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Abstract 23 
 24 

Background and Objective: It is common to combine biomechanical modeling and medical images 25 

for multimodal analyses. However, mesh-image mismatch may occur that prevents direct information 26 

exchange. To eliminate mesh-image mismatch, we develop a simple but elegant displacement voxelization 27 

technique based on image voxel corner nodes to achieve voxel-wise strain. We then apply the technique to 28 

derive dense white matter fiber strains along whole-brain tractography (~35 k fiber tracts consisting of ~3.3 29 

million sampling points) resulting from head impact.  30 

Methods: Displacements at image voxel corner nodes are first obtained from model simulation via 31 

scattered interpolation. Each voxel is then scaled linearly to form a unit hexahedral element. This allows 32 

convenient and efficient voxel-wise strain tensor calculation and displacement interpolation at arbitrary 33 

fiber sampling points via shape functions. Fiber strains from displacement interpolation are then compared 34 

with those from the commonly used strain tensor projection using either voxel- or element-wise strain 35 

tensors.  36 

Results: Based on a synthetic displacement field, fiber strains interpolated from voxelized 37 

displacement are considerably more accurate than those from strain tensor projection relative to the 38 

prescribed ground-truth (determinant of coefficient (𝑅2) of 1.00 and root mean squared error (RMSE) of 39 

0.01 vs. 0.87 and 0.10, respectively). For a set of real-world reconstructed head impacts (N=53), the strain 40 

tensor projection method performs similarly poorly (𝑅2  of 0.80–0.90 and RMSE of 0.03–0.07), with 41 

overestimation strongly correlated with strain magnitude (Pearson correlation coefficient >0.9). Up to ~15% 42 

of the fiber strains are overestimated by more than the lower bound of a conservative injury threshold of 43 

0.09. The percentage increases to ~37% when halving the threshold. Voxel interpolation is also significantly 44 

more efficient (15 sec vs. 40 sec for element strain tensor projection, without parallelization).  45 

Conclusions: Voxelized displacement interpolation is considerably more accurate and efficient in 46 

deriving dense white matter fiber strains than strain tensor projection. The latter generally overestimates 47 

with overestimation magnitude strongly correlating with fiber strain magnitude. Displacement voxelization 48 

is an effective technique to eliminate mesh-image mismatch and generates a convenient image 49 
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representation of tissue deformation. This technique can be generalized to broadly facilitate a diverse range 50 

of image-related biomechanical problems for multimodal analyses. The convenient image format may also 51 

promote and facilitate biomechanical data sharing in the future.  52 

 53 

Keywords: biomechanical model, medical imaging, finite element method, multimodal analysis, strain 54 

tensor, traumatic brain injury, Worcester Head Injury Model 55 
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1. Introduction 58 

The finite element (FE) method has been widely applied to study a wide array of biomedical 59 

problems [1], including the simulation of biomechanical behavior of diverse biological tissues (e.g., soft 60 

tissue [2], bone [3]) under different loading conditions (e.g., surgery [4] and injury [5]). Combining FE-61 

based biomechanical modeling with medical imaging is also a common practice as it allows for multimodal 62 

analysis to enable their mutual validation and the generation of personalized models [6,7]. Typically, 63 

biomechanical models use discretized mesh nodes and elements to sample displacement and stress/strain, 64 

respectively [8]. Mesh elements can be of many shapes or combinations of different shapes, such as 65 

triangles and quadrilaterals in two-dimension (2D), or tetrahedrons and hexahedrons in three-dimension 66 

(3D), provided that they satisfy numerical accuracy requirements. There are no size restrictions either, 67 

although smaller elements are desired for improved accuracy in FE simulation, and they are also typically 68 

used in regions that would experience greater response gradient. Both nodes and their connectivity 69 

relationship expressed in elements are necessary to determine the spatial discretization scheme.  70 

In comparison, medical images typically employ regularly shaped pixels or voxels (in 2D or 3D, 71 

respectively) to sample anatomical and/or physiological information such as tissue property [9]. This 72 

sampling scheme is much more restrictive because pixels/voxels need to conform to a lattice or grid pattern. 73 

In addition, their spatial resolution (i.e., physical dimension for each pixel or voxel) along each anatomical 74 

axis is also fixed, although they may differ among the major axes. Because of these restrictions, an image 75 

resolution and the directions of major axes are sufficient to determine the spatial discretization scheme.  76 

Nevertheless, when the mesh and image spatial discretization schemes do not align in space, mesh-77 

image mismatch would occur. For example, mesh element centroids do not align with pixel/voxel centroids. 78 

This would prevent direct information exchange. To resolve mesh-image mismatch, deformation response 79 

resampling is often necessary, that is, to interpolate element-wise strains at image pixel/voxel centroids 80 

[10–12]. A maximum of 6 interpolations are necessary to generate a complete strain tensor field in 3D [12]. 81 

In addition, there could be concerns on the interpolation accuracy given that element-wise strains could be 82 
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discontinuous at the element boundary. A systematic investigation is lacking on how best to resolve the 83 

mesh-image mismatch problem to yield maximum accuracy and efficiency.  84 

In FE simulation and analysis, displacement field is first obtained by solving the system of 85 

equations, from which to derive stress/strain [8]. The latter are usually the response variables of interest 86 

across diverse biomechanical problems including, but not limited to, artery [13], tooth [14], stent [15], 87 

cartilage [16] and tendon [17] collagen, heart [18], and brain [5]. Both displacement and stress/strain sample 88 

a spatially continuous response field. Nevertheless, they are all “forced” to use a finite number of degrees-89 

of-freedom (DOFs) for response sampling, which leads to discretization errors [8]. Further resampling the 90 

already discretized deformation field in order to conform to an image voxel lattice would seem to amplify 91 

the error. This is particularly of concern in downstream biomechanical analysis such as deriving fiber strains 92 

along white matter fiber tracts from head impact simulation in the field of traumatic brain injury [19–23]. 93 

