¼ 0; 1 ≤ j ≤ L; α ∈ fx; y; zg: ð15Þ

The full commutant algebra C is the associative algebra

consisting of all products and their linear combinations

of Sxtot, S
y
tot, and Sztot, which is known as the universal

enveloping algebra of the Lie algebra suð2Þ, denoted by

U½suð2Þ�. Since we know that the dimensions of the

irreducible representations of SU(2) (and, hence, U½suð2Þ�)
are given by dλ ¼ 2λþ 1 (corresponding to the spin-λ

representation) for 0 ≤ λ ≤ L=2, using Eq. (8) we can show

that dimðCÞ ¼ ðLþ3
3
Þ. The center Z, which consists of the

operators that commute with all operators in C, is exhausted

by the quadratic and higher-order Casimir operators such as

S⃗
2
tot ≔ ðSxtotÞ2 þ ðSytotÞ2 þ ðSztotÞ2. On the other hand, the

maximal Abelian subalgebra M that uniquely labels all

the different sectors is not unique and is generated by S⃗
2
tot and

one of the Sαtot for α ∈ fx; y; zg.
The corresponding bond algebra A can also be under-

stood as follows. Up to addition of constants, the

Heisenberg Hamiltonian of Eq. (14) can be written as
P

j ðJj=2ÞPj;jþ1, where Pj;jþ1 ≔ 2S⃗j · S⃗jþ1 þ 1=2 is the

permutation operator that permutes the spins of j and

jþ 1, and, hence, the bond algebra A in this case has a

simple form—it is the group algebra of the symmetric

group SL of L elements with complex coefficients, typi-

cally denoted by C½SL�. The dimensions of the irreducible

representations of SL allowed in the spin-1=2 Hilbert space

H are well known [62,64,65] and are given by Dλ ¼
ð L
L=2þλ

Þ − ð L
L=2þλþ1

Þ for even L. Consequently, dimðAÞ ¼
½1=ðLþ 1Þ�ð2L

L
Þ, and

PL=2
λ¼0

Dλdλ ¼ 2L ¼ dimðHÞ.
Note that, in a tensor product Hilbert space H, the

decomposition of Eq. (6) can also be directly understood as

a consequence of the fusion rules for SU(2), which leads to

the same expressions for fDλg and fdλg. The non-Abelian
commutant here results in degeneracies in the spectrum of

the Hamiltonians H, since dλ > 1 results in multiple

identical blocks in the Hamiltonian, as discussed in

Sec. II A. In particular, there are dλ ¼ ð2λþ 1Þ identical

blocks (i.e., Krylov subspaces) of dimension Dλ, which

corresponds to the degeneracies of the sectors with quan-

tum numbers spin projection Sztot ¼ −λ;−λþ 1;…; λ − 1; λ

and a total spin λ [i.e., with S⃗
2
tot ¼ λðλþ 1Þ].

4. Solvable models

We now turn to completely solvable models with

Hamiltonians consisting of commuting terms [i.e.,

½ĥi; ĥj� ¼ 0 in Eq. (2)]. By construction, the bond algebra
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corresponding to a family of these models is Abelian

(A ¼ Z), and its only irreducible representations are one

dimensional; i.e., Dλ ¼ 1 for all λ. As a consequence of

Eqs. (8) and (10), the number of Krylov subspaces

K ¼ dimðHÞ, which means that all eigenstates are one-

dimensional Krylov subspaces, and, hence, the model is

solvable. Classic examples of systems that fall into this

category are stabilizer code models such as the toric code

[67,68] or certain fracton models [69,70]. In these cases,

both the bond and commutant algebras are group algebras

of certain subgroups of the Pauli group (i.e., the group of all

Pauli strings under multiplication). Hence, it is typically

sufficient to study the group structure of the Pauli strings

that span these algebras. For example, the bond algebra A

in stabilizer codes by construction is the group algebra of

an Abelian stabilizer group S, a subgroup of the Pauli

group. The commutant algebra C is the group algebra of

the group centralizer of the stabilizer group within the

Pauli group, typically denoted by CðSÞ, and it is a non-

Abelian group that consists of all logical operators in

the system, including the trivial ones that are part of the

stabilizer group S. Nontrivial logical operators that are not

part of the stabilizer group, e.g., Wilson loops, are part of

the quotient group CðSÞ=S. The (topological) degeneracies
in the ground state (and excited states) of stabilizer codes

can then be understood either in terms of nontrivial logical

operators or directly as a consequence of the non-Abelian

commutant algebra C.

C. Hilbert space fragmentation

We now describe Hilbert space fragmentation in the

language of bond and commutant algebras. As discussed in

Sec. II A, the dynamically disconnected Krylov subspaces

of a family of systems can be understood in terms of

Eq. (6). We note that the definitions of Eqs. (8) and (10),

along with the fact that dλ ≥ 1 for all λ, impose bounds on

the number of Krylov subspaces K in terms of dimðCÞ and
vice versa:

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

dimðCÞ
p

≤ K ≤ dimðCÞ; K ≤ dimðCÞ ≤ K2: ð16Þ

These bounds allow us to broadly classify one-dimensional

systems into three categories based on the scaling of

log½dimðCÞ� [and, hence, dimðCÞ] with system size L: first,
systems where log½dimðCÞ� is independent of L, which

occurs in systems with discrete symmetry such as Z2 and,

second, systems with log½dimðCÞ� that scales as logL,
which typically occurs in systems with continuous sym-

metries such as U(1) or SU(2), discussed in Sec. II B. These

cases are well known and are typically considered examples

of conventional symmetries. A third possibility is that

log½dimðCÞ� scales linearly with L. As a consequence of

Eq. (16), this is a necessary and sufficient condition for the

number of Krylov subspaces K to scale exponentially with

L and can be taken to be a definition of Hilbert space

fragmentation. However, interesting examples of fragmen-

tation are only the systems where dimðCÞ scales exponen-
tially with system size while the bond algebra A is non-

Abelian. As discussed in Sec. II B 4, if the bond algebra A

is Abelian, K [and, hence, dimðCÞ] always scales exponen-
tially with system size and the system is completely

solvable (and, hence, fragmented in a trivial sense).

In higher-dimensional systems, we can similarly define

fragmentation as the case when log½dimðCÞ� scales as a

volume law, i.e., linearly in volume of the system. The

various scalings of dimðCÞ in one and two dimensions are

summarized in Table I, and we mostly focus on fragmented

systems in the rest of this work. Note that higher-dimen-

sional systems offer more possibilities for the scaling of

dimðCÞ due to the possibility of subsystem symmetries, but

a detailed discussion of all cases is beyond the scope of

this work.

Several features of fragmentation can also be defined in

the language of commutant algebra. For example, the

distinction between strong and weak fragmentation then

depends on the dimension of the largest Krylov subspace,

which in terms of the decomposition of Eq. (6) reads

Dmax ¼ maxλ Dλ. Since strong and weak fragmentation in

the literature [27,51] is defined within conventional sym-

metry sectors, in Eq. (6) one needs to consider the Hilbert

space H truncated to states within a particular symmetry

sector. [71] However, throughout this work, we focus on

the full Hilbert space without resolving any conventional

symmetries separately. Furthermore, frozen eigenstates in

fragmented systems are just the one-dimensional represen-

tations (singlets) of the algebra A, and their number is

given by
P

λ dλδDλ;1
.

In addition, a further distinction can be made between

fragmentation in the product state basis and fragmentation

in an entangled basis, depending on whether the

Hamiltonian of Eq. (2) is block diagonal in the product

state basis or in an entangled basis. We refer to the former

as “classical fragmentation,” since the same fragmented

TABLE I. Classification of systems based on scaling of the

dimension of the commutant algebra dimðCÞ with system size for

one-dimensional systems of size L (top) and two-dimensional

systems of size L × L (bottom).

log½dimðCÞ� Example

∼Oð1Þ Discrete global symmetry

∼ logL Continuous global symmetry

∼L Fragmentation

log½dimðCÞ� Example

∼Oð1Þ Discrete global symmetry

∼ logL Continuous global symmetry

∼L Discrete subsystem symmetry

∼L logL Continuous subsystem symmetry

∼L2 Fragmentation
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structure is possible in classical Markov circuits that

implement the same transitions as the terms of the bond

algebra fĥjg, and to the latter as “quantum fragmentation.”

Classical fragmentation occurs when all the operators in the

commutant C are diagonal in the product state basis (e.g.,

Sztot discussed in Sec. II B). Hence, C is Abelian and admits

only one-dimensional irreducible representations (i.e., dλ ¼
1 for all λ). The decomposition of Eq. (6) is then the same

as the Krylov subspace decomposition of Eq. (1), and

K ¼ dimðCÞ. While the classical and quantum distinction

can also be made for conventional symmetries, we empha-

size this for Hilbert space fragmentation, since most

examples in the literature involve only classical fragmen-

tation. In the following sections, we provide various

examples of systems with fragmentation, out of which

the t − Jz model (Sec. III), pair-flip model (Sec. IV), and

spin-1 dipole-conserving models (Sec. VI) are examples of

classical fragmentation, whereas the Temperley-Lieb mod-

els (Sec. V) show quantum fragmentation.

III. t− Jz MODEL

A. Definition and symmetries

We illustrate the usefulness of the commutant algebra by

explicit construction of conserved quantities for the t − Jz
model [73,74]. We consider a general version of the model

defined on an arbitrary lattice or graph, given by the family

of Hamiltonians

Ht−Jz
≔

X

hi;ji

�

−ti;j
X

σ∈f↑;↓g
ðc̃i;σ c̃†j;σ þ H:c:Þ

zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{
T̂i;j

þ Jzi;jS
z
iS

z
j

z}|{
V̂i;j �

þ
X

i

½hiSzi þ giðSzi Þ2�; ð17Þ

where hi; ji denotes nearest neighbors, ti;j, Jzi;j, hi, and gi
are arbitrary constants, and we define

Szj ≔ c̃†j;↑c̃j;↑ − c̃†j;↓c̃j;↓;

c̃j;σ ≔ cj;σð1 − c†j;−σcj;−σÞ; ð18Þ

where −σ denotes the opposite spin of σ and c†j;σ and cj;σ
are fermionic creation and annihilation operators, respec-

tively. The model is effectively working in the Hilbert space

with no double occupancy at any site and with all fermion

moves required to satisfy these constraints and also exactly

maps onto a spin-1 hard core bosonic model via a

generalized Jordan-Wigner transformation [75]. Note that

we add the last two terms in Eq. (17) in order to break any

discrete symmetries of the t − Jz Hamiltonian that we are

not interested in. As we show in the Appendix A, this also

ensures that all the operators in the commutant are diagonal

in the product state basis. This t − Jz model as defined in

Eq. (17) has two obvious U(1) symmetries, which are

the separate particle number conservation of ↑ spins and ↓
spins:

N↑ ≔
X

j

N
↑
j ; N↓ ≔

X

j

N
↓
j ; ð19Þ

where we define number operators Nσ
j :

Nσ
j ≔ c̃†j;σ c̃j;σ; σ ∈ f↑;↓g: ð20Þ

Equation (19) directly follows from the following commu-

tation relation of the local terms in Eq. (17):

½Nσ
i þ Nσ

j ; T̂i;j� ¼ 0;

½Nσ
i þ Nσ

j ; V̂i;j� ¼ 0;

½Nσ
i ; S

z
i � ¼ ½Nσ

i ; ðSzi Þ2� ¼ 0;

for σ ∈ f↑;↓g: ð21Þ

B. Fragmentation in one dimension

As discussed in Ref. [44], the t − Jz Hamiltonian

exhibits Hilbert space fragmentation in one dimension,

with both open boundary conditions (OBCs) and periodic

boundary conditions (PBCs). The transitions implemented

by the term T̂i;j can be depicted as

j ↑ 0i ↔ j0 ↑i; j↓0i ↔ j0↓i; ð22Þ

where the two sites are i and j and ↑, ↓, and 0 denote the

two spins of the fermions and an empty site, respectively.

Each Krylov subspace is, hence, characterized by a pattern

of spins ↑ and ↓, say, from left to right with OBCs and

anticlockwise along the chain with PBCs, which is clearly

preserved under the action of the Hamiltonian Ht−Jz
of

Eq. (17). For example, in a system with five sites and open

or periodic boundary conditions, the states j↑ ↓0↓ ↑i and
j↓ ↑ ↓0 ↑i are dynamically disconnected from one another

even though these have the same quantum number under

the two U(1) symmetries of the model given in Eq. (19).

For OBCs, the conservation of the pattern of spins results in

the formation of exponentially many disconnected sub-

spaces labeled by all possible patterns of ↑ and ↓ spins, a

total of
P

L
N¼0 2

N ¼ 2Lþ1 − 1 subspaces for a system of

size L. For PBCs, it is easy to see that all states with at least
one empty site that consist of the same pattern of spins that

are equivalent up to a translation along the chain belong to

the same Krylov subspace. Hence, the Krylov subspaces in

the PBC t − Jz model are labeled by the distinct pattern of

spins anticlockwise along the chain that cannot be mapped

onto each other by translation. In addition, both the OBC

and PBC t − Jz models have exponentially many one-

dimensional Krylov subspaces, i.e., frozen product states,

given by configurations with particles on all sites on which

T̂i;j vanishes, and are also eigenstates of all the Szj’s (these
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states are already included in the above OBC Krylov

subspace count as N ¼ L). However, the full set of these

frozen states can be completely understood via the U(1)

symmetries, since they exhaust the Hilbert space of the

quantum number sectors with N↑ þ N↓ ¼ L.
Of course, the number of Krylov subspaces within a

given sector of fixed N↑ and N↓ is lesser but nevertheless

grows exponentially with L for sectors where N↑=L and

N↓=L are kept finite. Furthermore, as discussed in

Ref. [44], the fragmentation in the OBC t − Jz model

within, e.g., the symmetry sector with N↑ ¼ N↓ ¼ L=4
(assuming L a multiple of 4 for simplicity) is strong; all

Krylov subspaces in this sector have a dimension of

Dmax ¼ ð L
L=2

Þ, whereas the full Hilbert space for this

symmetry sector has dimension D ¼ ð L
L=2

ÞðL=2
L=4

Þ, and,

hence, Dmax=D → 0 as L→ ∞.

C. Commutant algebra

The full pattern of the spins is not detected by any local

operator, and this shows that there are conserved quantities

of Ht−Jz
other than the charges of the U(1) symmetries N↑

and N↓. We can directly understand the extra conserved

quantities by observing that

½Nσ
iN

τ
j; T̂i;j� ¼ 0

½Nσ
iN

τ
j; V̂i;j� ¼ 0

for σ; τ ∈ f↑;↓g: ð23Þ

For OBCs, using Eqs. (21) and (23), we can construct a

“quadratic” IOM:

Nσ1σ2 ≔
X

j1<j2

N
σ1
j1
N

σ2
j2
; σ1; σ2 ∈ f↑;↓g; ð24Þ

where
P

j1<j2
ð•Þ is shorthand for

P
L
j1¼1

P
L
j2¼j1þ1ð•Þ. In

Eq. (24), Nσσ for σ ∈ f↑;↓g can be expressed in terms of

the usual conserved quantities Nσ of Eq. (19) as Nσσ ¼
½ðNσÞ2 − Nσ�=2 and is not a functionally independent IOM.

However, it is easy to see that Nσ1σ2 for σ1 ≠ σ2 cannot be

expressed in terms of products and powers of the local

conserved quantities N↑ and N↓ and, hence, are function-

ally independent IOMs. Similarly, we can construct fam-

ilies of IOMs for the Ht−Jz
for OBCs as follows:

Nσ1σ2…σk ¼
X

j1<j2<���<jk
N

σ1
j1
N

σ2
j2
…N

σk
jk
; σj ∈ f↑;↓g; ð25Þ

where we use a shorthand notation for the sum, similar to

Eq. (24), and 0 ≤ k ≤ L. For k ¼ 0, the IOM is defined

to be a 1 operator, the k ¼ 1 case refers to the usual

symmetries of Eq. (19), and k ¼ 2 reduces to the operator

of Eq. (24). For k ¼ L, note that the IOM Nσ1…σL is simply

the projector onto a frozen eigenstate with spins on all sites,

jσ1…σLi. Several of the IOMs in Eq. (25) with two or more

indices are functionally independent from the conserved

quantities N↑ and N↓, i.e., cannot be expressed as poly-

nomial functions of N↑ and N↓. Furthermore, as we show

in Appendix B, the IOMs in Eq. (25) are all linearly

(although not functionally) independent, and they form a

complete basis (although not orthonormal) for the commu-

tant algebra Cobc for the family of t − Jz models of Eq. (17)

with OBCs. Since these IOMs are all diagonal in the

product state basis, the t − Jz model is an example of

classical fragmentation discussed in Sec. II C, and the

commutant Cobc is Abelian. Furthermore, the dimension of

Cobc is the number of linearly independent operators in

Eq. (25), which is dimðCobcÞ ¼
P

L
k¼0 2

k ¼ 2Lþ1 − 1. This

is precisely the number of Krylov subspaces in the t − Jz
models, as discussed in the previous subsection and in

agreement with the general discussion of Abelian commu-

tants in Sec. II B 2.

The commutant algebra Cpbc for the PBC t − Jz model

can be constructed similarly. For example, the generaliza-

tion of the IOM of Eq. (24) for PBCs reads

N½σ1σ2� ≔
X2

m¼1

X

j1<j2

N
σm
j1
N

σmþ1

j2
; ð26Þ

where we define σmþ2 ≡ σm for 1 ≤ m ≤ 2, we use the

same shorthand notation for the sum as Eq. (24), and we

use brackets in the indices to distinguish from the OBC

IOMs in Eq. (24). Similarly, the IOMs in Eq. (25) can be

generalized to PBC as follows:

N½σ1…σk� ≔
Xk

m¼1

X

j1<���<jk

N
σm
j1
N

σmþ1

j2
…N

σmþk−1

jk
; σα ∈ f↑;↓g;

ð27Þ

where 1 ≤ k ≤ L − 1, we define σmþk ≡ σm for 1 ≤ m ≤ k,
and we use shorthand notation similar to Eq. (25). Similar

to the OBC case, we can define the k ¼ 0 case in Eq. (27) to

be the 1 operator, and the k ¼ 1 case corresponds to the

usual symmetries in Eq. (19). As a consequence of the sum

over m in Eq. (27), cyclic permutations of the indices

denote the same IOMs, i.e., N½σ1…σk� ¼ N½σ2…σkσ1� ¼ � � � ¼
N½σkσ1…σk−1�.
For k ¼ L, additional independent IOMs can be written

down, which read

N½σ1…σL� ≔
YL

j¼1

N
σj
j : ð28Þ

Note that, unlike their k ≤ L − 1 counterparts defined in

Eq. (27), we choose the IOMs N½σ1…σk� for k ¼ L to not be

invariant under cyclic permutations of their indices.

Hence, the dimension of Cpbc is lesser than that of Cobc by

a factor that is polynomial in L, but nevertheless it is clear
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that it grows exponentially with system size L and still

constitutes an example of Hilbert space fragmentation.

D. Connections to SLIOMs

Reference [44] introduces a set of L conserved quantities

for the one-dimensional t − Jz model with OBCs, dubbed

as SLIOMs, which are shown to uniquely label all the

Krylov subspaces of the t − Jz model. In this section, we

discuss their connection with the IOMs constructed in

Sec. III C. The (left) SLIOM q̂
ðlÞ
l for the OBC t − Jz model

is simply the spin operator of the lth particle (↑ or ↓) from
the left of the chain, and its expression reads

q̂
ðlÞ
l ¼

XL

i¼1

P
ðlÞ
l;i ðN

↑
i − N

↓
i Þ; ð29Þ

where P
ðlÞ
l;i is the projector onto configurations where the

lth particle from the left is on site i. Although not explicitly
discussed in Ref. [44], it is straightforward to show that the

SLIOMs fq̂ðlÞl g all commute with each term of Ht−Jz
of

Eq. (17), i.e.,

½q̂ðlÞl ; T̂i;j� ¼ 0; ½q̂ðlÞl ; V̂i;j� ¼ 0; ð30Þ

and, hence, they are all part of the commutant algebra Cobc
spanned by the IOMs in Eq. (25). This also means that the

algebra generated by linear combinations and products of

the L SLIOMs is completely within Cobc, and, as we show

explicitly in Appendix B 2, this algebra is precisely Cobc if

the identity operator 1 is added to the set of generators.

Hence, the L SLIOMs along with 1 are the generators of

Cobc, and this suggests that genðCobcÞ ≤ Lþ 1. Note that

the left SLIOMs in Eq. (29) are not the unique set of

generators of Cobc. As we show in Appendix B 2, a simple

different choice that generates the algebra Cobc are the “right

SLIOMs” fq̂ðrÞl g, which are the spin operators of the lth

particle from the right end of the chain, along with 1. Their

operator expression is given by

q̂
ðrÞ
l ¼

XL

i¼1

P
ðrÞ
l;i ðN

↑
i − N

↓
i Þ; ð31Þ

where P
ðrÞ
l;i is the projector onto the lth particle (↑ or ↓)

from the right being on site i.

