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We study the antiferromagnetic XYZ spin chain with quenched bond randomness, focusing on a critical line

between localized Ising magnetic phases. A previous calculation using the spectrum-bifurcation renormalization

group, and assuming marginal many-body localization, proposed that critical indices vary continuously. In this

work, we solve the low-energy physics using an unbiased numerically exact tensor network method named

the “rigorous renormalization group.” We find a line of fixed points consistent with infinite-randomness phe-

nomenology, with indeed continuously varying critical exponents for average spin correlations. A self-consistent

Hartree–Fock-type treatment of the z couplings as interactions added to the free-fermion random XY model

captures much of the important physics including the varying exponents; we provide an understanding of

this as a result of local correlation induced between the mean-field couplings. We solve the problem of the

locally correlated XY spin chain with an arbitrary degree of correlation and provide analytical strong-disorder

renormalization group proofs of continuously varying exponents based on an associated classical random walk

problem. This is also an example of a line of fixed points with continuously varying exponents in the equivalent

disordered free-fermion chain. We argue that this line of fixed points also controls an extended region of the

critical interacting XYZ spin chain.

DOI: 10.1103/PhysRevB.104.214208

I. INTRODUCTION

In many situations, phases of many-body quantum systems

are stable under weak static, or “quenched,” disorder in the

presence of a gap, and the disorder average of certain quanti-

ties can be calculated in a related clean system via either the

replica trick or supersymmetry arguments for noninteracting

models [1,2]. However, these methods are not suitable for

relevant disorder, or disorder along with interactions, which

together produce a rich variety of behaviors. In contrast, real-

space thinking should be suitable for directly accounting for

spatial inhomogeneity. Interestingly, strong disorder causes

certain classes of disordered systems to become tractable on

long scales, making real-space renormalization group (RG)

approaches amenable to analytical treatments controlled by

the flow to infinite randomness. In this work, we investigate a

modern application of real-space RG to a random XYZ spin

chain [3,4], where we use exact numerics to perform unbiased

exploration and validation, and also use the strong-disorder

renormalization group (SDRG) to demonstrate and character-

ize such fixed points using the language of random walks.

The original development of a real-space RG appropriate

for strong-disorder physics in one dimension (1d) is due to

Ma, Dasgupta, and Hu [5]. The feature distinguishing SDRG

from, e.g., spin blocking, is that effective degrees of freedom

are explicitly associated with an energy scale rather than with

a spatial grouping. In this way, the disorder realization deter-

mines the pattern of integrating out fluctuations.

Such an approach is now understood to be well-motivated

by the idea of an infinite-randomness fixed point (IRFP), a

stable solution of the SDRG equations discovered by Fisher

in Refs. [3,6,7] at which effective disorder strength grows

with the scale without bound, and SDRG predictions be-

come asymptotically exact. In an IRFP, disorder dominates

the low-energy physics and physical observables are not self-

averaging; average behaviors are instead often determined

by rare regions within a disorder realization. Interestingly,

although such fixed points lack conformal symmetry, the

phenomenology can resemble that of CFT fixed points: for

instance, the scaling of average entanglement follows the con-

formal form with an effective central charge which in some

cases is related to the central charge of the clean theory (but

does not obey the same rules under RG) [8–10].

Since its introduction, the SDRG has been specialized to

a variety of classical and quantum systems, and the original

scheme has seen many generalizations; see recent reviews

[11]. For example, applications in two-dimensional (2d) ran-

dom models also yield IRFPs in these settings [12–18]. In

another direction, SDRG methods were extended to treat all

eigenstates of a quantum Hamiltonian [19–22], in order to

assess the possibility of many-body localization (MBL) of

excited states. (There are by now multiple reviews of MBL,

for instance see Refs. [23,24].) The many-body extended

SDRG procedures do not perform an iterative targeting of the

low-energy space, but instead tabulate emergent conservation

laws corresponding to the local integrals of motion of an MBL

phase; nevertheless, the equations are formally quite similar to

the original picture implementing a more traditional RG.

One of the extended many-body SDRG procedures, the

“spectrum bifurcation renormalization group” (SBRG) devel-

oped in Ref. [21] for Hamiltonians comprising Pauli strings,

was applied to the random XYZ spin chain by [4]. There,
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along a phase boundary between localized Ising antiferromag-

nets (proposed to be MBL), disorder- and energy-averaged

Edwards-Anderson spin correlations were found to decay as

power laws with continuously varying critical exponents. Av-

erage entanglement entropy scaling also exhibited a stable

effective central charge. The phase transition was conjectured

to be “marginal MBL,” meaning that eigenstates do not ther-

malize but exhibit a logarithmic violation of the area law.

However, it has recently been argued that such marginal MBL

Hamiltonians are perturbatively unstable to ergodicity at finite

energy density due to resonances [25,26]. As is true of all

excited-state SDRG schemes, Refs. [4,21] rely on MBL for

validity, and these recent arguments call this assumption into

question.

In the present work, we investigate the SBRG findings

using unbiased numerics for the ground state and low-energy

excited states. We emphasize that our focus is entirely on low-

energy properties, and we will not have anything to say about

MBL physics at arbitrary energy density. However, we find

the possibility of continuously varying power laws in IRFPs

already very interesting and worth further study. The random

XYZ chain—while suspected to support infinite-randomness

phenomenology in Fisher’s original work, Ref. [3]—has

eluded understanding due to the lack of a closed-form SDRG

solution, and developing a stronger grasp of such instances

would constitute an important advance.

Strongly disordered models pose an especially difficult

challenge for unbiased numerics, and have long been recog-

nized as among the only 1d models to be resistant to standard

methods, chiefly the density matrix renormalization group

(DMRG). We apply a relatively new tensor network numerical

method named the rigorous renormalization group (RRG) to

this problem, as it has already been shown to be effective in

the related random XY model [27]. Our goal for the unbiased

tensor network computations is to test the findings of Ref. [4],

and better understand the disordered fixed points associated

with the critical line.

As a brief overview of our results, the data found by RRG

are in support of both infinite-randomness physics as well

as continuously varying critical indices for disorder-averaged

correlations. These conclusions are based on direct measure-

ments in MPS, along with scaling of low-energy spectral gaps,

which we solve for in the various symmetry sectors of the

model up to systems of length N = 80 spins. Our findings

are in general agreement with the SBRG results, namely, that

critical indices controlling decay of correlations, as well as

long-range mutual information, vary along the critical line,

while the “central charge” is fixed. We additionally study

the critical exponent ψ , which characterizes IRFP dynamics

through the relationship ln(1/E ) ∼ Lψ between energy scale

and length, and find that its value is close to, but may be vary-

ing away from, the free-fermion fixed point with ψ = 1/2.

These numerical results for the critical line are captured

reasonably well by a self-consistent Hartree-Fock mean-field

that treats Jz couplings as interactions added to the free-

fermion XY chain [throughout, J
x,y,z

j refer to terms in the XYZ

chain as in Eq. (1)]; the Hartree-Fock also apparently pro-

duces continuously varying exponents. This finding motivates

study of a “locally correlated” XY chain with correlations

only between terms on the same link of the lattice. The

FIG. 1. Shown is an updated version of the schematic RG flow

of XY antiferromagnets in Fig. 4 of Ref. [3]. In this work, we prove

the line of fixed points along the exactly marginal direction δ, which

describes the degree of correlation between bond terms Jx and Jy, in

the notation of Eq. (1). (Note that δ = 1 corresponds to σ 2
a = 0 in

Fisher’s notation.) The average anisotropy a is as defined in Ref. [3];

in the present work, we consider only the line a = 0.

locally correlated model again exhibits similar behavior, and

its SDRG structure has an advantageous mathematical con-

nection to the theory of random walks. Within this setting, we

write rigorous bounds fully determining the critical exponent

for power-law decay of a certain average spin correlation

function. This exponent indeed varies continuously, proving

that the free-fermion critical line of the locally correlated

model is marginal, and is described by a line of IRFPs. This

result resolves a question posed by [3], as illustrated in Fig. 1.

In this figure, we parametrize correlations between Jx
j and J

y

j

by a generic parameter δ varying between δ = 0 (completely

uncorrelated or XY model) and δ = 1 (completely correlated

or XX model) [for a specific example, see Eq. (19)]; devia-

tion of δ from 1 can also be viewed as introducing random

anisotropy to the XX model.

Returning to the interacting model, based on the above un-

derstanding of the noninteracting case and the RRG numerical

data, we conjecture that at least in the neighborhood of the

free-fermion model, interactions are irrelevant and the local

correlations generated in the SDRG drive the interacting the-

ory to the line of noninteracting IRFPs at long distances. This

scenario is presented in Fig. 2 and represents our conjectured

explanation for the continuously varying critical exponents in

the XYZ chain.

The outline of this paper is as follows. In Sec. II, we

present the XYZ spin model and summarize the history of

its SDRG, along with explicitly developing the RG rules in

the many-body language. In Sec. III, we perform an unbiased

study of the ground state using RRG. In Sec. IV, based on

our numerical results, we develop both a Hartree-Fock mean-

field theory and the free-fermion locally correlated effective

model. In Sec. V, we use a picture of the SDRG procedure in

terms of random walks to prove continuously varying critical

exponents in the locally correlated effective model. In Sec. VI,

we conjecture a possible long-distance fate of the RG flow for

the critical XYZ spin chain, and finally in Sec. VII, we discuss

the implications of all of these results taken together.
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FIG. 2. We propose the following schematic flows for the XYZ

antiferromagnet, where δ is the degree of correlation between local

Jx and Jy couplings [as defined in Eq. (1)] and J̃z is the bandwidth of

the Jz distribution, with statistical isotropy corresponding to J̃z = 1.

The line of fixed points at J̃z = 0 is the same as in Fig. 1, and J̃z is

argued to be perturbatively irrelevant. We conjecture that any J̃z < 1

is irrelevant at δ = 0, but through generation of finite δ flows to

the line of noninteracting IRFPs. The methods we employ cannot

access the statistically isotropic XYZC or U(1)-symmetric XXZC

fixed points, but XXZC was previously described by [3]. The flows

on the dashed line between XYZC and XXZC lie on a manifold

separating the basins for XY and ZAF, which is not well described by

this slice through parameter space. We avoid any specific conjecture

on this matter but remark that it is an interesting topic for further

study.

II. RANDOM XYZ MODEL AND REVIEW OF

PREVIOUS SDRG RESULTS

A. Spin chain Hamiltonian

As our most general model we consider the antiferro-

magnetic XYZ spin chain with quenched randomness in all

couplings; that is,

H =
N−1
∑

j=1

(

Jx
j σ

x
j σ

x
j+1 + J

y

j σ
y

j σ
y

j+1 + Jz
j σ

z
j σ

z
j+1

)

. (1)

The couplings Jα
j > 0, α = x, y, z, are independent. This

model generically has a Z2 × Z2 global symmetry, with gen-

erators given by the Ising-type operators gx =
∏N

j=1 σ x
j and

gy =
∏N

j=1 σ
y

j . In particular, local field terms are excluded

by this symmetry. This model also respects time reversal on

the spins, which we implement as gyK, where K is complex

conjugation in the z basis.

We impose the same functional form on the disorder dis-

tributions of Jx
j , J

y

j , and Jz
j (though delay specification until

Sec. III), with bandwidths specified by a set of parameters

J̃x, J̃y, J̃z > 0. If the value of any one of these is larger than

the other two, the ground state of the model displays Ising

antiferromagnetic (AFM) order. As we are considering strong

disorder, we anticipate that these phases are localized. If two

bandwidths are equal and of the largest magnitude, the model

lies on a boundary between localized phases with distinct

types of magnetic order; we will primarily consider this case.

If all three disorder bandwidths are equal, the model has a

statistical S3 permutation symmetry and sits at a tricritical

point in the phase diagram [3,4].

Many exact results are known for phases of the Hamilto-

nian Eq. (1) in certain limits, and we provide a brief recap

here. The SDRG was in fact originally introduced by Ma,

Dasgupta, and Hu in order to study the random Heisenberg

antiferromagnet with SU(2) symmetry [5], achieved in the

present notation by fixing Jx
j = J

y

j = Jz
j for all bonds j. These

works argued for the asymptotic development of a power-law

singularity in the distribution of couplings and computed lead-

ing contributions to critical indices, which vary slowly along

the flow.

[3] generalized this analysis to account for anisotropy and

performed a thorough study of the resulting phase diagram.

The SDRG rules for the random XX model (Jx
j = J

y

j and

Jz
j = 0 for all j), which breaks the SU(2) spin rotation sym-

metry to a U(1) subgroup, are very similar to those of the

isotropic model, and in particular both realize random-singlet

(RS) phases [28]. In the ground state, the microscopic spins

are paired up into singlet states at arbitrarily long scales.

Correlations between the spins in a singlet are of order unity,

and are strongly suppressed with the rest of the system. Thus

typical spin correlations are short-ranged, whereas the average

correlations are dominated by rare paired spins. This is one

hallmark of an IRFP: that a distribution which is broad on

a logarithmic scale leads to exponential separation between

typical and averaged properties of the state. From the density

of paired spins, one finds that average spin correlations exhibit

power-law decay, scaling as r−2 for separation r. This defines

the XX fixed point exponents ηx = ηy = ηz = 2. The charac-

teristic energy scale of the singlets in the RS phase follows:

ln(1/E ) ∼ Lψ , (2)

where ψ = 1
2
. As a consequence for the density of states, the

dynamical exponent is formally infinite.

The random XY chain (i.e., independent Jx
j and J

y

j but

with J̃x = J̃y, J̃z = 0), in contrast, does not realize the RS

phase. With the mean in-plane anisotropy J̃x − J̃y serving

as the quantum control parameter, [3] computed the critical

exponents ν = 2 and β = 3 −
√

5 for the transition separating

Ising x- and y-AFM phases. This was accomplished through a

lattice duality mapping to two decoupled copies of the random

transverse-field Ising model (RTFIM), whose SDRG equa-

tions are also well-studied [6,7,29]. Translating the RTFIM

results to the present XY chain, at the phase transition the

critical exponent for the decay of x and y components of

spin correlations is ηx = ηy = 4 − 2φ, where φ = 1+
√

5
2

is the

golden ratio.

Starting from the opposite limit of the XX model, with

Jx
j = J

y

j for all j, it was also found by [3] that weak random

in-plane anisotropy, which moves along the phase transition

toward the XY point, is a marginal perturbation. It was not

clear whether this is the case along the entire phase boundary,

and we will in fact be led to take up this question in some

detail in Sec. V.

The set of exponents for disorder-averaged spin correla-

tions can be completed using the mapping of the XX and

XY models to free fermions [30]. For the anisotropic model

with S2 permutation symmetry, ηz = 4. In a chain with open

boundaries, consideration of the form of the surface magneti-
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zation leads to the scaling of the end-to-end spin correlations

ηe
x = ηe

z = 1 for the XX model and ηe
x = 1, ηe

z = 2 for the XY

model.

Focusing on a different type of spin chain, [31] stud-

ied permutation-symmetric multicritical points arising from

effective low-energy theories of partially dimerized spin-S

models with SU(2) symmetry. They performed a fixed-point

analysis of the SDRG equations for degrees of freedom lo-

calized at the boundaries between distinct domains of n =
2S + 1 different types of local order (i.e., topological phases

distinguished by the properties of edge modes localized near

the ends of open chains). Their primary result is a general-

ization of the n = 2 random-singlet criticality to a countably

infinite set of IRFPs with critical exponents ψ = 1
n

and ν =
2n√

4n+1−1
. The permutation symmetry refers to the interchange

of distributions for the different types of order, which me-

diate effective couplings between the domain walls. While

the permutation-symmetric tricritical point at J̃x = J̃y = J̃z in

our model shares the statistical symmetry of these theories

for n = 3, its microscopic details are dissimilar and it is not

clear a priori whether this category of universality applies.

Indeed, our estimates of the exponent ψ at the XYZ tricritical

point in Sec. III B 3 appear to rule out the applicability of the

Damle-Huse universality in this case.

B. Majorana representation

Aspects of this problem become more evident in the lan-

guage of fermions, for which we use the Jordan-Wigner

transformation. Equation (1) maps to a spinless p-wave su-

perconductor with density-density interactions:

H =
N−1
∑

j=1

(t jc
†
j c j+1 + 
 jc

†
j c

†
j+1 + H.c.)

