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ABSTRACT

Dynamic Lot Sizing problem and its variations has been widely used for the scheduling of the

productions and inventories. When demands are uncertain, one can use the mean of historical data

or the expected value, which is a point estimate of demand. In addition to the mean, this work

considers another point estimate, which is called median. We show that the total backorders, as the

result of capacity limitation and uncertain demand, can be lower when median is used instead of

the mean. It is shown that for an asymmetric distribution, the total backorder is lower significantly

when median is used. Furthermore, when demand follows a symmetric distribution, the total

backorder do not differ significantly between the two point estimates.

KEYWORDS: Dynamic Lot-Sizing, Multi-Item, Uncertain Demand, Point Estimate

INTRODUCTION AND LITERATURE REVIEW

Since it was first conceived by [16], DLS problem has remained in the center of attention to man-

age supply chains. This problem considers the production and inventory levels for multiple periods

of planning. In this work, we concentrate on the multi-item extension of this problem, i.e. Multi-

item Dynamic Lot Sizing (MIDLS), and we consider a variation of this problem that considers the

backorders and uncertain demands.

To present the formulation of MIDLS problem, we use the same notation as [6]. We show the

set of items by I = {1, ..., |I |} which is indexed by i and we show the set of periods by T =
{1,2, ..., |T |} which is indexed by t. We assume the unit holding cost, set up cost, production cost,

and start up cost of item i in period t is ht
i, st

i, pt
i, and ot

i respectively. The demand of item i in period

t is dt
i . In addition, we have four variables in the problem. The production of item i in period t is

shown by xt
i . The inventory level of i at the end of period t is shown by qt

i. Binary variable yt
i = 1,

if there is a production of item i in period t and otherwise, yt
i = 0. Finally, zt

i = 1 when we have a

production of i in period t and no production of i in previous period. Given Mt = ∑i∈I dt
i , we can

formulate MIDLS problem as follows, which is similar to [1, 10, 2, 6]:
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Objective (1) is set to minimize the total cost of inventories, productions, set ups, and start ups.

Constraints (2) are the inventory balance constraints. These constraints guarantee that in each

period, the total previous inventory and production for each item is greater than or equal to the

demand plus the ending inventory. If there is a production in a period, constraints (3) guarantee the

corresponding binary variables will be equal to one. If there is a new production in a given period,

constraints (4) force the corresponding zt
i variable equal to one. Constraints (5)-(6) represent the

definitions of variables. Upon solving this problem, variable xt
i decides on the production of each

item in each period; variables qt
i shows the end of period inventory level; variable yt

i shows whether

there is a production of each item in a period; and, variable zt
i decides if we have a new start-up for

a product in a given period.

In theMIDLS problem, demand dt
i is assumed to be stationary through all periods [16]. When de-

mand is not stationary, i.e. fluctuating and/or uncertain, the problem may render infeasible. This

means no solution considering the constraints can be found to satisfy the realized demand. To over-

come this issue, one may add backorder variables to the constraints (2). The backorder variables

will act as catalysts that absorb the additional demand or backorders. In the literature, backorder

has been included in inventory balance constraints [3, 5] or as stochastic variables [7, 15]. It is

worth noting that service-level has been widely used to address demand uncertainty, which is be-

yond the scope of this research. For example, the work of [4] studies the probability of having

in-hand inventory as a constraint and [8] connects the backorders and service-levels. More similar

studies related to the service-levels can be found in the work of [14, 15, 13].

To solve optimization problems with uncertain parameters, such as the MIDLS problem, there are

several approaches utilized in the literature. One of the popular approaches is to solve the expected

value problem [11]. The expected value problem substitutes the uncertain parameter of the prob-

lem with its mean. Note that the mean is a point estimate of the uncertain parameter. Alternatively,

one can substitute the uncertain parameter with its median. For an uncertain parameter that has a

symmetric distribution, it should not affect the backorders, largely. However, if the distribution is

asymmetric, backorders should change more compared to using the median of the uncertain param-

eters. The comparison of the point estimates median and mean when approximating the uncertain

parameters is the focus of this work.