We note that the left and right SLIOMs fq̂ðlÞl g and fq̂ðrÞl g
are defined only for the OBC t − Jz model [44]. For the

PBC t − Jz model, it is not clear if there is a smaller set of

operators that generate the full commutant Cpbc, and we do

not know how to compute genðCpbcÞ. However, as we

discuss in Sec. VII, for the practical purposes of computing

Mazur bounds, in both OBC and PBC, it is convenient to

use the expressions for the full commutant Cobc and Cpbc,

respectively, which circumvents the need to determine a

smaller set of generators for the commutants.

E. Higher dimensions

Finally, we briefly discuss the nature of fragmentation in

t − Jz models in higher dimensions. The local commutation

relations in Eqs. (21) and (23) hold in any number of

dimensions, and the model possesses the two U(1) sym-

metries N↑ and N↓ in Eq. (19). For simplicity, we restrict

our discussion to L × L square lattices with OBCs on both

sides, although most of the discussion holds more gen-

erally. The only IOMs that we can construct in that case

have the form

Nσ1…σk ≔
X

j1≠j2���≠jk
N

σ1
j1
…N

σk
jk
; 1 ≤ k ≤ L2; ð32Þ

where the subscripts run over all the sites in the lattice.

However, since there is no restriction in the sum in Eq. (32),

all of the Nσ1…σk for k ≤ L2 can be expressed as a

polynomial of N↑ and N↓.

Functionally independent IOMs can appear when k ¼
L2 and Eq. (32) is replaced by a single product (i.e., no

sum) over all sites as

N
fσjg
2D ≔

YL

j¼1

N
σj
j ; σα ∈ f↑;↓g; ð33Þ

where fσjg denotes a configuration of L2 spins on the

lattice and the product runs over all sites of the lattice.

These IOMs are simply the projectors onto “frozen”

eigenstates fjfσjgig, where fσjg is a spin pattern on the

lattice such that N↑ þ N↓ ¼ L2. This absence of other

independent IOMs is related to the fact that all the

“patterns” of spins on a square lattice with the same

number of N↑ and N↓ such that N↑ þ N↓ < L2 can be

connected to one another by hoppings allowed by Ht−Jz
.

Hence, all the Krylov subspaces other than those deter-

mined by the two U(1)’s with N↑ þ N↓ < L2 are one

dimensional, and the dimension of the commutant C2D for

the square lattice t − Jz model is then simply lower

bounded by the number of frozen spin configurations,

i.e., dimðC2DÞ > 2L
2

.

However, we should remark that, unlike the t − Jz model

in one dimension, the higher-dimensional t − Jz model

does not exhibit Hilbert space fragmentation within most of

the U(1) quantum number sectors defined by the N↑ and

N↓. Similar to the frozen states in the 1D t − Jz model, the

frozen states here exhaust the Hilbert spaces of the U(1)

quantum number sectors that satisfy N↑ þ N↓ ¼ L2. These

form a minority of the U(1) quantum number sectors, and

there are no quantum number sectors where generic

“thermal” eigenstates coexist with the frozen eigenstates.
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Note that such examples where entire quantum number

sectors (of conventional symmetries) are solvable exist in

the literature [76] and are typically not considered to

constitute violations of ergodicity. Nevertheless, from the

point of view of the full Hilbert space, since the dimension

of the commutant algebra grows exponentially with vol-

ume, the 2D t − Jz model formally constitutes an example

of fragmentation which is morally no different from many

other examples of fragmentation with exponentially many

frozen product states.

IV. PAIR-FLIP MODEL

A. Definition and symmetries

We now study a less obvious example of classical

fragmentation, using a model we call the pair-flip (PF)

model. This is given by the family of Hamiltonians defined

on a spin-ðm − 1Þ=2 (i.e., m-level) system as follows:

H
ðmÞ
PF ≔

X

hi;ji

Xm

α;β¼1

½gα;βi;j ðjααihββjÞi;j þ H:c:�
zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{

F̂
α;β
i;j

þ
X

i

Xm

α¼1

λαi ðjαihαjÞi
|fflfflfflffl{zfflfflfflffl}

Nα
i

; ð34Þ

where hi; ji denotes nearest-neighboring sites and g
α;β
i;j and

λαi are arbitrary constants. Note that we add the term on the

second line to break any discrete symmetries of the model

that we are not interested in. As we show in Appendix A, it

also ensures that all the operators in the commutant are

diagonal in the product state basis. A particular model

within the family of Hamiltonians of Eq. (34) is studied

in detail in Ref. [77]. For simplicity, we focus on only

bipartite lattices in the following. For example, for OBCs in

one dimension, we have a natural bipartition into even and

odd sublattices. Similar to the t − Jz model of Sec. III, the

PF model on any bipartite lattice possesses U(1) conserved

quantities given by

Nα ≔
X

j

ð−1ÞjNα
j ; 1 ≤ α ≤ m; ð35Þ

where the number operatorNα
j is defined in Eq. (34) and the

“even” and “odd” sites are on different sublattices. These

follow directly from the local commutation relations

½Nα
i −Nα

j ; F̂
β;γ
i;j � ¼ 0; ½Nα

i ;N
β
i � ¼ 0; 1≤ α;β;γ ≤m: ð36Þ

Note that not all the conserved quantities in Eq. (35) are

independent, since
P

m
α¼1 N

α
j ¼ 1; hence, the PF model has

a Uð1Þm−1 conventional symmetry.

B. Fragmentation in one dimension

To show that the PF model of Eq. (34) in one dimension

exhibits Hilbert space fragmentation, we introduce a

convenient notation for representing states in the Hilbert

space. For simplicity, we restrict to OBCs in the following.

We represent them degrees of freedom per site asm colors;

e.g., when m ¼ 3, we assign , , and

. We then use the following procedure to pair

the sites using “dimers.” First, we start from the left of the

chain and pair any nearest-neighboring sites that have the

same color using a dimer of that color. For example, if

m ¼ 3, we allow three colors of dimers:

ð37Þ

Second, we repeat the procedure by focusing only on the

remaining unpaired sites; i.e., we ignore all the paired sites

and connect any neighboring unpaired sites of the same

color with a dimer of that color. Finally, we continue this

procedure until there are no unpaired sites with neighboring

unpaired sites of the same color. We refer to these

remaining unpaired sites as “dots.” This procedure, hence,

maps a product state to a state composed of noncrossing

dimer configurations along with some unpaired sites. Any

product state in the Hilbert space is, thus, composed of dots

(denoted by •) and regions of noncrossing dimers (denoted

by ) such that the colors on any adjacent dots

(excluding dimer regions) are not the same. For example,

in the following configuration,

ð38Þ

the third dot from the left has a color different from the

second and fourth dots. Since the dimer regions denoted by

always cover an even number of consecutive sites, a

system of size L even (respectively, odd) has Krylov

subspaces with j dots, 0 ≤ j ≤ L, and j even (respectively,

odd).

Note that distinct configurations of dots and noncrossing

dimers do not necessarily represent distinct product states,

as evident in the following example:

ð39Þ

where black denotes any particular color. Here, we take a

more general perspective (convenient below) that for a

given product state we can consider any configuration of

dots and dimers satisfying the above properties that

correctly represents the state, while the procedure described

earlier sweeping from left to right provides one instance of

such a pairing configuration. However, as we now discuss,
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the Krylov subspaces are uniquely labeled by the pattern of

colors of the dots, which can be inferred from any of the

pairings.

As evident from Eq. (34), the terms F̂
α;β
i;j in H

ðmÞ
PF allow

for transitions between nearest-neighbor dimers of the

same color and annihilate any configuration of different

colors on nearest neighbors. For example, when m ¼ 3, we

can depict the nonvanishing actions of the terms F̂
α;β
i;j as

follows:

ð40Þ

where the two sites represent i and j. Using Eqs. (40) and

(39), we note two important properties of transitions that

help us label the Krylov subspaces of H
ðmÞ
PF :

(1) A dot of any color can “hop” over a dimer of any

other color via intermediate configurations. For

example,

ð41Þ

(2) Starting from a configuration with n dimers beside

each other, all configurations with n noncrossing

dimers of any color can be generated. For example

with n ¼ 2, we obtain

ð42Þ

Using Eqs. (40)–(42), it is easy to see that the pattern of

colors of the dots from the left to the right of the chain is

unchanged by the action of the Hamiltonian H
ðmÞ
PF ; hence,

these label the different Krylov subspaces. The mðm −

1ÞL−1 product states that map onto configurations with L
dots (hence, no dimers) are one-dimensional Krylov sub-

spaces; i.e., they are frozen product states, since the action

of all the terms fF̂α;β
i;j g vanishes on such states. However,

unlike the t − Jz model, the frozen states here are scattered

across various quantum number sectors of the U(1)

symmetries, and they do not exhaust the Hilbert space

of most of the quantum number sectors they belong to. The

pattern of colors for the PF model is, hence, the analog of

the pattern of spins for the t − Jz model discussed in

Sec. III, although the color of the dots in the PF model

cannot be deduced by a local operator, unlike the spins in

the t − Jz models. The counting of the number and

dimensions of the Krylov subspaces in the PF model for

OBCs is fairly complicated and can be extracted from

Ref. [77], and we discuss the results in Appendix C.

Finally, we note that the procedure for mapping product

states to a pattern of dots and noncrossing dimers also

works for PBCs, where we can start the pairing procedure

from any site and go around the system until there are no

neighboring dots of the same color. This reveals the

fragmentation of the PBC PF model, and the Krylov

subspaces are then labeled by the full pattern of dots

anticlockwise along the chain, similar to the pattern of spins

in the PBC t − Jz model. In the Krylov subspaces with

L − 1 dots or lesser, all patterns of dots that map onto each

other under translation are equivalent, since they can be

connected using the rules of Eq. (41) and (42). However,

this is not the case for the completely frozen states; i.e., any

state with L dots such that neighboring dots do not have the

same color still form exponentially many distinct one-

dimensional Krylov subspaces.

C. Commutant algebra

The fact that the pattern of dots is conserved under H
ðmÞ
PF

in one dimension indicates the presence of additional

conserved quantities of H
ðmÞ
PF functionally independent of

the U(1) conserved quantities fNαg in Eq. (35). In the

following, we restrict our discussion to OBCs for simplic-

ity. Indeed, similar to Eq. (23) in the t − Jz, we can

construct additional conserved quantities by observing that

½Nσ
iN

τ
j; F̂

α;β
i;j � ¼ 0; for σ ≠ τ; 1 ≤ α; β; σ; τ ≤ m: ð43Þ

Using Eqs. (35) and (43), we can construct quadratic IOMs

for OBCs similar to Eq. (24):

Nα1α2 ≔
X

j1<j2

ð−1Þj1þj2N
α1
j1
N

α2
j2
; α1≠α2;1≤α1; α2≤m;

ð44Þ

where we use a shorthand notation for the sum.

Furthermore, similar to Eq. (25), we can construct families

of IOMs of the form

Nα1α2…αk ≔
X

j1<j2<���<jk

ð−1Þ
P

k

l¼1
jlN

α1
j1
N

α2
j2
…N

αk
jk
; ð45Þ

where 0 ≤ k ≤ L and the constraint αj ≠ αjþ1 is a conse-

quence of Eq. (43). For k ¼ 0, this IOM is defined to be

the 1 operator, and the k ¼ 1 case refers to the U(1)

conserved quantities in Eq. (35). However, not all of the

IOMs in Eq. (45) are linearly independent. As we show in

Appendix D, for even (respectively, odd) system size L, the
IOMs in Eq. (45) with k odd (respectively, even) can

be expressed as a linear combination of the ones with

k even (respectively, odd). The total number of linearly
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independent conserved quantities [i.e., the dimension of the

commutant algebra dimðCPFÞ] is then given by

dimðCPFÞ ¼
�
1þ

PL=2
p¼1mðm − 1Þ2p−1 if L even;

PðL−1Þ=2
p¼0 mðm − 1Þ2p if L odd;

¼
� ðm−1ÞLþ1−1

m−2
if m ≥ 3;

Lþ 1 if m ¼ 2:
ð46Þ

This counting is also consistent with the fact that a system

with even (respectively, odd) size L can have only j even
(respectively, odd) number of dots and that Krylov sub-

spaces are uniquely determined by the pattern of dots. [78]

As evident from Eq. (46), dimðCPFÞ grows exponentially

with L for m ≥ 3. Hence, the PF model exhibits Hilbert

space fragmentation for m ≥ 3, according to the definition

proposed in Sec. II C. Note that such conserved quantities

can also be constructed for PBCs, and their construction is

very similar to the ones for the PBC t − Jz model discussed

in Sec. III C; hence, we do not illustrate them here.

Finally, we note that analogs of the SLIOMs for the

t − Jz model can also be defined for the PF model. The L
left (respectively, right) SLIOMs q̂l in this case are simply

the operators that measure the color of the lth dot from the

left (respectively, right) side of the chain. We expect that

these operators along with the identity operator 1 generate

the full commutant algebra of the PF model and possibly

form the minimal set of generators of the commutant

algebra. However, as we show in Sec. VII, the full

commutant algebra is required to accurately capture aspects

of the dynamics of the system (particularly, the Mazur

bounds of autocorrelation functions); hence, we believe

that explicit expressions for the SLIOMs are unnecessary.

Although the fragmentation in the PF model closely

resembles that in the t − Jz model with “dots” playing

the role of the “spins,” there are some differences in the

dynamics of the spins and dots. At the crudest level, the

basic dynamics in the PF model is “annihilation” of a pair

of same-color “particles” (states) on nearest-neighbor sites

and creation of a new pair of same-color particles, while

“dots” are unpairable objects and can “move” only when

right pairs form nearby; the space between dots is “alive”

with pair flips. On the other hand, in the t − Jz model, the

spins move by themselves to nearby empty sites, and the

space between spins is “dead.” On a more quantitative

level, in both these models, given a sector with a fixed

number of spins or dots, we can study the distribution of the

positions of the dots. The spins in the t − Jz model are

typically distributed randomly in the bulk of the chain as

can be explicitly shown [44]. In the PF model, since the

number of dimer configurations in the region between two

dots depends on the distance between the dots, we expect a

different distribution for the position of the dots. This

difference between dots and spins is also apparent in the

nature of the Mazur bounds for the autocorrelation function

of the on-site spin operator in the bulk of the system

discussed in Sec. VII, which are qualitatively different for

the t − Jz and PF model. Hence, we also expect the

SLIOMs of the t − Jz and PF models to differ in their

localization properties [44].

D. Higher dimensions

We now briefly discuss fragmentation in the PF model

on higher-dimensional lattices, e.g., the square lattice in

two dimensions. In higher dimensions, product states can

be mapped onto configurations of dots and dimers follow-

ing a procedure similar to the one described in Sec. IV B.

One-dimensional Krylov subspaces (i.e., frozen product

eigenstates) can then be directly constructed by having

configurations of all dots such that colors of the dots on any

two neighboring sites are different, and, if such a configu-

ration exists, conserved quantities associated with them are

given by

Nα⃗ ¼
Y

j∈G

N
αj
j ; ð47Þ

where G denotes the lattice (or, more generally, a graph)

and αj denotes the color of the dot on site j of the lattice.

The number of such frozen states for the m-state PF model

is the number ofm colorings ofG, which is given by the so-
called chromatic polynomial of G, pðG;mÞ. For m ¼ 2, it

is clear that the number of colorings of any graph G is

always 2 if G is bipartite and 0 if not. If m ≥ 3 and G is a

grid graph (i.e., a square lattice with open boundary

conditions), pðG;mÞ is known to grow exponentially with

the number of vertices inm [79,80]. For example, ifm ¼ 3,

the number of such colorings of the square lattice is equal

to the partition function of square ice [81–83], and the

number of frozen configurations on an L × L lattice

asymptotically grows as WL2

, where W ¼ ð4
3
Þ3=2 ≈ 1.54.

These frozen states are one-dimensional Krylov subspaces,

and their exponential growth with system size already

shows that the PF model on a square lattice shows Hilbert

space fragmentation. We do not find any Krylov subspaces

of larger dimensions; it is likely that all configurations with

at least one dimer can be connected using the rules of

Eq. (40). We numerically verify this for small system sizes

on a square lattice.

As discussed in Sec. III E, in the higher-dimensional

t − Jz model, the frozen states exhaust the Hilbert space of

particular conventional quantum number sectors of the

U(1) symmetries. However, the scenario in the higher-

dimensional PF model is different. Indeed, the frozen

states in the PF model typically do not exhaust the

Hilbert space of any of the quantum number sectors of

the conventional symmetries, and they coexist with other

generic eigenstates belonging to conventional quantum

number sectors of the U(1) symmetries. Hence, these

frozen product states are anomalous low-entanglement
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eigenstates within generically thermalizing quantum num-

ber sectors and should be considered as examples of

quantum many-body scars.

V. TEMPERLEY-LIEB MODELS

A. Definition and symmetries

We now study an example of a system exhibiting

quantum fragmentation, i.e., fragmentation not in the pro-

duct state basis. We refer to these systems as Temperley-

Lieb (TL) models, given by the family of Hamiltonians

defined on a spin-ðm − 1Þ=2 (i.e., m-level) chain with

OBCs as follows:

H
ðmÞ
TL ¼

XL−1

j¼1

Jjêj;jþ1 ≔
XL−1

j¼1

Jj

�
Xm

α;β¼1

ðjααihββjÞj;jþ1

�

; ð48Þ

where Jj’s are arbitrary constants. Note that, defining

(unnormalized) “singlets” between sites j and k as

jψ singij;k ≔
Xm

α¼1

jααij;k; ð49Þ

the terms êj;jþ1 of the Hamiltonian H
ðmÞ
TL are simply the

projectors onto the singlet state between sites j and jþ 1;

i.e., êj;jþ1 ¼ ðjψ singihψ singjÞj;jþ1. Hamiltonians in the fam-

ily of TL models of Eq. (48) have been previously studied

in detail in the literature in various contexts [65,84–86].

While models similar to H
ðmÞ
TL can also be defined for PBCs

and higher dimensions, we restrict ourselves to only the

well-studied one-dimensional case with OBCs.

Note that the family of TL models of Eq. (48) is a part of

the family of PF models of Eq. (34). Hence,H
ðmÞ
TL possesses

all of the conserved quantities of H
ðmÞ
PF , which include the

U(1) conserved quantities of Eq. (35), which, in one

dimension read

Nα ≔
X

j

ð−1ÞjNα
j ; 1 ≤ α ≤ m; Nα

j ≔ ðjαihαjÞj: ð50Þ

More generally, additional conserved quantities ofH
ðmÞ
TL can

be written as [65]

M
β
α ¼

X

j

ðMjÞβα; ðMjÞβα ≔
�
−ðjβihαjÞj if j odd;

ðjαihβjÞj if j even;

ð51Þ

where 1 ≤ α; β ≤ m and ðMjÞαα ¼ ð−1ÞjNα
j . This directly

follows from the local commutation relations

½ðMjÞβα þ ðMjþ1Þβα; êj;jþ1� ¼ 0; 1 ≤ j ≤ L − 1: ð52Þ

Furthermore, note that there are m2 − 1 independent M
β
α’s

[since
P

αðMjÞαα ¼ ð−1Þj1], and it can also be verified that

the fMβ
αg are the generators of an SUðmÞ group [65].

Hence, the TL models of H
ðmÞ
TL are SUðmÞ symmetric.

Finally, note that, when m ¼ 3, the TL models H
ð3Þ
TL can

be unitarily transformed into the family of SU(3)-symmet-

ric spin-1 biquadratic models [84,87–89], given by

Hbiq¼UH
ð3Þ
TLU

†¼
XL−1

j¼1

Jj½ðS⃗j · S⃗jþ1Þ2−1�; U¼
Y

j odd

eiπS
x
j ;

ð53Þ

where S⃗j denotes the usual vector of spin-1 operators.

Similarly, whenm ¼ 2, the TL modelsH
ð2Þ
TL can be unitarily

transformed into the family of SU(2)-symmetric spin-1=2
Heisenberg models discussed in Sec. II B 3.