+ Jz
j (2n j − 1)(2n j+1 − 1), (3)

which has position-dependent hopping t j = Jx
j + J

y

j and pair-

ing potential 
 j = Jx
j − J

y

j . Following the idea of [32,33], it

is enlightening to introduce two species of Majorana fermion,

η j = c
†
j + c j and ζ j =

1

i
(c†

j − c j ). (4)

The η j and ζ j are Hermitian, and normalized so that (η j )
2 =

(ζ j )
2 = 1. In terms of these operators, the Hamiltonian is

written

H =
N−1
∑

j=1

iJx
j ζ jη j+1 − iJ

y

j η jζ j+1 − Jz
j η jζ jη j+1ζ j+1. (5)

The symmetry group of the problem is somewhat more

expressive in the Majorana language. In the following, we

specialize to even system sizes N ∈ 2Z. The generators of the

global symmetry translate to

gx = iN/2ζ1η2ζ3 · · · ηN , (6)

gy = (−i)N/2η1ζ2η3 · · · ζN . (7)

The symmetries measure fermion parity on two disjoint sets

partitioning the Majorana orbitals. The Hamiltonian (5) takes

the form of separate “imaginary random hopping” prob-

lems (see Ref. [33]) on these two chains of Majoranas of

length N , which we denote X = {ζ1, η2, ζ3, . . . , ηN } and Y =
{η1, ζ2, η3, . . . , ζN }. On each chain, the coefficients of the

Majorana hopping terms—which are fermion parity measure-

ments on adjacent orbitals within a chain—alternate between

iJx
j and −iJ

y

j . There are also interchain coupling terms with

coefficients −Jz
j . A single “rung” term iη jζ j is odd under the

parity symmetries, and H instead includes the double-rung

interactions −η jζ jη j+1ζ j+1.

The antiunitary symmetry K (i.e., complex conjugation

in the σ z basis) acts on the Majoranas as {i, η j, ζ j} �→
{−i, η j,−ζ j}. This symmetry prohibits nonzero expectation

values of the form 〈iη jηk〉 or 〈iζ jζk〉, even when these orbitals

belong to the same Majorana chain.

Constraining Jz
j = 0 for all j, the resulting Hamilto-

nian Hxy ≡ H[J̃x, J̃y, J̃z = 0] is quadratic and can be solved

for any particular disorder realization by diagonalization of

the auxiliary Bogoliubov-de Gennes (BdG) matrix in the

particle-hole basis. The mapping to the Majoranas in Eq. (4)

transforms the BdG matrix into a particular form decoupling

the two Majorana chains X and Y . This further simplifies the

solution for the single-particle eigenstates to diagonalization

of a pair of N × N tridiagonal matrices.

As we are considering boundaries between Ising ordered

phases, the natural observables are the corresponding mag-

netic order parameters σ α , α = x, y, z. Written in terms of

fermion operators, the spin correlation functions Cα ( j, k) =
〈σ α

j σ α
k 〉 are

Cx( j, k) = 〈iζ j (iη j+1ζ j+1) · · · (iηk−1ζk−1)ηk〉, (8)

Cy( j, k) = 〈−iη j (iη j+1ζ j+1) · · · (iηk−1ζk−1)ζk〉, (9)

Cz( j, k) = 〈−η jζ jηkζk〉. (10)

From Wick’s theorem, in the ground state of any specific

disorder realization Cx( j, j + r) and Cy( j, j + r) can be com-

puted as Pfaffians of antisymmetric 2r × 2r matrices, and the

calculation further simplifies due to the separation into two

Majorana chains. We focus on this case and consider the angle

brackets 〈·〉 as denoting expectation values measured in the

ground state, although the expressions (8)–(10) apply more

generally. We will be discussing disorder-averaged correla-

tions Cα ( j, j + r) and when this is clear we will drop the

overline. In the following, we work exclusively along the line

with statistical symmetry between Jx
j and J

y

j and will often

collectively refer to Cx,y( j, j + r), as C⊥( j, j + r).

C. Strong-disorder renormalization group

1. Decoupled Majorana chains

Examining the Hamiltonian on Majorana chains X and

Y also clarifies the form of the analytic SDRG. In the de-

coupled model Hxy, the RG proceeds independently on each

of the chains, which are endowed with parity conservation.

The SDRG for a single such chain was developed explicitly

in the single-particle spectrum language by [33] and in the

many-body Hamiltonian language by [22]. We review the re-

sult here, specialized to our case, in the many-body language,
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which naturally extends to the interacting problem [22]. For

now, we consider only a single Majorana chain and relabel the

orbitals as γn, n = 1, . . . , N . The Hamiltonian acting on this

chain is HM =
∑N−1

n=1 ihnγnγn+1. Suppose that the largest en-

ergy scale is set by H0 = ihkγkγk+1 for some k ∈ [1, N − 1].

H0 measures fermion parity on the two orbitals, with eigen-

values ±hk associated with the two parity states; denote the

splitting by 
 = 2hk . Accordingly, this term is diagonalized

by the complex fermion mode f
†
0 = 1

2
(γk + iγk+1), which has

projectors π+ = f0 f
†
0 and π− = 1 − π+ = f

†
0 f0 into the even

and odd parity sectors, respectively. In terms of the projectors

we have H0 = (
/2)(π+ − π−).

The rest of the terms in HM ≡ H0 + V can be treated as

a perturbation if the nearby couplings are much smaller than

the local gap |
|. Although this condition may not be satisfied

initially, the validity of the assumption improves during the

RG flow because the SDRG generates an effective disorder

distribution with increasingly broad logarithm. The rest of the

Hamiltonian can be divided into diagonal and off-diagonal

components with respect to H0; specifically, V = Vd + Vod,

where

Vd = π+V π+ + π−V π−, (11)

Vod = π−V π+ + π+V π− = π−HMπ+ + π+HMπ−. (12)

Note that Vod contains only a constant number of local terms.

We denote the small scale of these terms relative to H0 by

the parameter ǫ. The effective Hamiltonian with emergent

good quantum number 〈 f
†
0 f0〉 is found by a Schrieffer-Wolff

transformation eliminating Vod up to O(ǫ2) [34–37]. That is,

H ′
M

= eiSHMe−iS , where the Hermitian generator of the rota-

tion can be expanded in powers of ǫ as S = S[1] + S[2] + · · · .

The conditions on the rotation are that S[1] is off-diagonal

and satisfies Vod = [H0, iS[1]], and S[2] eliminates off-diagonal

terms at O(ǫ2) (but we will not need to write it explicitly). A

suitable generator is iS[1] = 1



(π+HMπ− − π−HMπ+),

H ′
M = eiSHMe−iS (13)

= HM + [iS, HM] +
1

2
[iS, [iS, HM]] + · · · (14)

= H0 + Vd +
1

2

∑

ι=±
π ι[iS[1],Vod]π ι + O(ǫ3) (15)

≈ H0 + Vd +
1



[π+HMπ−, π−HMπ+], (16)

the final line being Eq. (17) of Ref. [22].

The off-diagonal terms are those which share an odd

number of Majoranas with H0 and thus anticommute. Con-

sequently Vod = ihk−1γk−1γk + ihk+1γk+1γk+2 and

π+HMπ− = (ihk−1γk−1 + hk+1γk+2) f0, (17)

π−HMπ+ = (ihk−1γk−1 − hk+1γk+2) f
†
0 . (18)

Finally the rotated Hamiltonian is

H ′
M = H0 + Vd +

h2
k−1 + h2

k+1

2hk

(iγkγk+1)

+ i
hk−1hk+1

hk

γk−1γk+2 + O(ǫ3). (19)

This result includes a renormalization of the strength of the

H0 term which increases the magnitude of the splitting, in

addition to a new term ih′
k−1γk−1γk+2. By projecting into the

low-energy sector of H0 (which depends on the sign of hk),

the Majoranas γk and γk+1 are frozen into one of the definite

parity states of the complex fermion mode, and thereby de-

coupled, or “decimated,” from the effective Hamiltonian. The

single effective coupling h′
k−1 replaces three hopping terms in

HM. Because the new term maintains the imaginary random-

hopping form, the SDRG is closed in this model space and can

be iterated, with the flow acting on the disorder distribution of

the couplings {hn}. During the RG flow, some of the terms

involved in decimations will be themselves renormalized cou-

plings from prior steps; they can be made to fit the present

format by reindexing the chain after every step to remove the

decimated Majorana orbitals. In addition, the specific form

of the renormalized coupling h′
k−1 permits a framing of the

SDRG in terms of a classical random walk; this approach will

be developed in detail in Sec. V.

The many-body Hilbert space is therefore decomposed into

a tensor product of noninteracting complex fermions in defi-

nite parity states. Returning to the XY model viewed as two

decoupled Majorana chains and running the above procedure

independently on each of the chains, one can deduce from the

signs of the couplings in Eq. (5) that the ground state is even

under gx and gy if N mod 4 = 0 and odd under gx and gy if N

mod 4 = 2. The ground state spin correlations in an eigenstate

of the Hamiltonian can also be understood from this picture;

see Sec. II D.

As a technical remark, one way to deal with the signs of

the couplings in Eq. (5)—needed to deduce gx and gy quantum

numbers as well as the signs of the correlation functions—is

to perform a gauge transformation of the Majorana fermions

as η j = s jη
′
j , where s j = 1 if j = 4n + 1 or 4n + 2 and s j =

−1 if j = 4n + 3 or 4n + 4, while ζ j = s j (−1) j+1ζ ′
j . The

Hamiltonian written in terms of the primed Majoranas takes

the form
∑

j iJx
j ζ

′
jη

′
j+1 + iJ

y

j η
′
jζ

′
j+1, i.e., all Majorana hopping

amplitudes are positive in the convention where the Majoranas

are written in the same order as they appear on the chain:

ihnmγ ′
nγ

′
m with n < m has hnm > 0. This property is preserved

under the SDRG, which simplifies analysis of the signs. For

example, for Majoranas γ ′
n, γ

′
m with n < m decimated as a

pair we then have 〈iγ ′
nγ

′
m〉 = −1 at the zeroth order in the

SDRG, and using the noncrossing property of the pairs in each

Majorana chain fixes the signs of correlations in Eqs. (8)–(10)

to be (−1) j−k . To avoid confusion, in formulas we keep using

the original Majoranas as in Eq. (5).

2. Majorana problem with interchain interaction terms

In the presence of interactions coupling the two Majorana

chains, it is necessary to consider the full Hamiltonian (5). In

the notation of the present section we have H = HX + HY +
Hint, where

HX =
N−1
∑

n=1

ihX
n γX

n γX
n+1, (20)

HY =
N−1
∑

n=1

ihY
n γY

n γY
n+1, (21)
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Hint =
N−1
∑

n=1

Kn

(

iγX
n γX

n+1

)(

iγY
n γY

n+1

)

. (22)

Because all of the terms in H are measurements of fermion

parity, the general framework from the previous section—in

particular Eq. (16)—still applies. Now there are two cases:

the largest energy scale can be set by one of either the hopping

terms {hM
n } or the interactions {Kn}. While one can in princi-

ple consider both cases following Ref. [22], for our purposes,

we will study only the hopping-dominated case. Suppose that

H0 = ihX
k γX

k γX
k+1. Now

Vod = ihX
k−1γ

X
k−1γ

X
k + ihX

k+1γ
X
k+1γ

X
k+2

+ Kk−1

(

iγX
k−1γ

X
k

)(

iγY
k−1γ

Y
k

)

+ Kk+1

(

iγX
k+1γ

X
k+2

)(

iγY
k+1γ

Y
k+2

)

. (23)

The components appearing in each off-diagonal block of the

Hamiltonian are

π+Hπ− =
((

hX
k−1 + Kk−1

(

iγY
k−1γ

Y
k

))

iγX
k−1

+
(

hX
k+1 + Kk+1

(

iγY
k+1γ

Y
k+2

))

γX
k+2

)

f0 (24)

≡
(

ihX ,int
k−1 γX

k−1 + hX ,int
k+1 γX

k+2

)

f0, (25)

π−Hπ+ =
((

hX
k−1 + Kk−1

(

iγY
k−1

γY
k

))

iγX
k−1

−
(

hX
k+1 + Kk+1

(

iγY
k+1

γY
k+2

))

γX
k+2

)

f
†
0 (26)

≡
(

ihX ,int
k−1 γX

k−1 − hX ,int
k+1 γX

k+2

)

f
†
0 . (27)

The effect of the interactions in perturbation theory is simply

to modify the couplings into operators which we refer to as

“interacting couplings:” hX
k±1 → hX ,int

k±1
. This is a reasonable

shorthand because the interacting couplings commute with

each other and all fermion operators appearing in the formula.

Then from the result Eq. (19),

H ′ = H0 + Vd +
(

hX ,int
k−1

)2 +
(

hX ,int
k+1

)2

2hX
k

(

iγX
k γX

k+1

)

+ i
hX ,int

k−1 hX ,int
k+1

hX
k

γX
k−1γ

X
k+2 + O(ǫ3) (28)

= H0 + Vd +
(

iγX
k γX

k+1

)

(

(

hX
k−1

)2 +
(

hX
k+1

)2 + K2
k−1 + K2

k+1

2hX
k

+ i
hX

k−1Kk−1

hX
k

γY
k−1

γY
k

+ i
hX

k+1Kk+1

hX
k

γY
k+1

γY
k+2

)

+ i
hX

k−1hX
k+1

hX
k

γX
k−1γ

X
k+2 +

Kk−1hX
k+1

hX
k

(

iγX
k−1γ

X
k+2

)(

iγY
k−1γ

Y
k

)

+
hX

k−1Kk+1

hX
k

(

iγX
k−1γ

X
k+2

)(

iγY
k+1γ

Y
k+2

)

+
Kk−1Kk+1

hX
k

(

iγY
k−1

γY
k

)(

iγX
k−1γ

X
k+2

)(

iγY
k+1

γY
k+2

)

+ O(ǫ3). (29)

Projecting into the low-energy sector sets iγX
k γX

k+1 →
−sgn(hX

k ) and again decouples the Majorana operators γX
k

and γX
k+1 from the rest of the system, decimating them by

creating a complex fermion mode with definite parity. As

in the noninteracting case, the magnitude of the splitting is

increased by renormalization of H0, and a new hopping term

hX ′
k−1 is added to the X chain. However, the leading-order

effect of the interactions, at O(ǫ), arises from Vd, where the

“degradation” of the term Kk (iγX
k γX

k+1)(iγY
k

γY
k+1

) renormal-

izes hY ′
k

= hY
k

− sgn(hX
k ) Kk . As a result, correlations develop

between the hopping terms on the same bond. This aspect of

the perturbation will constitute the basis of a mean-field study

of the interacting system, presented in Sec. IV.

The effective Hamiltonian also includes renormalized cou-

plings hY ′
k−1 and hY ′

k+1, as well as new four-fermion terms which

change the structure of the lattice graph, and a six-fermion

term. The appearance of these terms breaking the form of H ,

as well as the generation of correlations between terms, are an

indication that the RG flow cannot be tracked exactly in the

interacting model. However, if the interaction terms already

tend to be weak compared to the hopping, the higher order

terms generated by this process will accordingly be weaker

still. This is the situation, at least initially, in the random XYZ

model with small J̃z; however there is no guarantee at this

point that the relative strengths of the different types of cou-

plings are maintained asymptotically. We will return to this

question more systematically in Sec. VI, after we understand

the noninteracting problem with correlated Majorana hopping

amplitudes in the two chains in Sec. V.

D. XY model spin correlations in SDRG

From the controlled SDRG for the random XY model,

one can deduce that average correlations in the ground state

follow power laws—although typical correlations are short-

ranged—and even calculate the exponents. One also obtains a

more qualitative picture of the behavior of the spin correlation

functions.

Expanding Eq. (10) in the ground state at distance r,

Cz( j, j + r) = 〈iη jζ j+r〉〈iζ jη j+r〉. (30)

Other terms vanish due to symmetry. One sees immediately

that Cz( j, j + r) = 0 if r is even. For odd r, Cz( j, j + r)

assumes a large value if and only if the sites j and j + r

were decimated together on both Majorana chains, in which

case both expectation values 〈iη jζ j+r〉 and 〈iζ jη j+r〉 have ap-

proximately unit magnitude and opposite sign, so the sign of

Cz is negative. Otherwise if this decimation did not occur in

one or both Majorana chains the contribution is suppressed,

arising only from higher order terms in the perturbation the-
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ory. Consider the correlations averaged over sites j as well

as over disorder realizations, which average we denote Cz(r).