Therefore, it is important to study how best to resample a deformation field to maximally preserve response 94 

accuracy and with high efficiency when transforming it into an image space for subsequent multimodal 95 

analysis. 96 

For linear FE elements most widely used (and virtually exclusively used in head injury models 97 

[5,24]), displacement varies linearly across elements. They lead to element-wise constant strain [8], which 98 

is discontinuous at the element boundary. This suggests that deformation resampling based on displacement, 99 

rather than the commonly used strain, may be more accurate. Nevertheless, an extra voxel-wise strain tensor 100 

calculation is necessary for a voxelized displacement field, as the response of interest is typically strain 101 

rather than displacement, itself. However, this calculation can be much simplified because regularly shaped 102 

voxels are a special type of hexahedral element that can be simply scaled linearly to a unit element. Standard 103 

element shape functions are then readily applicable.  104 

Therefore, the aim of this study is to develop a displacement voxelization scheme to resolve the 105 

common mesh-image mismatch problem and apply it to derive dense white matter fiber strains along the 106 

whole brain tractography due to head impact. We first verify our customized voxel-wise strain tensor 107 
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calculation through hexahedral element shape functions against Abaqus simulation. We then compare fiber 108 

strain accuracy and efficiency using voxelized displacement interpolation with the commonly used strain 109 

tensor projection method, based on either voxel- or element-wise strain tensor from model simulation [19–110 

23]. The latter approach could be slow (e.g., ~28 min to process just the transcallosal fiber tracts over the 111 

course of an impact using an unoptimized code [25]). More importantly, its accuracy has not been verified, 112 

but this is critical as fiber strain is now thought to be more predictive of injury [19,22,26,27].  113 

If post-simulation displacement voxelization is effective for head impact simulation, it is 114 

anticipated to be applicable to other biomechanical problems as well. This simple but elegant technique 115 

allows generating an image representation of deformation to eliminate mesh-image mismatch. This could 116 

greatly simplify downstream calculations of voxel-wise strain tensor, which allows convenient image-based 117 

strain analyses and morphological operations without the usual disadvantage of a voxelized mesh used in 118 

numerical modeling. Given that mesh-image mismatch is common across diverse biomechanical fields [1], 119 

this technique can be generalized more broadly for seamless integration of biomechanical modeling and 120 

medical imaging for multimodal analyses. The convenient image format may also promote and facilitate 121 

biomechanical data sharing in the future, especially when it is not feasible to share the biomechanical model, 122 

itself. 123 

2. Methods 124 

2.1 Fiber strain and strain tensor from voxelized displacement field 125 

In this study, we consider white matter fiber tracts from tractography as a set of ordered and discrete 126 

sampling points that define geometrical line segments of fibers. Fiber strain, by definition, describes the 127 

relative stretch of each line segment, or the relative change in distance between two neighboring fiber 128 

sampling points. In fact, it can be directly determined by their difference in displacement interpolated from 129 

those of the surrounding nodes (via scattered interpolation; referred to as “mesh interpolation”). However, 130 

this approach does not provide a voxelized deformation to resolve the mesh-image mismatch.  131 
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To rectify, we first “voxelize” the displacement field by interpolating displacements at voxel corner 132 

nodes. For an image volume of size of 𝑝 × 𝑞 × 𝑟, where 𝑝, 𝑞, and 𝑟 are the number of rows, columns, and 133 

frames along the three anatomical directions, y, x, and z, respectively, this requires displacement resampling 134 

at voxel corner nodal locations of size of (𝑝 + 1) × (𝑞 + 1) × (𝑟 + 1), as illustrated in Fig. 1. 135 

 136 

Fig. 1. Illustration of mesh-image mismatch, where an image volume of size of 𝑝 × 𝑞 × 𝑟  requires 137 

displacement resampling at voxel corner nodes of size of (𝑝 + 1) × (𝑞 + 1) × (𝑟 + 1) to generate a voxel-138 

wise strain tensor field that will conform to the given image volume. To improve visualization, only a 2D 139 

projection is shown. An arbitrary region can be sampled at multiple and arbitrary resolutions to yield a 140 

multiresolution representation, if needed.   141 

 142 

A voxel is a special 8-noded hexahedral element that can be simply scaled linearly to form a unit 143 

cube. This allows displacement interpolation at arbitrary fiber sampling points directly via hexahedral 144 

element shape functions (after proper scaling to yield an isotropic voxel resolution of dimensionless 2 in a 145 

natural coordinate system given by 𝜉, 𝜂, and 𝜁):  146 
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𝐮 = ∑ 𝑁𝑖(𝜉, 𝜂, 𝜁)8
𝑖=1 𝒖𝑖 . (1) 147 

where 𝒖𝑖 are the voxel corner node displacements and 𝑁𝑖(𝜉, 𝜂, 𝜁) are the shape functions represented as 148 

an 8×3 matrix for a given hexahedral element (with one integration point at element centroid).   149 

Fiber strain can then be similarly determined by the difference in displacement of two neighboring 150 

fiber sampling points as interpolated from the corner nodes of the enclosing voxel (referred to as “voxel 151 

interpolation”). Localizing the corresponding enclosing voxel is greatly simplified into identifying the 152 

closest integer along the three major axes (round.m in MATLAB; after proper scaling).  153 