B. Fragmentation in one dimension

The dynamically disconnected Krylov subspaces and the

fragmentation in the TL models can be understood using

a basis of dots and dimers [65,86], which we describe

below. A “dimer” between sites j and k is defined to be a

singlet configuration jψ singij;k defined in Eq. (49) and is

denoted by a line joining the two sites. Since the singlet is a

maximally entangled state between two spins, no two

dimers can end at the same site as a consequence of the

monogamy of entanglement. We construct basis states

using a configuration of dimers on the chain and other

unpaired sites in the system (i.e., ones that do not have a

dimer ending on them), which we refer to as “dots.” In

particular, any basis state jψi with N dimers factorizes as

jψi¼jψdimeri⊗ jψdotsi, where jψdimeri≔
Q

N
l¼1 jψ singij2l−1;j2l ,

where fj2l−1g and fj2lg represent the site indices of the left
and right ends of the dimers, respectively, such that a dimer

connects sites j2l−1 and j2l. We also restrict jψdimeri to have
only patterns of noncrossing dimers, since it can be shown

that any other pattern of dimers can be expressed as a linear

combination of configurations of noncrossing dimers [90].

For the same reason, it is sufficient to restrict to configu-

rations jψi where no dimers go over any dots. For a given

dimer pattern, we choose an orthogonal basis for the states

on the dots jψdotsi such that they are annihilated by the

singlet projector on any adjacent dots (excluding dimer

regions). For example, we could choose a state on n dots

to be a product state jψdotsi ¼ jα1α2…αni such that

αj ≠ αjþ1, but there are also nonproduct jψdotsi’s.
Any state in this basis is, hence, composed of dots

(denoted by •) and regions of dimers (denoted by ),

pictorially similar to the basis we used in the PF model in

Sec. IV B [e.g., see Eq. (38)]. Such configurations of dots

and noncrossing dimers are known to form a complete basis

for the full Hilbert space, a fact that is also used in different
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contexts [91,92]. Note that configurations that have the

same state jψdotsi on the dots but differ in the pattern of

dimers need not be orthogonal to each other, since it is

possible that hψdimeriψ 0
dimer ≠ 0 for distinct dimer patterns.

Nevertheless, by construction, configurations with a differ-

ent number of dimers as well as ones with different states

on the dots are orthogonal to each other, while all specified

configurations are linearly independent. Since the dimer

regions denoted by always cover even number of

consecutive sites, a system of size L even (respectively,

odd) has Krylov subspaces with j dots, 0 ≤ j ≤ L, and j
even (respectively, odd). In the following, we show that the

Krylov subspaces in the TL models are labeled by the state

jψdotsi on the dots.

To study the Krylov subspaces, we first examine the

action of the terms fêj;jþ1g of the Hamiltonian on the basis

of dimers and dots discussed in the previous paragraph. By

definition, on configurations of a dimer or dots on sites j
and jþ 1, we obtain

ð54Þ

Nonvanishing actions allowed by the terms êj;jþ1 can be

depicted as follows:

ð55Þ

where the subscripts label the sites. Note that the sites i and
k need not be the neighbors of the sites j or jþ 1. Note also

that in the last equation, the original state at site j—which

can be any state—is moved to site k. It is easy to see that, as
a consequence of Eqs. (54) and (55), any configuration of

dots and noncrossing dimers maps onto another such

configuration with the same number of noncrossing dimers

while retaining the state on the dots. Hence, all the basis

states with the same state jψdotsi on the dots can be

connected to each other, and such jψdotsi states label the

Krylov subspaces. Furthermore, all the states with L dots

are all frozen eigenstates (i.e., one-dimensional Krylov

subspaces) of the TL Hamiltonians, since all the terms of

the Hamiltonian act trivially on such states as a conse-

quence of Eq. (54).

Note that if the state on the dots jψdotsi is a product state,
the Krylov subspaces in the TL models are similar sub-

spaces to those in the PF model (a black dimer here is an

equal amplitude superposition of all colored dimers in the

PF model). Indeed, since the family of TL models in

Eq. (48) is a part of the family of PF models in Eq. (34), the

TL models are at least as fragmented as the PF models.

However, in addition, the fragmentation in the TL models

also contains cases where jψdotsi is not a product state; for

example, it could consist of a “triplet” configuration on two

sites like jααij;k − jββij;k with α ≠ β. Hence, unlike the

previous examples, the full fragmentation in the TL models

is not evident in the product state basis, and we refer to this

type of fragmentation as “quantum fragmentation.”

C. Bond and commutant algebras

We now study the fragmentation in the TL models in the

language of bond and commutant algebras. The bond

algebra ATL in this case is the algebra generated by the

terms fêj;jþ1g in Eq. (48). For OBCs, this algebra is the

Temperley-Lieb algebra with L − 1 generators [usually

denoted by TLLðqÞ], defined by the relations

ðejÞ2 ¼ ðqþ q−1Þej; ejej�1ej ¼ ej;

ejek ¼ ekej; jj − kj ≥ 2: ð56Þ

With some straightforward algebra, it can be verified that

Eq. (56) is satisfied by using ej ≔ êj;jþ1 in Eq. (48), where

q is given by

qþ q−1 ≔ m ⇒ q ¼ mþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m2 − 4
p

2
: ð57Þ

The commutant of the Temperley-Lieb algebra TLLðqÞ is
studied in detail by Read and Saleur in Ref. [65]. A large

class of operators in the commutant can be obtained by

observing the following commutation relation [65] (assum-

ing j and k belong to different sublattices):

½ðMjÞβ1α1ðMkÞβ2α2 ; êj;k� ¼ 0 if α1 ≠ β2 and β1 ≠ α2:

ð58Þ

Similar to the IOMs in Eqs. (24) and (44) for the t − Jz and
PF models, Eq. (58) can be used to construct quadratic

IOMs:

M
β1;β2
α1;α2 ¼

X

j1<j2

ðMj1
Þβ1
α1
ðMj2

Þβ2
α2
; α1 ≠ β2; β1 ≠ α2: ð59Þ

Note that, unlike the conserved quantities of the t − Jz and
PF models discussed in Secs. III C and IV C, the IOMs in

Eq. (59) are not diagonal in the product state basis when

β1 ≠ α1 or β2 ≠ α2. When βl ¼ αl for 1 ≤ l ≤ 2, using

Eq. (51), it is easy to see that these reduce to the diagonal

IOMs in Eq. (44) in the PF model. Furthermore, more

nonlocal IOMs can be constructed as

M
β1;…;βk
α1;…;αk ¼

X

j1<���<jk

Yk

l¼1

ðMjl
Þβlαl ; αl ≠ βlþ1; βl ≠ αlþ1; ð60Þ

which are defined to equal the identity operator 1 when

k ¼ 0 and are the SUðmÞ generators of Eq. (51) when
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k ¼ 1. Again, these are not diagonal unless βl ¼ αl for all

1 ≤ l ≤ k, in which case they reduce to the IOMs of the PF

model in Eq. (45). This is a consequence of the fact that the

TL models are at least as fragmented as the PF models.

Furthermore, the IOMs in Eq. (60) do not all commute with

each other; hence, the commutant CTL is non-Abelian.

Moreover, these IOMs of Eq. (60) still do not exhaust the

commutant CTL. As we discuss in Appendix E, additional

conserved quantities can be constructed in the cases when

βl ¼ αlþ1 or αl ¼ βlþ1 in Eq. (60). Finally, we note that

although we know the commutant algebra explicitly, unlike

the t − Jz and PF models, we do not know of a way to

determine a minimal set of generators analogous to the

SLIOMs.

The TL models are some of the few models where the

structure of the bond algebra and its representations have

been studied extensively. Given the structure of the bond

algebra ATL ¼ TLLðqÞ and its commutant CTL, the Hilbert

space can be decomposed into representations of ATL ×

CTL according to Eq. (6). The Krylov subspaces of the TL

models are simply the irreducible representations of

TLLðqÞ, and the dimensions fDλg and fdλg of the

irreducible representations of the bond and commutant

algebras for even L are given by [65]

Dλ ¼
�

L

L=2þ λ

�

−

�
L

L=2þ λþ 1

�

; dλ ¼ ½2λþ 1�q;

ð61Þ

where λ is an integer 0 ≤ λ ≤ L=2 and ½·�q denote

q-deformed integers, defined as ½n�q ≔ ðqn − q−nÞ=
ðq − q−1Þ. In the description of the Krylov subspaces in

terms of dimers and dots, for even L in Eq. (61), 2λ gives

the number of dots and dλ gives the corresponding number

of distinct jψdotsi. The degeneracy among the correspond-

ing distinct Krylov subspaces is manifest, since the

described action of the TL generators is identical in terms

of dimers for any jψdotsi. Using Eqs. (8) and (61), the

dimension of the commutant CTL can be shown to scale

as [65]

dimðCTLÞ ∼
q2L

ð1 − q−2Þð1 − q−4Þ for large L; ð62Þ

which clearly grows exponentially with L for q > 1. This

indicates the presence of Hilbert space fragmentation in the

TL models for m ≥ 3, including in the spin-1 biquad-

ratic model.

D. Dynamics within Krylov subspaces

Hilbert space fragmentation in the TL models leads to

several special novel features in the spectrum that are

absent in models with classical fragmentation, parti-

cularly due to the presence of a non-Abelian commutant.

As discussed in Sec. II A, the dimensions fdλg of the

irreducible representations of the commutant correspond

to the degeneracies among the Krylov subspaces with

dimension fDλg. In all the cases with classical fragmenta-

tion, dλ ¼ 1 since the commutant is Abelian. However,

according to Eq. (8), we know that dλ > 1 for λ ≠ 0, and

this leads to large degeneracies in the spectra of the TL

models. For example, the ground state degeneracy in the

OBC ferromagnetic spin-1 biquadratic model [i.e., with

Jj > 0 in Eq. (53)] is known to grow as F2Lþ2, the (2Lþ 2)

th Fibonacci number, which is simply equal to dλ¼L=2, the

degeneracy among the Krylov subspaces with λ ¼ L=2
[65]. In Fig. 2, we plot the energy spectrum and the

degeneracies of the energy levels in the spin-1 biquad-

ratic model with disorder. As evident there, large degen-

eracies also extend to typical excited states in the middle

of the spectrum, which is a direct consequence of the

fragmentation with a non-Abelian commutant. Hence, we

expect the TL models to exhibit highly nongeneric

dynamics for arbitrary values of fJjg in spite of being

nonintegrable.

However, as we now discuss, the dynamics within

Krylov subspaces is expected to be thermal. The TL

Hamiltonian H
ðmÞ
TL in Eq. (48), when restricted to a

particular Krylov subspace, is known to map onto a

particular quantum number sector of the spin-1=2q-
deformed XXZ (XXZ-q) model with quantum group

symmetry SUð2Þq, where q is given by Eq. (57). The

dynamics within Krylov subspaces of the TL Hamiltonian

can, thus, be described by the Hamiltonian [65,86]

FIG. 2. Energy spectrum of the spin-1 biquadratic model of

Eq. (53) with OBCs and system size L ¼ 10 for a single disorder

realization with the Jj’s chosen from a uniform distribution in

[0.6, 1.4]. The horizontal axis shows the energy of the levels, and

the vertical axis shows the degeneracy of a particular energy level.

All the levels at a fixed degeneracy are part of the same Krylov

subspace. The number of levels at a fixed degeneracy is Dλ (the

size of the Krylov subspace), and the corresponding degeneracy

is dλ (the number of Krylov subspaces of that size).
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HXXZ-q ¼−2
XL−1

j¼1

Jj

�

ðSxjSxjþ1þS
y
jS

y
jþ1Þ

þqþq−1

2

�

SzjS
z
jþ1 −

1

4

�

þq−q−1

4
ðSzj −Szjþ1Þ

�

;

ð63Þ

where Sxj , S
y
j , and S

z
j denote the usual spin-1=2 operators on

site j. It can be directly verified that the bond algebra

generated by the terms of the Hamiltonian HXXZ-q is the

Temperley-Lieb algebra TLLðqÞ; i.e., if the term acting on

sites j and jþ 1 in Eq. (63) is referred to as ej, they satisfy

the conditions of Eq. (56). Moreover, the picture of dots

and dimers discussed in Sec. V B continues to hold, along

with the relations of Eqs. (54) and (55), where the dimers

are q-deformed singlets defined as

jψ ðqÞ
singij;k ≔ q−1=2j ↑ ↓ij;k − q1=2j↓ ↑ij;k; ð64Þ

instead of the singlets jψ singi of Eq. (49). In the XXZ-q

model, it is easy to see that for 2λ dots there are precisely

2λþ 1 distinct jψdotsi, which gives the number of degen-

erate Krylov subspaces in this case, but these are now

understood as corresponding to spin-λ multiplets of the

SUð2Þq symmetry. The dynamics within Krylov subspaces

of the TL models is, hence, equivalent to theXXZ-qmodels

in corresponding symmetry sectors, with q given by

Eq. (57). Note that, for q ¼ 1, the XXZ-q model of

Eq. (63) reduces to the Heisenberg model of Eq. (14)

(up to overall constants).

The XXZ-q models of Eq. (63) are expected to be

nonintegrable for generic values of Jj. Reference [93]

probes the energy level statistics for the disordered

Heisenberg model (i.e., the q ¼ 1 case of XXZ-q) and

finds that it exhibits Wigner-Dyson statistics within quan-

tum number sectors of the SU(2) symmetry that correspond

to finite energy density, although it is apparent only at very

large system sizes. This suggests that the disordered

Heisenberg model thermalizes at large enough system

sizes even though it might not appear so for small system

sizes. We numerically observe the same qualitative behav-

ior in the level statistics of the XXZ-q models for q > 1 for

small system sizes we are able to probe; hence, we expect

that they too thermalize at large enough system sizes. This

suggests that the TL models also thermalize within expo-

nentially large Krylov subspaces, providing further support

for the validity of Krylov-restricted thermalization [38], the

property that sufficiently large nonintegrable Krylov sub-

spaces in fragmented models thermalize [40,41,49].

VI. DIPOLE-CONSERVING MODELS

A. Definition and symmetries

We now turn to models that conserve the dipole moment

or center of mass, which are studied in the context of

quantum dynamics in Refs. [26–28,38,39,44,94]. In par-

ticular, we focus on the one-dimensional spin-1 dipole-

moment-conserving models introduced in Ref. [27] and,

hence, study the family of Hamiltonians

Hdip ¼
X

j

Jj½S−j−1ðSþj Þ2S−jþ1 þ H:c:�
zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{

P̂½j−1;jþ1�

þ
X

j

½hjSzj þ gjðSzjÞ2�; ð65Þ

where we add the last two terms to remove any discrete

symmetries and to ensure for simplicity that all the

operators in the commutant are diagonal in the product

state basis (see Appendix A). The transitions implemented

by the terms fP̂½j−1;jþ1�g can be denoted as

j0þ −i ↔ j þ −0i; j0 −þi ↔ j −þ0i;
j0þ 0i ↔ j þ −þi; j0 − 0i ↔ j −þ−i; ð66Þ

where þ, 0, and −, respectively, denote the spin-1 states

with Sz ¼ þ1; 0;−1 and j·i represents the spin configura-

tion on three consecutive sites j − 1, j, and jþ 1. For

simplicity, we restrict ourselves to OBCs throughout this

section. The family of models in Eq. (65) has two obvious

conserved quantities: the charge Q̂ and the dipole moment

D̂, given by the operators

Q̂ ¼
X

j

Szj; D̂ ¼
X

j

jSzj: ð67Þ

B. Fragmentation and commutant algebra

The Hilbert space fragmentation for the family of models

in Eq. (65) is pointed out in Refs. [27,28], where they note

the existence of exponentially many Krylov subspaces and

systematically construct and count the frozen product

eigenstates (i.e., one-dimensional Krylov subspaces). In

addition to frozen eigenstates and Krylov subspaces similar

to the other examples we study, the dipole-conserving

models also possess Krylov subspaces with frozen regions

in the chain or “blockades,” which dynamically disconnect

parts of the system. For example, all the states in such

Krylov subspaces factorize as jψi ¼ jLðlÞi ⊗ jBðbÞi ⊗
jRðrÞi, where jBðbÞi is the frozen region spanning b sites

that dynamically disconnects the sites to its left and right

(this is the same for all the states within the Krylov

subspace) and jLðlÞi and jRðrÞi are the wave functions

on the l and r sites to the left and right of the blockade,

respectively. There are no analogs of these blockades in the

t − Jz, PF, or the TL models. A simple example of a

blockaded Krylov subspace in Hdip contains states of the

form j� � � þ 0…0 þþ 0 � � � 0þ � � �i, where it is easy to see
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that the boxed blockade configuration (jBðbÞi ¼ j þ þi)
can never be changed under the transitions of Eq. (66).

The bond algebra Adip corresponding to the family of

Hamiltonians in Eq. (65) is the algebra generated by the

operators fP̂½j−1;jþ1�g and fSzj; ðSzjÞ2g. The inclusion of the

latter set of terms ensures that the corresponding commutant

algebra Cdip consists only of operators diagonal in the product

state basis (see Appendix A), and this model exhibits

classical fragmentation. However, unlike the t − Jz and PF

models, we are not able to find simple expressions for a basis

of Cdip in terms of simple operators such as Szj. Nevertheless,

since Cdip is Abelian, the projectors onto the Krylov sub-

spaces form an orthogonal basis of the commutant algebra.

For example, for any Krylov subspace Kα spanned by an

orthogonal set of states fjψαβig, consider the projector

ΠKα
≔

P

β jψαβihψαβj. SinceΠKα
is diagonal in the product

state basis, it commutes with all other diagonal operator in

that basis; hence, ½ΠKα
; Szj� ¼ ½ΠKα

; ðSzjÞ2� ¼ 0 for all j and

α. Furthermore, for any jψαβi ∈ Kα, P̂½j−1;jþ1�jψαβi ∈ Kα;

hence, it is easy to see that ½ΠKα
; P̂½j−1;jþ1�� ¼ 0 for all j.

Since we know that all the operators in the commutant are

diagonal, the Krylov subspace projectors ΠKα
form an

orthogonal basis for the commutant Cdip.

The operators in the commutant can then be directly

understood from the structure of the states in the Krylov

subspaces. The structure of the Krylov subspaces is worked

out in Ref. [44], which constructs SLIOMs for the dipole-

conserving models Hdip in Eq. (65) that uniquely label the

Krylov subspaces. They first identify that patterns of

“domain walls,” systematically determined for any product

state, are conserved under the actions of Eq. (66). In

addition to the pattern of domain walls, the dipole moments

between the domain walls are also independently con-

served. However, this dipole moment conservation makes it

hard to associate Krylov subspaces to invariant “patterns,”

similar to the pattern of spins in the t − Jz model, the

pattern of dots in the PF model, or the state on the dots in

the TL model, and one might wonder if such a pattern

exists. Nevertheless, in Appendix F, we show that such

patterns indeed exist, when the model is described in a

language of appropriately defined “dots” and “links.” This

makes the Krylov subspaces much more apparent and

allows us to use the transitions of Eq. (66) in the language

of dots and links [see Eq. (F2)] to bring all the states in a

Krylov subspace to a unique canonical form that character-

izes the Krylov subspace. We further show that each

canonical configuration can be uniquely mapped onto a

tiling pattern of a chain of length L using three objects •, ◦,

and [see Eq. (F5)], which enables us to compute the

exact number of Krylov subspaces as a function of the

system size (i.e., the number of canonical configurations).

In particular, for OBCs on a system size L, we find that [see
Eq. (F6)]

dimðCdipÞ ¼ 2PLþ1 − 1 ∼ ð
ffiffiffi

2
p

þ 1ÞL for large L; ð68Þ

where PLþ1 is the (Lþ 1)th Pell number. The exponential

growth of the dimension signifies the presence of Hilbert

space fragmentation.

Although the explicit expressions for the operators in the

commutant are rather obscure, with the above picture in

hand, in Sec. VII C 2, we are able to calculate the

contribution from a large class of such projectors to a

Mazur bound for spin autocorrelations, showing analyti-

cally that blockades lead to effective spin localization even

at infinite temperature. Although we do not show this

explicitly, it is likely that the SLIOMs constructed in

Ref. [44] along with the 1 operator form a set of generators

for the full commutant algebra, similar to the SLIOMs in

the t − Jz model discussed in Sec. III D. Indeed, if each

Krylov subspace is described by a distinct set of eigen-

values of SLIOMs, we can use the SLIOMs to construct a

product of projectors onto a space with the appropriate

eigenvalue for each SLIOM, which is related to the

projector onto that Krylov subspace.

On a different note, we also believe that the commutant

Cdip can be straightforwardly generalized to the family of

spin-1=2 dipole-conserving “pair-hopping models”

[38,39], since, as shown in Ref. [38], the Krylov subspaces

there closely resemble the ones in the spin-1 model

of Eq. (65).