Nearly all terms will be vanishingly small, with rare terms

of roughly unit magnitude occurring with some density; these

dominate the average. It is a result of Ref. [3] for the RS phase

that at sufficiently large separation the likelihood of such a

decimation scales as r−2; thus for two independent Majorana

chains ηz = 4.

The transverse correlations (8) and (9), summarized as

C⊥( j, j + r), are the expectation values of strings of 2r Ma-

joranas. Such operators are evaluated as the sum of r-fold

products of expectation values of symmetry-allowed bilinear

contractions, with signs arising from the signature of each

permutation. A term in the sum has a large value if and only

if it contracts all Majoranas with their decimation partners in

the SDRG. This will be the case for exactly one term if all

decimations of the Majoranas appearing in the string expecta-

tion value are “internal,” that is, if all decimation partners are

also included. If any Majoranas were decimated with orbitals

which do not appear in the string, the expectation value will

be small. We again define C⊥(r) as the average over sites and

disorder realizations.

If on both chains X and Y the sites j and j + r are deci-

mation partners, then as described above, this pair contributes

a large value to Cz(r). The pair also necessarily contributes a

large value to C⊥(r), as pairing the extremal Majorana orbitals

in a string implies that all decimations are internal to the

string. Thus the critical exponent η⊥ lower bounds ηz. As

reviewed earlier, for the random XY model η⊥ = 3 −
√

5 ≈
0.764; the bound is saturated in the XX model where η⊥ =
ηz = 2 [3].

Finally, the SDRG picture also tells us about the end-to-end

spin correlations in the XX and XY models. The expectation

value Cz(1, N ) ≡ Cz(N ) obtains large contributions if on both

Majorana chains the end sites 1 and N are paired in the

SDRG. While such occurrences in the two chains are perfectly

matched in the XX model and have probability 1/N or ηe
z = 1,

in the XY model, the occurrences are independent, giving

ηe
z = 2. On the other hand, the expectation value C⊥(1, N ) ≡

C⊥
e (N ) includes all Majorana orbitals on one chain, and all

but those at sites 1 and N on the other. This string has a

large expectation value if all of these Majoranas are paired

internally, which is to say that the two excluded Majoranas are

decimated together. As this is occurs on a single chain only,

it has the same probability in both the random XX and XY

models. Indeed, ηe
⊥ = 1 in both cases [30].

III. UNBIASED TENSOR NETWORK STUDY

A. “Rigorous RG” numerical method

The standard numerical technique for equilibrium states

of many-body quantum systems in 1d is the density matrix

renormalization group (DMRG) [38,39], which has been re-

markably effective in conjunction with matrix product state

(MPS) representations of low-energy wave functions [40,41].

Over nearly 30 years, DMRG has seen enormous practical

success in a wide range of models of physical interest. How-

ever, for some time its effectiveness was not well explained:

even as MPS attained a rigorous footing with the proof of

the area law of entanglement in 1d [42–44], the existence

of an efficient algorithm for eigenstates given an area-law

Hamiltonian remained unclear. It was not until the work of

[45] in 2015 that a polynomial-time algorithm was developed

for ground states of gapped models, proving that an efficient

method is possible in principle.

However, the algorithm exhibited in Ref. [45] bears little

resemblance in its particulars to DMRG, and a similar proof

for the DMRG algorithm appears to be challenging; in fact, it

is known that popular multisite variants can be NP-hard in the

worst case [46]. As a practical matter, in systems with strong

disorder DMRG is susceptible to spurious convergence to

excited states, an outcome which cannot be readily diagnosed

[47]. This is fundamentally a consequence of performing an it-

erated local optimization over MPS parameters. The rigorous

algorithm is distinguished by a reliance on an approximate

ground state projector (AGSP), an operator derived from the

Hamiltonian, which was introduced by [48]. The role of the

AGSP is to provide global information, ensuring that inter-

mediate states can be efficiently represented and directing

the algorithm along a computationally tractable route to the

ground state.

AGSP-based methods were later generalized to low-energy

excited states in models with slightly relaxed conditions on

the density of states [49]. Based on this work, in collaboration

with Vidick we introduced the rigorous renormalization group

(RRG), a numerical implementation for low-energy states of

local Hamiltonians in one dimension [27]. While the imple-

mented method differs slightly from the proof construction

and does not strictly satisfy the conditions of the guarantee—

whose parameters are not known a priori regardless—it

inherits the intuitive benefits of the AGSP and has been seen

to be effective in practice for nontrivial low-energy spectra

like those of strongly disordered systems, or in the presence

of nearly degenerate manifolds [27,50], where DMRG may be

unreliable.

In the following sections, we perform a numerical study

of the line J̃z ∈ [0, 1], J̃x = J̃y = 1, in the phase diagram of

Eq. (1), using RRG. Our objective is primarily to verify by

unbiased numerics the observation of continuously varying

critical exponents in the SBRG study of [4], and then to shed

additional light on the nature of the low-energy theory. (Here

we focus solely on the ground state properties and low-energy

physics, rather than the question of MBL.) For concreteness,

we use the disorder distribution described in Eqs. (3) and (4)

of Ref. [4], namely,

p
(

Jα
i

)

=
1

ŴJ̃α

(

Jα
i

)1/Ŵ−1
, Jα

i ∈ [0, (J̃α )Ŵ]. (31)

We use a milder disorder strength Ŵ = 2, as compared to

Ŵ = 4 for the previous work [4]. Both choices lead to strong

disorder physics and the specific value should have little ef-

fect on the universal low-energy physics for large enough

systems. However, we find that the logarithm of the distri-

bution of the energy gaps depends significantly on Ŵ, with

smaller values tending to lead to larger gaps; this eases the

challenge to the numerics which in any case are limited by

double-precision floating-point errors on the order of 10−16.

In RRG we are capable of accurately resolving energy scales

214208-7



BRENDEN ROBERTS AND OLEXEI I. MOTRUNICH PHYSICAL REVIEW B 104, 214208 (2021)

TABLE I. RRG hyperparameters are shown for values of J̃z stud-

ied numerically. As described in the text, we optimize the output of

RRG using DMRG, and for finite J̃z take as a measure of accuracy the

number of sweeps required for convergence. These values of s and D

were chosen in order to accurately converge approximately 99% of

disorder realizations on N = 80 spins. For the small fraction of more

difficult realizations which are not solved by the hyperparameters

above, we repeat the algorithm with increased values, finding that

convergence is achieved this way.

J̃z 0.0 0.2 0.4 0.6 0.8 1.0

(s, D) (8,14) (8,14) (6,10) (6,10) (5,8) (5,8)

down to log10(
/ǫ) ∼ −12, and validate our results against

the free-fermion solution at the soluble point J̃z = 0.

To construct the AGSP for RRG we use a Trotter approx-

imation to a thermal operator e−βH . The output of the RRG

algorithm is a subspace of constant dimension approximating

the low-energy states of the model. We use an implementation

based on ITensor [51], in which we explicitly realize the

Z2 × Z2 symmetry and solve for the lowest two eigenstates in

each of the four symmetry sectors [52]. In each case, the MPSs

generated by RRG are then further optimized using DMRG in

order to minimize the overlap with high-energy states. The

RRG “hyperparameters” s and D (see Ref. [27] for details)

are chosen as in Table I, so that for the majority of disorder

realizations DMRG can optimize the RRG output in a small

number of sweeps. For approximately, the most challenging

1% of realizations, DMRG requires many sweeps to converge.

In these instances, we repeat the calculation, increasing the

RRG hyperparameters, and find that the improved RRG states

are easily converged by DMRG. From comparison with exact

free-fermion results for J̃z = 0 obtained by numerical matrix

diagonalization, we find that if RRG produces states which are

successfully converged by DMRG and the excitation gap is

larger than the target threshold 10−12, the ground state energy

and gap are numerically exact in �99.5% of realizations. As

we will show in the following section, at J̃z > 0, the finite-size

gaps tend to be larger than those at J̃z = 0 and should be easier

for RRG; thus we believe our results are even more reliable for

these points.

B. Results from RRG

1. Critical spin correlations

We measure spin correlations in the RRG ground state

of H[J̃x = 1, J̃y = 1, J̃z] with J̃z ranging from 0 to 1 and

microscopic disorder strength Ŵ = 2 throughout. Bulk corre-

lations in an open chain of length N are measured for r �
N
2

including only sites j, j + r ∈ {N
4
, . . . , 3N

4
}, in order to distin-

guish the power law from the end-to-end correlations closer

to the boundaries. We show disorder-averaged correlations

data measured in chains of length N = 80 sites in Fig. 3,

which includes slices at values of J̃z moving along the phase

boundary from the free-fermion model to the tricritical point.

Already the raw data clearly shows power laws with varying

exponents for both C⊥ and Cz in the bulk.

End-to-end spin correlations are measured only between

the single pair of sites 1 and N for each disorder realization,

FIG. 3. Bulk spin correlations data from RRG are shown for the

random XYZ model with varying bandwidth J̃z, up to separation

r = 40 lattice spacings, from systems of length N = 80. Open circles

indicate C⊥(r) data, while filled circles mark Cz(r). The disorder

averages for each value of J̃z include 1500 realizations. In the spatial

average we include only the middle half of the spin chain—that is,

only sites in { N

4
, . . . , 3N

4
}—in order to separate the bulk correlations

from the ends, which exhibit different scaling laws. See Fig. 5 for

the critical power-law decay exponents extracted from this data. In

order to measure the power laws, we show the absolute value of the

correlations, which originally have a staggered sign pattern (−1)r .

In addition, only odd r are shown for Cz data because the values for

even r, though demonstrating a similar power law, are much smaller

(at J̃z = 0 they are identically 0, see Sec. II D).

and exhibit correspondingly larger statistical fluctuations. In

addition, reproducing Cz
e (N ) correlations presents a singular

challenge for the RRG algorithm. As discussed in Sec. II D,

in the SDRG, the likelihood of a nonzero value of 〈σ z
1σ z

N 〉 at

the XY free-fermion point is the square of the probability of

an end-to-end singlet in a spin chain of length N in the RS

phase. That is, the distribution is broad on a logarithmic scale,

with the average being dominated by a very small tail. More

importantly, the disorder realizations located in the tail—of

outsize importance in the average—are those on which sites

1 and N were decimated together on both Majorana chains,

which correlate with the smallest excitation gaps in the low-

energy spectrum and are the most difficult realizations for the

method to solve accurately. We show disorder-averaged end-

to-end correlations as a function of N in chains up to N = 80

in Fig. 4. One sees that the C⊥
e correlations depend weakly on

J̃z and have close slopes on the log-log plot, suggesting similar

power-law exponents. On the other hand, the Cz
e correlations

depend strongly on J̃z and despite evident statistical scatter

appear to have varying slopes.

Our unbiased numerical results for the bulk correlations

are in broad agreement with the finding of Ref. [4] of critical

exponents governing the decay of spin correlations that vary

continuously with J̃z. In contrast to the previous approach,

we perform direct measurements in optimized MPS for the

ground state. We show the extracted power-law exponents for

the bulk and end-to-end correlations in Fig. 5 as a function of

J̃z. As expected, the C⊥ and Cz exponents approach each other

at the tricritical (permutation-symmetric) point J̃z = 1, where

we estimate the bulk critical index to be η⊥ = ηz ≈ 1.48.
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FIG. 4. RRG end-to-end correlations data are shown for the ran-

dom XYZ model with varying bandwidth J̃z. System sizes N =
32, 48 , 64, and 80 are included for C⊥

e (N ) (open circles) and Cz
e (N )

(filled circles). These data are noisier than the bulk data shown

in Fig. 3 due both to reduced statistics (same number of disorder

realizations but no averaging over bulk pairs) as well as the special

difficulty of measuring Cz
e (N ) in RRG, as described in the text. See

Fig. 5 for the critical power-law decay exponents extracted from this

data. We use the absolute value of the correlations data here; the true

values all have negative sign because all N are even.

2. Entanglement structure

We also study measures of entanglement in the RRG

ground states for varying J̃z. The average bipartite entangle-

ment entropy of a connected subsystem of length ℓ adjacent

to the system boundary is known to scale according to the

conformal field theory result Sb(ℓ) = c̃
6

ln ℓ, with a universal

constant c̃. In some cases the “effective central charge” c̃ is

apparently related to the central charge of the clean model

[8]; for example, in the critical phase of a single Majorana

chain c̃ = ln 2
2

= c ln 2, where c = 1
2

is the central charge of

a clean Majorana fermion chain. Accordingly, the XY fixed

FIG. 5. Critical exponents governing spin correlations in the

RRG ground states are shown, extracted from the data in Figs. 3

and 4. Both bulk and end-to-end exponents are included, with known

results for the bulk correlations in the free-fermion model at J̃z = 0

indicated by red stars, and results for end-to-end correlations by

yellow diamonds. An increase in statistical noise is evident in the

end-to-end correlations as compared to the bulk. The reason that

these computations, particularly Cz
e (N ), are more difficult, is dis-

cussed in the text.

FIG. 6. Characterizations of the entanglement structure of the

ground state are shown. We include the power-law exponent ρ for

decay of average long-range mutual information I (r), based on the

raw data shown in the upper panel. The subsystems A and B consid-

ered in this case are single spins separated by a distance r, and the

average is taken over sites in the middle half of the chain. Also shown

is the effective central charge c̃, found from finite-size scaling of the

half-chain entanglement entropy. While c̃ appears to be insensitive to

the coupling between the two Majorana chains, the LRMI exponent

varies continuously.

point has c̃ = ln 2, being equivalent to two decoupled criti-

cal random Majorana chains. From finite-size scaling of the

disorder-averaged half-system bipartite entanglement entropy

Sb(N/2), we find with fair precision that c̃ is stable at this

value for any interaction strength J̃z along the critical line,

in agreement with Ref. [4].

We also measure long-range mutual information (LRMI)

between disconnected regions; the formula for this entropic

quantity in terms of the entanglement entropy of a subsystem

is I (A : B) = S(A) + S(B) − S(A ∪ B). We will take A and B

to be single spins separated by a distance r; Ref. [4] found

that up to appropriate rescaling, the lengths of the subsystems

do not affect the asymptotic behavior. The disorder-averaged

LRMI we denote I (r), and this quantity will decay no faster

than the slowest observable. That is, in the symmetric ground

state of an ordered phase I (r) will be long-ranged; in a

phase without order one expects exponential decay; and at a

critical point the exponent ρ, I (r) ∼ r−ρ , lower-bounds the

power-law decay exponent of any local observable. We show

disorder-averaged LRMI data in the upper panel of Fig. 6.

The critical exponent ρ varies continuously with J̃z, as is

the case with the other critical indices measured, and is very

close to the exponent η⊥, suggesting that the correlations

of the order parameters for the adjacent phases saturate the
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FIG. 7. Histograms of the first excitation gap are shown for the

random XYZ model at system size N = 80 sites. Vertical lines in-

dicate the median MJ̃z of each gap distribution. The medians include

long tails that are not shown, as they contain energy gaps too small to

be accurately measured by the RRG algorithm; however the estimate

of the median is not sensitive to these uncertainties. The trace for

each value of J̃z includes 1500 disorder realizations.

lower bound everywhere along the boundary. Our RRG results

for ρ as well as the effective central charge c̃ are shown in

the lower panel of Fig. 6. At J̃z = 1, we estimate ρ ≈ 1.73,

which is somewhat larger than the estimates of η⊥,z but is in

general agreement and is also similar to the SBRG estimates

in Ref. [4].

3. Scaling of excitation gap

Because RRG produces not only the ground state but a

constant number of low-energy states, it is possible in prin-

ciple to study spectral properties as well. We focus first on the

simplest of these, the energy gap to the lowest excitation in a

finite system. From the SDRG for the free-fermion point one

observes that this excitation consists of flipping the parity of

the complex fermion associated with the lowest-energy (i.e.,

the last decimated) pairing on either Majorana chain. As we

consider chains with lengths that are multiples of 4, the ground

state is found in the (gx, gy) = (+1,+1) sector of the global

(Z2)2 symmetry and the first excited state will be found in

either the (+1,−1) or (−1,+1) sector.