In the next section alternative formulations including backorders are presented. In the later section,

we analyze different point estimate solution approaches and we show which solution approach



leads to a lower backorder through a statistical analysis. We conclude the research and hints on

future directions of this research in the last section.

DLS PROBLEMS WITH UNCERTAIN DEMANDS AND BACKORDERS

When demand fluctuates high and the capacity in production/inventory is limited, constraints (2)

may become infeasible. The infeasibility lies in the possibility of having a large enough demand

that cannot be satisfied due to the limited capacities. To overcome this problem, we use backorder

variables and update inventory balance constraints. In the work of [3, 5, 9, 12], the inventory

balance constraints are updated by including backorder variables ut
i. Assuming rt

i is the backorder

cost, we have the Capacitated MIDLS with Backorder (CMIDLS-BO) as follows:

CMIDLS-BO: min ∑
t∈T
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Objective (7) is set to minimize the total cost of inventories, productions, set ups, start ups, and

backorders. Constraints (8) are the inventory balance constraints. These constraints guarantee that

in each period, the total previous inventory, production, and backorder for each item is equal to the

demand plus summation of previous backorder and the ending inventory. The rest of constraints

(9)-(14) are similar to (3)-(6), except that capacity constraints (11) and (12) are added and the def-

inition of backorder variables is included in constraints (13).

Next, we use two point estimates, i.e. mean and median, to have two solution approaches to solve

the CMIDLS-BO problem. We compare the solution approaches in terms of their backorders and

we show the median is a better point estimate with demand asymmetrically distributed.

SOLUTION ANALYSIS

Solution Approaches

Before analyzing the solution methods, we first write CMIDLS-BO into its compact form. Let’s

show all variables by λ , the cost coefficients of all variables by C, demands by D, Matrix of left-

hand-side of constraints (8) by A, and the feasible space of the rest of constraints by X . The

compact form is:



P: min Cλ

s.t. Aλ ≥ D

λ ∈ X

Based on the historical data Dk,∀k ∈ K , we develop two approaches to solve P given the uncer-

tain demand D. One approach is based on the mean of historical data D̄ and the other approach

is based on the median of historical data or ̂D. We call the corresponding problems PD̄ and P
̂D.

The purpose is to understand which approach results in a lower total backorder through a numerical

analysis. This analysis is repeated for demands that have a Normal distribution, a Uniform distri-

bution, and a Poisson distribution. In each case, the total backorder of each approach is computed

and compared.

Numerical Analysis

In the numerical analysis, parameters are generated uniformly as integers within a lower bound

and an upper bound that is shown by IU [lb,ub]. Particularly, ht
i ∈ IU [1,5], pt

i ∈ IU [10,20],
st

i ∈ IU [20,40], ot
i ∈ IU [15,25], and rt

i ∈ IU [100,200]. Note that vector D of demands is avail-

able for the past |K |= 100 time horizon. In another word, we have Dk for all k ∈ K . If demands

follow a Uniform distribution, we generate historical demands as Dk ∈ [800,1000]. If demands fol-

low a Normal distribution, we generate historical demands as Dk as a normal random variable with

a mean of 900 and standard deviation of 100. If demands follow a Poisson distribution, we gen-

erate historical demands as Dk (dtk
i ) as a Poisson random variable with a mean of 900 (μ = 900).

Note that if we use the mean as the point estimate, we set D = D̄k and if we use median as the point

estimate, we set D = ̂Dk.