To summarize, an image volume is first used to generate voxel corner nodes. Their displacements 154 

are obtained from FE nodal displacements via scattered interpolation. For each white matter fiber sampling 155 

point, the corresponding displacement is then determined through hexahedral shape functions based on the 156 

enclosing voxel. The displacement difference between two adjacent fiber sampling points readily 157 

determines the corresponding strain.   158 

 159 

2.2 Strain tensor projection 160 

To derive voxel-wise strain tensor, the deformation gradient, 𝐅, is calculated as: 161 

𝐅 = 𝐈 + ∇𝐮 = 𝐈 +
𝜕𝐮

𝜕𝐗
= 𝐈 +

𝜕𝐮

𝜕𝚵

𝜕𝚵

𝜕𝐗
= 𝐈 +

𝜕𝐮

𝜕𝚵
𝐉−1 , (2) 162 

where 𝑿𝑖 are the voxel corner node coordinates in the global coordinate system, 𝚵 = 𝚵(𝜉, 𝜂, 𝜁) are their 163 

corresponding nodal coordinates in the natural coordinate system, and 𝐈 is an identity matrix. 𝐉 =
𝜕𝐗

𝜕𝚵
 is the 164 

Jacobian matrix, which is calculated as the transpose of the shape functions (matrix of size of 3×8) 165 

multiplied by the nodal coordinates of the 8 element nodes (matrix of size of 8×3, with each row 166 

representing the three coordinates of a given node). The outcome then leads to a 3×3 Jacobian matrix. In 167 

this study, we calculate engineering strain following the finite strain theory (which can be easily extended 168 

to other types of strain measures [8]), as it is directly available from Abaqus to verify our customized 169 
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MATLAB implementation. The following hold: 170 

𝐕 = √𝐅 × 𝐅′ , (3) 171 

𝛆 = 𝐕 − 𝐈 . (4) 172 

where 𝐕 is the left stretch tensor in the current configuration, and 𝛆 is the engineering strain tensor of 173 

interest [28].  For a regularly shaped voxel, 𝐉 degenerates into a 3×3 matrix whose only non-zero elements 174 

are along the matrix diagonal. For an isotropic voxel of the same resolution along the three major axes, 𝐉 175 

further degenerates into an identity matrix, 𝐈 (with a proper scaling). This greatly simplifies the customized 176 

implementation because no explicit and costly matrix inversion is necessary to calculate the inverse of 𝐉 in 177 

Eqn. 2, which is also critical for achieving a high efficiency.  178 

To project strain tensor based on voxelized displacement or FE elements (referred to as “voxel” or 179 

“element” tensor projection, respectively), the global coordinate system is rotated so that its z-axis is aligned 180 

with the fiber tangential direction determined from a forward difference method. Due to large rotation, it is 181 

important to account for the change in fiber orientation before strain tensor projection [29]. For voxelized 182 

displacement, the current fiber orientation is achieved by the updated fiber sampling point displacements 183 

via shape functions. For FE mesh-based displacement, the updated displacements are obtained through 184 

scattered interpolation instead.   185 

Finally, strain tensor in the rotated coordinate system is obtained: 186 

𝛆′ = 𝐓 × 𝛆 × 𝐓′ , (5) 187 

where the 4-by-4 matrix, T, is the rigid body transformation from the global to the local coordinates. Fiber 188 

strain, ε𝑓, at the given sampling point is then available through the following equation:  189 

𝜀𝑓 = 𝜀𝑧𝑧
′  . (6) 190 

To summarize, voxel-wise strain tensor is efficiently calculated using hexahedral shape functions 191 

due to the degenerated Jacobian matrix. The current white matter fiber orientation is then determined from 192 
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the updated fiber sampling point locations before stain tensor projection, for which the global coordinate 193 

system is rotated so that its z-axis is aligned with the current fiber tangential direction. Of note, the updated 194 

fiber sampling point locations can be directly used to determine fiber strain. Therefore, strain tensor 195 

projection is, in fact, unnecessary. Nevertheless, we employed this method for accuracy comparisons.  196 

 197 

2.3 Anisotropic Worcester Head Injury Model V2.0 198 

We employed the anisotropic Worcester Head Injury Model (WHIM) V2.0 (Fig. 2) [30] for testing. 199 

The model contains 227.4 k nodes and 202.8 k hexahedral elements for the brain (with an average element 200 

size of 1.8  0.4 mm) and 221.1 k nodes and 440 k membrane elements for the cerebral vasculatures (with 201 

an average element size of 1 mm). It also has a co-registered companion whole-brain tractography 202 

consisting of ~35 k fibers, represented by a total of ~3.3 million ordered sampling points with 1 mm relative 203 

distance between two adjacent points [25]. The head coordinate system was chosen such that the posterior-204 

to-anterior, right-to-left, and inferior-to-superior directions corresponded to the x, y, and z directions, 205 

respectively. 206 

 207 

Fig. 2. Anisotropic Worcester Head Injury Model V2.0 showing the mesh (a), element-wise fiber directions 208 

based on whole-brain tractography (b), and cerebral vasculatures including arteries, veins, and sinuses (c). 209 

 210 

 211 
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2.4 Synthetic displacement field to verify voxel-wise strain tensor calculation 212 

To first verify our customized implementation of voxel-wise strain tensor calculation, a layer of 213 

voxels of size of 19×19×1 was generated, with an isotropic resolution of dimensionless 2. This led to voxel 214 

corner nodes of size of 20×20×2 (Fig. 3a). For each node at location, (x, y, z), a radial vector emanating 215 

from the origin, �⃗� , was determined. The nodal displacement was then specified according to the following 216 

equation that uses a sine function to regulate a nonlinear deformation pattern:  217 