The distribution of excitation gaps is known exactly via the

mapping to two decoupled copies of the RTFIM, where the

universal form of the gap distribution is known from the work

of Ref. [29]. The gap in the random XY model is the mini-

mum of two independent random variables sampled from the

distribution of Ref. [29]. In Fig. 7, we show histograms of the

(logarithmic) excitation gaps for the random XYZ model with

varying J̃z for chains of length N = 80. The exact distribution

for the J̃z = 0 point is indicated with a dotted line.

Indicated on Fig. 7 by vertical lines and the labels MJ̃z

are the medians of the histograms; these are provided as a

characterization of the distributions that is not overly sensitive

to the tails, where the energy gaps can be close to the numer-

ical threshold. While the precise tails are not accessible, it is

rare for RRG to make an error which would move a disorder

realization out of the tail into the bulk of the distribution.

FIG. 8. The value of the critical exponent ψ extracted from

finite-size scaling of excitation gaps in RRG is shown. The upper

panel shows the finite-size scaling of the medians MJ̃z (shown in

Fig. 7 for N = 80), with each data point including 1500 disorder re-

alizations. The lower panel shows the extracted power-law exponents

for both the first gap, denoted E1 − E0 (found from the data shown in

the upper panel) as well as the second and third energy gaps. At the

free-fermion point J̃z = 0, ψ = 1

2
, and the systematic deviation from

the exact value is likely due to finite-size corrections. At this point,

the first and third energy gaps are very often identical, both being

associated with the lowest-energy decimation on one chain. Away

from this point, this is no longer necessarily the case and a drift in ψ

with J̃z is visible in the E1-E0 curve.

Thus the median provides an accurate summary of the gap

distribution although the mean cannot be reliably estimated. In

Fig. 8, the scaling with chain length of the median of the gap

distribution is shown with varying J̃z. This allows an estimate

of the exponent ψ controlling the length-energy relationship

Eq. (2), which takes the value ψ = 1
2

at the free-fermion point.

The RRG scaling data suggest that there may be a systematic

drift in ψ as J̃z is varied toward the permutation-symmetric

point J̃z = 1, however it is difficult to exclude the possibility

of a stable ψ with a long crossover around J̃z = 1. In either

case, this result does not support the n = 3 Damle-Huse uni-

versality for this tricritical point.

4. Symmetry properties of low-energy states

As described in Sec. III B 3, in the noninteracting model

Hxy, the symmetry properties of the ground and low-lying

states can be deduced from the single-particle excitations used

to build the many-body states. For convenience we relabel

the Z2 × Z2 symmetry sectors (always working on systems
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with N ∈ 4Z): denote the free-fermion ground state sector

(gx, gy) = (+1,+1) as 0; the sector (−1,−1) as 1; (+1,−1)

as 2; and (−1,+1) as 3. Along the critical line, H has a

statistical Z
stat
2 symmetry exchanging sectors 2 and 3, and at

the tricritical point a statistical S3 relates sectors 1, 2, and 3.

Beginning from a vacuum state in sector 0, the first many-

body excited state—found by flipping the occupancy of the

lowest-energy fermionic mode—comes from either sector 2

or 3, depending on which Majorana chain is involved. The

next excited state must also be associated with a low-energy

single particle mode on one of the Majorana chains, thus

will again come from sector 2 or 3. The third many-body

excited state can be of the same type, or can be associated

with the simultaneous excitation of the two lowest energy

single-particle states. With a logarithmically broad disorder

distribution, as at an IRFP, the third excited state is very likely

to be of the latter type; thus we expect that for sufficiently

long N , the four lowest-energy states of Hxy will most of-

ten come from the sectors {0, 2, 3, 1} or {0, 2, 2, 0}, or their

Z
stat
2 counterparts {0, 3, 2, 1} and {0, 3, 3, 0}. The other free-

fermion-allowed configurations are {0, 2, 3, 2}, {0, 2, 3, 3},
{0, 2, 2, 2}, {0, 2, 2, 3}, and Z

stat
2 counterparts.

At the tricritical point, this picture cannot apply, as the S3

counterparts of the free-fermion-allowed configurations (these

include, e.g., {0, 1, 2, 3} and {0, 1, 1, 0}) must also occur

and with equal likelihood; thus we study the critical line by

tabulating occurrences of free-fermion-disallowed low-energy

configurations in disorder realizations with finite J̃z. We clas-

sify the various configurations as described in the table in

Fig. 9, and their likelihood in our sample of disorder realiza-

tions is plotted. Note that in this plot we have averaged over all

system sizes, in order to provide an initial summary of the typ-

ical behavior (we will study the scaling behavior with N later).

For Hxy, the dominant pattern is type 1, with a substantial

minority of type 2 and very few of type 3. The S3 counterparts,

which are forbidden in the picture of decoupled Majorana

chains, are labeled types 1∗, 2∗, and 3∗. The category “Other”

includes all low-energy configurations not matching any of

the types already described. There is a very small, though

finite, fraction of such instances; however these are nearly

entirely associated with very small excitation gaps. As al-

ready described, in such situations with very small splitting

RRG cannot systematically identify the lowest-energy state

or the exact sequence of excitations, so the precise order

of symmetry sectors is not reproduced. At J̃z = 0, we are

able to “interpret” many such cases by assuming that the

energy-permuted free-fermion-allowed symmetry pattern is

the correct one, though away from this point a corrected type

cannot be uniquely determined. (At J̃z = 0, some low-energy

patterns found by RRG cannot be interpreted as one of the

free-fermion-allowed configurations, and these are the real-

izations classified as “Other” at this point.)

Moving away from J̃z = 0, the types 1∗, 2∗, and 3∗ occur

with increasing probability. We find that type 2 decreases

more quickly for small J̃z than type 1, which is in line with

our understanding, developed in Sec. IV, of the interaction as

introducing correlations between the Majorana chains (such

correlations make it less likely that the two lowest-energy

single-particle states occur in the same Majorana chain). The

rate of “Other” instances is very low and decreasing with

FIG. 9. Sampled estimates of the likelihood of the various sym-

metry patterns of low-energy states are shown as a function of J̃z.

The lower panel shows the same data as the upper, zoomed in on

the bottom of the y-axis. The free-fermion allowed types 1, 2, and

3 are defined in the table above and drawn with solid lines, and

the free-fermion-disallowed types 1∗, 2∗, and 3∗ consist of all other

partners under the action of the S3 statistical symmetry, and are drawn

with dashed lines. Here we provide summary data which is averaged

over system sizes N = 32, 48, 64, and 80, with 6000 total disorder

realizations for each value of J̃z. (In Fig. 10, we study the dependence

on N .) At J̃z = 0 we assume that only types 1, 2, and 3 are present

and include eigenstate permutations of the exact symmetry pattern

for very small splittings <10−12; nevertheless there is still a low rate

of “Other” instances.

increasing J̃z, suggesting that these remain attributable to

errors due to small energy gaps, and the only new types of

symmetry pattern appearing at low energy are those related

to the free-fermion-allowed types by S3. As one expects from

the definitions of each type, the frequency of types 1∗, 2, and

3∗, are roughly twice those of types 1, 2∗, and 3, respectively,

at J̃z = 1. Here the S3 partners types 1 + 1∗ describe roughly

91% of disorder realizations, with types 2 + 2∗ and 3 + 3∗

describing roughly 4.5% each.

From the above general picture of the low-energy states we

learn that the critical line is characterized by the increasing

probability of the free-fermion-disallowed symmetry partners

types 1∗, 2∗, and 3∗ with increasing interaction strength J̃z.

The dependence of these probabilities on system size provides

a hint about the RG relevance or irrelevance of the interaction.

In Fig. 10, we show the ratio of the combined likelihood of

types 1∗ + 2∗ + 3∗ to that of types 1 + 2 + 3 as a function of

J̃z for each system size separately.1 While these data suffer

1Normalizing by p(1 + 2 + 3) is intended to eliminate the effect

of the system size dependence of unclassifiable “Other” realizations,

which should be associated with RRG errors.
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FIG. 10. The ratio of the combined likelihood of the free-

fermion-disallowed types 1∗ + 2∗ + 3∗ to the combined likelihood

of types 1 + 2 + 3 is shown as a function of J̃z, separately for system

sizes N = 32, 48, 64, and 80. Each data point includes 1500 dis-

order realizations. For intermediate J̃z ∈ (0, 1), there is a consistent

trend toward lower probabilities as the system size increases from

N = 32 to 64, meaning that the low-energy symmetry patterns of

longer systems are more likely to be free-fermion-like. The quantity
p(1∗+2∗+3∗ )

p(1+2+3)
is very similar for system sizes N = 64 and 80 at all

values of J̃z, with the difference being within the apparent statistical

scatter. At the tricritical point J̃z = 1 the predominant scaling behav-

ior is reversed, and the quantity appears to be converging toward its

long-distance fixed value from below with increasing system size N .

from poorer statistics than those of Fig. 9, there is a trend for

all J̃z ∈ (0, 1) toward lower probabilities with increasing N ,

meaning that at longer scales the disorder realizations appear

more free-fermion-like. The system sizes N = 64 and 80 are

quite similar by this measure, and the differences between

these values are smaller than the apparent statistical noise.

In contrast, the dependence on system size is opposite at the

tricritical point J̃z = 1, as the likelihoods converge to their

asymptotic value from below with increasing length scale. In

Secs. VI and VII, we make a conjecture consistent with this

observation, that the interactions may in fact be irrelevant but

the SDRG generates a marginal perturbation (corresponding

to the local correlation of renormalized terms, see Sec. IV)

which ultimately takes the system to a line of free-fermion

fixed points with variable exponents.

IV. MEAN-FIELD THEORY OF INTERACTION

Turning on J̃z > 0 introduces four-fermion interaction

terms to the quadratic Hamiltonian Hxy. These terms couple

the Majorana chains X and Y in such a way that the ground

state is no longer analytically tractable under SDRG, which

generates multifermion terms in the effective Hamiltonian that

proliferate with increasing RG scale. However, as mentioned

in Sec. II C 2, if at some point in the RG the interaction terms

are typically weaker than the hopping terms then the effective

higher order descendants will be even weaker. One might

hope, then, that by beginning with a bandwidth J̃z ≪ J̃x, J̃y

the strength of these terms may be suppressed at all scales,

leading to only a minimal effect on the criticality.

Based on this understanding, we consider the mean-field

theory by “expanding” the interaction into fermion bilinear

terms. In the Majorana language, the mean-field structure

is particularly transparent; here the only symmetry-allowed

bilinear terms act internally on the chains. For Jz
j ≪ 1,

Jz
j (iη jζ j )(iη j+1ζ j+1)

≈ Jz
j (iη jζ j+1〈iζ jη j+1〉 + iζ jη j+1〈iη jζ j+1〉). (32)

This can also be seen in terms of the original spins, where the

mean-field theory takes the form

Jz
j σ

z
j σ

z
j+1 = −Jz

j σ
x
j σ

x
j+1σ

y

j σ
y

j+1

≈ −Jz

(

σ x
j σ

x
j+1

〈

σ
y

j σ
y

j+1

〉

+
〈

σ x
j σ

x
j+1

〉

σ
y

j σ
y

j+1

)

. (33)

The effect of the allowed terms is to renormalize the existing

couplings in the following way:

(

Jx
j

)mf = Jx
j + Jz

j 〈iη jζ j+1〉 = Jx
j − Jz

j

〈

σ
y

j σ
y

j+1

〉

, (34)

(

J
y

j

)mf = J
y

j − Jz
j 〈iζ jη j+1〉 = J

y

j − Jz
j

〈

σ x
j σ

x
j+1

〉

. (35)

With expectation values 〈·〉 understood to be evaluated in the

ground state of the mean-field Hamiltonian with parameters

(Jx
j )mf , (J

y

j )mf , the above represent self-consistency equations

(i.e., minimization equations in the variational perspective of

the mean-field theory). Because the Majorana chains remain

decoupled, the mean-field theory can be solved in the analytic

SDRG, at least in principle, by accounting for the distributions

of effective Jx
j and J

y

j couplings no longer being independent.

In the following sections, we numerically investigate the uni-

versal behavior of this mean-field theory, and provide exact

results from the analytic SDRG in Sec. V.

A. Self-consistent Hartree-Fock treatment of interaction terms

We first perform a self-consistent numerical study of the

interaction term in the quadratic mean-field theory by directly

implementing Eqs. (34) and (35) in the BdG Hamiltonian,

iteratively solving the ground state of the Hamiltonian and

updating the mean-field couplings until reaching convergence.

The bulk correlations data in the thus determined mean-field

ground state are shown in Fig. 11, end-to-end correlations in

Fig. 12, and a summary of the critical exponents in Fig. 13.

The key finding of the mean-field treatment is that the

power-law exponents in all correlation functions do evolve

with J̃z in a similar way to those of the interacting model. This

not necessarily expected since, e.g., in a clean XXZ model the

mean-field, while capturing some short-range energetics, can-

not capture varying power laws in the fully interacting theory.

By understanding the features in the mean-field responsible

for capturing the varying power laws in the random XYZ

chain, in the following sections we will be led to a plausible

scenario for the physics of this system.

While the mean-field theory is reasonably accurate for

J̃z � 0.4, it is evident from Fig. 11 that the magnitudes of

the mean-field correlation functions around J̃z = 1 do not

approach their actual values. At the tricritical point of the

interacting model, the statistical S3 symmetry of the Hamil-

tonian leads to the equivalence of the averages C⊥ and Cz; as

the mean-field lacks this symmetry, it is not surprising that the

distinction persists. Moreover, there is nothing special about

J̃z = 1 in the mean-field model; note also that this specific

214208-12



INFINITE RANDOMNESS WITH CONTINUOUSLY VARYING … PHYSICAL REVIEW B 104, 214208 (2021)

FIG. 11. Bulk correlations data from the self-consistent Hartree-

Fock mean-field theory are shown with varying bandwidth J̃z, up

to separation r = 64 in chains of length N = 128. Filled markers

indicate Cz(r) data, and open C⊥(r). The disorder averages for each

value of J̃z are taken over 25 000 realizations and include only the

middle half of the spin chain, as described in the caption to Fig. 3.

These simpler free-fermion calculations are cheaper to perform, and

accordingly exhibit better statistics than those of Figs. 3–10.

mean-field does not allow any symmetry breaking, and we

see that the best it can do upon increasing J̃z is to approach

the XX chain, which is a poor approximation for J̃z ≃ 1.

Nevertheless, buoyed by the success of the mean-field at

small J̃z, we now examine more closely the effective param-

eters (J
x,y

j )mf . As the interaction strength is increased, the Jx
j

and J
y

j terms tend to become more similar. We can clearly see

how this happens in the spin formulation of the self-consistent

mean-field of Eqs. (34) and (35): a large bare AFM Jx
j > 0

will tend to correlate σ x
j and σ x

j+1 strongly antiferromag-

netically (achieving 〈σ x
j σ

x
j+1〉 ≈ −1 if this is the dominant

coupling), and in the presence of AFM Jz
j > 0 this will lead

to an increase of the effective AFM J
y

j coupling, and vice

FIG. 12. End-to-end correlations data from the self-consistent

Hartree-Fock mean-field theory are shown with varying bandwidth

J̃z. Filled markers indicate Cz
e (r) data, and open C⊥

e (r). Each data

point is the average end-to-end correlations from 25 000 disorder

realizations. Because for small J̃z the likelihood of simultaneous

end-to-end decimations is very low, in computing Cz
e (L) we are

restricted to shorter systems in order to have reasonable statistics.

For example, in the SDRG picture, Cz
e (N ) = e−7 corresponds to only

25000 × e−7 ≈ 23 important “events.”

FIG. 13. Critical exponents are shown for the self-consistent

Hartree-Fock mean-field theory with varying interaction strength

J̃z ∈ [0, 1], extracted from the correlations data in Figs. 11 and

12. Both bulk and end-to-end exponents are included, with known

results for the bulk correlations in the free-fermion model at J̃z = 0

indicated by red stars, and results for the end-to-end correlations by

yellow diamonds. The point J̃z = 1 in this model does not feature

any special symmetry.

versa. However it is not clear what sort of model the full self-

consistent mean-field treatment actually constitutes, as the

iterated nature of the solution could lead to long-range corre-

lations effects among the couplings. In the following section,

we propose a more straightforward model intended to broadly

capture the features of this self-consistent Hartree-Fock mean

field. We will see that the ultra-short-range correlations among

Jx
j and J

y

j identified above can already explain continuously

varying power laws.