Additionally, initial inventory and capacity of production and inventory should be calculated. For

this purpose, we assume the initial inventories are all zeros, i.e. qt
i = 0. To find CP and CQ we first

generate an array of Dk ∈ [800,1000]. Then, given γ being a random number between 2 and 3,

these capacities are calculated as:

CQ = 1
γ×|K | ∑

k∈K
∑

i∈I
d1k

i (15)

CP = 1
|T |×|K | ∑

k∈K
∑

t∈T
∑

i∈I
dtk

i (16)

The number of items belongs to |I | ∈ {10,20,30,40} and the number of periods belongs to |T | ∈
{40,60,80,100}. For every i ∈ I and t ∈ T , we generate 10 problem instances according to the

above settings. Note that the average of these instances are presented in this paper. These instances

of PD̄ and P
̂D are implemented in Python 7 and run on computer with 2×2.4 GHz CPU, 4 GB

RAM, and 64-bit Windows operating system. Instances are solved using Gurobi 9.0.3 academic

solver. The computational time is shown by cpu and the difference between total backorders of

problems PD̄ and P
̂D is shown by Δ. This difference is divided by the minimum backorder among

Ū and ̂U to be shown by percentages. We define this measure as:



Δ = 1(Ū−̂U)

min{1Ū ,1̂U} (17)

where 1 is a vector of 1’s of an appropriate size. Table 1 in the APPENDIX summarizes the nu-

merical analysis of PD̄ and P
̂D instances, when D is Uniformly distributed. Despite the choice

of point estimate, D̄ or ̂D, all instances are solved in less than 6 seconds with an average being

less than 1.5 seconds. The Δ or the percentage of relative difference between Ū or ̂U is sometimes

negative and sometimes positive. On average, it is Δ = 0.09%.

Table 2 summarizes the numerical analysis of PD̄ and P
̂D instances, when D is Normally dis-

tributed. Despite the choice of point estimate, all instances are solved in less than 5 seconds with

an average being less than 1.5 seconds. The Δ is sometimes negative and sometimes positive. On

average, it is Δ =−0.11%. These results are similar to Table 1.

Table 3 summarizes the numerical analysis of PD̄ and P
̂D instances, when D is Poisson dis-

tributed. Despite the choice of point estimate, D̄ or ̂D, all instances are solved in less than 6

seconds with an average being less than 1.5 seconds. Unlike Uniform or Normal data in tables 1

and 2, here Δ is always positive, and it is Δ = 1.27%, on average. A positive value of Δ means the

point estimate median can return lower backorders. In addition, Δ has increased more than tenfold

when data is asymmetric (Poisson distribution). This spike in the value of Δ requires further atten-

tion. In the following, we discuss whether the value of Δ shows a significant difference between

point estimates D̄ and ̂D.

Significance of Point Estimates

To test the significance of point estimates D̄ and ̂D, we conduct a hypothesis test to see if the total

backorder changes when we use different point estimates. Tables 4-6 investigate this. Every row

of these tables corresponds to a combination of |I | and |T |, in which 100 instances are generated

and solved. This means 1,600 instances are solved for the significance study.

In Table 4, parameter D assumes a Uniform distribution. When comparing point estimates of this

parameter, i.e. D̄ and ̂D, we see there is no significant change as the pvalue’s are very large. The

minimum pvalue is 0.47 which makes the difference between backorders when using different point

estimates insignificant. Similar results have been observed when D assumes a Normal distribution

in Table 4. We can conclude that the difference between backorders when using different point

estimates is insignificant.

Note that both Uniform and Normal distributions are symmetric. When the distribution of demand

is asymmetric, such as Poisson distribution, the difference between point estimates becomes more

apparent; Δ = 1.27%. Particularly, Table 6, for a Poisson distribution, shows that pvalue’s are very

small, the maximum being 0.0021. This shows that when D follows a Poisson distribution, we are

more than 99.79% confident that the backorders return by mean and median demands differ from

each other. Note that the setting of the hypothesis test is for the difference. If we change the setting

to the smaller backorders, the pvalue’s will become even smaller. This means we will have even

more confidence that the median point estimate reduces the backorders.



CONCLUSION AND FUTURE RESEARCH

This study investigates the use of two point estimates to reduce the backorders in Capacitated Dy-

namic Lot Sizing problems with uncertain demands. The two point estimates are the mean and

median. It is shown that median can reduce total backorders significantly when demand distribu-

tion is asymmetric, i.e. it has a Poisson distribution. However, since service levels are not studied,

further analysis is needed to assure demands are satisfied.