𝐝 = sin(0.5 × √𝑥2 + 𝑦2 + 𝑧2)�⃗�  . (7) 218 

The scaling factor, 0.5, was empirically chosen to produce a reasonable displacement magnitude without 219 

excessive distortion. The resulting deformed voxels are shown in Fig. 3b. Their voxel-wise strain tensors 220 

were calculated according to Eqns. 1–4 in MATLAB. To compare with the “ground-truth” from Abaqus 221 

simulation, each voxel was converted into a hexahedral element, with displacements of its eight nodes 222 

prescribed as boundary conditions. Element type, C3D8R, was used, which has one integration point as 223 

adopted in the customized implementation.  224 

 225 

 226 

Fig. 3. Comparison of the (a) undeformed and (b) deformed block of voxels also shown as meshes. Each 227 

voxel has an isotropic resolution of dimensionless 2 and is converted into the corresponding hexahedral 228 

element.  229 

 230 
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2.5 Synthetic displacement field for white matter fiber strains 231 

To benchmark accuracy of displacement voxelization to calculate white matter fiber strains, a 232 

synthetic, nonlinear, and in-plane axial shear deformation field was devised to simulate injury-causing shear 233 

strain [8]. The displacement magnitude, 𝑑, was determined by a sine function to emulate in vivo brain 234 

harmonic motion [31]: 235 

𝐝 = 10 × sin(0.1 × 𝑟)�⃗⃗�  , (8) 236 

where 𝑟 (in mm) is the xy-plane distance relative to the head center of gravity: 237 

𝑟 = √𝑥2 + 𝑦2  , (9) 238 

and �⃗⃗�  is the counter-clockwise tangential direction normal to the in-plane radial direction (Fig. 4). The 239 

displacement magnitude was chosen to produce typical strain levels that could occur in real-world 240 

concussive impacts.  241 

 242 

 243 

Fig. 4. Synthetic displacement field is applied to element nodes and fiber sampling points to compute 244 

“ground-truth” fiber strains for 100 randomly selected fiber tracts (a; only displacement magnitude is 245 

shown). Element nodal displacements are used to resample at voxel corner nodes of an image volume 246 

(isotropic “pixel” resolution on an axial imaging plane is set to 4 mm here to improve visualization, vs. an 247 

isotropic resolution of 1.8 mm used in analysis; b). Illustration of engineering fiber strain calculation (c).  248 
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The displacement field was applied to all WHIM nodes and white matter fiber sampling points, 249 

which would generate the “ground-truth”. Element nodal displacements were then used to resample at voxel 250 

corner nodes of an image volume. Its isotropic voxel resolution was set to be 1.8 mm to match with the 251 

average brain element size. Ground-truth fiber strains at 100 randomly selected fiber tracts (~9000 sampling 252 

points and fiber segments) were used to benchmark accuracy among the four methods: mesh interpolation, 253 

voxel interpolation, and strain tensor projection based on either voxels or elements.  254 

2.6 Application to real-world head impacts 255 

Laboratory reconstructed head impacts from the National Football League (NFL) [32] were used 256 

for further accuracy comparison. This dataset includes 53 reconstructed head impacts and offers a range of 257 

impact severities and strain magnitudes for evaluation (Fig. 5). For each impact, the head rotational velocity 258 

temporal profile was used as input for impact simulation. Fiber strains along the whole brain tractography 259 

were calculated at the time when the peak maximum principal strain (MPS; assessed at the 95th percentile 260 

level) was reached. This ensured that strains were compared for a given unique displacement field.  261 

 262 

Fig. 5. Histogram of the peak rotational velocity (a) and peak MPS (b) for the 53 reconstructed head impacts, 263 

along with the distribution of the peak MPS across the 20 concussive and 33 non-injury cases (c). One 264 

concussive case ('Case077HD02') was selected for further detailed illustration (arrow).  265 

2.7 Data analysis 266 

For the synthetic displacement field designed to stress test the customized strain tensor calculation, 267 
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the determinant of coefficient, 𝑅2, and root mean squared error, RMSE, relative to result from Abaqus 268 

simulation were evaluated for each strain tensor component. To obtain 𝑅2 between a pair of predicted and 269 

observed data (𝑓𝑖 and 𝑦𝑖, respectively, with 𝑖 ranging from 1 to the number of samples), the residual sum of 270 

squares and total sum of squares (𝑆𝑆𝑟𝑒𝑠 and 𝑆𝑆𝑡𝑜𝑡, respectively) are first obtained:  271 

𝑆𝑆𝑟𝑒𝑠 = ∑ (𝑦𝑖 − 𝑓𝑖)
2

𝑖   , (10) 272 

𝑆𝑆𝑡𝑜𝑡 = ∑ (𝑦𝑖 − 𝑦)2𝑖   , (11) 273 

where 𝑦 is the mean of the observed data. Then, 𝑅2 is defined as the following:  274 