B. Numerical study of random XY chain

with locally correlated couplings

1. Definition of locally correlated XY model

The rules Eqs. (34) and (35) for the mean-field couplings

modify bonds on one Majorana chain based on expectation

values across the same bond on the other chain. As a result, re-

calling that Jz
j > 0 for all j, the terms on a given bond—which

at the mean-field level are strengthened by the interactions—

develop correlations among themselves. Terms on separate

bonds also get correlated in less obvious ways, since the

mean-field ground state is influenced by all bonds, but we will

proceed by ignoring such longer-range correlations among

the couplings. We refer to such an effective model as having

“local correlations,” in order to distinguish from spatial cor-

relations between terms on separated bonds. One can mimic

the behavior of the mean-field theory and explore the effects

of such correlations using the following parametrization of

the couplings: for A j , B j independent random variables and

δ ∈ [0, 1], let

Jx
j =

(

1 −
δ

2

)

A j +
δ

2
B j, (36)

J
y

j =
δ

2
A j +

(

1 −
δ

2

)

B j . (37)

Tuning δ from 0 to 1 interpolates between fully indepen-

dent couplings and the perfectly correlated case with U(1)
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FIG. 14. Bulk correlations data from the locally correlated effec-

tive XY model are shown with varying correlation δ, up to separation

r = 64 in spin chains of length N = 128. Filled markers indicate

Cz(r) data, and open C⊥(r). The disorder averages for each value

of δ are taken over 25 000 realizations. In the average, we include

only the middle half of the spin chain, as described in the caption to

Fig. 3.

symmetry. That is, the parametrization runs along the line

between the random XY and XX spin chains. As mentioned

in Sec. II A, Ref. [3] found that weak random anisotropy is

marginal around the XX point, which is in the RS phase.

However, it was not resolved whether this perturbation is truly

marginal, or perhaps instead marginally relevant or irrelevant.

The mean-field numerical results in this section provide an in-

vestigation into this question, a topic which will be discussed

in more detail within the analytic SDRG in Sec. V.

2. Exact diagonalization study of locally correlated Majorana

chains

It is not immediately clear to what extent the locally corre-

lated free fermion effective model defined in Eqs. (36) and

(37) shares the qualitative features of the XYZ model, or

indeed the self-consistent mean-field theory. We investigate

this by repeating the measurements of bulk and end-to-end

spin correlations in chains of similar length to the previous

studies, now varying the coupling correlation parameter δ.

Figures 14–16 demonstrate that these critical indices do vary

continuously in a similar way to the interacting case. Our ob-

servation that this mean-field approach indeed exhibits many

of the qualitative features of the original case suggests that

at least for small J̃z, the primary effect of the interactions is

to correlate the coefficients of the hopping terms on the two

Majorana chains. However, we emphasize that although the ηz

and η⊥ converge to similar values at the XX point δ = 1 and

the tricritical XYZ point J̃z = 1, the reasons for this are not

necessarily the same. The mean-field should not be taken too

seriously as a picture of the interacting phase away from the

perturbative regime.

V. LOCALLY CORRELATED XY MODEL IN THE

RANDOM WALK FORMALISM

Some types of disordered quantum Hamiltonian can be

uniquely associated with a classical random walk (RW). An

alternative picture of the SDRG viewed through this connec-

FIG. 15. End-to-end spin correlations data are shown in the

locally correlated effective XY model with varying coupling corre-

lation δ. Filled markers indicate Cz
e (r) data, and open C⊥

e (r). System

sizes N = 32, 48, 64, 80, 96, and 128 are included and each data

point averages over 25000 disorder realizations. See Fig. 16 for the

critical power-law decay exponents extracted from this data.

tion is useful for understanding the properties of IRFP phases.

The RW formulation has previously been applied to both the

RTFIM [53,54] and AFM quantum spin chains [30,55]. In this

section we first review the RW for a single Majorana chain

based on the SDRG procedure of Sec. II C 1. While all results

for correlation functions in this case are known from Fisher’s

analytic solutions for flows approaching the RS fixed point,

we demonstrate how to obtain some power-law exponents

from different arguments, which will generalize to the locally

correlated XY chain where we do not have analytic flows.

We first obtain rigorous bounds in the continuum limit on the

asymptotic scaling of the Majorana pairing probability (which

FIG. 16. Critical exponents governing spin correlations in the

locally correlated XY model with varying correlation parameter δ are

shown, extracted from data shown in Figs. 14 and 15. Both bulk and

end-to-end exponents are shown, with known results for the bulk cor-

relations in the uncorrelated XY model at δ = 0 indicated by red stars

and known end-to-end critical spin exponents by yellow diamonds.

Known critical exponents for the U(1)-symmetric XX model at δ = 1

are similarly indicated; in this case, ηe
⊥ = ηe

z = 1 and η⊥ = ηz = 2.

The discrepancy in η⊥ is likely a result of a long crossover, as the

disorder distribution of Eqs. (36) and (37) is somewhat weaker than

Eq. (31) for the same value Ŵ = 2.
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determines the correlations of the z component of spin in the

random XX and XY chains) based on RW survival probability,

a connection which had previously been noted in Ref. [30].

We then consider the problem of two locally correlated RWs,

one for each Majorana chain, following the effective model

developed in Sec. IV B. This system turns out to correspond

to an anisotropic two-dimensional RW. We again rigorously

bound the likelihood of decimation using the RW survival

probability, where we find that the power-law exponent varies

continuously with the local correlation parameter. As a result,

we are able to prove a specific form for continuously varying

critical exponents of spin correlations in the locally correlated

effective model.

A. RW formulation of SDRG for the Majorana chain

Returning to the notation of Sec. II C 1, define the loga-

rithm of the energy associated with each bond in the Majorana

chain Hamiltonian HM as un = ln(J̃/|hn|), n = 1, . . . , N −
1. Here J̃ is a bare bandwidth for the coupling terms, meant

to evoke the parameters of the Hamiltonian Eq. (1). From

Eq. (5), one sees that if J̃x = J̃y, in each Majorana chain

of the random XY model the hopping terms are identically

distributed. Note that the signs of hn are not important for the

discussion of probabilities of site pairings below, and are only

needed to fix sign factors for the spin correlation functions, as

discussed at the end of Sec. II C 1. We consider the specific

disorder distribution Eq. (31) with J̃x = J̃y = J̃ = 1. Then the

distribution of log-energies is exponential, with distribution

parameter Ŵ:

τ (u) =
1

Ŵ
e−u/Ŵ, u ∈ (0,∞), (38)

which has mean 〈u〉 = Ŵ and variance Var(u) = Ŵ2. The Ma-

jorana model HM on N sites is associated with a 1d RW m,

a Markov chain with state variables (xn, σn), n = 1, . . . , N ,

where xn ∈ R is a cumulative log-energy defined below and

σn = (−1)n−1 is an internal Z2 variable determining the sign

of the next step to be taken.2 The discrete RW time n matches

the spatial index of the quantum chain. A given disorder

realization {h j}1� j<N corresponds to a RW step sequence

{σ ju j}1� j<N : that is, the state of m at time n = 1, . . . , N is

m[n] =

(

n−1
∑

j=1

σ ju j, σn

)

. (39)

In the following, we will sometimes leave the σn state variable

implicit, and refer to xn as m[n]. Let Prob(x, σ, n) be the

distribution of m[n], which is governed by the master equation

Prob(x, σ, n + 1) =
∫ ∞

0

du τ (u) Prob(x − σu,−σ, n).

(40)

2That is, the RW takes alternating positive and negative steps de-

pending on the sublattice of site n, and we choose step n = 1 to be

positive. This is distinct from the alternating signs of the couplings in

Eq. (5), which are not invariant under a unitary rotation on the spins.

We now consider the behavior under the SDRG of a RW

m associated with a Majorana chain HM. The largest local

energy scale |hk|, for some k, corresponds to the smallest log-

energy uk . The effect of the Shreiffer-Wolff transformation up

to second order is to eliminate the following hopping terms:

ihk−1γk−1γk + ihkγkγk+1 + ihk+1γk+1γk+2, (41)

and to introduce the renormalized bond term

ih′
k−1γk−1γk+2, h′

k−1 =
hk−1hk+1

hk

. (42)

(There is also a shift of the leading energy scale, but this will

not be important here.) For the RW the new step is

σk−1u′
k−1 = σk−1uk−1 + σkuk + σk+1uk+1. (43)

In this way, the SDRG transformation corresponds to a se-

quential “smoothing” of the RW, in which the global step

of smallest magnitude and its neighbors are removed, and

replaced by a treble step directly connecting xk−1 and xk+2.

For an illustration, the reader is referred to Fig. 8 in Appendix

B of the arXiv version of Ref. [55], or Fig. 1 of Ref. [11].

We define an inversion operation I acting on a RW m of

length N as

I : m[n] �→ Im[n] = m[N] − m[N − n + 1]. (44)

That is, I flips the spatial and time coordinates of m. (The

constant shifts the starting point of Im to 0.) We also define

reflection Ra of the spatial coordinate about the line x = a:

Ra : m[n] �→ Ram[n] = 2a − m[n]. (45)

We will make extensive use of a “gluing” operation ⊕ which

joins two RWs at their endpoints. For RWs m1,2 with lengths

N1,2, then, n = 1, . . . , N1 + N2,

(m1 ⊕ m2)[n] =
{

m1[n], n � N1

m1[N1] + m2[n − N1], n > N1
. (46)

That is, the combined RW m1 ⊕ m2 first performs the N1 − 1

steps of m1, followed by the N2 − 1 steps of m2. It is assumed

that the first step of m2 has opposite σ state variable as com-

pared to the last step of m1; this is required on the spin chain,

where m2 begins and m1 ends on the same sublattice.

Using the above definitions a precise statement can be

made about the decimation of a site n = k, which we suppose

without loss of generality to be a local minimum. For k, to

have decimation partner k′ > k in the SDRG, with k′ − k = r,

a RW m must admit a decomposition

m = Imext,L ⊕ mint ⊕ R0mext,R, (47)

where mext,L has length k, mext,R has length N − k′ + 1,

mint[r] ≡ 
 > 0, and the following conditions hold.

Condition 1. mint[l] satisfies xl > 0 for l = 2, . . . , r, and

attains the unique maximum xr = 
.

Condition 2. mext,L and mext,R reach height x � 
 before

crossing 0.

(For a pictorial description, see also Appendix B of the

arXiv version of Ref. [55].) These conditions relate the like-

lihood of a decimation pairing sites k and k′ to the survival

probability of the “interior” and “exterior” partial RWs on

the fully bounded interval (0,
). The physical interest of

this quantity follows from the strong correlations shared by
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sites paired in the SDRG; in particular, the scaling of the

decimation probability determines average spin correlations,

as described in Sec. II D.

Note that the writing of Eq. (47) is chosen so that the

exterior RWs mext,L and mext,R have identical structure to the

interior RW mint. That is, all walks evolve forward in time

starting at step 1 with the first step being positive. Implicit

in this is the assumption that the inversion and reflection

operations used result in identical probabilities for the RWs

because the microscopic distributions for un are identical for

n even and odd.

Focusing on asymptotic scaling (i.e., n, r ≫ 1), we de-

scribe the RW in continuous time, passing from n → t . The

central limit theorem specifies that a sum of random variables

approaches a Gaussian distribution for sufficiently large n,

provided only that the moments of the constituent distribu-

tions are bounded. The variance of the continuum distribution

is Var(x) = Var(u)t . The effect of the internal state variable

σ can be accounted for by noting that sites which decimate

together necessarily inhabit distinct sublattices. This means

that one additional σ = +1 step is always taken. The mean

of the probability distribution, then, is the expectation value

of this step: 〈x〉 ≡ x0 = 〈u〉.3 The asymptotic density in free

space we denote by

Gfree(x, t ) =
1

√
2πVar(u)t

exp

[

−
(x − x0)2

2Var(u)t

]

. (48)

Now the continuum limit of Eq. (40) is the diffusion equa-

tion [56]

∂

∂t
G(x, t ) = D

∂2

∂x2
G(x, t ), (49)

with diffusion constant D = Var(u)/2. Equation (48) is the

Green’s function of Eq. (49) on x ∈ R with initial condition

G(x, t = 0) = δ(x − x0). This illustrates that the continuum

limit of the RW can be treated as a diffusing particle initially

localized at x = x0. Accordingly, in the following sections, we

use the language of the diffusion problem, referring to the

counterparts of discrete RWs associated with particular Ma-

jorana Hamiltonians as “paths,” “histories,” or “trajectories.”

We also sometimes write the initial condition explicitly, as

G(x, t ; x0). Finally, we will use the notation defined in this

section for the discrete case, e.g., I, Ra, and ⊕, to also refer

to the counterparts of these operations in the continuum.

B. Rigorous bounds on critical exponents

in the Majorana chain from RW survival

The diffusion equation on the fully bounded interval

(0,
), i.e., with absorbing boundary conditions at x = 0

and x = 
, can be solved straightforwardly by harmonic ex-

pansion. From the time-dependent solution one can directly

calculate the scaling of the asymptotic decimation probability

and reproduce Fisher’s detailed results in Refs. [3,7]. How-

ever, in Sec. V D the fully bounded geometry for two locally

correlated Majorana chains becomes too complicated to solve

3This can also be derived from the continuum expression of the

master equation (40).

this way. Instead we employ a different approach by proving

upper and lower bounds with the same power-law scaling,

based on the survival probability in a semi-infinite domain.

A similar method will work also for the locally correlated

effective model with an arbitrary degree of correlation.

First consider the survival probability of a RW in the semi-

infinite interval at time t > 0. As in the free case Eq. (48), the

initial condition on the constrained density G(x, t ) is G(x, t =
0) = δ(x − x0), but an absorbing boundary is present at x = 0,

restricting the solution domain to x ∈ (0,∞) and terminating

trajectories that reach x = 0. The boundary condition G(x =
0, t ) = 0 is accounted for by placing an “image charge”

at x = −x0 and superposing the distributions: G(x, t ) =
Gfree(x, t ; x0) − Gfree(x, t ; −x0). We generally work in a “scal-

ing limit,” where

G(x, t ; x0) =
1

√
πDt

e−(x2+x2
0 )/4Dt sinh

( xx0

2Dt

)

(50)

≈
xx0

√

4π (Dt )3
e−x2/4Dt , (51)

assuming in the last line x0 ≪
√

Dt . This approximation is

valid at late times in integrals over the spatial coordinate, as

the exponential factor strongly mitigates the error introduced,

and allows us to extract leading power-law behaviors. The sur-

vival probability in the semi-infinite geometry in the scaling

limit is

S(t ) =
∫ ∞

0

dx G(x, t ; x0) =
x0√
πDt

. (52)

1. End-to-end decimation probability for a single

finite Majorana chain

In order to support end-to-end decimation between sites 1

and N , the RW m[n = N] associated with a finite Majorana

chain of length N need only satisfy condition 1 of the previ-

ous section, with r = N . In the continuum limit for the RW

(N → L), the likelihood that the left end t = 0 is involved

in the final decimation is given by the survival probability

S(t = L) ∼ 1/
√

L; however, condition 1 additionally requires

that its decimation partner be the right end t = L. Applying

I to m, one sees that the requirement to reach a maximum at

t = L takes the same form as the absorbing boundary condi-

tion x = 0 near t = 0. Thus a naive estimate of the end-to-end

decimation probability pe(L) is the independent survival of

the two ends, or S(L)2 ∼ 1/L. Although these events are not

actually independent, we will show that the naive estimate

turns out to give the correct scaling. Some intuition for this

is that surviving histories tend to be located increasingly far

away from the absorbing boundary [57]: consequently, the

“special” low-probability behavior is confined to the neigh-

borhood of the ends, while the middle of the RW can be

allowed to be nearly typical. A precise statement of these

schematic remarks is that we are able to determine the scaling

of pe(L) by considering two independent “half-RWs” m1,2 of

length t = L/2, constructing RWs of length L which satisfy

condition 1 as m = m1 ⊕ Im2.