VII. MAZUR BOUNDS

A. Definition

The effect of conserved quantities on the dynamics of

isolated quantum systems can be quantified using Mazur

bounds [95,96] on the long-time average of dynamical

autocorrelation functions under time evolution. Given a

system with Hamiltonian H and conserved quantities fIαg,
the autocorrelation function of an observable A can be

bounded as

CA ≔ lim
τ→∞

1

τ

Z
τ

0

dthAðtÞAð0Þi

≥
X

α;β

ðAjIαÞðK−1ÞαβðIβjAÞ ≔ MA; ð69Þ

where we define

AðtÞ ¼ eiHtAe−iHt; ðAjBÞ ≔ hA†Bi ≔ 1

D
TrðA†BÞ;

Kαβ ≔ ðIαjIβÞ; ð70Þ

where D is the Hilbert space dimension, h•i denotes the

infinite-temperature expectation value, and K−1 is the

inverse of the correlation matrix K. We also introduce a

bra-ket notation in operator space—i.e., jAÞ denotes an

operator A and ðAjBÞ denotes the overlap between two
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operators A and B as defined in Eq. (70)—and we use these

two notations interchangeably throughout this section.

Note that the correlation matrix can be diagonalized by

working with an orthogonal basis of conserved quantities,

i.e., appropriate linear combinations of fIαg, which we

refer to as fQαg, that satisfy ðQαjQβÞ ∼ δα;β. The Mazur

bound of Eq. (69) can then be expressed in terms of fQαg
as follows:

CA ≥
X

α

ðAjQαÞðQαjAÞ
ðQαjQαÞ

¼ MA: ð71Þ

Denoting eigenstates of H with energies fEαg as fjeαig, a
trivial example of the Mazur bound can be obtained directly

by choosing fQαg in the rhs in Eq. (71) to be the set of

eigenstate projectors fjeαiheαjg:

MA ¼ 1

D

X

α

jheαjAjeαij2: ð72Þ

Meanwhile, the lhs in Eq. (71) can be expressed as an

expectation value in the diagonal ensemble:

CA ¼ lim
τ→∞

1

Dτ

Z
τ

0

dteiðEα−EβÞtjheαjAjeβij2

¼ 1

D

X

α

jheαjAjeαij2 þ
1

D

X

α≠β;Eα¼Eβ

jheαjAjeβij2 ≥ MA:

ð73Þ

However, if the spectrum of the Hamiltonian fEαg is

nondegenerate, the inequality saturates, and this is known

as the Suzuki equality [96,97]. Note that Eq. (71) can also

be extended to finite-temperature autocorrelation functions,

but in this work we focus on only the infinite-temper-

ature case.

In typical applications of the Mazur bound, for example,

in the study of integrable systems, the only conserved

quantities that are considered in Eq. (71) are local or

quasilocal conserved quantities [98–102]. However, when

considering the dynamics of some Hamiltonian in the

family in Eq. (2), given that the commutant algebra con-

tains many different linearly independent conserved quan-

tities, as well as exponentially many of them in fragmented

systems, it is not a priori clear which of these contribute the

most to the Mazur bound. Hence, we study the Mazur

bound by considering the full commutant algebra in

Eq. (71); this also helps quantify the relative importance

of the various conserved quantities in the commutant via

their contribution to the bounds for observables of interest.

In the following, we focus on autocorrelation functions of

local (on-site or nearest-neighboring terms) observables A.
Without loss of generality, we choose observables to be

traceless [hAi ¼ 0 ¼ TrðAÞ], although it is sometimes more

convenient to subtract out the contribution of the traceful

part (hAi2) later, which is equivalent to studying the Mazur

bound for the “connected” autocorrelation function.

Furthermore, we choose fIαg to be any linear basis for

the commutant algebra C and fQαg to be an orthogonal

basis for C.

B. Conventional symmetries

We start with the Mazur bound in the case of conven-

tional symmetries discussed in Sec. II B. The answer is

straightforward for systems without any symmetry, the only

conserved quantity in the commutant is 1, and the bound of

Eq. (71) reduces to MA ¼ ½TrðAÞ=D�2 ¼ 0. Hence, the

autocorrelation function in such systems at late times

typically decays to zero.

We then consider systems with U(1) symmetry, such as

the spin-1=2XXZ model in Eq. (12), and focus on the

Mazur bound for the autocorrelation function of the

operator Szj, the spin operator on site j. As discussed in

Sec. II B 2, the commutant algebra C is spanned by the

operators f1; Sztot;…; ðSztotÞLg. This is not an orthogonal

basis for C, since (ðSztotÞmjðSztotÞn) ¼ Tr(ðSztotÞmþn) ≠ 0 for

all m and n. Using the expression Sztot ¼
P

L
j¼1 S

z
j, an

orthogonal basis fQz
0;…; Qz

Lg for C reads

Qz
n ¼

XL

j1≠j2≠���≠jn¼1

Szj1S
z
j2
…Szjn ; 0 ≤ n ≤ L; ð74Þ

where Qz
0 ¼ 1 and Qz

1 ¼ Sztot. Applying the Mazur bound

of Eq. (71) for the observable A ¼ Szj, we obtain

CSz
j
≥ MSz

j
¼

XL

n¼0

ðSzjjQz
nÞ2

ðQz
njQz

nÞ
¼

ðSzjjQz
1Þ2

ðQz
1jQz

1Þ
¼ 1

4L
; ð75Þ

where we use ðSzjjQz
nÞ ¼ δn;1=4 and ðQz

1jQz
1Þ ¼ L=4. As

evident from Eq. (75), the only conserved quantity in the

commutant that contributes is Qz
1 ¼ Sztot; hence, it is

sufficient to use only the local conserved quantity for

the Mazur bound. However, this is not sufficient for

multisite observables such as A ¼ SzjS
z
jþ1, for which the

Mazur bound of Eq. (71) reads

MSz
j
Sz
jþ1

¼
XL

n¼0

ðSzjSzjþ1jQz
nÞ2

ðQz
njQz

nÞ
¼
ðSzjSzjþ1jQz

2Þ2
ðQz

2jQz
2Þ

¼ 1

8LðL− 1Þ ;

ð76Þ

where we use ðSzjSzjþ1jQz
nÞ ¼ δn;2=8 and ðQz

2jQz
2Þ ¼

LðL − 1Þ=8. Generically, all operators in the commutant

need to be considered in order to obtain a tight Mazur

bound, although local operators can be sufficient for certain

observables of interest.

A similar analysis can be extended to the SU(2)-

symmetric systems discussed in Sec. II B 3 such as the
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spin-1=2 Heisenberg model in Eq. (14). Following the

discussion there, it is clear that an (overcomplete) orthogo-

nal basis for the commutant is constructed from operators

that have the form

Q
α1…αn
n ¼

XL

j1≠���≠jn¼1

S
α1
j1
…S

αn
jn
; 0 ≤ n ≤ L; αl ∈ fx; y; zg;

ð77Þ

where distinct basis elements are characterized by the

number of x’s, y’s, and z’s among αl’s. To obtain tight

Mazur bounds for observables Szj and S
z
jS

z
jþ1, it is sufficient

to identify the operators in the commutant that have

nonvanishing overlaps with them, and the basis of

Eq. (77) makes it clear that the only such operators are

Qz
1 ¼ Sztot andQ

z
2 in Eq. (74), respectively. This leads to the

same Mazur bounds as the U(1) case in Eqs. (75) and (76).

The larger commutant in the SU(2) case implies that similar

bounds also hold for arbitrary spin components Sαj (hence,

arbitrary on-site traceless observables) and arbitrary prod-

ucts SαjS
β
k, including with different spin components. For

example, using the operators Q
αβ
2 with α ≠ β in Eq. (77),

we obtain M
Sα
j
S
β

k

¼ 1=½16LðL − 1Þ� if α ≠ β.

Note that these Mazur bounds are valid as bounds valid

for arbitrary XXZ and Heisenberg models of Eqs. (12) and

(14), respectively. The translation-invariant XXZ and

Heisenberg models are integrable and consist of additional

quasilocal conserved quantities [98,99] not part of the

commutant algebra, resulting in larger Mazur bounds.

C. Fragmented systems

We now discuss various aspects of Mazur bounds in

systems exhibiting Hilbert space fragmentation.

1. t− Jz model

We first illustrate the Mazur bound for the one-dimen-

sional t − Jz model discussed in Sec. III. Only considering

the U(1) conserved quantity Ztot ≔ N↑ − N↓, where N↑

andN↓ are defined in Eq. (19), the Mazur bound for the on-

site spin operator defined as Zj ≔ N
↑
j − N

↓
j reads

M
½Uð1Þ�
Zj

≔
ðZjjZtotÞ2
ðZtotjZtotÞ

¼ 2

3L
; ð78Þ

where we use ðZjjZtotÞ ¼ 2=3 and ðZtotjZtotÞ ¼ 2L=3.

For Mazur bounds of products of spin operators such

as ZjZjþ1, the contribution of Ztot vanishes, since

ðZjZjþ1jZtotÞ ¼ 0. However, the rest of the U(1) commu-

tant (i.e., the algebra generated by operators N↑ and N↓)

has a nonvanishing contribution to the Mazur bound, which

can be computed by working with a partial set of orthogo-

nal conserved quantities

QZ
n ≔

XL

j1≠j2≠���≠jn¼1

Zj1
Zj2

…Zjn
; 0 ≤ n ≤ L; ð79Þ

where QZ
0 ¼ 1 and QZ

1 ¼ Ztot. The Mazur bound for the

operator ZjZjþ1 then reads

M
½Uð1Þ�
ZjZjþ1

¼ ðZjZjþ1jQZ
2 Þ2

ðQZ
2 jQZ

2 Þ
¼ 8

9LðL − 1Þ ∼
1

L2
; ð80Þ

where we use ðZjZjþ1jQZ
2 Þ ¼ 8=9 and ðQZ

2 jQZ
2 Þ ¼

8LðL − 1Þ=9.
Reference [44] numerically observes that Eq. (78) is not

a tight bound for the late-time spin autocorrelation function

in the OBC t − Jz model, which is attributed to the presence

of additional nonlocal conserved quantities, particularly L

(left) SLIOMs fq̂ðlÞl g. They further numerically study the

Mazur bounds after including the SLIOM contribution and

show that it leads to a tighter bound closer to the true

behavior of the spin autocorrelation function. However, as

discussed in Sec. III D, the SLIOMs are not the only

conserved quantities of the t − Jz model, and there could be

additional contributions to the Mazur bounds from other

operators such as products of SLIOMs, more generally

from all operators in the commutant Cobc. Indeed, as we

discuss in the following, the left or right SLIOMs by

themselves do not provide tight Mazur bounds for all of the

spin operators Zj, and we obtain a better bound by

considering the full commutant algebra Cobc.

The Mazur bound of Eq. (69) using the full commutant

Cobc can be computed by choosing fIαg to be the non-

orthogonal IOMs fNσ1…σkg [Eq. (25)] or fN½σ1…σk�g
[Eq. (27)] for OBCs or PBCs, respectively. However, it

is convenient to work in terms of orthogonal IOMs fQαg
for the t − Jz model studied in Appendix B [see Eqs. (B3)

and (B10) for OBCs and PBCs, respectively] and use the

Mazur bound of Eq. (71). Hence, we explore the different

contributions to the Mazur bound M
ðlÞ
Zj
, M

ðrÞ
Zj
, and M

ðobcÞ
Zj

,

defined, respectively, as

M
ðlÞ
Zj

≔
XL

l¼1

ðZjjq̂ðlÞl Þ2

ðq̂ðlÞl jq̂ðlÞl Þ
; M

ðrÞ
Zj

≔
XL

l¼1

ðZjjq̂ðrÞl Þ2

ðq̂ðrÞl jq̂ðrÞl Þ
;

M
ðobcÞ
Zj

≔
X2
Lþ1−1

α¼1

ðZjjQαÞ2
ðQαjQαÞ

; ð81Þ

which are the Mazur bounds for the autocorrelation

functions of local spin operators fZjg obtained by con-

sidering the left SLIOMs fq̂ðlÞl g, the right SLIOMs fq̂ðrÞl g,
and the full commutant Cobc, respectively.

Exact expressions for the bounds M
ðlÞ
Zj

and M
ðrÞ
Zj

can be

obtained by working in an orthogonal basis for the

commutant algebra discussed in Appendix G 1, and they

read [see Eq. (G2)]
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M
ðlÞ
Zj

¼
XL

l¼1

hZjq̂
ðlÞ
l i2

hq̂ðlÞl q̂
ðlÞ
l i

¼ 1

32j

Xj

l¼1

2lðj−1
l−1

Þ2

L

P

α¼l

1
3α
ðα−1
l−1

Þ
;

M
ðrÞ
Zj

¼
XL

l¼1

hZjq̂
ðrÞ
l i2

hq̂ðrÞl q̂
ðrÞ
l i

¼ M
ðlÞ
ZL−jþ1

: ð82Þ

Note that the boundM
ðlÞ
Zj

corresponding to the left SLIOMs

is precisely equal to the bound derived in Eq. (8) in

Ref. [44]. As pointed out there, the expression for the

bound M
ðlÞ
1 corresponding to the autocorrelation function

of the edge spin operator Z1 simplifies:

M
ðlÞ
1 ¼ 1

32
×

2
P

L
α¼1 3

−α
¼ 4

9ð1 − 3−LÞ ; ð83Þ

which shows that the autocorrelation function for the edge

spin equilibrates to a constant value. However, while we

physically expect true Mazur bounds to be invariant under a

reflection of the chain (j ↔ L − jþ 1), neither of M
ðlÞ
Zj

or

M
ðrÞ
Zj

are, which suggests that these are not tight Mazur

bounds. [103] In Fig. 3, we plot the Mazur boundsM
ðlÞ
Zj

and

M
ðrÞ
Zj

as a function of j for a fixed system size L. It clearly

shows that the bounds obtained using the left and right

SLIOMs are different although they are conserved quan-

tities for the same family of models.

We then compute the Mazur bound M
ðobcÞ
Zj

using all the

conserved quantities in the full commutant algebra Cobc. As

shown in Appendix G 2, the exact expression reads [see

Eq. (G4)]

M
ðobcÞ
Zj

¼
Xj−1

α¼0

XL−j

β¼0

2αþβþ1ðj−1
α
Þ2ðL−j

β
Þ2

3Lð L
αþβþ1

Þ : ð84Þ

This bound has several advantages compared to the bounds

M
ðlÞ
Zj

and M
ðrÞ
Zj

obtained using only the SLIOMs. First, the

expression is invariant under a reflection of the chain (i.e.,

M
ðobcÞ
Zj

¼ M
ðobcÞ
L−jþ1) consistent with physical expectations.

Second, the expression also allows for a saddle point

approximation for large L in the bulk of the chain, and

the continuum approximation of M
ðobcÞ
Zj

reads

MðobcÞðxÞ ¼ 1

3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2

πLxð1 − xÞ

s

∼
1
ffiffiffiffi
L

p for large L; ð85Þ

where x ≔ j=L and 0 < x < 1. Equation (85) proves the

numerical observations in Ref. [44] that the spin autocor-

relation functions decay as 1=
ffiffiffiffi
L

p
in the bulk of the chain.

In Fig. 3, we plot the three Mazur bounds of Eq. (81) as a

function of j. As evident there, the left and right SLIOMs

accurately capture the Mazur bound only close to the left

and right edges of the chain, respectively, whereas using the

full commutant yields a better bound everywhere else in

the chain.

The Mazur bound for the spin operators Zj computed

using the full commutant Cobc of the OBC t − Jz model can

be generalized to the PBC t − Jz model with the commutant

Cpbc. As shown in Appendix G 3, an exact expression for

the corresponding Mazur bound reads [see Eq. (G10)]

M
ðpbcÞ
Zj

≔
X

α

ðZjjQαÞ2
ðQαjQαÞ

¼ 2

3L
þ
�

1 −
1

L

��
2

3

�
L

; ð86Þ

where fQαg is an orthogonal basis for the commutant Cpbc.

Unlike the OBC case, the knowledge of the commutant

algebra in the PBC does not drastically enhance the Mazur

boundM
½Uð1Þ�
Zj

of Eq. (78), since the second term in Eq. (86)

decays exponentially with system size. However, consid-

ering the Mazur bound for the operator ZjZjþ1, we find a

different scenario. In Appendix G 3, we compute the Mazur

bound M
ðpbcÞ
ZjZjþ1

for this operator using the full commutant

algebra Cpbc, and we obtain [see Eq. (G12)]

M
ðpbcÞ
ZjZjþ1

¼ 8

27ðL − 1Þ −
4

27LðL − 1Þ þOðe−LÞ ∼ 1

L
: ð87Þ

Hence,M
ðpbcÞ
ZjZjþ1

is clearly larger thanM
½Uð1Þ�
ZjZjþ1

in Eq. (80), the

bound obtained by considering only the part of the

0 50 100 150 200
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0.10

0.20

0.50

FIG. 3. Mazur bounds for the autocorrelation function of the

spin operator Zj in the one-dimensional t − Jz model with OBCs

of system size L ¼ 200. The bounds, defined in Eq. (81), are

obtained by considering the left SLIOMs (M
ðlÞ
Zj
, red), right

SLIOMs (M
ðrÞ
Zj
, blue), or the full commutant algebra Cobc

(M
ðobcÞ
Zj

, black) as the only conserved quantities. The bounds

M
ðlÞ
Zj

and M
ðrÞ
Zj

agree with the bound M
ðobcÞ
Zj

close to the left and

right edges of the chain, respectively, but deviate everywhere else.
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commutant generated by the U(1) conserved quantities.

Hence, fragmentation in the PBC t − Jz model leads to a

larger saturation of the autocorrelation of appropriate

operators, in spite of the absence of SLIOMs [44].

2. Spin-1 dipole-conserving model

We now apply Mazur bounds to the autocorrelation

function of the on-site spin operator (which we denote here

by Zj) in the spin-1 dipole-conserving model of Eq. (65).

As discussed in Sec. VI B, since the dipole-conserving

model exhibits classical fragmentation, an orthogonal

basis for the commutant algebra Cdip is simply the pro-

jectors onto Krylov subspaces ΠKα
. We can express

ΠKα
¼

P

βjψαβihψαβj, where jψαβi’s are the product states
that span Kα. The detailed structure of states in the Krylov

subspaces is discussed in Appendix F. Using Eq. (71), the

Mazur bound for the autocorrelation function of Zj using

the conserved quantities fΠKα
g reads

M
ðdipÞ
Zj

¼ 1

3L

X

α

½TrðZjΠKα
Þ�2

TrðΠ2
Kα
Þ ¼

X

α

ðZðKαÞ
j Þ2

3LDKα

;

Z
ðKαÞ
j ≔

X
DKα

β¼1

hψαβjZjjψαβi; ð88Þ

where Z
ðKαÞ
j is the sum of the spin value on site j in all the

product states in the Krylov subspace Kα.

As discussed in Sec. VI B, models conserving the dipole

moment have certain special subspaces that contain “block-

ades” that dynamically disconnect different parts of the

system. The contribution of a large class of such blockaded

subspaces to the Mazur bound of the local spin operator Zj

can be exactly evaluated, as we discuss below. This also

reveals their crucial role in “localization” of the local Zj

operator (i.e., the saturation of the autocorrelation function

to a finite value) numerically observed in Refs. [26–28] and

analytically argued for in Ref. [44]. Restricting ourselves to

the Krylov subspaces fKj;αg where site j is part of a frozen
region and the nonfluctuating spin Zj ¼ �1 (since the

contribution of such subspaces with Zj ¼ 0 vanishes), we

obtain Z
ðKj;αÞ
j ¼ �DKj;α

; hence, the full Mazur bound of

Eq. (88) can be lower bounded by the blockaded subspace

contribution as

M
ðdipÞ
Zj

≥ M
ðblockÞ
Zj

¼
X

α

ðZðKj;αÞ
j Þ2

3LDKj;α

¼ 1

3L

X

α

DKj;α
: ð89Þ

Hence, it is sufficient to simply compute the total dimen-

sion of such blockaded Krylov subspaces. We also note that

the rhs in Eq. (89) is simply the probability that the site j is
frozen.

Equipped with the detailed understanding of the Krylov

subspaces in Hdip, we are able to compute the total

dimension of such subspaces in Appendix H. To do so,

we exploit the decoupling of all the states in the blockaded

Krylov subspaces into jψi ¼ jLðlÞi ⊗ jBðbÞi ⊗ jRðrÞi;
hence, we are able to easily count the dimension of all

subspaces with a given blockade configuration jBðbÞi. We

then sum over contributions from inequivalent choices of

the blockade configurations that avoid overcounting, and in

the thermodynamic limit we obtain [see Eq. (H15)]

M
ðblockÞ
Zj

¼ 2

15
≈ 0.1333: ð90Þ

We also verify that this is precisely the probability that the

site j is frozen in the thermodynamic limit, which can also

be computed using a slightly different approach.