𝑅2 = 1 −
𝑆𝑆𝑟𝑒𝑠

𝑆𝑆𝑡𝑜𝑡
  . (12) 275 

When 𝑅2  is 1.0, 𝑆𝑆𝑟𝑒𝑠  will be zero, indicating that the predicted values exactly match the observed 276 

counterparts.  277 

For the synthetic displacement field used to benchmark the accuracy of white matter fiber strain 278 

using the four competing techniques (i.e., mesh interpolation, voxel interpolation, voxel tensor projection, 279 

and element tensor projection), 𝑅2, and RMSE were compared against the known or prescribed ground-280 

truth fiber strains to identify the “most accurate” baseline method.  281 

For real-world impacts, “ground-truth” fiber strains were unavailable because of uncertainties in 282 

head injury model validation [33,34]. Therefore, the baseline method from the synthetic displacement 283 

comparison was used to benchmark the accuracies of other methods in terms of 𝑅2 and RMSE. Note, the 284 

accuracy assessment here is separate from a different issue of model validation against the unknown 285 

ground-truth. To provide context of the relative errors, fiber strain differences relative to the baseline 286 

method were also compared to the lower bound of an injury threshold of 0.09 determined from an animal 287 

injury study [35]. The threshold value is similar to the optimal injury threshold identified when using the 288 

average fiber strain from WHIM as the injury predictor based on the reconstructed NFL head impacts [36]. 289 

It is also on the same order relative to injury-causing axonal microtubule strains [37,38]. To further verify 290 
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the customized strain tensor implementation (Eqns. 1–4), the resulting MPS of the whole brain for an 291 

example head impact case was compared against the Abaqus counterpart. We chose MPS because it is 292 

currently the primary response variable of interest for studying brain injury biomechanics [5,8,33]. The 293 

head rotational velocity and acceleration profiles for the selected case are given in the Supplementary 294 

Material (Fig. S1).  295 

Finally, we suspected that the accuracy of the displacement voxelization technique as well as the 296 

voxel-wise strain tensor projection method would necessarily depend on the voxel spatial resolution. 297 

Therefore, we also increased the isotropic image voxel size from 1.8 mm to 4 mm to derive fiber strains 298 

using the displacement interpolation technique and strain tensor projection method for accuracy comparison.  299 

All impact simulations were conducted in Abaqus (Version 2018; Dassault Systèmes, France) on a 300 

Linux workstation (double precision, 15 CPUs, Intel Xeon E5-2698 with 256 GB memory, and 4 NVidia 301 

Tesla K80 GPUs with 12 GB memory). All other programs were implemented and further optimized for 302 

maximum efficiency in MATLAB (R2020a; MathWorks, Natick, MA)). All MATLAB computations were 303 

executed on an ordinary Windows 10 desktop computer (Intel Xeon E52623 v4 with 2 CPUs and 32 GB 304 

memory). No parallelization was used for objective efficiency comparison in this study. Statistical 305 

significance was defined at the level of 0.05.  306 

 307 

3. Results 308 

3.1 Synthetic displacement field for voxel-wise strain tensor calculation 309 

Fig. 6 compares our customized voxel-wise strain tensor calculation against Abaqus simulation for 310 

the synthetic displacement field illustrated in Fig. 3. Each sub-image shows the corresponding strain tensor 311 

component distribution on the undeformed image/mesh. For all components, the two were virtually 312 

identical, with 𝑅2  of 1.00 and RMSE of ~4×10-4, except for 𝜀13  and 𝜀23  with a slightly degraded 313 

performance (𝑅2 of 0.99 and RMSE of 0.002). In part, this was due to loss of data precision when writing 314 
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the displacement boundary conditions into text files as required for Abaqus simulation.  315 

 316 

Fig. 6. Comparison of the six strain tensor components between our customized voxel-wise strain tensor 317 

calculations (top) and counterparts from Abaqus simulation (bottom). The undeformed and deformed 318 

images/meshes are shown in Fig. 3. 319 

 320 

3.2 Synthetic displacement field for fiber strains 321 

Fiber strains from mesh and voxel interpolations were both virtually identical to the prescribed 322 

ground-truth (𝑅2 of 1.00 with RMSE of 0.01). Voxel and element strain tensor projections also produced 323 

very similar results between themselves (𝑅2 of 0.98 with RMSE of 0.02). However, they were poorer 324 

compared to the ground-truth (𝑅2 of 0.87 with RMSE of 0.10; Fig. 7).  325 

 326 
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Fig. 7. Ground-truth fiber strains for 100 random fiber tracts resulting from the synthetic deformation field 327 

(a). Mesh and voxel interpolations produced virtually identical results, and fiber strain differences relative 328 

to the ground-truth are only shown for one (b). Similarly, strain tensor projection based on either voxelized 329 

displacement or FE elements produced almost the same results, and their fiber strain differences relative to 330 

the ground-truth are also only shown for one (c). Overall, strain tensor projection overestimated fiber strain 331 

magnitudes. 332 

 333 

3.3 Real-world head impacts 334 

For the selected real-world head impact, the two interpolation methods produced nearly identical 335 

results once again (𝑅2 of 0.99 with RMSE of 0.01). The two strain tensor projection methods based on 336 

voxelized displacement or FE elements also produced very similar results (𝑅2 of 0.95 with RMSE of 0.03). 337 

However, they were considerably different from the baseline (𝑅2 of 0.80 with RMSE of 0.09; Fig. 8). More 338 

specifically, 12.8–13.3% of the fiber segments had strain overestimation greater than the lower bound of 339 

injury threshold. The percentage increased to 34.8–35.6% when the threshold value was halved. In contrast, 340 

the voxel interpolation method only overestimated by 1.4% and 7.4%, respectively, relative to mesh 341 

interpolation method. The magnitude of fiber strain differences strongly correlated with the fiber strain 342 

magnitude, itself (Pearson correlation coefficient, 𝑟, of 0.94, 𝑝<0.001).  343 

 344 

Fig. 8. Fiber strains for the selected impact case using the mesh interpolation method (a). Relative to this 345 

baseline, fiber strain differences using the voxel interpolation (b), voxel tensor projection (c), and element 346 
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tensor projection (d) methods are compared in terms of 𝑅2, RMSE, fractional percentage of fiber segments 347 

with the strain differences greater than 0.045 (frac. 1) or 0.09 (frac. 2) are reported. Both tensor projection 348 

methods overestimate fiber strains overall, with the magnitude of overestimation strongly correlated with 349 

fiber strain magnitude, itself. Only 10% of the whole-brain tractography is shown to improve visualization.  350 