To be more concrete, we first give a rigorous upper bound

on the end-to-end decimation probability pe(L). Any RW m

can be decomposed as m = m1 ⊕ Im2, that is, into two inde-
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pendent “half-RWs” running up to time t = L/2, one running

over times t ′ ∈ [0, L/2], and the other over t ′ ∈ [L/2, L], with

the two RWs properly glued at their respective time t ′ = L/2.

It may be the case that m1 and m2 never reach the absorb-

ing boundary, and thus each is considered a surviving RW

in the semi-infinite geometry. Any RW instance of length L

producing an end-to-end pairing in the SDRG, i.e., satisfying

condition 1, indeed decomposes in this way, with only one ab-

sorbing boundary in each case. The converse statement is not

true, because when such two surviving trajectories are joined,

we cannot guarantee that the full RW satisfies condition 1.

Thus the desired probability pe(L) � S(L/2)2 ∼ 1/L.

To prove a lower bound on pe we construct a subset of

all paths satisfying condition 1 by considering certain m1 and

m2, each of length t = L/2, which when glued together as

m1 ⊕ Im2 satisfy the criterion. Again, in the present case we

can solve the problem with two absorbing boundaries, but

we want to demonstrate how to extract the behavior using

the semi-infinite solution, where the geometry is simpler, as

this will be the only option for the locally correlated model.

Specify constants α and β, 0 < α < β � 2α, and define a

target window x ∈ [α
√

Dt, β
√

Dt] for a time t > 0. In the

problem with one absorbing boundary at x = 0, the fraction

of surviving trajectories contained in the target window at t is

pw(α, β ) =
1

S(t )

∫ β
√

Dt

α
√

Dt

dx G(x, t ) = e−α2/4 − e−β2/4. (53)

That is, a constant fraction pw(α, β ) of the surviving density

of RWs at time t is located within the target window.

The above calculation Eq. (53) leads to an overcounting of

valid paths which can be glued to satisfy condition 1, because

it includes “dangerous” histories which take an excursion to

large x values before returning to the target window at time

t . Half-RWs m1 and m2 constrained in this way and glued

as m1 ⊕ Im2 may cross the eventual decimation log-energy

scale 
 prematurely, which would spoil the lower bound. To

account for the dangerous cases, we exclude those histories

which ever cross x = β
√

Dt and then return to the target

window.

The way we achieve the exclusion is the following. Sup-

pose that a history m[t ′], t ′ ∈ [0, t], performs q crossings of

the line x = β
√

Dt at times {t1, t2, . . . , tq} before returning to

the target window at t ′ = t . Immediately after tq, the history

must travel downwards and remain below x = β
√

Dt until

t ′ = t . We apply the following transformation:

T : m = mt ′�tq ⊕ mt ′>tq �→ mt ′�tq ⊕ Rβ
√

Dt mt ′>tq , (54)

where as indicated by the subscripts mt ′�tq describes the RW

up to time t ′ = tq and mt ′>tq the section t ′ ∈ (tq, t]. T does not

change the earlier partial RW but reflects the later about the

line x = β
√

Dt . Because m[t] ∈ [α
√

Dt, β
√

Dt], the trans-

formed endpoint Tm[t] necessarily lies in a “shadow window”

x ∈ [β
√

Dt, (2β − α)
√

Dt]. Moreover, the likelihood of the

trajectory is unaffected by T. Now every dangerous path with

q � 1 crossings can be identified with a transformed partner

terminating in the shadow window and having the same proba-

bility. Thus the density in the shadow window at time t upper

bounds the contribution to the density in the target window

arising from dangerous histories. (The upper bound is not

FIG. 17. A dangerous trajectory contributing to the counting pw

of the density in the target window, colored in blue, is illustrated. The

shadow window used to eliminate these trajectories is also shown,

colored in orange. The particular history m shown has q = 4 cross-

ings of the upper limit of the target window and the reflected partial

path Rβ
√

Dt mt ′>tq , terminating in the shadow window, is shown in

green. Because the diffusion is unbiased, both m and the transformed

Tm path have the same probability, and as any such dangerous

trajectory has a counterpart under the transformation, the density in

the shadow window upper bounds the associated contribution to the

density in the target window.

saturated, because a trajectory included in the shadow window

could deviate above x = 2β
√

Dt for some t ′ ∈ (tq, t], and this

RW would have no T−1 counterpart due to the absorbing

boundary at x = 0.) An illustration of this scheme is shown

in Fig. 17.

From the previous calculation, the fraction of the surviv-

ing density contained in the shadow window is psw(α, β ) =
e−β2/4 − e−(2β−α)2/4. Consequently a lower bound on the den-

sity of valid surviving histories in the target window at time t

is given by

pcorr
w (α, β ) = pw(α, β ) − psw(α, β ) (55)

= e−α2/4 − 2e−β2/4 + e−(2β−α)2/4. (56)

There is an extended region of (α, β ) for which the coefficient

is positive; for example, pcorr
w (α = 2, β = 4) ≈ 0.33.

Now take t = L/2. Two RWs m1 and m2 fulfilling the

criteria above are suitable for constructing a RW of length L

which satisfies condition 1 as m = m1 ⊕ Im2. The result is a

trajectory of length L reaching a maximum at t = L (assured

by taking β � 2α) without crossing x = 0. Not all RWs of

length L which support end-to-end decimation in the SDRG

can be constructed this way, only those with m[L/2] lying in

the target window and m[t ′ � L/2] below the upper limit of

the target window, but every RW coming from this construc-

tion evidently satisfies condition 1. Thus this probability is a

lower bound on pe(L) � [pcorr
w (α, β )S(L/2)]2 ∼ 1/L.

Together with the upper bound, this establishes the scal-

ing of end-to-end decimation probability pe(L)—and thus the

power law for end-to-end correlations in a single random

Majorana chain—as 1/L.
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2. Bulk decimation probability in a single Majorana chain

Guaranteeing decimation away from the edges of a Majo-

rana chain requires satisfying both conditions 1 and 2. To find

the probability pb(r) of decimation at scale r in the bulk—i.e.,

that two fixed sites separated by r are decimated as a pair—we

decorate interior RWs mint by gluing exterior RWs to the left

and right. We showed that the probability of such an mint

is pe(L = r) ∼ 1/r, so we need only find suitable exterior

RWs satisfying condition 2 (while bearing in mind conditions

involving both interior and exterior RWs).

For the probabilities associated with the exterior walks, we

are interested in the likelihood ω(x; A) that a RW with spatial

coordinate x′ starting from x′ = x � 0 eventually reaches a

value x′ = A before being absorbed at the domain bound-

ary x′ = 0. We require the consistency condition ω(x; A) =
〈ω(x − dx; A)〉, where the average is taken over sufficiently

small displacements dx, and 〈dx〉 = 0, 〈(dx)2〉 �= 0 (reflective

of the microscopic step distribution) [57,58]. Taylor expand-

ing leads to Laplace’s equation ∇2ω = 0 which, together with

the boundary conditions ω(0) = 0 and ω(A) = 1, has solution

ω(x; A) = x/A.

A lower bound on pb(r) is now straightforward based

on mint as defined in Sec. V B 1, coming from a subset

of all RWs of length L = r supporting end-to-end decima-

tion. Any such mint is constructed from two glued half-RWs,

each terminating at t = r/2 inside of a target window x ∈
[α

√
Dr/2, β

√
Dr/2]; thus the total and maximum devia-

tion at t = r is bounded above by 
(r) = β
√

2Dr. Given

mint, the probability of a suitable exterior RW mext,L or

mext,R is greater than or equal to ω(x0; 
(r)); writing a

full RW satisfying all conditions, we find that pb(r) �

[pcorr
w (α, β )S(r/2)]2ω(x0; 
(r))2 ∼ r−2.

In the same spirit as the upper bound on end-to-end

decimation probability, consider mint = m1 ⊕ Im2; that is, de-

composed as two half-RWs surviving until t = r/2, with final

spatial deviations 
1 and 
2 and likelihoods G(
1, r/2; x0)

and G(
2, r/2; x0), respectively. All RWs with end-to-end

decimation are of this form. Now incorporating the probability

of exterior RWs which must reach a height 
1 + 
2, the

likelihood of the full RW provides an upper bound on the

probability of bulk decimation:

pb(r) �

∫ ∞

0

∫ ∞

0

d
1d
2 G(
1, r/2; x0) G(
2, r/2; x0)

× ω(x0; 
1 + 
2)2. (57)

Making use of ω(x0; 
1 + 
2)2 �
1
2
ω(x0; 
1)ω(x0; 
2) the

integrals factorize, and we find

pb(r) �
1

2

[∫ ∞

0

d
1 G(
1, r/2; x0) ω(x0; 
1)

]2

(58)

=
x4

0

2(Dr)2
. (59)

Again these upper and lower bounds exhibit the same scal-

ing, proving that pb(r) ∼ r−2 for a single Majorana chain, in

agreement with known results (see the XX case in Sec. II D).

C. Locally correlated Majorana chains

as a two-dimensional RW

To make statements about locally correlated Majorana

chains requires dealing simultaneously with two RWs (return-

ing for the moment to the discrete formulation) mx[n] and

my[n], associated respectively with the X and Y Majorana

hopping chains. In the general case, the steps taken by each at

time n are not independent, being instead drawn from a joint

distribution μ(u, v). If the full state of the system is specified

by variables (xn, yn, n), the master equation for the probability

distribution Prob(x, y, n) is

Prob(x, y, n + 1)=
∫

du

∫

dv μ(u, v) Prob(x − u, y − v, n).

(60)

This is however just the master equation for a RW in two

dimensions (2d). In the natural 2d vector notation with x =
(x, y)⊤ and u = (u, v)⊤,

Prob(x, n + 1) =
∫

d2u μ(u) Prob(x − u, n). (61)

The continuum limit of the master equation Eq. (61) is de-

termined by the details of the microscopic distribution μ,

and does not in general reduce to the simple Laplacian. As

a remedy we begin by transforming the problem into isotropic

diffusion.

Let μ be centered, with covariance matrix4

� = σ 2

[

1 δ

δ 1

]

, (62)

where corr(u, v) = cov(u, v)/σ 2 ≡ δ ∈ [0, 1], with fixed

σ 2 = Var(u) = Var(v). (The value of δ here is related to, but

not necessarily the same as, the bare δ defined in Sec. IV B.

δ > 0 implies positive correlation between u and v, as ob-

served in the mean-field for the AFM spin chain.) The

continuum limit of evolution driven by μ is anisotropic dif-

fusion along the eigenvectors of �, ê± = 1√
2
(1,±1)⊤, with

diffusion coefficients D± = σ 2

2
(1 ± δ).

The 2d RW evolves by isotropic diffusion under a linear

transformation of the plane W : x �→ x̃ ≡ W x, with

W =
1

√
2

[

1
λ

− 1
λ

λ λ

]

, λ ≡
(

1 − δ

1 + δ

)1/4

. (63)

W performs a rotation about the origin by π/4, followed by

a δ-dependent anisotropic rescaling. There is a divergence

at δ = 1, where � is rank-deficient; this reflects the funda-

mentally one-dimensional nature of the perfectly correlated

case. We will refer to the (x, y) coordinates of the original

problem as the “physical geometry,” and the image (x̃, ỹ) of

W as the “solution geometry,” where the governing equation

is isotropic diffusion, now with coefficient D ≡
√

D+D− =

4The central limit theorem allows us to ignore higher order mo-

ments, provided only that they are finite, so for our purposes all

acceptable microscopic distributions are fully characterized by this

one-parameter family of covariance matrices.
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σ 2

2

√
1 − δ2:

∂

∂t
G = D

(

∂2

∂ x̃2
+

∂2

∂ ỹ2

)

G. (64)

D. Rigorous bounds on critical exponents in the locally

correlated model

1. End-to-end decimation probability for two locally correlated

finite Majorana chains

Investigating end-to-end decimation directly in the exact

solution for the fully bounded geometry would neces-

sitate solving Eq. (64) in a parallelogram. A harmonic

decomposition is not possible here, and as far as we

are aware the solution requires a prohibitively complicated

Schwarz-Christoffel conformal transformation usually per-

formed numerically [59]. Nevertheless, analytic results for

two Majorana chains with arbitrary local correlations are pos-

sible by utilizing the connection to the survival probability in

the simpler semi-infinite geometry.

As was the case for the single Majorana chain, we employ

a semi-infinite domain, now bounded by the lines x = 0 and

y = 0. The origin is evidently fixed by W , and the boundaries

map to the lines ỹ = ±λ2x̃, where x̃ lies in the ê− direction

and ỹ in ê+. These boundaries delimit an absorbing wedge

geometry with opening angle � given by cos � = −δ, which

runs from � = π/2 at δ = 0 to � = π at δ = 1. In terms

of the wedge half-angle θ ≡ �/2, the domain boundaries are

ỹ = ±(cot θ )x̃. For easy reference, we collect some relation-

ships between these geometric parameters:

cos � = −δ, sin � =
√

1 − δ2, (65)

cos θ =
√

1 − δ

2
, sin θ =

√

1 + δ

2
, λ =

√
cot θ. (66)

The Green’s function in the infinite wedge can be found

from the free-space distribution by the method of images for

opening angles � = π/m, with m a positive integer. This

entails 2m − 1 image charges with alternating sign, arranged

symmetrically around the wedge apex. However this approach

is of limited use, as we need � ∈ [π
2
, π ), and instead we will

use the Green’s function known for arbitrary opening angle

from an alternative solution. In polar coordinates, with the

wedge apex at radius ρ = 0 and solution domain bounded by

absorbing walls G(ρ, φ = 0, t ) = G(ρ, φ = �, t ) = 0 (i.e.,

the angle φ is defined relative to one of the absorbing bound-

aries), we have [60]

G(ρ, φ, t ; ρ0, φ0)

=
e−(ρ2+ρ2

0 )/4Dt

�Dt

∞
∑

l=1

Ilν

(ρρ0

2Dt

)

sin(lνφ) sin(lνφ0), (67)

where ν = π/� and Ilν is a modified Bessel function of the

first kind:

Is(x) =
∞

∑

m=0

(x/2)s+2m

m! Ŵ(s + m + 1)
. (68)

In the physical geometry, the initial condition is (x0, y0) =
(〈u〉, 〈v〉), where 〈u〉 = 〈v〉 is again the result of each 1d RW

taking one additional positive step according to the discrete

microscopic distribution. In the solution geometry, this point

maps to ρ0ê+, where ρ0 =
√

2λ〈u〉. In polar coordinates, the

source point is (ρ0, φ0 = θ ). Consequently, in Eq. (67), the

factor sin(lνφ0) vanishes for even l and for odd l is equal

to a sign (−1)(l−1)/2. As in the 1d case, we work in the

scaling regime at late times t , where we are able to extract

the leading power-law behavior. Again, spatial integrals are

regulated by the exponential factor, which decays fast enough

to suppress errors arising at large ρ. Because ν ∈ (1, 2] the

leading behavior requires only the l = 1, m = 0 term in the

double sum, and sets e−ρ2
0 /4Dt → 1.

The survival probability is determined from the Green’s

function by integration over the wedge. Explicitly, in the scal-

ing limit

S(t ) =
∫

ρ dρ dφ G(ρ, φ, t ; ρ0, φ0 = θ ) (69)

=
∫ �

0
dφ sin(νφ)

�Ŵ(ν + 1)Dt

∫ ∞

0

ρ dρ e−ρ2/4Dt
(ρρ0

4Dt

)ν

(70)

=
2 Ŵ( ν

2
)

πŴ(ν)

(

ρ0√
4Dt

)ν

. (71)

The survival exponent depends on the opening angle as

S(t ) ∼ t−π/2�. (72)

This result for a RW in a 2d wedge is in fact well known

[57,58,61]. As � is a function of the correlation coefficient

δ, continuously varying behavior of this type is in agreement

with the numerical observations in Sec. IV B. Specifically,

again relying on the naive assumption that the two ends of the

chain decimate independently, the likelihood of this pairing

scales as [S(L)]2 ∼ L−π/�, which matches the known end-to-

end scaling exponents ηe
z = 2 for the uncorrelated model at

δ = 0 and ηe
z = 1 for δ = 1.