While this partial bound is consistent with results

presented in Ref. [27], it does not fully capture the

Mazur bound numerically computed there, which is

approximately 0.24. We believe this is due to significant

contributions from the subspaces where j is a part of a small

“active region” sandwiched between two blockades, and

such Krylov subspaces are not included in Eq. (90). In

particular, we have in mind subspaces that comprise of

states such as

ð91Þ

where the configurations within the boxes are blockades

(ensured by additional requirements on the states marked

with dots; see the discussion in Sec. VI). The quantity

Z
ðKαÞ
j ≠ 0 within such subspaces (e.g., Z

ðKαÞ
j ¼ DKα

=2 in

the above specific example), and there are exponentially

many such subspaces (with the combined dimension being

a finite fraction of the total Hilbert space dimension), which

can lead to a large contribution according to Eq. (88).

Although we do not attempt it here, the contributions from

those subspaces can, in principle, be computed using

techniques similar to those used in Appendix H.

3. PF models

Note that we are able to only analytically compute the

Mazur bounds in the t − Jz model and the spin-1 dipole-

conserving model, since we were able to explicitly con-

struct a manageable orthogonal basis (a subset in the latter

case) for the operators in the commutant algebra. In the PF

and TL models, although we have explicit expressions for

all the operators in the commutant, they are not orthogonal

to each other, nor are we able to analytically compute their

correlation matrix in Eq. (70).

In the PF model, the projectors onto the Krylov sub-

spaces would be a choice of an orthogonal basis of the
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commutant, but we are not able to use them to obtain

analytical results for the Mazur bounds. Nevertheless, these

projectors are rather simple to construct numerically in the

PF model, where the fragmentation happens in the product

state basis. We can then use these projectors to numerically

compute the exact Mazur bound M
ðPFÞ
Zj

for the on-site spin

operator Zj using an expression similar to Eq. (88). Note

that this is equivalent to computing the Mazur bounds of

Eq. (69) using the IOMs of Eq. (45), although constructing

and inverting the correlation matrix is computationally

more expensive.

In Fig. 4, we plot this boundM
ðPFÞ
Zj

in the OBC PF model

with m ¼ 3 as a function of j for various system sizes L,
where we can view this as a spin-1 system with standard

definition Zj ≡ jþihþj − j−ih−j. Similar to the bound in

the t − Jz model shown in Fig. 3, we find that the

fragmentation in the PF model leads to a spatial depend-

ence of the bound M
ðPFÞ
Zj

, with higher bounds closer to the

edges of the chain. As shown in the inset in Fig. 4, the

Mazur bound for the edge spin at large system sizes

appears to approach a nonzero value of approximately 0.2,

suggesting localization at the edges similar to the t − Jz

model, although to a smaller numerical value. The Mazur

bound in the bulk of the chain appears to be rather

accurately ∼1=L at large system sizes, somewhat larger

than the total contribution of the two U(1) symmetries of

the m ¼ 3 PF model, which can be shown to be 2=ð3LÞ
[similar to Eq. (78)]. This is qualitatively different

from the bulk Mazur bounds in the OBC t − Jz model,

where the nature of the scaling with system size is

enhanced to ∼1=
ffiffiffiffi
L

p
; see Eq. (85). These results are

consistent with the expectation that the dynamics of dots

in the PF model is significantly different from the spins in

the t − Jz model, as discussed in Sec. IV C; however, we

do not have a good physical understanding of the observed

qualitative behavior and leave this as an open question.

(The difference in the dynamics is likely less important for

the edge spin operator, since in the PF model inside a

Krylov subspace only the very first dot—whose state does

not vary—can “visit” the edge site j ¼ 1, just like only the

very first spin can visit the edge site in the t − Jz model,

which appears to be sufficient to develop nonzero

autocorrelation.)

4. TL models

The Mazur bound of M
ðPFÞ
Zj

is also a lower bound for the

Mazur bound M
ðTLÞ
Zj

of the on-site spin operator in the TL

models of Eq. (48), since all the IOMs of the PF model are

also IOMs of the TL models, as discussed in Sec. V C.

Hence, we expect edge localization of the spin operator in

the TL models as well. However, a more precise calculation

or numerics is more challenging, since the Krylov sub-

spaces are specified in terms of a nonorthogonal dimer

basis, and computing projectors onto the Krylov subspaces

involves an explicit computation of overlap matrix between

the dimer basis states and its inverse. Furthermore, since the

commutant CTL is non-Abelian, the projectors onto the

Krylov subspaces do not span the full commutant; rather,

they span only its maximal Abelian subalgebra. That is,

given two degenerate Krylov subspaces Kα and Kα0 (here

labeled by different wave functions on the dots), we can

choose orthogonal bases fjψαβig and fjψα0βig for them

such that the operators fêj;jþ1g have identical matrix forms

in these bases. Hence, operators such as ΠKαKα0
≔

P

β jψαβihψα0βj for degenerate Krylov subspaces Kα and

Kα0 are also part of the commutant, in addition to pro-

jectors onto the Krylov subspaces, which read ΠKα
≔

P

β jψαβihψαβj. This suggests that the expression for the

Mazur bound for operators such as Zj also involves

computing matrix elements such as hψαβjZjjψα0β0i between
basis states of different Krylov subspaces, which further

complicates the computation. We are, hence, not able to

perform analytical Mazur bound calculations for spin

operators in the TL model, and this leaves open the

question of whether the bounds shown in Fig. 4 are further

FIG. 4. Mazur bounds M
ðPFÞ
Zj

for the on-site spin operator Zj in

the OBC PF model of Eq. (34) for m ¼ 3. Fragmentation leads to

a nonuniform profile of the Mazur bound across the chain and

apparent localization close to the edges of the chain. Inset: log-

log plot of the scaling ofM
ðPFÞ
Zj

on the edge (j ¼ 1) and in the bulk

(j ¼ L=2) as a function of system size L, along with lines that

depict ∼1=
ffiffiffiffi
L

p
and ∼1=L scalings. While the boundary appears to

saturate to approximately 0.2, the bulk decays as ∼1=L, sug-
gesting a qualitatively different behavior than the OBC t − Jz
model. These results are also valid lower bounds for the Mazur

bound in the OBC TL models of Eq. (48), which are at least as

fragmented as the PF model; see Sec. VII C 4 for a discussion.
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enhanced in the TL models that lead to qualitatively

different behavior, and we defer this study for future work.

Nevertheless, we are able to analytically obtain such an

exact Mazur bound for the autocorrelation function of the

edge energy operator ê1;2. We achieve this by utilizing the

fact that the energy terms act within Krylov subspaces and

have simple expressions in the dots and dimers represen-

tation; cf. Eqs. (54) and (55). Specifically, we focus on local

energy operators êj;jþ1 and note that it is sufficient to

consider the projectors fΠKα
g in the computation of the

Mazur bound, since Trðêj;jþ1ΠKαKα0
Þ ¼ 0 for two degen-

erate Krylov subspaces Kα and Kα0 , where ΠKα
and ΠKαKα0

are defined in the previous paragraph. Hence, we arrive at

an analog of Eq. (88):

M
ðTLÞ
êj;jþ1

¼ 1

mL

X

α

½Trðêj;jþ1ΠKα
Þ�2

TrðΠ2
Kα
Þ

¼ m2

mL

X

α

½Ndimer@ðj;jþ1Þ
Kα

�2
DKα

; ð92Þ

where α runs over distinct Krylov subspaces labeled by

the number of dots and distinct jψdotsi’s (cf. Sec. V B),DKα

is the dimension of the Krylov subspace Kα, and

N
dimer@ðj;jþ1Þ
Kα

is the number of configurations in Kα where

the sites j and jþ 1 are connected by a dimer. In Eq. (92),

we have in mind a Krylov subspaceKα that is spanned by a

number of distinct pictures of dots and dimers, and we can

associate a basis vector with each such picture. While this

basis is not orthogonal, we can still use it to evaluate the

trace, which simplifies here, since êj;jþ1 acting on any such

picture produces a single other such picture, according to

Eqs. (54) and (55). However, the output and input pictures

coincide only if the sites j, jþ 1 are connected by a dimer,

and the amplitude ism in each such case; cf. Eq. (54). Each

such case gives a nonzero diagonal matrix element that

enters Trðêj;jþ1ΠKα
Þ, which can then be evaluated to m

times N
dimer@ðj;jþ1Þ
Kα

, the number of pictures where the sites

j, jþ 1 form a dimer. [104] Furthermore, since êj;jþ1 is not

traceless, i.e., has nonzero expectation value at infinite

temperature, we are interested only in its connected

autocorrelation function, and the corresponding “con-

nected” Mazur bound is given by

Mconn
êj;jþ1

≔ M
ðTLÞ
êj;jþ1

− ðhêj;jþ1iT¼∞Þ2 ¼ M
ðTLÞ
êj;jþ1

−
1

m2
: ð93Þ

While we do not know how to count N
dimer@ðj;jþ1Þ
Kα

in

Eq. (92) for general j, as we show in Appendix I, the

counting simplifies at the edge for j ¼ 1. This allows us to

obtain the exact result for the connectedMazur bound at the

edge as [see Eq. (I5)]

Mconn
ê1;2

¼ 1

L − 1

�

1 −
4

m2
þ 6

m2L

�

: ð94Þ

For m > 2, the Mazur bound Mconn
ê1;2

decays as ∼1=L, a

slower decay than ∼1=L2 expected from the global SUðmÞ
symmetry [this follows from arguments similar to two-site

operators in the case of SU(2) discussed in Sec. VII B, since

the bond energy is a two-site operator]. Hence, the

autocorrelation function of the edge energy operator

provides a clear dynamical signature of the Hilbert space

fragmentation in the TL models.

Note that, for m ¼ 2, Eq. (94) simplifies to

3=½2LðL − 1Þ� ∼ L−2, since the m ¼ 2 TL chain has only

a global SU(2) symmetry and does not exhibit fragmenta-

tion [this formula agrees with the result for MSα
j
Sα
k
for the

SU(2)-symmetric spin-1=2 case discussed in Sec. VII B—

see Eq. (75)—since Uêj;jþ1U
† ¼ 1=2 − 2S⃗j · S⃗jþ1, where

U is a sublattice rotation similar to Eq. (53)].

Finally, we note that, despite the enhancement of the

Mazur bound for the edge energy operator in the TL

(m > 2) models, it does not exhibit “localization,” in

contrast to the edge spin operator. On the other hand, in

the t − Jz model, we expect the edge energy operators to be

also “localized”; while we do not show this explicitly in

Sec. VII C 1, this can be checked for various Hamiltonian

terms in Eq. (17) taken near the edge. We think that the

physics of this difference between the TL and t − Jz model

is that there is a symmetry distinction between local energy

and local spin operators in the former, while there is no

such distinction in the latter; e.g., the local field term in the

t − Jz Hamiltonian in Eq. (17) is proportional to the spin

operator Zj. While the symmetry distinction in the TL

model is clear already from the SUðmÞ symmetry, it would

be interesting to better understand the interplay with the

fragmentation phenomenon and if there may be other more

subtle distinctions among various observables.

5. Contribution of frozen eigenstates

Note that, in all of the Mazur bounds discussed in

fragmented systems, the contribution of the frozen eigen-

states is exponentially small in the system size, and this can

be shown on general grounds. Indeed, denoting the

normalized frozen states by fjψfig, the projectors onto

them fjψfihψfjg are mutually orthogonal elements of the

commutant algebra. For any Hermitian operator Ô, their
Mazur bound contribution is given by

M
ðfrozenÞ
Ô

¼ 1

D

X

f

hψfjÔjψfi2 ≤
NfkÔk2

D
; ð95Þ

where Nf is the number of frozen states, kÔk is the

operator norm of Ô, and D is the Hilbert space dimension.
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Restricting to fragmented systems and strictly local oper-

ators, we have D ∼ dL, Nf ∼ ϕL with some ϕ < d, and

kÔk ∼Oð1Þ; hence,MðfrozenÞ
Ô

∼ ðϕ=dÞL, which is exponen-
tially small. This argument holds irrespective of spatial

dimension or the particular system; hence, we do not expect

frozen eigenstates to play any significant role in the

enhancement of the Mazur bounds.

VIII. SUMMARY AND OUTLOOK

In this work, we studied dynamical properties of families

of Hamiltonians using their commutant algebra, the alge-

bra of all operators (IOMs) that commute with the entire

family of Hamiltonians. Focusing on Hamiltonians of the

form of Eq. (2), the commutant algebra is the centralizer

of the bond algebra generated by the local terms of the

Hamiltonian, i.e., the algebra of operators that commute

with each local term that appears in the Hamiltonian. The

bond and commutant algebra language can be used to

clearly define IOMs of a family of Hamiltonians, since

there is no clear definition of IOMs for a single

Hamiltonian in a finite-dimensional Hilbert space (any

Hamiltonian has exponentially many conserved quantities

—the eigenstate projectors). In Sec. II, we illustrated this

for Hamiltonians with conventional symmetries such as

U(1) or SU(2). Furthermore, we showed that the number of

dynamically disconnected Krylov subspaces of a family of

Hamiltonians scales in the same way with system size as

the dimension of the commutant [i.e., distinguishing

exponential vs polynomial scaling; see precise Eq. (16)],

hence allowing us to naturally classify systems into various

categories based on the character of this scaling. As we

summarize in Table I, this dimension either is constant or

scales polynomially with system size in systems exhibiting

conventional discrete or continuous global symmetries. On

the other hand, in systems exhibiting Hilbert space frag-

mentation, this dimension scales exponentially with system

size, and this provides a precise definition of Hilbert space

fragmentation, something that has been absent in the

literature so far. Hence, systems with Hilbert space frag-

mentation can be thought to lie somewhere between

systems with conventional symmetries and completely

solvable systems. Furthermore, the fragmentation is a

property of the bond algebra, and the same Krylov

subspaces exist for any Hamiltonian or Floquet circuit

built using the operators in this algebra.

We illustrate this definition by constructing the complete

basis for the commutant algebra in several models exhibit-

ing fragmentation—the t − Jz, PF, TL, and spin-1 dipole-

conserving models in Secs. III, IV, V, and VI, respectively,

and we show that the dimension of the commutant scales

exponentially with system size. The commutant algebra

formalism also clearly distinguishes between two types of

fragmentation, depending on whether the fragmentation

occurs in the product state basis or in an entangled basis,

which we refer to as “classical” and “quantum” fragmen-

tation, respectively. In the former case, all operators in the

commutant are diagonal in the product state basis, and this

type of fragmentation can also occur in constrained

classical systems with the same set of transition rules

[51], where the phenomenon is an example of “reducibil-

ity” [29]. Three of the examples we discuss exhibit classical

fragmentation—the t − Jz, PF, and dipole-conserving mod-

els—while the TL models (which includes the well-known

spin-1 biquadratic model) exhibit quantum fragmentation.

Using this language, we also clarify the distinction

between the full commutant and the minimal set of

operators required to uniquely label its Krylov subspaces,

which helps us understand the relation to SLIOMs in

certain fragmented systems [44]. Specifically, the Krylov

subspaces of any system can be uniquely labeled by the

eigenvalues under the minimal set of generators of the

maximal Abelian subalgebra of the commutant. In systems

with conventional symmetries, this minimal set consists of

a few simple conserved quantities [such as Sztot for the U(1)

symmetry or S⃗
2
tot and Sztot for the SU(2) symmetry]; hence,

the language of commutant algebra is not necessary. In

certain systems exhibiting fragmentation, nonlocal oper-

ators referred to as SLIOMs [44] form one such minimal

generating set, although there are multiple such choices of

nonlocal operators. However, in all the models we study,

the full commutant algebra is easier to construct than the

SLIOMs, and the expressions or the existence of the latter is

not evident in many systems, e.g., the PF and TL models.

Finally, in Sec. VII, we studied the contribution of the

full commutant algebra to the Mazur bounds for the

autocorrelation function of local operators, in the case of

both conventional symmetries as well as fragmented

systems. In the case of conventional symmetries, it is

typically sufficient to consider the contribution of the

minimal set of local conserved quantities that generate

the full commutant, although there can be additional

(perhaps subleading) contributions from the nonlocal

operators in the commutant algebra. In all the fragmented

systems we discuss, we found significant enhancement of

the Mazur bounds due to the contribution of the exponen-

tially many operators in the commutant. Focusing on the

Mazur bounds for the on-site spin operator in various

systems, (i) in the t − Jz model, we obtain exact results

everywhere in the system, analytically recovering the

numerical results in Ref. [44]; (ii) in the spin-1 dipole-

conserving system with OBCs, we analytically show the

spin localization in the bulk of the system; (iii) in the PF

and TL models, we numerically illustrate the behavior of

the Mazur bound enhancement everywhere in the chain,

finding localization near the edge but qualitatively weaker

enhancement in the bulk compared to the t − Jz model (the

TL model results are only lower bounded by the PF ones

and are not definitive for the bulk behavior). In addition, in

the t − Jz model with PBCs, we show the enhancement of
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the Mazur bound for two-site operators, going beyond

results in Ref. [44]. Also, in the TL model, we analytically

show the enhancement of the Mazur bound for the edge

energy operator. We believe that our exact results on the

commutant of these systems will also be useful in under-

standing other dynamical phenomena in fragmented

systems, such as the fracton Casimir effect in dipole-

conserving models [105].

The presented Mazur bound calculations also highlight

two aspects of fragmentation. First, we show that the

SLIOMs do not accurately capture the full Mazur bound

in fragmented systems (explicitly demonstrated in the OBC

t − Jz model), and our results suggest that their existence is

not necessary for the enhancement of Mazur bounds (e.g.,

in the PBC t − Jz model). This points to the need of going

beyond constructing the minimal set of generators such as

the SLIOMs in fragmented systems. Second, while the

commutant often contains exponentially many IOMs that

are simply the projectors onto frozen eigenstates that are

product states, their contribution to the Mazur bound is

exponentially small; hence, the frozen eigenstates play a

minimal role in the enhanced Mazur bounds. This shows

that such inert or frozen eigenstates, which are the focus of

a lot of the literature on fragmentation, might not be the

most important aspect of fragmentation. On the other hand,

as shown in the spin-1 dipole-conserving model, blockades

that dynamically disconnect parts of the system are crucial

for operator localization.

Looking forward, it would be interesting to find new

examples of classical and quantum fragmentation that fit

into this language and verify that this formalism applies to

the several other examples of Hilbert space fragmentation

in the literature [40–42,45–50]. An efficient and systematic

procedure of determining the commutant corresponding to

a family of systems, possibly along the lines of existing

works on conserved quantity detection [106–108], would

be useful in looking for fragmentation and might also help

in finding the associated nonobvious IOMs. These exam-

ples can also be used to better understand the finer

classification of dynamical phenomena within each of

the coarse classes defined by the dimension of the com-

mutant in Table I. For example, even within systems with

fragmentation, there could be further distinctions in the

properties of the Krylov subspaces. Some of these proper-

ties such as weak vs strong fragmentation can be under-

stood in terms of the full spectrum of the numbers fDλg and
fdλg in Eq. (6) (as opposed to the dimension of the

commutant which involves only fdλg). On the other hand,

there are properties such as Mazur bound saturation or

operator localization that require a detailed knowledge of

the operators in the commutant. In addition, there are

systems that exhibit similar features as fragmentation but

with polynomially many Krylov subspaces, as shown in a

recent work [50] on the Motzkin spin chain. Although such

systems would not be fragmented in our definition, it is

important to precisely understand how they differ from

systems with conventional continuous global sym-

metries [109].

While we have focused on families of Hamiltonians of

the form of Eq. (2), where the bond algebra is generated

from strictly local terms, a minimal generalization consists

of adding a few operators that are the sums of strictly local

operators (e.g., a uniform magnetic field) to the generators

of the bond algebra. As we will discuss in an upcoming

work [110], studying such generalized algebras yields

insights into many examples of quantum many-body scars.

It would also be interesting to study more general families

of Hamiltonians with additional symmetries (e.g., trans-

lation, lattice symmetries) or symmetries in other types of

systems such as open quantum systems [111–114] or

quantum maps [115–117] and explore whether such sys-

tems can be fruitfully understood in this language of

commutant algebras.

Furthermore, throughout this work, we have restricted

ourselves to finite Hilbert space dimensions, where the

bond and commutant algebras are essentially algebras of

matrices of the form in Eq. (7). It is important to make this

formalism more rigorous in the thermodynamic limit,

where many subtle issues such as the topology of operator

space arise. One way of working with the conserved

quantities directly in the thermodynamic limit might utilize

their simple matrix product operator representations shown

in Appendix J.

Finally, while the commutant algebra language demys-

tifies many aspects of symmetries and fragmentation, it also

warrants a closer examination of a number of fundamental

questions. While the scaling of the dimension of the

commutant with system size in Table I can be defined to

be the distinction between conventional discrete or con-

tinuous global symmetries and fragmentation, one still

needs to verify if all symmetries considered “conventional”

(e.g., Lie group symmetries) obey this property.