 351 

Fig. 9 summarizes the relative fiber strain differences using all the head impact cases. Mesh 352 

interpolation and voxel interpolation consistently had the least differences across all measurements. The 353 

correlation between 𝑅2 and whole-brain peak MPS was not significant for the two interpolation methods 354 

(𝑝 >0.3). However, their correlations for all other pairs of methods were significant and negative (𝑟 ranged 355 

from –0.75 to –0.59, 𝑝 <0.001). For all other metrics, significant and positive correlations were found 356 

between all pairs of methods (𝑟 of 0.90–0.97 for RMSE, 0.90–0.96 for frac. 1, and 0.82–0.87 for frac. 2, all 357 

with 𝑝<0.001). Up to ~15% of the fiber segments had fiber strain overestimation relative to mesh 358 

interpolation greater than the injury threshold of 0.09. When the injury threshold was halved, the percentage 359 

could reach ~37%.  360 

 361 
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 362 

Fig. 9. Summary of 𝑅2 (a), RMSE (b), the percentage of absolute fiber strain differences greater than 0.045 363 

(half of the injury threshold; c) or greater than the injury threshold of 0.09 (d) for the 53 reconstructed head 364 

impacts. The comparisons are made between pairs of the four methods, including mesh interpolation (I), 365 

voxel interpolation (II), voxel tensor projection (III), and element tensor projection (IV).  366 

 367 

3.4 Further verification of customized implementation 368 

The previous synthetic displacement field has successfully verified the customized strain tensor 369 

calculation against Abaqus simulation (Fig. 6). We further used the same program to compute voxel-wise 370 

MPS values of the entire brain. For the selected head impact case (Fig. 5 and Fig. 8) based on the voxelized 371 

displacement at a sampling resolution of 1.8 mm, results from the customized calculation were nearly 372 

identical to the Abaqus counterparts once again (the latter were resampled on the same voxel centroids to 373 

facilitate one-to-one comparison; Fig. 10). Only mild differences occurred at the brain boundary.  374 

 375 
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 376 

Fig. 10. Comparison between baseline Abaqus MPS (a) and that computed from the voxelized displacement 377 

using the customized implementation (b) for the selected head impact case. They are virtually identical 378 

except mild differences at the brain boundary due to sampling discretization errors resulting from both 379 

displacement voxelization and resampling of Abaqus simulation result. Their differences are shown in 380 

fringe plot (c) and distribution (d). The head rotational velocity and acceleration profiles for the selected 381 

case are given in the Supplementary (Fig. S1). 382 

 383 

3.5 Sensitivity on image voxel size 384 

Increasing the isotropic image voxel size from 1.8 mm to 4 mm for displacement voxelization 385 

degraded the accuracy of fiber strains (Fig. 11). Relative to fiber strains from mesh interpolation (identical 386 

to Fig. 8a), voxel interpolation decreased 𝑅2  to 0.90 and increased RMSE to 0.05 (Fig. 11a and b). 387 

However, the performance degraded even more when using the voxel strain tensor projection method, 388 

achieving 𝑅2 of 0.77 and RMSE of 0.09, respectively (Fig. 11c and d).  389 

 390 

3.6 Efficiency 391 

Finally, the computational steps and their costs for each fiber strain calculation method are 392 

compared (Table 1). Voxel interpolation was significantly more efficient than all other competing methods. 393 

 394 



 
 

21 

 395 

Fig. 11. Fiber strain differences relative to mesh interpolation (Fig. 8a) when using voxel interpolation (a 396 

and b) and voxel strain tensor projection (c and d) based on voxelized displacement resampled at an 397 

isotropic resolution of 4 mm.  398 

 399 

Table 1. Comparison of the computational cost (in sec) in each step for the four methods in deriving dense 400 

white matter fiber strains along the whole-brain tractography (~35 k tracts from ~3.3 million ordered fiber 401 

sampling points with ~1 mm between two adjacent points). No parallelization was used. N/A: not applicable 402 

Method 
Mesh 

interpolation 

Voxel 

interpolation 

Voxel tensor 

projection 

Elem. tensor 

projection 

Host voxel/elem. identification N/A 0.02 0.02 1.6 

Displacement resampling 33.3 11.6 11.6 33.3 

Strain tensor calculation N/A N/A 10.5 N/A 

Fiber strain calculation 0.2 3.2 4.7 4.7 

Total time 33.5 14.8 26.8 39.6 

 403 

4. Discussion 404 

Mesh-image mismatch occurs whenever a discretized biomechanical model and the associated 405 

image do not align in space (Fig. 1). Therefore, this issue is very common across diverse biomechanical 406 

engineering fields [1]. However, it appears that little attention has been paid on how best to resolve this 407 

issue for maximum accuracy and efficiency. Given that the response variable is often strain that is already 408 

available from model simulation, a convenient approach is to resample or interpolate the strain field at 409 
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image voxel centroids to facilitate biomechanical analysis in the image space [10–12]. In this study, we 410 

develop a displacement voxelization strategy to eliminate the mesh-image mismatch by resampling 411 

displacement at image voxel corner nodes instead. Voxel-wise strain can then be reconstructed at the voxel 412 

centroids through hexahedral element shape functions to conform to the given image volume (Fig. 1); thus, 413 

eliminating the mesh-image mismatch problem. We first verify the customized voxel-wise strain tensor 414 

calculation using a synthetic deformation field against Abaqus simulation. We then apply the voxelized 415 

displacement to derive fiber strain and compare with the commonly used strain tensor projection method 416 