One possible future research is to study the effects of the median point estimate using real world

data. Moreover, one can investigate more point estimates and more distributions. It is very im-

portant to incorporate service levels in the study to assure demands are met at the desired level.

Finally, comparison of point estimates and other stochastic optimization approaches can be another

future direction of this research.
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APPENDIX: TABLES

Table 1: Instances of PD̄ and P
̂D problems when D has a Uniform distribution

|I | |T | cpu (PD̄) cpu (P
̂D) Δ%

10 40 0.102 0.106 0.16
60 0.176 0.173 0.79
80 0.281 0.277 0.3
100 0.402 0.383 0.29

20 40 0.33 0.269 0.29
60 0.575 0.523 0.37
80 1.004 0.83 -0.18
100 1.482 1.273 0.12

30 40 0.58 0.513 -0.06
60 1.447 1.025 -0.1
80 2.315 1.757 -0.46
100 3.209 2.68 -0.01

40 40 0.906 0.842 0.27
60 1.888 1.712 -0.33
80 3.644 2.851 0.54
100 5.354 4.229 -0.55

Average 1.481 1.215 0.09

Table 2: Instances of PD̄ and P
̂D problems when D has a Normal distribution

|I | |T | cpu (PD̄) cpu (P
̂D) Δ%

10 40 0.13 0.106 -0.27
60 0.188 0.173 -0.15
80 0.29 0.284 -1.4
100 0.418 0.393 -1.13

20 40 0.405 0.281 0.52
60 0.623 0.525 0.15
80 1.003 0.83 0.2
100 1.457 1.221 -0.04

30 40 0.585 0.52 -0.03
60 1.225 1.044 -0.06
80 1.911 1.638 0.14
100 3.273 2.407 -0.28

40 40 1.025 0.827 -0.03
60 2.004 1.632 0.24
80 3.297 2.704 0.34
100 4.888 4.177 0.04

Average 1.42 1.173 -0.11



Table 3: Instances of PD̄ and P
̂D problems when D has a Poisson distribution

|I | |T | cpu (PD̄) cpu (P
̂D) Δ%

10 40 0.096 0.105 0.5
60 0.188 0.181 1.05
80 0.288 0.291 1.23
100 0.432 0.42 1.8

20 40 0.319 0.283 0.72
60 0.607 0.529 1.41
80 0.872 0.852 1.5
100 1.313 1.281 2.02

30 40 0.66 0.527 0.74
60 1.151 1.024 1.05
80 1.933 1.761 1.44
100 2.975 2.627 1.89

40 40 0.913 0.835 0.64
60 2.087 1.752 1.34
80 3.61 3.113 1.27
100 5.165 4.794 1.78

Average 1.413 1.273 1.27

Table 4: pvalue comparison

of instances of PD̄ and P
̂D

problems, when D has a Uni-

form distribution

|I | |T | pvalue

10 40 0.98
60 0.77
80 0.06
100 0.10

20 40 0.87
60 0.70
80 0.48
100 0.68

30 40 0.31
60 0.98
80 1.00
100 0.71

40 40 0.74
60 0.70
80 0.47
100 0.73

Table 5: pvalue comparison

of instances of PD̄ and P
̂D

problems, when D has a Nor-

mal distribution

|I | |T | pvalue

10 40 0.93
60 0.54
80 0.95
100 0.89

20 40 0.89
60 0.58
80 0.61
100 0.71

30 40 0.96
60 0.72
80 0.47
100 0.60

40 40 0.83
60 0.64
80 0.93
100 0.87

Table 6: pvalue comparison

of instances of PD̄ and P
̂D

problems, when D has a Pois-

son distribution

|I | |T | pvalue

10 40 2.10E-03
60 7.50E-07
80 1.63E-05
100 6.25E-09

20 40 1.39E-06
60 1.61E-07
80 2.86E-09
100 1.09E-12

30 40 2.89E-07
60 1.25E-13
80 1.94E-14
100 6.96E-17

40 40 8.66E-12
60 2.36E-13
80 3.41E-16
100 2.73E-19