Conventional symmetries are typically unitary operators

with an on-site action, which leads to conserved quantities

that are local operators. If this is the case, do all families of

systems with only a finite number of on-site symmetries

have a commutant with dimension that scales polynomially

with system size? Addressing such questions is also

important to provide a precise definition of ergodicity

and its breaking in quantum many-body systems.

Ergodicity in a quantum Hamiltonian is usually tested

by studying the properties of the spectrum within quantum

number sectors after resolving the symmetries of the

system, where typically only the well-known conventional

symmetries are considered [4]. However, the commutant

algebra language treats the conventional conserved quan-

tities and the nonlocal conserved quantities on equal

footing, and it is not a priori clear which symmetries

should be resolved [3,118] before testing for ergodicity. In

spite of the fact that fragmented systems usually have large
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Krylov subspaces that thermalize, they are considered to be

examples of ergodicity breaking due to the many Krylov

subspaces of small dimension that remain after resolving

only the conventional symmetries (and also the very exist-

ence of theKrylov subspaces not labeled by the conventional

symmetries is usually referred to as ETH breaking, e.g.,

being responsible for unconventional thermalization dynam-

ics from simple initial states). On the other hand, conven-

tional symmetries themselves also possess some number of

subspaces of small dimension [e.g., the ferromagnetic

multiplet in SU(2)-symmetric systems], which are not

considered to be ergodicity breaking. This discrepancy in

terminology opens up the question of how to precisely define

ergodicity breaking and whether local on-site conserved

quantities are fundamentally the only ones that need to be

“resolved.” We defer detailed explorations of these funda-

mental questions for future work.
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APPENDIX A: A SUFFICIENT CONDITION FOR

CLASSICAL FRAGMENTATION

In this Appendix, we prove a sufficient condition for

classical fragmentation, i.e., for all the operators in the

commutant algebra to be diagonal in the product state basis.

For a spin system with an m-state local Hilbert space

[i.e., spin-ðm − 1Þ=2], we label the states on site j as fjαijg

for 1 ≤ α ≤ m, and we define on-site operators

Nα
j ≔ ðjαihαjÞj. The sufficient condition is as follows. If

the operators fNα
jg for all α and j are all part of the bond

algebra A, then any operator Ô that is part of the

corresponding commutant algebra C is diagonal in the

product state basis; i.e., it can be expressed as a polynomial

in terms of the operators fNα
jg. To show this, we first

perform a Schmidt decomposition of the operator Ô about a

bipartition of the full Hilbert space as H ¼ Hj ⊗ Hrest,

where Hj and Hrest are the Hilbert spaces on site j and the

rest of the system, respectively. The decomposition reads

Ô ¼
P

β λβÔ
β
j ⊗ Ô

β
rest, where fÔβ

jg and fÔrestg are sets of

orthogonal operators that have supports on site j and

the rest of the system, respectively, and λβ ≥ 0 are the

Schmidt values. Since Ô is a part of the commutant,

we have ½Ô; Nα
j � ¼ 0 for all α, j; hence, also

P

β λβ½Ôβ
j ; N

α
j � ⊗ Ô

β
rest ¼ 0. However, since the operators

fÔβ
restg are linearly independent (since they are orthogo-

nal), we necessarily have ½Ôβ
j ; N

α
j � ¼ 0 for all α and β,

which is possible only if Ô
β
j is a polynomial function of Nα

j

(here, simply any diagonal matrix in the employed basis).

Since the argument applies to all sites j, we obtain that Ô
should be a polynomial function of fNα

jg and, hence, is

diagonal in the product state basis. Since the identity

operator 1 is always a part of the bond algebra, for a

spin-1 system to exhibit classical fragmentation, it suffices

if the operators fSzjg and fðSzjÞ2g are part of the bond

algebra.

APPENDIX B: t− Jz COMMUTANT ALGEBRA

In this Appendix, we discuss properties of the commu-

tant algebra corresponding to the family of t − Jz models

in Eq. (17).

1. Orthogonal basis

We first set up an orthogonal basis for the commutant

algebra Cobc of the t − Jz model discussed in Sec. III. To

begin, we define operators P̂j, Ẑj, and Ôj on site j and a

string operator Ŝi;j between sites i and j as follows:

P̂j ≔ N
↑
j þ N

↓
j ; Ẑj ≔ N

↑
j − N

↓
j ; Ôj ≔ 1 − P̂j; Ŝi;j ≔

Yj

k¼i

Ôk; 1 ≤ i ≤ j ≤ L;

Îi;j ≔
Yj

k¼i

ðP̂k þ ÔkÞ ¼ 1; 1 ≤ i ≤ j ≤ L; ðB1Þ

where N
↑
j and N

↓
j are defined in Eq. (20) and 1 denotes the identity operator. Note that, although Îi;j is simply the identity

operator 1 for any i and j, we use it to denote “insertions” of the identity in terms of operators fP̂jg and fÔjg. These
operators satisfy the following properties:
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Ẑ2
j ¼ P̂j; P̂2

j ¼ P̂j; Ô2
j ¼ Ôj; P̂jẐj ¼ Ẑj ¼ ẐjP̂j; ÔjP̂j ¼ P̂jÔj ¼ 0 ¼ ẐjÔj ¼ ÔjẐj;

TrðP̂jÞ ¼ 2; TrðẐjÞ ¼ 0; TrðÔjÞ ¼ 1: ðB2Þ

In order to express the IOMs in Eq. (25) in terms of operators fP̂j; Ẑj; Ôjg, we need to introduce additional shorthand

notation. We define “words” of length l as follows:

Að1Þ
…AðlÞ ≔

X

j1<���<jl
Ŝ1;j1−1

�
Yl

k¼1

A
ðkÞ
jk
Ŝjkþ1;jkþ1−1

�

A
ðlÞ
jl
Ŝjlþ1;L; AðjÞ ∈ fP; Zg; ðB3Þ

where 0 ≤ l ≤ L, we use the same shorthand notation for the sum as in Eq. (25), and the only word of length 0 is defined to

be Ŝ1;L, which we denote by P
0. To avoid ambiguities, we hereby denote the usual operator product operation when acting

on the set of words by *. Using the definition of Eq. (B3) and the properties of Eq. (B2), it is easy to verify that the product

of two words is given by

ðAð1Þ
…AðlÞÞ � ðBð1Þ

…BðkÞÞ ¼
� ½ðAð1Þ � Bð1ÞÞ…ðAðkÞ � BðkÞÞ� if k ¼ l;

0 if k ≠ l;
ðB4Þ

where, as a consequence of Eq. (B2), we define the product for individual “letters” as

P � Z ≔ Z � P ≔ Z; Z � Z ≔ P; P � P ≔ P: ðB5Þ

The set of words of length l is, hence, closed under

products, and the set of words of length l is an Abelian

algebra CðlÞ of dimension dimðCðlÞÞ ¼ 2l. In what follows,

whenever one sees a sequence of P’s and Z’s without hats
and without any *’s, it denotes a word, i.e., operator of the

form in Eq. (B3). We also frequently write, say, Pj as a

shorthand for a sequence of j letters P (which may be part

of a larger sequence).

Each word is an equal-weight superposition of specific

operator strings where each string has the form
Q

j (P̂j or

Ẑj or Ôj) and the number and pattern of P̂’s and Ẑ’s—read

from left to right and omitting any intervening Ô’s—is

fixed by the word. The properties of Eq. (B2) make the

on-site operators P̂j, Ẑj, and Ôj orthogonal in the Hilbert-

Schmidt inner product, so distinct string operators of the

above form are orthogonal, and, hence, distinct words are

orthogonal—this is the reason for working in terms of these

on-site operators. Furthermore, the equal-weight super-

position structure in the definition of the words as well as

specific expressions for P̂j, Ẑj, and Ôj in terms of N
↑
j , N

↓
j ,

and 1 allow one to show that each word of length l can be

written as a linear superposition of the IOMs Nσ1…σk , 0 ≤

k ≤ L defined in Eq. (25).

Similarly, we can also express the operators fNσ1…σkg in
Eq. (25) in terms of words defined in Eq. (B3). Starting

with k ¼ 1, we obtain

Nσ1 ¼
XL

i¼1

�
Yi−1

j¼1

ðP̂j þ ÔjÞ
� ðP̂i þ σ1ẐiÞ

2

�
YL

j¼iþ1

ðP̂j þ ÔjÞ
�

¼ 1

2

X

j;k

PjPPk þ σ1

2

X

j;k

PjZPk; ðB6Þ

where PjPPk and PjZPk are words of length jþ kþ 1, the sums run over all values j, k ≥ 0 and jþ k ≤ L − 1, and we

abuse notation and define σj ¼↑ =↓ ¼ þ1= − 1. Note that PjPPk here is simply a word with all jþ kþ 1 letters being P,

and the first sum can be rewritten in terms of distinct such words,
P

j;kP
jPPk ¼

P
L
a¼1 aP

a, but exhibiting such rewriting is

not necessary for our purposes here and below. Similarly, we can express Nσ1σ2 as

Nσ1σ2 ¼
X

i1<i2

Î1;i1−1

�ðP̂i1
þ σ1Ẑi1

Þ
2

Îi1þ1;i2−1

� ðP̂i2
þ σ2Ẑi2

Þ
2

Îi2þ1;L

¼ 1

4

X

j;k;l

PjPPkPPl þ σ1

4

X

j;k;l

PjPPkZPl þ σ2

4

X

j;k;l

PjZPkPPl þ σ1σ2

4

X

j;k;l

PjZPkZPl; ðB7Þ
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where the sums run over all values of j, k, l such that j, k, l ≥ 0 and jþ kþ l ≤ L − 2. Similarly, we can also express

Nσ1…σk as

Nσ1…σk ¼
X

i1<���<ik
Î1;i1−1

Yk−1

l¼1

�ðPil
þ σlZil

Þ
2

Îilþ1;ilþ1−1

� ðPik
þ σkZik

Þ
2

Îikþ1;L; ðB8Þ

which can clearly be expanded in terms of words in Eq. (B3), in particular, the ones that contain at most k Z’s, although we
do not attempt to write down the exact expression.

We thus show that the linear span of the IOMs Nσ1…σk is the same as the linear span of words of length l, 0 ≤ l ≤ L. The
basis of words of length l, 0 ≤ l ≤ L also form an orthogonal basis for the commutant algebra Cobc, as discussed earlier.

Hence, the full commutant algebra Cobc is then simply given by

Cobc ¼ ⨁
L

l¼0

CðlÞ; dimðCobcÞ ¼ 2Lþ1 − 1: ðB9Þ

This is consistent with the fact that there are 2Lþ1 − 1 operators Nσ1…σk , which is the same as dimðCobcÞ.
The words in Eq. (B3) can be generalized to PBCs, where we define PBC words as

½Að1Þ
…AðlÞ� ≔

Xl−1

m¼0

X

j1<���<jl
Ŝ1;j1−1

�
Yl−1

k¼1

A
ðmþkÞ
jk

Ŝjkþ1;jkþ1−1

�

A
ðmþlÞ
jl

Ŝjlþ1;L; AðjÞ ∈ fP; Zg; ðB10Þ

for 0 ≤ l ≤ L − 1, and we assume AðlþjÞ ≔ AðjÞ for 1 ≤ j ≤ l. Similar to the OBC case, the only word of length 0 is Ŝ1;L,

which we denote by P0. As a consequence of Eq. (B10), all cyclic permutations of the words are identical, i.e.,

½Að1Þ
…AðlÞ� ¼ ½Að2Þ

…AðlÞAð1Þ� ¼ � � � ¼ ½AðlÞAð1Þ
…Aðl−1Þ�. Similar to Eq. (B4), it is easy to verify that the product of two

PBC words of length l ≤ L − 1 is given by

½Að1Þ
…AðlÞ� � ½Bð1Þ

…BðkÞ� ¼
�P

l−1
m¼0 ½ðAðmþ1Þ � Bð1ÞÞ…ðAðmþkÞ � BðkÞÞ� if k ¼ l;

0 if k ≠ l;
ðB11Þ

where we again assume AðlþjÞ ≔ AðjÞ for 1 ≤ j ≤ l. For
l ¼ L, however, we define PBC words as

½Að1Þ
…AðLÞ� ≔

YL

j¼1

A
ðjÞ
j ; ðB12Þ

since such products by themselves (i.e., without any sums)

are distinct elements in the commutant algebra Cpbc. Hence,

by our definition, the cyclic permutations of PBC words of

length L are not identical. These words of length L are

orthogonal to the words of length l ≤ L − 1 in Eq. (B10),

and their products are given by Eq. (B4). These words in

Eqs. (B10) and (B12) form a complete basis for the PBC

commutant algebra Cpbc, and, similar to the OBC case, the

IOMs of Eq. (27) can be expressed as linear combinations of

the PBC words. Similar to Eq. (B9), the commutant Cpbc is a

direct sumof the algebra of words of length l, 0 ≤ l ≤ L, and
it is clear that dimðCpbcÞ grows exponentially with L.

2. Algebra generated by the SLIOMs

We now construct the algebra generated by the (left)

SLIOMs fq̂ðlÞl g discussed in Sec. III D. Using the defi-

nition of the SLIOMs q̂
ðlÞ
l in Eq. (29) and the operators

defined in Eq. (B1), we can express them in terms of these

words in Eq. (B3) as follows:

q̂
ðlÞ
1 ¼

X

j

Ŝ1;j−1ẐjÎjþ1;L; q̂
ðlÞ
2 ¼

X

j1<j2

Ŝ1;j1−1P̂j1
Ŝj1þ1;j2−1

Ẑj2
Îj2þ1;L;…;

q̂
ðlÞ
l ¼

X

j1<���<jl
Ŝ1;j1−1

�
Yl−1

k¼1

P̂ik
Ŝjkþ1;jkþ1−1

�

Ẑjl
Îjlþ1;L;

⇒ q̂
ðlÞ
l ¼ Pl−1Z þ Pl−1ZPþ Pl−1ZP2 þ � � � þ Pl−1ZPL−l ¼

XL−l

α¼0

Pl−1ZPα: ðB13Þ
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Using Eq. (B13), we now show that the sums and products of the left SLIOMs along with the 1 operator generate the entire

algebra Cobc. Note that a simple application of Eq. (B4) gives

ðq̂ðlÞl Þ2 − ðq̂ðlÞlþ1Þ2 ¼ Pl; 1 ≤ l ≤ L − 1; ðq̂ðlÞL Þ2 ¼ PL;

q̂
ðlÞ
l ½ðq̂ðlÞlþmÞ2 − ðq̂ðlÞlþmþ1

Þ2� ¼ Pl−1ZPm; 1 ≤ l ≤ L − 1; 0 ≤ m ≤ L − l − 1; q̂
ðlÞ
l ðq̂ðlÞL Þ2 ¼ Pl−1ZPL−l: ðB14Þ

Using the properties of Eq. (B14) and the fact that 1 ¼
P

L
l¼0 P

l, we obtain that Pl and PlZPm can be generated from the left

SLIOMs for any l, m. Now, using Eq. (B4), it is straightforward to show that all words of the form of Eq. (B3) can be

generated by products of these words. Hence, the left SLIOMs along with 1 generate the full algebra of words of length l,
0 ≤ l ≤ L, which is the commutant algebra Cobc.

Similarly, the (right) SLIOMs fq̂ðrÞl g defined in Eq. (31) generate the entire commutant algebra Cobc. This can be shown in

a similar way, starting from the expressions of q̂
ðrÞ
l in terms of words in Eq. (B3):

q̂
ðrÞ
1 ¼

X

j

Î1;j−1ẐjŜjþ1;L; q̂
ðrÞ
2 ¼

X

j1<j2

Î1;j1−1Ẑj1
Ŝj1þ1;j2−1

P̂j2
Ŝj2þ1;L;…; q̂

ðrÞ
l ¼

X

j1<���<jl

Î1;jl−1Ẑj1

�
Yl−1

k¼1

Ŝjkþ1;jkþ1−1
P̂jkþ1

�

Ŝjlþ1;L

⇒ q̂
ðrÞ
l ¼ ZPl−1þPZPl−1þ� � �þPL−lZPl−1 ¼

XL−l

α¼0

PαZPl−1: ðB15Þ

Equation (B15) shows that these operators are distinct from

the left SLIOMs in Eq. (B13). Nevertheless, we can

similarly show that fq̂ðrÞl g along with 1 generate the algebra
Cobc, and, hence, the left and right SLIOMs are different

sets of generators of the same algebra.

APPENDIX C: NUMBER AND DIMENSIONS

OF KRYLOV SUBSPACES IN THE

PAIR-FLIP MODEL

In this Appendix, we review exact results on the counting

of the number and dimensions of Krylov subspaces in the

PF model in Eq. (34), which prove useful in performing

quick analytical calculations and consistency checks in

numerical calculations. We first introduce an alternative

interpretation of the Hilbert space and Krylov subspaces

that enable Ref. [77] to exactly count their number and

dimensions. Any product state in the Hilbert space of the

spin-ðm − 1Þ=2 (i.e., m-level) chain of length L can be

interpreted as a “walk” of length L starting from a fixed

vertex (which we refer to as the origin) on a Bethe lattice of

coordination numberm. We can think of them edges at any

vertex of the Bethe lattice as labeling m different values of

the local spin such that no two edges that share a common

vertex have the same label. The product state jα1…αLi is
then a walk starting from the origin on the Bethe lattice

where the first step is along the edge labeled by α1, the

second step is along the edge labeled by α2, and so on until

the Lth step is along the edge labeled by αL. As a

consequence of the labeling of the Bethe lattice, note that

any walk (product state) with a repetition such as

j� � � αα � � �i indicates that the walk retraces a step back.

In the language of walks, the action of F̂
α;β
i;j in Eq. (34)

changes only the retraced edges of the walk (i.e., results in
transitions jααi ↔ jββi) and, hence, does not change the

end point of the walk. Furthermore, since H
ðmÞ
PF allows for

transitions between any such retraced edges, it is easy to see
that all walks with the same end point are connected by the

transitions allowed by H
ðmÞ
PF . The Krylov subspaces of H

ðmÞ
PF

are, thus, uniquely labeled by end points of the walks or,
equivalently, by the unique path on the Bethe lattice from
the origin to the end point without any retracing. We refer to
these shortest paths as “representative walks,” and the spins
along these paths correspond to the dots discussed in
Sec. IV B. The Krylov subspaces with j dots correspond
to walks that end at distance j from the origin for
0 ≤ j ≤ L, which involve ðL − jÞ=2 retracings.

1. Counting dimensions

In the following, we denote the number of Krylov
subspaces with j dots by nj and the dimension of each

such subspace for a system size of L by DL;j. Since all the

Krylov subspaces span the full Hilbert space, we should
have

X

j

njDL;j ¼ mL: ðC1Þ

While Eq. (C1) might be reminiscent of Eq. (8), these are
different, and dλ ¼ 1 for all λ in the PF model (i.e., the most
general PF model has no degeneracies among different
Krylov subspaces with the same number of dots).
Following the discussion in Sec. IV B, we directly obtain
the number of distinct Krylov subspaces with j dots with
OBCs by imposing the condition that the colors of adjacent
dots be unequal:
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nj ¼
�
1 if j ¼ 0;

mðm − 1Þj−1 if j ≥ 1:
ðC2Þ

The dimension counting of such subspaces DL;j is not so

straightforward, which involves counting the number of
walks of length L with a fixed end point on a Bethe lattice,
and this is studied in great detail in Ref. [77] using
connections to the counting of colored Dyck paths.
Defining a generating function for the Krylov subspace
dimension with j dots as

GjðzÞ ≔
X∞

l¼0

Dl;jz
l; D0;0 ≔ 1; Dl;j ¼ 0 if j > l;

ðC3Þ

they obtain

GjðzÞ ¼
2ðm − 1Þ

m − 2þm
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − 4ðm − 1Þz2
p

×

�
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − 4ðm − 1Þz2
p

2ðm − 1Þz

�j

; ðC4Þ

where we change the conventions and notations of Ref. [77]
to express the final result in the language used in this work.
The generating function in Eq. (C4) also encodes the
following obvious constraints:

(i) Dl;j ¼ 0 if j > l—i.e., there cannot be more than l

dots in a system of size l;

(ii) Dl;j ¼ 0 if j and l have the opposite parity—i.e., a

system of even (respectively, odd) size cannot have

Krylov subspaces with an odd (respectively, even)

number of dots.
Using Eq. (C2), we can verify that

P
∞
j¼0 GjðzÞnj ¼

ð1 −mzÞ−1 ¼ P
∞
l¼0m

lzl, which, due to Eq. (C3), is a

verification of Eq. (C1).