[19–23] using a synthetic deformation field with prescribed ground-truth. Finally, we compare the 417 

performance based on simulated brain strains from 53 reconstructed real-world head impacts.  418 

 419 

4.1 Accuracy performance  420 

Our strain tensor calculation was successfully verified against Abaqus simulation (Fig. 6). For the 421 

synthetic fiber deformation, the mesh interpolation and voxel interpolation methods produced virtually 422 

identical results relative to the prescribed ground-truth. They were considerably more accurate than the two 423 

strain tensor projection methods, using either voxels or FE mesh elements (Fig. 7). The latter overestimated 424 

fiber strains overall.  425 

Similar findings were also found with a real-world head impact (Fig. 8). However, the difference 426 

between the two interpolation methods increased. Strain tensor projection using both voxels and elements 427 

overestimated fiber strains overall, relative to either interpolation method. Up to ~13% of the fiber strains 428 

had an overestimation magnitude greater than the lower bound of a conservative strain threshold (of 0.09). 429 

When halving the threshold, the percentage with significant overestimations grew to ~35%. Within the 430 

deformation field, fiber strain overestimation strongly correlated with the fiber strain magnitude (Pearson 431 

correlation coefficient, 𝑟, of 0.94, with 𝑝<0.001).  432 

The summary results from the 53 head impacts (Fig. 9) offer a range of fiber strain errors relative 433 
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to the mesh and voxel interpolation methods. Across the impact cases, the overestimation errors strongly 434 

correlated with the peak MPS magnitude, with 𝑟  typically >0.9 and 𝑝 <0.001. Collectively, these 435 

observations suggest that strain tensor projection may overestimate the risk of injury, especially in regions 436 

of high strains and impacts of high kinematic severities. Therefore, this behavior may have important 437 

implications when applying the technique for real-world concussion detection [19,22,26,27].  438 

The different accuracy in fiber strain estimation was not surprising because displacement is 439 

continuous throughout the spatial domain, while element-wise constant strain is discontinuous at element 440 

boundaries. Increasing the image voxel size would necessarily degrade the fiber strain accuracy, for both 441 

voxel-wise displacement interpolation (𝑅2 of 0.95 and RMSE of 0.03 in Fig. 8b vs. 0.90 and 0.05 in Fig. 442 

11b, respectively) and strain tensor projection (𝑅2 of 0.82 and RMSE of 0.06 in Fig. 8c vs. 0.77 and 0.09 443 

in Fig. 11d, respectively). However, voxel interpolation appears less sensitive to voxel resolution in 444 

retaining fiber strain accuracy, which once again suggests its potential advantage over voxel tensor 445 

projection.  446 

 447 

4.2 Efficiency performance  448 

Voxel interpolation not only performed well in accuracy, but it was also the most efficient method 449 

(Table 1). For example, it took 15 sec to process ~35 k fiber tracts and ~3.3 million points, vs. 40 sec using 450 

strain tensor projection based on “nearest” element. When using “enclosing” element for strain tensor 451 

projection [25], the computational cost would increase substantially (10 min required to identify the 452 

enclosing element in WHIM for each white matter fiber sampling point by explicitly testing whether the 453 

point is inside or outside of the element boundary [39]). However, the difference in fiber strains was 454 

negligible (result not shown). Therefore, it was not necessary to use “enclosing” element to calculate fiber 455 

strain.  456 

The high efficiency with voxel interpolation stems from the fact that a voxel can be simply scaled 457 
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linearly to a unit hexahedral element. This enables a direct application of shape functions (Eqn. 1) without 458 

the need for explicit coordinate system transformation through a Jacobian matrix that would decrease 459 

efficiency. In addition, identifying the enclosing “host voxel” for an arbitrary sampling point is trivial, as it 460 

is degenerated into finding the closest integer after proper scaling. The bottleneck for this method is to 461 

resample voxel corner node displacements via scattered interpolation (Table 1; more discussions below); 462 

albeit it is still more efficient than direct mesh interpolation at every fiber sampling points (11.6 sec for 256 463 

thousand nodes vs. 33.3 sec for ~3.3 million sampling points, respectively).  464 

It is also possible to resample strain tensor components directly at image voxel centroids to resolve 465 

the mesh-image mismatch [12]. However, this requires six resampling operations (6 unique components in 466 

a 33 tensor matrix due to symmetry), which is twice as that required in displacement voxelization (3 467 

displacement components; albeit with an increase in image volume dimension of 1 along each direction). 468 