Our strategy for rigorously bounding the probability of

end-to-end decimation occurring on both chains using the

infinite wedge results is analogous to that of Sec. V B. From

the Green’s function we establish that at late times a constant

fraction of surviving RWs are suitable for subsequent gluing

to contribute to this probability, being found in a specified

target window, using a shadow window to exclude dangerous

trajectories. By gluing the ends of two RWs at time t = L/2

we establish bounds on the power law. We will use the nota-

tion of the previous section, namely, I and ⊕, to refer to the

generalizations of the relevant transformations to 2d.

In particular, we can write an upper bound immediately.

Any 2d RW of length (duration) L corresponding to two

locally correlated Majorana chains can be decomposed into

half-chains of length L/2 as m = m1 ⊕ Im2, as in the 1d case.

m1 and m2 may be valid surviving trajectories in their semi-

infinite wedge, and some will produce end-to-end decimations

on both physical Majorana chains described by the 2d RW m.

Trajectories that do not decompose in this way into surviving

half-chains will not satisfy condition 1. Because not every pair

of surviving m1 and m2 will do so either, the probability is

upper-bounded as pe(L) � S(L/2)2 ∼ L−π/�.

Now in order to prove a lower bound on pe(L), let α and

β be positive constants, α < β � 2α, and define the target
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FIG. 18. The solution geometry is illustrated for the 2d RW prob-

lem in the wedge with opening angle �, found from the correlation

coefficient by cos � = −δ. The exact target window is colored in

blue, and the sector defining the easier integration subregion for

the target in yellow. The two components of the shadow window

are found by reflecting the exact target window across the lines DL

and DR and are colored in orange, with the easier bounding shadow

integration region, which necessarily covers these areas, in green.

window for a 2d RW at time t to be the square (x, y) ∈
[α

√
Dt, β

√
Dt] × [α

√
Dt, β

√
Dt]. In the physical geometry,

the window is a square; however, when mapped to the solution

geometry the window becomes a parallelogram. The corners

{a, b, c, d} map to

{ã, b̃, c̃, d̃} =
√

Dt

2

{

2αλê+,
α − β

λ
ê− + (α + β )λê+,

β − α

λ
ê− + (α + β )λê+, 2βλê+

}

, (73)

as illustrated in Fig. 18. Treating this exact shape in the polar

coordinates of Eq. (67) is complicated; instead we define

an integration volume that is a subset of the target window,

with the same t scaling, but which leads to a simpler bound.

Consider the midpoints of the edges of the target window

in the solution geometry, which we denote {ẽ, f̃ , g̃, h̃}. They

describe the four corners of a rectangle, symmetric about

the line φ = θ , with edges in the directions ê− and ê+ (see

Fig. 18). We define an integration domain bounded by radial

values ρ+ (of points f̃ and h̃) and ρ− (of ẽ and g̃), and the

angular deviation ψ of points f̃ and h̃ from the midline φ = θ .

The proof that this “sector” geometry is indeed a sub-

volume of the target domain for any opening angle � < π

can be seen by drawing a picture. The specific integration

bounds can be found straightforwardly from Eq. (73), but the

crucial property is their scaling with t . Define the radial limits

as ρ± = C±(α, β, δ)
√

Dt ; the angular integration half-width

ψ = ψ (α, β, δ) turns out to be purely geometric, with no t

dependence. Again extracting the leading behavior for late

times t , the fraction of surviving paths whose position at time

t is in the integration window is

p2d
w (α, β, δ) =

1

S(t )

∫ ρ+

ρ−

ρ dρ

∫ θ+ψ

θ−ψ

dφ G(ρ, φ, t ; ρ0, θ )

(74)

=
4 sin(νψ )

νŴ( ν
2

)
I (α, β, δ), (75)

where

I (α, β, δ) =
∫ C+/2

C−/2

du e−u2

uν+1. (76)

So p2d
w is indeed a constant, determined only by the correlation

coefficient δ and the constants α and β.

As was the case for the 1d RW, the calculation above

includes a “dangerous” contribution which should be sub-

tracted in order to lower bound the decimation probability by

subsequent gluing of half-chains m1 and m2. Again we upper

bound this contribution by calculating the fraction in a shadow

window. We consider those paths to be dangerous which ever

cross the lines x = β
√

Dt or y = β
√

Dt in the physical space

before returning to the target window at time t . In the solution

geometry these lines map to

DR : λ x̃ +
1

λ
ỹ − β

√
2Dt = 0, (77)

DL : −λ x̃ +
1

λ
ỹ − β

√
2Dt = 0. (78)

We define the boundary for dangerous trajectories piecewise

as (see Fig. 18)

D(φ) =
{

DR, 0 < φ � θ

DL, θ < φ < �
. (79)

Suppose a trajectory with time parameter t ′ makes

q crossings of D at times {t1, . . . , tq} at various points

{(ρ1, φ1), . . . , (ρq, φq )} before returning to the target window

at time t ′ = t . After its last crossing at (ρq, φq), it must stay

within the allowed region for times (tq, t]. We transform the

trajectory by reflecting the partial RW for times t ′ ∈ (tq, t]

about the component of D that was crossed at t ′ = tq, either

DR if φq ∈ (0, θ ] or DL if φq ∈ (θ,�). This is the counterpart

in 2d to the 1d transformation T. Because the step distribution

in the solution geometry is isotropic, the transformed path has

the same probability as the dangerous original. (The reflection

must be performed in the solution geometry, and does not

commute with W .) The shadow window in this case has two

components, which are disconnected for � < 2π
3

but overlap

for � > 2π
3

. Note that overlap of the mapped regions does

not introduce the possibility of double-counting, as the full

dangerous and transformed trajectories are uniquely related.

The corners c̃ and d̃ of the target window lie on line DR,

and b̃ and d̃ on line DL. Thus we need only reflect ã and b̃

about DR, and ã and c̃ about DL. The coordinates of the points
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reflected about DR are

{ãR, b̃R} =
√

2Dt

×

[

λ(β − α)

cosh(2 ln λ)
ê− +

(

β − α

λ cosh(2 ln λ)
+ αλ

)

ê+,

(

λ(β − 2α)

cosh(2 ln λ)
+

α − β

λ

)

ê−

+
(

β − 2α

λ cosh(2 ln λ)
+ λ(α + β )

)

ê+

]

, (80)

with similar forms for ãL and c̃L. The four-sided figures

described by the exact shadow window are evidently compli-

cated. As with the target window, we bound the area using

a sector which scales in the same way, however in this case

an upper bound is required. The upper limit ρsw
+ is the radial

coordinate of points c̃L and b̃R, and the lower limit ρsw
− is that

shared by the corners b̃ and c̃. The angular half-width is the

maximum of the angular half-widths of points c̃ and ãR; this

depends on the specific value of �. Again we find integration

limits ρsw
± = Csw

± (α, β, δ)
√

Dt , and ψ sw = ψ sw(α, β, δ).

Based on the previous calculation, p2d
sw(α, β, δ) =

4 sin(νψ sw )

νŴ( ν
2

)
Isw(α, β, δ) and the corrected fraction is

p2d,corr
w (α, β, δ) = p2d

w (α, β, δ) − p2d
sw(α, β, δ) (81)

=
4

νŴ
(

ν
2

) (sin(νψ )I − sin(νψ sw)Isw).

(82)

By working explicitly through the algebra one can verify that

p2d,corr
w is positive for all values of δ ∈ [0, 1), e.g., for the

choice α = 1, β = 2.

Now, taking t = L/2, for any such m1 and m2 we can

construct a RW which satisfies condition 1 for end-to-end dec-

imation in the quantum chain as m = m1 ⊕ Im2. Therefore

a lower bound on the simultaneous end-to-end decimation

probability is given by pe � [p2d,corr
w S(L/2)]2 ∼ L−π/�. In

combination with the upper bound, this shows that the power-

law exponent controlling end-to-end decimation probability

(and consequently ηe
z ) varies continuously with δ as

ηe
z = π/ arccos(−δ). (83)

2. Bulk decimation probability in two locally

correlated Majorana chains

Once again we can extend the result for end-to-end decima-

tion pe—requiring that both Majorana chains satisfy condition

1—to the bulk likelihood pb(r) (for two fixed spins separated

by r) by considering also condition 2. We first write a lower

bound on the bulk pair decimation probability by identifying

exterior RWs which are guaranteed to satisfy condition 2

when properly adjoined to an interior RW of the type used for

the lower bound on pe in the previous section. Specifically,

we restrict to exterior RWs with endpoints at time t ≡ r (for

concreteness, but any constant multiple of r would do as well)

within a particular sector (specified below) in the solution

geometry. In the physical geometry, 
(r) = β
√

2Dr is an

upper bound on the total deviation of each of the 1d RWs mx

and my described by the 2d interior RW mint.

One way to guarantee the bulk decimation is to require that

each of the physical 1d RWs described by each of the exterior

2d RWs mext,L and mext,R survive, and exceed 
(r) at t = r.

A point (ρ, φ) in the solution geometry corresponds to

x =
ρ sin(� − φ)

√
sin �

, y =
ρ sin(φ)
√

sin �
(84)

in the physical geometry. Employing angular integration lim-

its φ ∈ (θ − ψ, θ + ψ ), where ψ can be chosen to be the

same value used for mint, sufficient radial limits for our

purposes are ρext
− = 
(r)

√
sin �/ sin(θ − ψ ) and ρext

+ → ∞
(noticing that sin(θ − ψ ) � sin(θ + ψ ) for all ψ ∈ [0, θ ]).

From the calculation of the previous section, there is a con-

stant probability κ (α, β, δ) that any surviving RW lies in a

window bounded by ρ ∈ [ρext
− , ρext

+ ] and φ ∈ [θ − ψ, θ + ψ]

at t = r. Such a RW has deviation at least 
(r) in the phys-

ical x and y coordinates and thus as either mext,L or mext,R

is suitable for satisfying condition 2 for bulk decimation

when properly adjoined to mint as constructed previously; thus

pb(r) � pe(r)[κS(t = r)]2 ∼ r−2π/�.

Similar to the case of a single Majorana chain, for an upper

bound, we make use of the probability ω(ρ, φ; A) of a RW

with spatial coordinates (ρ ′, φ′) reaching radius ρ ′ = A in the

wedge given a starting point (ρ, φ). This probability follows

Laplace’s equation ∇2ω = 0, now with boundary conditions

ω(ρ, φ = 0) = ω(ρ, φ = �) = 0, ω(ρ = A, φ) = 1. Assum-

ing a separable solution ω(ρ, φ) = R(ρ)T (φ), we find that

for the angular coordinate the solutions are Tn(φ) = sin(nνφ),

n = 1, 2, 3, . . . , where as before ν = π/�. For the radial

coordinate,

ρ2 ∂2R

∂ρ2
+ ρ

∂R

∂ρ
− (nν)2R = 0, (85)

which has solutions of the form Rn(ρ) = ρ±nν . Determining

the constants from the boundary conditions,

ω(ρ, φ; A) =
∞

∑

n=1
n odd

4

nπ

(ρ

A

)nν

sin(nνφ). (86)

Along the relevant line φ = θ , the probability simplifies to

ω(ρ, φ = θ ; A) =
4

π
arctan

[(ρ

A

)ν]

�
4

π

(ρ

A

)ν

. (87)

In order to write an upper bound on the bulk decimation

probability, we consider a full RW satisfying both condi-

tions assembled from an mint = m1 ⊕ Im2, where each of

m1 and m2 must survive until t ≡ r/2, along with exterior

RWs mext,L and mext,R which must reach a particular ra-

dial coordinate (determined from mint as specified below)

without being absorbed. Suppose that m1 and m2 terminate

at coordinates (ρ1, φ1) and (ρ2, φ2), which define the de-

viations of the physical RWs (
x,1,
y,1), and (
x,2,
y,2)

according to Eq. (84). The full deviation of the interior

walk mint in the physical coordinates is (
x,
y) = (
x,1 +

x,2,
y,1 + 
y,2) and the physical 1d RWs described by

mext,L and mext,R must exceed the corresponding 
x or 
y

before being absorbed. For this to be the case, it is nec-

essary, but not sufficient, that the 2d exterior RWs each

survive in the wedge until reaching radial coordinate A ≡√
sin � min(
x,
y) in the solution geometry. Defining for

m1 and m2 similar A1 ≡
√

sin � min(
x,1,
y,1) and A2 ≡
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√
sin � min(
x,2,
y,2), we note that A � A1, A2. The prob-

ability of finding two such mext,L and mext,R given the

terminating locations of m1 and m2 is

p(ext|ρ1, φ1, ρ2, φ2) � ω(ρ0, θ ; A)2 (88)

�

(

4

π

)2
(ρ0

A

)2ν

(89)

�

(

4

π

)2
(ρ0

A1

)ν(ρ0

A2

)ν

. (90)

Then, integrating over the distribution of the interior half-

chain coordinates,

pb(r) =
∫

ρ1 dρ1 dφ1 G(ρ1, φ1, r/2; ρ0, θ )

×
∫

ρ2 dρ2 dφ2 G(ρ2, φ2, r/2; ρ0, θ )

× p(ext|ρ1, φ1, ρ2, φ2) (91)

�

[

8

π

∫ ∞

0

ρ1 dρ1

∫ θ

0

dφ1

× G(ρ1, φ1, r/2; ρ0, θ )

(

ρ0

ρ1 sin φ1

)ν
]2

(92)

=
(

16Iφ

π2Ŵ(ν)

)2(
ρ2

0

2Dr

)2ν

. (93)

We restrict to the right half-wedge, as the integrand is sym-

metric about φ = θ . The angular integral is

Iφ =
∫ θ

0

dφ1

sin(νφ1)

(sin φ1)ν
, (94)

which converges for � > π/2, equivalently δ > 0. (The ex-

ponent we are bounding is known at δ = 0, and follows from

the result of Sec. V B 2.)

Combining the upper and lower bounds, we prove that

pb(r) ∼ r−2ν , and the bulk correlations exponent for two lo-

cally correlated Majorana chains with parameter δ is

ηz = 2π/ arccos(−δ). (95)

E. Numerical SDRG study

The final results of this section, Eqs. (83) and (95), are

in qualitative agreement with the quantum simulations of

Sec. IV B for relatively short Majorana chains, and are con-

sistent with previously known results at the points δ = 0, 1,

where the locally correlated model describes the random un-

correlated XY and perfectly correlated XX IRFPs. For further

verification we implement the SDRG update Eq. (19) directly

for two Majorana chains with locally correlated terms, and

are able to access larger system sizes. This also allows us to

study the bulk C⊥(r) power laws, which are not analytically

tractable in the mapping to RWs used in the preceding sec-

tions.

The numerically extracted exponents are shown in Fig. 19.

The bare correlation coefficient δ may become slightly renor-

malized from the lattice scale definition in Eqs. (36) and (37)

compared to the meaning in the continuum 2d RW treatment

FIG. 19. Numerical SDRG data are shown for two locally cor-

related Majorana chains, with the end-to-end and bulk decimation

probability exponents—equivalent to ηe
z and ηz, respectively, in the

quantum model—compared to the analytic forms Eqs. (83) and (95)

(dashed lines). Also shown are critical exponents ηe
⊥ and η⊥ mea-

sured in the numerical SDRG, as well as red stars indicating known

values of bulk correlations exponents at δ = 0 and 1, and yellow

diamonds indicating known values of end-to-end correlations expo-

nents. The end-to-end correlations data were taken from 1 000 000

disorder realizations each for system sizes up to N = 128, and the

bulk correlations data were taken from 100 000 disorder realizations

at system size N = 256, utilizing the middle half of each of the two

Majorana chains.

in Sec. V D, but these simulations are in good agreement with

the analytic forms for ηe
z (δ) and ηz(δ) we obtained. While

we have precise analytical knowledge only of the critical

exponents ηe
z and ηz, we observe that η⊥ also varies continu-

ously. In contrast, ηe
⊥ = 1 for any value of δ, by the argument

presented in Sec. II D.

VI. FIXED POINTS FOR THE INTERACTING MODEL

In Sec. V, we performed a study of the behavior of critical

exponents under a varying degree of local correlations in

a random free-fermion model. Despite the lack of tractable

SDRG flow equations, we showed that the local correlation

controlled by δ is a marginal perturbation which tunes along a

line of IRFPs. In the present section, we advance the perspec-

tive that this line of noninteracting fixed points in fact also

controls the long-distance behavior of the interacting model

for small Jz strength below the transition to the z-AFM phase.