APPENDIX D: INDEPENDENCE OF CONSERVED

QUANTITIES IN THE PAIR-FLIP MODEL

In this Appendix, we show that not all the operators in
Eq. (45) are linearly independent. As discussed in Sec. II A,
the operators fNα

jg are not linearly independent from 1, and

they satisfy
P

m
α¼1 N

α
j ¼ 1 for all j. As a consequence, for

any even system size L, the “one-index” conserved
quantities fNα1g can be expressed in terms of “two-index”
conserved quantities fNγ1γ2g as follows:

Nα1 ¼
XL

j1¼1

ð−1Þj1Nα1
j1
¼

XL

j1¼1

ð−1Þj1Nα1
j1

�ð−1Þj1þ1 þ ð−1ÞL
2

−
ð−1Þj1−1 þ ð−1Þ

2

�

¼
XL

j1<p¼1

ð−1Þj1þpN
α1
j1
−

XL

p<j1¼1

ð−1Þj1þpN
α1
j1

¼
Xm

β¼1

�
XL

j1<p¼1

ð−1Þj1þpN
α1
j1
N

β
p −

XL

p<j1¼1

ð−1Þj1þpN
β
pN

α1
j1

�

¼
X

β

ðNα1β − Nβα1Þ ¼
X

β≠α1

ðNα1β − Nβα1Þ; ðD1Þ

where we use the fact that ð−1Þjþ1 ¼ ð−1Þj−1, ð−1ÞL ¼ 1, and the identity

Xr

p¼q

ð−1Þp ¼ ð−1Þq þ ð−1Þr
2

: ðD2Þ

Using the same manipulations, any “odd-index” conserved quantity fNα1…α2k−1g can be expressed in terms of “even-

index” ones fNγ1…γ2kg as follows:

Nα1…α2k−1 ¼
X

j1<���<j2k−1
ð−1Þj1þ���þj2k−1N

α1
j1
…N

α2k−1
j2k−1

¼
X

j1<���<j2k−1

ð−1Þj1þ���þj2k−1N
α1
j1
…N

α2k−1
j2k−1

×

�ð−1ÞL þ ð−1Þj2k−1þ1

2
−
ð−1Þj2k−1−1 þ ð−1Þj2k−2þ1

2
þ ð−1Þj2k−2−1 þ ð−1Þj2k−3þ1

2
− � � � − ð−1Þj1−1 þ ð−1Þ

2

�

ðD3Þ

¼
X

β

ðNα1…α2k−2α2k−1β − Nα1…α2k−2βα2k−1 þ Nα1…βα2k−2α2k−1 − � � � − Nβα1…α2k−1Þ: ðD4Þ

Note that terms of the form Nγ1…γ2k with any γl ¼ γlþ1 for some 1 ≤ l ≤ 2k − 1 are automatically excluded in the final sum

in Eq. (D3), either due to constraints on the indices in Nα1…α2k−1 on the lhs or due to cancellations in the sum over β.
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Similarly, for an odd system size L, the even-index conserved quantities fNα1…α2kg can be expressed in terms of the odd-

index conserved quantities fNγ1…γ2kþ1g. For k ¼ 0, this directly follows, since the “zero-index” conserved quantity 1 is

simply a sum of the “one-index” conserved quantities fNα1g. For general k, we obtain

Nα1…α2k ¼
X

j1<���<j2k
ð−1Þj1þ���þj2kN

α1
j1
…N

α2k
j2k

¼
X

j1<���<j2k

ð−1Þj1þ���þj2kN
α1
j1
…N

α2k
j2k

×

�

−
ð−1ÞL þ ð−1Þj2kþ1

2
þ ð−1Þj2k−1 þ ð−1Þj2k−1þ1

2
−
ð−1Þj2k−1−1 þ ð−1Þj2k−2þ1

2
þ � � � − ð−1Þj1−1 þ ð−1Þ

2

�

¼
X

β

ð−Nα1…α2k−1α2kβ þ Nα1…α2k−1βα2k − Nα1…βα2k−1α2k þ � � � − Nβα1…α2kÞ; ðD5Þ

where again any term Nγ1���γ2kþ1 with any γl ¼ γlþ1 for some 1 ≤ l ≤ 2k is automatically excluded.

APPENDIX E: COMMUTANTS OF THE TEMPERLEY-LIEB MODELS

In this Appendix, we sketch the structure of additional conserved quantities in the commutant of the TL models, apart

from the ones in Eq. (60), and we refer readers to Ref. [65] for a more detailed analysis. We begin with the commutation

relation

½ðMjÞβ1α1ðMkÞβ2α2 ; êj;k� ¼
�
−δ

β2
α1ðjβ1α2ihψ singjÞj;k þ δ

β1
α2ðjψ singihα1β2jÞj;k if j odd and k even;

−δ
β1
α2ðjα1β2ihψ singjÞj;k þ δ

β2
α1ðjψ singihβ1α2jÞj;k if j even and k odd;

ðE1Þ

which reduces to Eq. (58) when α1 ≠ β2 and β1 ≠ α2. To construct additional IOMs, we begin by contracting various

indices in Eq. (E1) to obtain

�
Xm

γ¼1

ðMjÞγα1ðMkÞβ2γ ; êj;k
�

¼
�
−δ

β2
α1 êj;k þmðjψ singihα1β2jÞj;k if j odd and k even ;

−mðjα1β2ihψ singjÞj;k þ δ
β2
α1 êj;k if j even and k odd;

�
Xm

γ¼1

ðMjÞβ1γ ðMkÞγα2 ; êj;k
�

¼
�
−mðjβ1α2ihψ singjÞj;k þ δ

β1
α2 êj;k if j odd and k even ;

−δ
β1
α2 êj;k þmðjψ singihβ1α2jÞj;k if j even and k odd;

�
Xm

ϵ;γ¼1

ðMiÞγϵðMjÞϵγ; êj;k
�

¼ 0: ðE2Þ

Using Eqs. (E1) and (E2), we can construct quadratic IOMs in a “traceless” form [65] as

M
β1;β2
α1;α2 ¼

X

j1<j2

�

ðMj1
Þβ1
α1
ðMj2

Þβ2
α2
−

1

m

Xm

γ¼1

½ðMj1
Þβ1
γ
ðMj2

Þγ
α2
δ
β2
α1 þ ðMj1

Þγ
α1
ðMj2

Þβ2
γ
δ
β1
α2 � þ

1

m2
δ
β1
α2δ

β2
α1

Xm

ϵ;γ¼1

ðMj1
Þγ
ϵ
ðMj2

Þϵ
γ

�

: ðE3Þ

When α1 ≠ β2 and β1 ≠ α2, this reduces to Eq. (59), while when one or both of these inequalities are not satisfied, we

obtain new IOMs that are independent of the ones in Eq. (59) (up to relations such as
P

m
γ¼1 M

β1;γ
γ;α2 ¼ 0, etc.). Similar

new IOMs with a larger number of indices can also be constructed, and, although their derivations are more involved,

they have simple expressions in terms of Jones-Wenzl projectors; see Ref. [65] for details.

APPENDIX F: CANONICAL CONFIGURATIONS IN THE SPIN-1 DIPOLE-CONSERVING MODEL

To understand the canonical configurations that generate the Krylov subspaces in the spin-1 dipole-conserving model of

Eq. (65), we introduce a diagrammatic representation for product states, and the mapping proceeds in two steps. First, we

represent sites using dots—we denote j0i by an unfilled dot j◦i and jþi and j−i both by filled dots j•i. Second, we then
connect any alternating pattern of jþi and j−i by “links,” and we refer to any set of sites connected by links as a “cluster.”

For example, we have the mapping

ðF1Þ
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Note that the transitions of the dipole Hamiltonian in

Eq. (66) are invariant under a global spin flip

jþi ↔ j−i. Hence, for any Krylov subspace (except for

the one-dimensional subspace j00…00i), there is always

a conjugate Krylov subspace with the spins flipped. Any

pattern of unfilled dots, filled dots, and links thus

uniquely represents a product state in the Hilbert space

up to an overall spin flip. Although we do not distinguish

between the conjugate subspaces in the diagrammatic

representation, we take this multiplicity into account

while counting the number of Krylov subspaces. We
note that this mapping of configurations to dots and
clusters is related to a mapping to “defects” discussed in
Ref. [44]. In particular, the leftmost dot in a cluster in the
former mapping corresponds to a defect in the lat-
ter [119].
To understand the dynamics of the Hamiltonian Hdip in

Eq. (65) in the diagrammatic representation, we note that

the transitions of Eq. (66) allowed by the terms P̂½j−1;jþ1�
can be written as

ðF2Þ

where the dotted lines indicate possible links to the left and right of the filled dots. Using Eq. (F2), we observe the following:

(1) Any product state is composed of a number of disconnected clusters, where each cluster is a connected set of (filled)

dots. For example, the state of Eq. (F1) is composed of three clusters of filled dots.

(2) The actions of the terms fP̂½j−1;jþ1�g do not change (i) the number of clusters, (ii) the charge and the closely related

parity of the number of filled dots in any cluster (even-parity clusters have charge zero, while odd-parity clusters have

charge �1), and (iii) the dipole moment of any cluster. Furthermore, the charge of the leftmost filled dot in any

cluster remains unchanged, and so does the rightmost charge.

(3) Using the transitions of Eq. (F2), any cluster can be “reduced” to a cluster that is either a filled dot or a link,

depending on whether the number of filled dots in a cluster is odd or even. For example, we can reduce the middle

cluster in Eq. (F1) as follows:

ðF3Þ

The dipole moment of the original cluster completely fixes the location of the final dot for odd parity or the length of the link

for even parity (but not its location).

(4) After the reduction of clusters, a canonical configuration for the state can be obtained by moving any cluster with a

single link adjacent to the cluster on its right (or the right end of the chain) using the transitions of Eq. (F2). It is easy

to see that this is always possible. For example, after the reduction of Eq. (F3), the configuration Eq. (F1) can be

brought to a canonical form as follows:

ðF4Þ

These observations allow us to bring any product state into a canonical configuration that consists of unfilled and filled dots,

as well as clusters with a single link, which we refer to as “dimers.” Furthermore, all the links are located immediately to the

left of a filled dot or the right end of the chain. Each of these canonical configurations generates a different Krylov subspace,

and the number of Krylov subspace is, hence, simply the number of such canonical configurations.

To count the number of canonical configurations, we uniquely map each of them to a tiling pattern of L sites by three

objects: ◦, •, and . We do this by retaining any filled and unfilled dots in the configuration and by “shortening” any

dimer to a nearest-neighboring dimer while keeping its left end fixed. For example, the invariant string of Eq. (F4) maps to a

tiling pattern as follows:

ðF5Þ
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Note that, with the convention we use that any dimer in the

physical configuration always has either the end of the

chain or a filled dot to its right, the mapping to the tiling

pattern is one to one. The number of canonical configu-

rations is then simply the number of tilings of an L × 1

“grid” with two types of 1 × 1 “squares” (◦ and •) and

one type of 2 × 1 “dominoes” ( ). This is known to be

the (Lþ 1)th Pell number PLþ1 [120], where P0 ¼ 0,

P1 ¼ 1, and easy to understand recursion relation

PLþ1 ¼ 2PL þ PL−1. Accounting for the fact that each

configuration has conjugate (except for the one with

unfilled dots on all sites), the number of Krylov subspaces

DL (i.e., the dimension of the commutant algebra) of an

L-site system with OBCs is given by

DL ¼ 2PLþ1 − 1 ¼ ð1þ
ffiffiffi
2

p
ÞLþ1 − ð1 −

ffiffiffi
2

p
ÞLþ1

ffiffiffi

2
p

− 1 ∼
1
ffiffiffi

2
p ð

ffiffiffi

2
p

þ 1ÞLþ1 for large L: ðF6Þ

Note that the mapping to dots, links, and clusters can also

be done for PBCs, although care has to be taken to count

the ones that cannot be connected to each other using the

rules of Eq. (F2).

APPENDIX G: MAZUR BOUNDS

IN THE t− Jz MODEL

In this Appendix, we compute threeMazur bounds for the
OBC t − Jz model, obtained by considering the left SLIOMs

fq̂ðlÞl g, right SLIOMs fq̂ðrÞl g, and the full commutant algebra

Cobc, respectively. It is convenient to express the SLIOMs and
operators in Cobc in terms of words of Eq. (B3) and use the
properties of Eqs. (B2) and (B4) to compute norms and
overlaps required for the Mazur bounds.

1. SLIOM Mazur bounds

To begin, we compute the norms and overlaps of the left

and right SLIOMs with the Zj operators. Using Eqs. (B13)

and (B15), with simple combinatorics we obtain

hq̂ðxÞl q̂
ðxÞ
m i ¼ δl;m ×

1

3L

XL−l

α¼0

TrðPlþαÞ ¼ δl;m ×
XL−l

α¼0

2lþα

3L

�
L

lþ α

�

¼ δl;m ×
XL

α¼l

2l

3α

�
α − 1

l − 1

�

≤ 1; x ∈ fl; rg;

hZjq̂
ðlÞ
l i ¼ 1

3L

XL−l

α¼0

TrðZjP
l−1ZPαÞ ¼

XL−l

α¼0

2lþα

3L

�
j − 1

l − 1

��
L − j

α

�

¼ 2l

3j

�
j − 1

l − 1

�

;

hZjq̂
ðrÞ
l i ¼ 1

3L

XL−l

α¼0

TrðZjP
αZPl−1Þ ¼

XL−l

α¼0

2lþα

3L

�
j − 1

α

��
L − j

l − 1

�

¼ 2l

3L−jþ1

�
L − j

l − 1

�

; ðG1Þ

where Plþα, Pl−1ZPα, and PαZPl−1 denote “words” defined in Eq. (B3). Using these expressions, the corresponding Mazur

bounds M
ðlÞ
Zj

and M
ðrÞ
Zj

defined in Eq. (81) read

M
ðlÞ
Zj

¼
XL

l¼1

hZjq̂
ðlÞ
l i2

hq̂ðlÞl q̂
ðlÞ
l i

¼ 1

32j

Xj

l¼1

2lðj−1
l−1

Þ2
P

L
α¼l

1
3α
ðα−1
l−1

Þ ; M
ðrÞ
Zj

¼
XL

l¼1

hZjq̂
ðrÞ
l i2

hq̂ðrÞl q̂
ðrÞ
l i

¼ 1

32ðL−jþ1Þ

XL−jþ1

l¼1

2lðL−j
l−1

Þ2
P

L
α¼l

1
3α
ðα−1
l−1

Þ : ðG2Þ

2. OBC commutant Mazur bounds

We now compute the boundM
ðobcÞ
Zj

defined in Eq. (81), where fQαg is any orthogonal basis for the commutant Cobc. Here,

we choose fQαg to be the words defined in Eq. (B3). Since we are interested in obtaining a bound on the autocorrelation

function Zj, the only words that have a nonzero overlap with Zj are the ones with a single Z in the word; we refer to them as

Wα;β ≔ PαZPβ. Note that the left and right SLIOMs defined in Eqs. (B13) and (B15) are subsets of superpositions of

fWα;βg and related by q̂
ðlÞ
l ¼ P

L−l
α¼0Wl−1;α. Using the properties of Eqs. (B3)–(B5), we obtain the following relations:

hWα;βWγ;δi ¼ δα;γδβ;δ ×
1

3L
TrðPαþ1þβÞ ¼ δα;γδβ;δ ×

2αþβþ1

3L

�
L

αþ β þ 1

�

; hWα;βZji ¼
2αþβþ1

3L

�
j − 1

α

��
L − j

β

�

:

ðG3Þ

The Mazur bound M
ðobcÞ
Zj

then reads
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M
ðobcÞ
Zj

¼
XL−1

α¼0

XL−1−α

β¼0

hZjWα;βi2
hWα;βWα;βi

¼
Xj−1

α¼0

XL−j

β¼0

2αþβþ1ðj−1
α
Þ2ðL−j

β
Þ2

3Lð L
αþβþ1

Þ : ðG4Þ

The expression of Eq. (G4) also allows for an asymptotic scaling analysis of M
ðobcÞ
Zj

. Defining x ≔ j=L, p ≔ α=L, and

q ≔ β=L, for large L, we can write (after tedious simplifications)

MðobcÞðxÞ ¼
ffiffiffiffi

L
p Z

x

0

Z
1−x

0

dpdqCðx; p; qÞ exp ½LFðx; p; qÞ�;

Fðx; p; qÞ ≔ p log

�
2ðpþ qÞðx − pÞ2
ð1 − p − qÞp2

�

þ q log

�
2ðpþ qÞð1 − x − qÞ2

ð1 − p − qÞq2
�

þ 2x log

�
xð1 − x − qÞ
ðx − pÞð1 − xÞ

�

þ log

�ð1 − p − qÞð1 − xÞ2
3ð1 − x − qÞ2

�

;

Cðx; p; qÞ ≔ ðx − pÞð1 − xÞðpþ qÞ3=2
ð2πÞ3=2xpqð1 − x − qÞð1 − p − qÞ1=2 ; ðG5Þ

where MðobcÞðxÞ is the continuum approximation for M
ðobcÞ
Zj

for large L and we use Stirling’s approximation to substitute

�
yL

zL

�

¼ 1
ffiffiffiffiffiffiffiffiffi
2πL

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

y

zðy − zÞ

r

exp ½y log y − z log z − ðy − zÞ logðy − zÞ� as L→ ∞; 0 < y ≤ 1; 0 < z ≤ y: ðG6Þ

Performing the standard saddle point approximation on the integral in Eq. (G5) in the large L limit, we obtain

MðobcÞðxÞ ¼ 2πCðx; p0; q0Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

L detHðx; p0; q0Þ
p exp ½LFðx; p0; q0Þ� ¼

1

3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2

πLxð1 − xÞ

s

; ðG7Þ

where ðp; qÞ ¼ ðp0; q0Þ is the saddle point of Fðx; p; qÞ, detHðx; p; qÞ is the determinant of the Hessian matrix of

Fðx; p; qÞ, and we use

�
∂F

∂p
;
∂F

∂q

�	
	
	
	
ðp;qÞ¼ðp0;q0Þ

¼ ð0; 0Þ ⇒ ðp0; q0Þ ¼
�
2x

3
;
2ð1 − xÞ

3

�

;

detHðx; p0; q0Þ ¼
81

2xð1 − xÞ ; Cðx; p0; q0Þ ¼
3

π3=22xð1 − xÞ ; Fðx; p0; q0Þ ¼ 0: ðG8Þ

Equation (G7) rigorously proves the numerical observations in Ref. [44].

3. PBC commutant Mazur bounds

We now compute the Mazur bound M
ðpbcÞ
Zj

defined in Eq. (86), where fQαg is an orthogonal basis for Cpbc. Here, we

choose fQαg to be the words of Eqs. (B10) and (B12). Similar to the OBC case, we focus on only words that have a nonzero

overlap with Zj, which are the ones with a single Z in the word. Because of the different definitions of words of length

l ≤ L − 1 and words of length L, words with a single Z can have the form either Wα ≔ ½PαZ� for 0 ≤ α ≤ L − 2 or

WL;α ≔ ½PαZPL−α−1� for 0 ≤ α ≤ L − 1. These words have the following properties:

hWαWβi ¼ δα;β ×
2αþ1

3L

�
L

αþ 1

�

ðαþ 1Þ; hZjWαi ¼
2αþ1

3L

�
L − 1

α

�

for 0 ≤ α; β ≤ L − 2;

hWL;αWL;βi ¼ δα;β ×

�
2

3

�
L

; hZjWL;αi ¼ δj;αþ1 ×

�
2

3

�
L

for 0 ≤ α; β ≤ L − 1: ðG9Þ

Using Eqs. (G9) and (86), the PBC Mazur bound reads
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M
ðpbcÞ
Zj

¼
XL−2

α¼0

hZjWαi2
hWαWαi

þ
XL−1

α¼0

hZjWL;αi2
hWL;αWL;αi

¼
XL−2

α¼0

2αþ1ðL−1
α

2Þ
3Lðαþ 1Þð L

αþ1
Þ þ

�
2

3

�
L

¼ 2

3L
þ
�

1 −
1

L

��
2

3

�
L

: ðG10Þ

To explore if this is the case with other autocorrelation functions, we consider the Mazur bound for the operator ZjZjþ1.

Similar to the previous case, we choose fQαg to be the words of Eqs. (B10) and (B12) and focus on only words that have a
nonzero overlap with ZjZjþ1, which are the ones with two Z’s in the word. Such words can have the form either W̃α ≔

½PαZ2� for 0 ≤ α ≤ L − 3 or W̃L;α ≔ ½PαZ2PL−α−2� for 0 ≤ α ≤ L − 2. These words have the following properties:

hW̃αW̃βi ¼ δα;β ×
2αþ2

3L

�
L

αþ 2

�

ðαþ 2Þ; hZjZjþ1W̃αi ¼
� 2αþ2

3L
ðL−2

α
Þ if α ≥ 1

4

3L
× 2 if α ¼ 0

for 0 ≤ α; β ≤ L − 3;

hW̃L;αW̃L;βi ¼ δα;β ×

�
2

3

�
L

; hZjZjþ1WL;αi ¼ δj;αþ1 ×

�
2

3

�
L

for 0 ≤ α; β ≤ L − 2: ðG11Þ

The Mazur bound M
ðpbcÞ
ZjZjþ1

is then given as follows:

M
ðpbcÞ
ZjZjþ1

¼
XL−3

α¼0

hZjZjþ1W̃αi2
hW̃αW̃αi

þ
XL−1

α¼0

hZjZjþ1W̃L;αi2
hW̃L;αW̃L;αi

¼ 16

3L × LðL − 1Þ þ
XL−3

α¼1

ðL−2
α
Þ22αþ2

3Lðαþ 2Þð L
αþ2

Þ þ
�
2

3

�
L

¼ 8

27ðL − 1Þ −
4

27LðL − 1Þ þ
�
2

3

�
L
�

1 −
1

L

�

þ 12

3L × LðL − 1Þ ∼
1

L
: ðG12Þ

APPENDIX H: MAZUR BOUNDS IN THE SPIN-1 DIPOLE-CONSERVING MODEL

In this Appendix, we compute the contribution of a class of blockaded Krylov subspaces to the Mazur bound of the local

spin operator Zj in the spin-1 dipole-conserving model. As discussed in Sec. VII C 2, the Mazur bound contributionM
ðblockÞ
Zj

of all the subspaces in which site j frozen is given by Eq. (89). Hence, it is sufficient to compute
P

α DKj;α
, the total

dimension of the Krylov subspaces Kj;α, where site j is frozen and Zj ¼ �1. In the following, we do this by studying the

blockaded subspaces in the dots and links language that is convenient to describe the dynamics in the spin-1 dipole-

conserving model (see Appendix F). Recall that • denotes spins þ or −, ◦ denotes spin 0, and links connect adjacent filled

dots if they have opposite Zj’s.

We first note that, in the language of dots and links, we can always represent states in a blockaded Krylov subspace in the

following form:

ðH1Þ

where the boxes denote the configurations on the left region (jLðlÞi), the blockade (jBðbÞi), and the right region (jRðrÞi) with
lengths l, b, and r ¼ L − l − b, respectively (see Sec. VI B), with more details about these regions given below, and the

dotted lines indicate possible links to the left or right of the filled dots. The form in Eq. (H1) has two main implications.

First, the leftmost two spins of jBðbÞi are alwaysþþ or −−, and the same is true about the rightmost two spins. Second, the

rightmost (respectively, leftmost) nonzero spin (i.e., that are þ or −) of jLðlÞi (respectively, jRðrÞi) is the same as the

leftmost (respectively, rightmost) spin of jBðbÞi. Note that it is also possible to have all 0’s in the left and right regions. As a
consequence, there are no links that connect the left or right region to the blockaded region. It is easy to verify that, as long

as the entire middle region is frozen, the rules of Eq. (F2) preserve the form of Eq. (H1).

Given a frozen site j, we can always choose the blockade configuration jBðbÞi of the form of Eq. (H1) that includes site j.
Furthermore, without loss of generality, we can require that the only •’s (that are not connected by a link) in the blockade

jBðbÞi are on its leftmost and rightmost ends, and we refer to such blockades as “irreducible blockades” jIðbÞi. It is easy to

verify that any irreducible blockade configurations should have the following form:

ðH2Þ
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where there can be any number of dimers of varying lengths and the only constraint is that they should be “maximally

packed” with no ◦’s between two dimers. Note that we also include the case with zero dimers; i.e., j • • i is an irreducible
blockade. However, given a frozen site j, the choice of the irreducible blockade is not always unique, and it could be a part

of two such irreducible blockades jIðbÞi and jIðb0Þi. In such a case, we refer to the full blockade region as jIðbÞ ∪ Iðb
0Þi, which

could have a configuration such as

ðH3Þ

where j is the • in the middle and the blockades to the left

and the right of j (including site j) are jIðbÞi and jIðb0Þi,
respectively. As we discuss below, such configurations are

important to correct for the overcounting in our counting

procedure.

The main strategy to compute the total dimension of the

described blockaded Krylov subspaces is as follows. We

first fix jBðbÞi in the middle box in Eq. (H1) to be an

irreducible blockade jIðbÞi containing site j. The total

dimension of all Krylov subspaces with that blockade

configuration reduces to a simple counting of the number of

allowed configurations of the left and right regions that are

compatible with the blockade region [i.e., they have the

form of Eq. (H1)]. The total dimension of all blockaded

Krylov subspaces is then obtained by summing over all

possible irreducible blockade configurations and correcting

for overcounting due to subspaces in which j can be a part

of multiple irreducible blockades.

In the following, we continue to denote the number

of spins in the left, blockade, and right regions of the chain

by l, b, and r, respectively, such that lþ bþ r ¼ L.
We label all Krylov subspaces with l sites in the left region

and blockade configuration jBðbÞi by KðBðbÞ;lÞ, where we
have in mind configurations of the form of Eq. (H1) (note

that we are using one symbol to denote many subspaces),

and we denote the dimension of all such subspaces

by D
KðBðbÞ;lÞ. Using the form of Eq. (H1), this is simply

given by

D
KðBðbÞ;lÞ ¼ Dl ×Dr; Dx ¼

3x þ 1

2
;

x ∈ fl; rg; r ¼ L − l − b; ðH4Þ

where Dl (respectively, Dr) is the number of allowed

configurations in the left (respectively, right) regions with

the rightmost (respectively, leftmost) nonzero spin being

the same as the leftmost (respectively, rightmost) of jBðbÞi.
The expressions for Dl and Dr in Eq. (H4) can be verified

straightforwardly and are independent of the particular

configuration jBðbÞi. Furthermore, if j is deep in the bulk of
the chain, we have 1 ≪ l ≪ L (i.e., l ¼ yL for

0 < y < 1), and D
KðBðbÞ;lÞ for a blockade of range b can

be estimated as follows (measured relative to the total

Hilbert space dimension):

1

3L
D

KðBðbÞ;lÞ¼
1

3L
DlDL−l−b¼

1

4×3L
ð3lþ1Þð3L−l−bþ1Þ

¼ 1

4×3b
þOðe−LÞ; ðH5Þ

where b is the size of the blockade. Note that this

calculation is for fixed (but thermodynamically large) l,

which, however, drops out in the thermodynamic limit. The

result depends on only on the size of the assumed blockade

region but is independent of the internal structure of this

region, which, in particular, can be reducible.

Turning to Mazur bound calculations, heuristically, the

Mazur bound M
ðblockÞ
Zj

in Eq. (89) is expressed as follows:

M
ðblockÞ
Zj

¼ 1

3L

X

α

DKj;α
¼ 1

3L

X

ðIðbÞ;lÞ
D

KðIðbÞ;lÞδZj;�

−
1

3L

X

IðbÞ;Iðb
0Þ

D
KðIðbÞ∪Iðb0Þ;j−bÞ: ðH6Þ

In the first sum, fðIðbÞ;lÞg runs over irreducible blocks and
their positions covering j, and δZj;� ensures that the frozen

site j is either þ or − (so that it has a nonvanishing

contribution to the Mazur bound; see the discussion in

Sec. VII C 2). Since we are interested only in the Krylov

subspaces where site j belongs to the blockaded region, we

have j − b ≤ l ≤ j − 1. In the second sum in Eq. (H6), IðbÞ

and Iðb
0Þ run over irreducible blocks; this term accounts for

blockade configurations of the form of Eq. (H3), which

have been double counted in the first sum. In other words,

the restriction to irreducible blocks in the first sum takes

care of most possibilities of overcounting, and the only

overcounting that appears from naive summation over l is

canceled by the second sum. Before proceeding, we note

that, according to Eq. (H5), the contributions of the various

blockades in Eq. (H6) depend only on the blockade size;
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hence, it is useful to arrange the sums there according to

blockade size, i.e.,

M
ðblockÞ
Zj

¼
X

b

M
ðbÞ
Zj

−
X

b;b0
O

ðb;b0Þ
Zj

; ðH7Þ

where the sum is over blockade sizes, M
ðbÞ
Zj

is the first sum

in Eq. (H6) with IðbÞ’s restricted to size b, and O
ðb;b0Þ
Zj

is the

second sum with IðbÞ’s and Iðb
0Þ
’s restricted to sizes b and

b0. Since their contributions decay exponentially with

blockade size, we expect smaller values of b to dominate

the sums in Eq. (H7).

We start with computing the contribution of two-site

blockades. According to Eq. (H2), the only two-site

irreducible blockade is jIð2Þi ¼ j • • i. In order for the

site j to be within the blockade subspace and Zj ¼ �, we

have two choices for l, i.e., l ¼ j − 2 or l ¼ j − 1.

However, by including the contribution of both these

choices of l, we have double counted the contribution

from all the Krylov subspaces with the three-site block-

ade jIð2Þ ∪ Ið2Þi ¼ j • • • i with j on the middle site

(hence, l ¼ j − 2). Using Eqs. (H7), (H6), and (H5), we

obtain the total contribution due to two-site blockades

to be

M
ð2Þ
Zj

¼ 2 ×
2

4 × 32
; O

ð2;2Þ
Zj

¼ 2 ×
1

4 × 33
; M

ðblockÞ
Zj

j
two-site

≔ M
ð2Þ
Zj

−O
ð2;2Þ
Zj

¼ 5

54
≈ 0.0926; ðH8Þ

where the overall factor of 2 accounts for the two possibilities • ¼ �.

Moving on to three-site blockades, we find that there are no irreducible blockade configurations; hence,

M
ð3Þ
Zj

¼ O
ð3;bÞ
Zj

¼ O
ðb;3Þ
Zj

¼ 0. Next, we consider four-site blockades, where the unique irreducible blockade is

. In this case, we have four possible values of l (j − 4 ≤ l ≤ j − 1) such that Zj ¼ �1.

However, by including all their contributions, we are double counting the contributions of the following blockades:

ðH9Þ

Accounting for the overcounting and doubling to account for the two possible spin patterns, using Eqs. (H7) and (H5) we

obtain

M
ð4Þ
Zj

¼ 2 ×
4

4 × 34
; O

ð2;4Þ
Zj

¼ O
ð4;2Þ
Zj

¼ 2 ×
1

4 × 35
; O

ð4;4Þ
Zj

¼ 2 ×
1

4 × 37
;

M
ðblockÞ
Zj

j
four-site

≔ M
ð4Þ
Zj

−O
ð4;2Þ
Zj

−O
ð2;4Þ
Zj

−O
ð4;4Þ
Zj

¼ 89

4374
≈ 0.02035: ðH10Þ

Similarly, we can consider irreducible blockades jIðbÞi of
the form of Eq. (H2) that span b sites. Simple combinatorics

gives the number of such blockades with n dimers to be

Nb;n ¼
�
b − n − 3

n − 1

�

; 0 ≤ n ≤



b

2

�

− 1: ðH11Þ

Note that, although the combinatorics is not directly valid for

n ¼ 0 orb ≤ 3, we nevertheless find thatNb;n of Eq. (H11) is

the correct number of blockaded configurations even in those

cases. For each blockade with n dimers, there are (2nþ 2)

available choices of l such that Zj ¼ �. However, similar to

the b ¼ 2 and b ¼ 4 cases, by including all such positions,

we are overcounting the contribution of the ðbþ b0 − 1Þ-site
blockade configurations of the form jIðbÞ ∪ Iðb

0Þi. [The

overcount happens onlywhen using the blockade probability

Eq. (H5) for choices l where j is one of the end points of an
irreducible blockade of size b, since part of the blockade

satisfaction condition in Eq. (H5) comes from immediately

adjacent irreducible blockade configurations of various sizes

b0 sharing site j. There is no overcountwhen j belongs to one
of thedimers in an irreducible blockade.] Similar toEqs. (H8)

and (H10), we then obtain

M
ðbÞ
Zj

¼ 2 ×
X
bb
2
c−1

n¼0

Nb;n

�
2nþ 2

4 × 3b

�

¼ F
ð2Þ
b−3 þ Fb−3

3b
;

O
ðb;b0Þ
Zj

¼ 2 ×
1

4 × 3bþb0−1

�
X
bb
2
c−1

n¼0

Nb;n

��
X
bb0
2
c−1

n0¼0

Nb0;n0

�

¼ Fb−3Fb0−3

2 × 3bþb0−1
; ðH12Þ

where fFng are the Fibonacci numbers, fFð2Þ
n g are the

second-order Fibonacci numbers (defined by the recursion

relation F
ð2Þ
n ¼ F

ð2Þ
n−1 þ F

ð2Þ
n−2 þ Fn−2), and we use the con-

ventions F0 ¼ F
ð2Þ
0 ¼ F

ð2Þ
−1 ¼ 0 and F−1 ¼ 1 [121]. In the
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above, we already use L → ∞ expressions for the blockade

probabilities in Eq. (H5). Working in the thermodynamic

limit, using Eqs. (H7) and (H12), the Mazur bound due to all

the blockaded subspaces is then given by

M
ðblockÞ
Zj

¼
X∞

b¼2

�
F
ð2Þ
b−3

3b
þ Fb−3

3b

�

−
3

2

X∞

b;b0¼2

Fb−3Fb0−3

3bþb0

¼ x3Gð2ÞðxÞjx¼1=3 þ ½x2 þ x3GðxÞ�jx¼1=3

−
3

2
½x2 þ x3GðxÞ�2jx¼1=3; ðH13Þ

where GðxÞ and Gð2ÞðxÞ are generating functions corre-

sponding to the Fibonacci and second-order Fibonacci

numbers, respectively, which are known to be [122]

GðxÞ ≔
X∞

n¼0

Fnx
n ¼ x

1 − x − x2
;

Gð2ÞðxÞ ≔
X∞

n¼0

F
ð2Þ
n xn ¼ xð1 − xÞ

ð1 − x − x2Þ2 : ðH14Þ

Substituting Eq. (H14) into Eq. (H13), we obtain

M
ðblockÞ
Zj

¼ 2

15
≈ 0.1333: ðH15Þ

APPENDIX I: MAZUR BOUNDS IN THE

TEMPERLEY-LIEB MODEL

In this Appendix, we provide details on the Mazur bound

computation for the edge energy operator ê1;2 in the

Temperley-Lieb models of Eq. (48). We start by simplify-

ing Eq. (92) as

M
ðTLÞ
êj;jþ1

¼ m2

mL

X

α

½Ndimer@ðj;jþ1Þ
Kα

�2
DKα

¼ m2

mL

XL=2−1

λ¼0

dλ
½Ndimer@ðj;jþ1Þ

λ �2
Dλ

; ðI1Þ

where N
dimer@ðj;jþ1Þ
Kα

is the number of configurations in Kα

with a dimer between sites j and jþ 1 and DKα
is the

dimension of the Krylov subspace Kα. Furthermore, we

take L even for concreteness and use results from Eq. (61):

Given 2λ dots, there are dλ distinct Krylov subspaces, each

of dimension Dλ, and with the same action of the TL

algebra in terms of the dots and dimers pictures; in

particular, each such Krylov subspace has the same number

of configurations with a dimer between sites j and jþ 1,

which we denote by N
dimer@ðj;jþ1Þ
λ . Note that the sum

terminates at λ ¼ L=2 − 1, since the 2λ dots must be on

the sites other than j, jþ 1. At the edge, j ¼ 1, N
dimer@ð1;2Þ
λ

is the same as the number of dots and dimers pictures with

2λ dots and restricted to the remaining L − 2 sites, which is

given by Dλ in Eq. (61) with L replaced by L − 2. Marking

the appropriate chain lengths with superscripts on Dλ, we

have

M
ðTLÞ
ê1;2

¼ m2

mL

XL=2−1

λ¼0

dλ
½DðL−2Þ

λ �2

D
ðLÞ
λ

¼ m2

mL

XL=2−1

λ¼0

dλD
ðL−2Þ
λ

×
ðLþ 1Þ2 − ð2λþ 1Þ2

4LðL − 1Þ ; ðI2Þ

where in the last equation we factor out one D
ðL−2Þ
λ and use

a simple expression for D
ðL−2Þ
λ =D

ðLÞ
λ derived from Eq. (61).

This writing enables exact evaluation of the Mazur bound

by utilizing the knowledge that

XK=2

λ¼0

dλD
ðKÞ
λ ¼ mK; ðI3Þ

the full Hilbert space dimension on K sites [assumed even

for concreteness; see Eqs. (8) and (61)]. We then compute
PK=2

λ¼0
ð2λþ 1Þ2dλDðKÞ

λ , by taking appropriate derivatives of

Eq. (I3) with respect to the formal quantum group param-

eter q that is an argument of dλ [see Eq. (61)] and that enters

the right-hand side viam ¼ qþ q−1; see Eq. (57). It is then
easy to verify that

XK=2

λ¼0

ð2λþ 1Þ2dλDðKÞ
λ ¼ q

q − q−1
d

dq

�

q
d

dq
½mKðq − q−1Þ�

�

;

m ¼ qþ q−1; dλ ¼ ½2λþ 1�q
¼ mK½ðK þ 1Þ2 − 4KðK − 1Þ=m2�:

ðI4Þ
Using Eqs. (I2)–(I4), we obtain the connectedMazur bound

of Eq. (93) to be

Mconn
ê1;2

¼ 1

L − 1

�

1 −
4

m2
þ 6

m2L

�

: ðI5Þ

APPENDIX J: MATRIX PRODUCT OPERATORS

(MPO) FORMS OF THE COMMUTANT

ALGEBRA BASIS ELEMENTS

In this Appendix, we show that the IOMs in the

commutant algebras in the t − Jz, PF, and TL models

(with OBCs) in the main text have simple MPO expres-

sions. Any operator Ô is said to have an efficient MPO

representation if they can be written as

Ô ¼
X

fsng;ftng
½blATA

½s1t1�
1 A

½s2t2�
2 …A

½sLtL�
L brA�jfsngihftngj; ðJ1Þ

where A can be thought of as χ × χ matrices with elements

expressed as d × d matrices acting on the physical indices.

χ is referred to as the bond dimension of the MPO, the

corresponding vector space is the auxiliary space,
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and blA and brA are χ-dimensional boundary vectors of the

MPO in the auxiliary space, which are usually set to blA ¼
ð 1 0 … 0 ÞT and brA ¼ ð 0 … 0 1 ÞT , respec-

tively. The MPO expressions for local operators is straight-

forward to construct; e.g., the U(1) generators Nσ
’s in

Eq. (19) can be expressed as an MPO with bond dimension

χ ¼ 2, where

Aj ¼
�
1 Nσ

j

0 1

�

; σ ∈ f↑;↓g: ðJ2Þ

For the OBC t − Jz model, the MPO expressions for the

conserved quantities Nσ1…σk in Eq. (25) can be constructed

using systematic methods in the literature; see, e.g.,

Refs. [13,123,124]. We find that Nσ1…σk has the form of

Eq. (J1), where Aj has bond dimension χ ¼ kþ 1, and is

given by

Aj ¼

0

B
B
B
B
B
B
B
B
B
@

1 N
σ1
j 0 � � � 0

0 1 N
σ2
j

. .
. ..

.

..

. . .
. . .

. . .
.

0

..

. . .
. . .

.
1 N

σk
j

0 � � � � � � 0 1

1

C
C
C
C
C
C
C
C
C
A

: ðJ3Þ

The MPO representation in Eq. (J3) also helps to directly

show that Nσ1…σk is a conserved quantity of the t − Jz
model. This is evident from the two-site MPO, which reads

AjAjþ1 ¼

0

B
B
B
B
B
B
B
B
B
B
B
B
B
@

1 N
σ1
j þ N

σ1
jþ1 N

σ1
j N

σ2
jþ1 0 � � � 0

0 1 N
σ2
j þ N

σ2
jþ1 N

σ2
j N

σ3
jþ1

. .
. ..

.
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In Eq. (J4), each element within AjAjþ1 commutes with the terms T̂j;jþ1 and V̂j;jþ1 of Ht−Jz
as a consequence of Eqs. (21)

and (23), and, thus, the MPO generated by Aj in Eq. (J3) commutes with all the fT̂k;kþ1g and fV̂k;kþ1g and is guaranteed to
be a global conserved quantity of Ht−Jz

.

Similarly, the IOMs Nα1…αk and M
β1…βk
α1…αk of Eqs. (45) and (60) in the OBC PF and TL models, respectively, also have

simple MPO representations. The MPO matrices Aj in those cases have the same form as Eq. (J3) with the substitutions

N
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j → ð−1ÞjNαl

j and N
σl
j → ðMjÞβlαl , respectively. Moreover, for the TL models, the additional quadratic IOMs M
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Eq. (E3) also have simple MPO representations with bond dimension χ ¼ 3þmðδβ1α2 þ δ
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α1Þ as follows:
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