To do so requires a study of the SDRG at intermediate

stages, taking into account more general terms produced by

the interactions. Equation (29) describes the result of an initial

decimation, but eventually descendant terms will be frequent

and must also be taken into account. We change our conven-

tions here from those of Sec. II C 2 for convenience: namely,

we denote the Majorana chains by I, II rather than X ,Y; and

by a gauge transformation (described at the end of Sec. II C 1),

we set the signs of hI
n, hII

n > 0 for all n = 1, . . . , N − 1, and

Kn ≡ Kn,n < 0.
In order to capture the effect of iterated decimations,

we observe that in Eq. (29) descendants of the form
Kn,m(iγ I

nγ
I
n+1)(iγ II

m γ II
m+1) are produced, which generalize the
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Kn of Eq. (22). We enlarge the space of couplings to include all
such terms, with initial distribution Kn,m = 0, n �= m. If the av-
erage K ≡ |〈Kn,m〉| can be considered to be a small parameter
(for weak interactions K < |〈hn〉|), the higher-fermion term in
Eq. (29) appears at order O(K2) and can thus be neglected. We
will demonstrate that the space of couplings including all Kn,m

is closed under RG flow up to O(K ), and that the structure
of the signs is preserved. Furthermore, we will show that the
strength of the K terms decreases in some sense relative to the
h terms, suggesting that interactions are irrelevant, at least in
the neighborhood of the free-fermion fixed point.

Following the approach of Sec. II C, denote the largest term

as H0 = ihI
kγ

I
k γ

I
k+1 and associate with the eigenstates of this

term a complex fermion f
†
0 = 1

2
(γ I

k + iγ I
k+1) with projectors

π+ = f0 f
†
0 and π− = f

†
0 f0 into the even- and odd-parity sec-

tors, or the high- and low-energy eigenstates, respectively, of

H0. The off-diagonal terms in the Schrieffer-Wolff treatment

share exactly one Majorana operator with H0:

Vod = ihI
k−1γ

I
k−1γ

I
k + ihI

k+1γ
I
k+1γ

I
k+2 (96)

+
N−1
∑

m=1

(

Kk−1,m

(

iγ I
k−1γ

I
k

)(

iγ II
m γ II

m+1

)

+ Kk+1,m

(

iγ I
k+1γ

I
k+2

)(

iγ II
m γ II

m+1

))

. (97)

Separating Vod into symmetry sectors, we find that

π+Hπ− =

[(

hI
k−1 +

∑

m

Kk−1,m

(

iγ II
m γ II

m+1

)

)

iγ I
k−1 +

(

hI
k+1 +

∑

m

Kk+1,m

(

iγ II
m γ II

m+1

)

)

γ I
k+2

]

f0 (98)

≡
(

ihI,int
k−1γ

I
k−1 + hI,int

k+1γ
I
k+2

)

f0, (99)

π−Hπ+ =

[(

hI
k−1 +

∑

m

Kk−1,m

(

iγ II
m γ II

m+1

)

)

iγ I
k−1 −

(

hI
k+1 +

∑

m

Kk+1,m

(

iγ II
m γ II

m+1

)

)

γ I
k+2

]

f
†
0 (100)

≡
(

ihI,int
k−1γ

I
k−1 − hI,int

k+1γ
I
k+2

)

f
†
0 . (101)

We make use of the “interacting couplings” notation used

also in Sec. II C 2 to connect with the noninteracting case, but

here it is not evident that these couplings—which are really

operators—all commute. Nevertheless, a suitably generalized

version of Eq. (19) implements the Schrieffer-Wolff transfor-

mation:

H ′ = H0 + Vd +
(

hI,int
k−1

)2 +
(

hI,int
k+1

)2

2hI
k

(

iγ I
k γ

I
k+1

)

+
hI,int

k−1
hI,int

k+1
+ hI,int

k+1
hI,int

k−1

2hI
k

(

iγ I
k−1γ

I
k+2

)

(102)

= H0 + Vd +
(

iγ I
k γ

I
k+1

)

[

(

hI
k−1

)2 +
(

hI
k+1

)2

2hI
k

+
hI

k−1

hI
k

∑

m

Kk−1,m

(

iγ II
m γ II

m+1

)

+
hI

k+1

hI
k

∑

m

Kk+1,m

(

iγ II
m γ II

m+1

)

]

+
(

iγ I
k−1γ

I
k+2

)

[

hI
k−1hI

k+1

hI
k

+
hI

k−1

hI
k

∑

m

Kk+1,m

(

iγ II
m γ II

m+1

)

+
hI

k+1

hI
k

∑

m

Kk−1,m

(

iγ II
m γ II

m+1

)

]

+ O(K2). (103)

The effective terms in the first line of Eq. (103) (and the

first term of the second line) are h-type, with positive coeffi-

cients in the low-energy sector of H0 where 〈iγ I
k γ

I
k+1〉 = −1.

Conversely, the remaining terms in the second line are K-

type (recalling that γ I
k−1 and γ I

k+2 become adjacent after the

decimation of γ I
k and γ I

k+1), and have coefficients with nega-

tive signs. One sees that the signs of the initial distributions,

namely hI,II
n > 0 and Kn,m < 0, are maintained during the RG

flow, and it is evident from Eq. (103) that these types of terms

are closed under the SDRG up to O(K ).

As a measure of the evolution of the relative strength of

K terms to h terms under this RG step, we compare the

renormalized Keff
k−1,m to the geometric mean of the proximate

h terms hI,eff
k−1

and hII
m:

Keff
k−1,m

√

hI,eff
k−1 hII

m

=

√

hI
k−1

hI
k

Kk+1,m
√

hI
k+1hII

m

+

√

hI
k+1

hI
k

Kk−1,m
√

hI
k−1hII

m

. (104)

We see that if such ratios are small to begin with, i.e.,

Kk+1,m/

√

hI
k+1

hII
m, Kk−1,m/

√

hI
k−1

hII
m ≪ 1 before the decima-

tion, they will likely become even smaller under the RG flow

if the disorder in the Majorana hoppings is strong, so that

hI
k−1, hI

k+1 ≪ hI
k . This suggests that if the h terms are domi-

nant initially, they will be even more so during the SDRG and

will asymptotically constitute the entirety of the decimations.

The diagonal terms which contain both decimated Majo-

ranas are
∑

m

Kk,m

(

iγ I
k γ

I
k+1

)(

iγ II
m γ II

m+1

)

. (105)

Upon decimation, setting 〈iγ I
k γ

I
k+1〉 = −1 in the ground state

gives O(K ) contributions to the Majorana hoppings in the

other chain, hII,eff
m = hII

m − Kk,m. Given the opposite signs of

the h and K couplings, this increases the overall strength of

the remaining Majorana hoppings. This is the local SDRG

analog of the “mean field” of Eqs. (34) and (35) where the Jz
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interactions renormalize the Jx and Jy couplings by strength-

ening and correlating them, as was already noted in Sec. II C 2

and discussed in Sec. IV. Here we note that including these

renormalizations of the h couplings only improves our argu-

ments for the persistence of the dominance of these couplings

over the K couplings.

The terms omitted from Eq. (103) at O(K2) are the follow-

ing:

1

2hI
k

(

iγ I
k γ

I
k+1

)

[

∑

m

(

K2
k−1,m + K2

k+1,m

)

+
∑

m,l �=m,m±1

(Kk−1,mKk−1,l + Kk+1,mKk+1,l )
(

iγ II
m γ II

m+1

)(

iγ II
l γ II

l+1

)

]

+
1

hI
k

(

iγ I
k−1γ

I
k+2

)

[

∑

m

Kk−1,mKk+1,m +
∑

m,l �=m,m±1

Kk−1,mKk+1,l

(

iγ II
m γ II

m+1

)(

iγ II
l γ II

l+1

)

]

. (106)

The first terms in each line are corrections to the ground-state

energy and the strength of the renormalized bond coupling

on chain I [which again preserves the sign structure and

strengthens this hopping compared to the leading contribution

in Eq. (103)]. Along with these, four-fermion terms within

chain II and six-fermion interchain terms appear at O(K2).

The former are expected to be ultimately irrelevant, based

on previous studies of a single Majorana chain realized in

the quantum Ising model [3]. However, these four-fermion

and six-fermion terms will produce yet more complicated

descendants in subsequent RG steps, and there will also be

“degradation” processes leading to fewer-fermion terms, in-

cluding renormalization of the two-fermion terms, similar to

the discussion after Eq. (105) [22]. In this case, we must

rely on the perturbative argument to justify dropping them,

viewing them as irrelevant other than feeding into strictly

marginal correlations among the effective Majorana hoppings

in the two chains.

Together with the understanding of the locally correlated

XY model in the previous section, this leads us to propose

the following picture for the critical XYZ chain along the line

separating the x-AFM and y-AFM phases. For small J̃z, this

critical line is actually controlled by the line of free Majorana

fixed points with locally correlated hoppings characterized

in Sec. V. The effect of the interactions Jz in the original

model with no correlations among the couplings (δ = 0) is to

develop such correlations among the renormalized Jx and Jy

couplings under RG while the Jz couplings flow to zero. The

ultimate degree of such correlations (i.e., the fully renormal-

ized parameter δeff) then determines the long-distance power

laws in the average spin correlation functions. We further

conjecture that this persists for all J̃z < J̃z
crit = 1 below the

transition to the z-AFM phase. While we do not have pertur-

bative control close to this transition, any alternative would

require yet another transition below J̃z
crit, which we did not

observe and consider to be less natural. Note that in this

scenario the transition to the z-AFM phase is controlled by

a different non-free-fermion fixed point, and we do not have

access to this S3-symmetric fixed point in the present study.

We will further discuss the above conjecture, its corollaries

and possible tests, as well as open questions in the concluding

section.

VII. DISCUSSION

In this paper, motivated by the observations of Ref. [4],

we have performed a study of the low-energy properties of

the random XYZ model using unbiased numerics. We focus

on the line separating the x-AFM and y-AFM phases, which

exhibits statistical symmetry between Jx and Jy couplings.

At all points allowing comparison, our results are in general

agreement with the previous findings of Ref. [4] which used

SBRG and presumed critical MBL physics at arbitrary energy

density. Our results strongly suggest that—regardless of the

behavior of highly excited states—there is quantum critical

behavior in the ground state and the critical line is described

by IRFPs with continuously varying critical exponents in the

disorder-averaged correlation functions. Perhaps surprisingly,

a Hartree-Fock mean-field theory treating the Jz interaction

terms as perturbations around the random XY (free-fermion)

fixed point yielded results that are qualitatively rather consis-

tent with the full interacting model at small to moderate Jz

couplings, including continuously varying power laws. This is

in contrast to the clean case, where the mean-field model is not

qualitatively accurate due to divergences in the perturbation

theory [62].

The locally correlated XY effective model, introduced with

the idea of distilling the essential feature of the mean-field

theory, again exhibited continuously varying critical expo-

nents, which we were able to establish numerically in larger

sizes than for the XYZ chain. Because of the particular free-

fermion form of this effective model, we were able to treat

it in the SDRG using the random walk formulation in two

dimensions. By making use of a connection between sur-

vival probability and the structure of decimation in the RG,

we showed analytically that critical exponents for end-to-end

and bulk Cz spin correlations vary continuously as the cou-

pling correlation parameter δ is tuned, and we also observed

varying exponents in the bulk C⊥ correlations by running

the SDRG numerically. This result singles out and proves

one of the scenarios of Ref. [3] that random anisotropy is

strictly marginal along the critical line connecting the random

XX and random XY fixed points; that is, there is a line of

fixed points connecting the XX and XY IRFPs as sketched in

Fig. 1.

Motivated by the successful understanding of the locally

correlated XY model, we revisited the SDRG for the full

interacting XYZ chain in the regime of small interactions and

proposed a scenario where these interactions are irrelevant,

but during the initial flows they generate effective correlations

between the local Jx and Jy couplings (i.e., Majorana hopping

amplitudes on the two chains). Such flows are sketched in

Fig. 2. These local correlations in the free-fermion couplings

then lead to nonuniversal power laws in the average spin
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correlations: this is our story for the continuously varying

criticality in the XYZ spin chain.

We note that continuously varying critical exponents were

previously observed in IRFPs associated with correlated dis-

order by [63], however, in a qualitatively different setting than

ours. Specifically, disordered fixed points perturbed by the

introduction of long-range correlations ∼r−a to the disorder in

the random transverse-field Ising chain exhibit critical indices

varying continuously with a for a < 1. Their setting has only

one Majorana chain and the correlated disorder is within the

chain. Also, in their case the ψ exponent varies continuously,

which reflects a different character of the corresponding “ran-

dom walker” imprinted by the long-range correlations in the

disorder.

Nonuniversal exponents at IRFPs were also observed in

cases with very broad (singular) distributions of random cou-

plings [64,65]. This again occurs already in a single chain

and has varying exponent ψ , and the variation can be traced

directly to the singularity in the probability distribution of the

microscopic couplings, while the exponents are universal for

nonsingular probability distributions.

The XYZ chain studied here is different from the above

examples with varying exponents in that there are no long-

range correlations or singular distributions input into the

microscopic disorder. In this way, the continuously varying

exponents are intrinsic to this system rather than imprinted ex-

trinsically. What is important in the XYZ chain is that we have

two simultaneously critical Majorana chains whose couplings

become locally correlated. This insight may be useful when

looking for other IRFPs with intrinsic continuously varying

critical indices.

We conclude by returning to the discussion of the proposed

scenario for the fully interacting XYZ chain. This scenario is

based on the conjecture that the four-fermion and higher terms

are irrelevant other than feeding into correlations between

the Majorana hoppings. While this is plausibly justified for

small interactions in Sec. VI, we have not fully proved it

and the status for intermediate interactions is less certain.

In this respect, it would be useful to carry out a systematic

numerical SDRG study of the fully interacting problem (e.g.,

using the scheme of Ref. [22]) keeping track of all generated

interactions as well as allowing decimations of the interaction

terms when they happen to be the strongest. If our scenario

is correct, we should see the interaction terms progressively

decreasing relative to the Majorana hoppings. One should be

able to perform such a study also directly in the spin variables

using the SBRG approach of [4] projected onto the ground

state branch, e.g., as used in Ref. [66] in a different problem.

Employing the insights gained here, it should be helpful to

interpret various Pauli string terms generated under the SBRG

as either Majorana hoppings or specific multifermion interac-

tions. The SBRG can also be indispensable for studying the

putative S3-symmetric fixed point describing the transition to

the z-AFM phase, as a possible new IRFP that is not tractable

with available analytical tools.

Thinking about a broader phase diagram, our work sug-

gests that it could be fruitful to add another parameter “axis”

and study the XYZ chain with locally correlated Jx and Jy

couplings in the bare model (analogous to parameter δ in the

correlated XY model), in addition to the interactions Jz. Fig-

ure 2 shows this parameter space, and constitutes a mild abuse

inasmuch as it serves as both a phase diagram and a picture of

RG flows, the latter of which occur in space not captured by

just the two parameters. In the space shown, the bare δ = 0

corresponds to the present XYZ chain, with the transition

from the critical phase to the z-AFM phase at the S3 symmetric

point, marked XYZC in Fig. 2. On the other hand, δ = 1

corresponds to the XXZ chain studied in the original work

by Ref. [3]. For J̃z below some threshold value, the XXZ spin

chain is critical and controlled by the free-fermion XX point,

while for larger J̃z it undergoes a transition to the z-AFM

phase. Fisher concluded that this transition is controlled by

the so-called XXZC fixed point which is essentially random

singletlike, also marked in Fig. 2. An interesting question is

the nature of the transition to the z-AFM phase driven by the

J̃z coupling as we vary the disorder correlation parameter from

δ = 1 (XXZC fixed point) to the statistically isotropic XYZC

fixed point. This line is marked with a question mark in Fig. 2,

and one possibility is that it is also described by a line of

fixed points, but we cannot at present exclude other scenarios.

We leave these questions for future investigations, noting that

the possibility of novel IRFPs is quite tantalizing and worth

further exploration.
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