More importantly, strain tensor resampling allows tensor projection to derive fiber strain but not through 469 

element shape functions. As found in this study, the former method could considerably overestimate fiber 470 

strain (Figs. 8 and 9), and thus, is not recommended. Collectively, these findings suggest that voxelized 471 

displacement is an effective representation of the continuous deformation field that offers versatile and 472 

efficient post-processing capabilities. 473 

 474 

4.3 Implications for traumatic brain injury biomechanics 475 

The commonly used strain tensor projection method [19–23] may considerably overestimate fiber 476 

strains (Fig. 8 and 9). Therefore, this method is not recommended for future injury studies. In addition, 477 

fiber strain accuracy depends on the voxel size (Fig. 11). Both voxel interpolation and voxel strain tensor 478 

projection methods would suffer in accuracy with the increase in voxel size (albeit the former seems to 479 

maintain a better accuracy). A tradeoff is necessary when choosing the voxel resolution to balance accuracy 480 

and the amount of data to produce that could have practical implications for further downstream analysis, 481 

such as deriving dense fiber strains as conducted in this study. A multiresolution representation (Fig. 1) 482 
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may be especially useful when there is a need for improved accuracy in specific regions of the brain with a 483 

refined voxel resolution.  484 

There are also other alternative techniques to derive fiber strains, for example, by explicitly 485 

embedding fiber elements to export strain from model simulation. This would avoid any post-processing 486 

and the associated error [26,27]. However, this approach only allows embedding a rather small number of 487 

fibers due to the substantial increase in simulation runtime (e.g., the earlier studies used ~3–5% of the ~3.3 488 

million fiber segments employed in this study). Recognizing the need to use the current rather than the 489 

initial fiber orientation for strain tensor projection, Zhou et al. performed an extra simulation with fiber 490 

truss elements of null material properties to track instantaneous fiber orientation [29]. However, this 491 

technique still depends on strain tensor projection that would degrade accuracy, independent of fiber 492 

orientation. In addition, the extra simulation is unnecessary because the current fiber orientation can be 493 

directly determined from the current fiber sampling point locations through mesh interpolation. This is 494 

likely significantly more efficient than direct impact simulation. In contrast, the displacement voxelization 495 

approach developed here avoids all these challenges, including the need for identifying the current fiber 496 

orientation through the less efficient mesh interpolation method (Table 1).  497 

Using a voxel-based mesh directly for model simulation would also avoid mesh-image mismatch 498 

[40]. However, the unsmooth voxel boundaries, both externally with contact to the skull or internally 499 

between anatomical components and gray-white matter interfaces, could cause undesirable numerical issues 500 

and degrade accuracy in simulation, especially in high-rate contact simulation [41]. In contrast, post-501 

processing displacement voxelization avoids any modeling numerical issues while at the same time, retains 502 

the convenience of a voxelized mesh for image-based morphological operation (e.g., segmentation) and 503 

multimodal analysis.  504 

A particular application is to resolve a challenge in image-based brain biomechanics [23], where it 505 

is often necessary to transform image-based biomechanical strain and medical images of anatomical and/or 506 

physiological information into the same image space. Directly transforming a strain tensor field in one 507 
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image volume into the other is possible but could similarly introduce voxel-voxel mismatch. With the 508 

technique developed in this study, displacement can be properly resampled at voxel corner nodes based on 509 

rigidly transformed voxels from the target image. The resulting voxel-wise strain tensor would then 510 

conform to the target image. A rigid rotation may be necessary prior to strain tensor calculation to ensure 511 

that unit hexahedral elements can be obtained by simple linear scaling.  512 

 513 

4.4 Broader implications 514 

Voxelized displacement benefits from image-based strain analyses and morphological operations 515 

but without the usual disadvantage of a voxelized mesh in numerical modeling due to unsmooth voxel 516 

boundaries [41]. Therefore, this technique may be generalized more broadly across diverse biomechanical 517 

engineering fields for seamless integration of biomechanical modeling and medical imaging to facilitate 518 

multimodal analysis in the future. This includes problems such as myofibers in the heart [18], collagen fiber 519 

in cartilage [16] and tendon [17], or deriving local strain fields along optical nerves [42] and cerebral 520 

vasculature network [30], or in 2D, where the same mesh-image mismatch can happen.  521 

It is important to note that displacement voxelization does not limit the type (e.g., hexahedral vs. 522 

tetrahedral, or a mixture), order (e.g., linear vs. quadratic), or density of model elements. In addition, the 523 

voxel resolution does not need to be fixed or isotropic either, and can be adaptable for specific need (e.g., 524 

a finer resolution in more vulnerable or injury-predictive regions [43]; Fig. 1). In fact, the technique may 525 

potentially become a valuable add-on for FE analysis software packages in the future. By specifying the 526 

image origin, resolution, axis directions, and the region of interest in the FE model space, voxelized 527 

displacement and stress/strain fields can then be generated directly from the FE software to eliminate the 528 

need from the end user. The displacement voxelization may also be more accurate and efficient by using 529 

element shape functions [8] to mitigate the bottleneck in voxel corner node displacement resampling via 530 

scattered interpolation as adopted here (Table 1). This could further improve the overall efficiency, which 531 

is important when there is a need to increase the resampling voxel resolution and density of the white matter 532 
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tractography.  533 

Finally, voxelized displacement and the resulting voxel-wise strain can be considered as standard 534 

image volumes like MRI. This could greatly promote and facilitate data sharing of biomechanical model 535 

responses among research groups. Otherwise, the associated model (mesh nodes and elements), in addition 536 

to node-wise displacement and/or element-wise strain, is required for data sharing as well. This is not only 537 

cumbersome but may also be infeasible when it is not practical to share the biomechanical model, itself.  538 

 539 

4.5 Limitations 540 

A limitation with the displacement voxelization technique is the potentially incomplete sampling 541 

at tissue boundaries due to stepwise voxels that are often smooth in biological organs. This issue could be 542 

mitigated by increasing the local resampling spatial resolution, if this is an important region (hence, of 543 

dense meshes to achieve high accuracy in model simulation in the first place). Given that displacement 544 

voxelization can be performed at an arbitrary spatial resolution, a multiresolution voxelization strategy can 545 

be deployed in practice, with a coarse resolution for the global model but finer resolutions in specific, 546 

targeted regions for a multiresolution representation (Fig. 1).  547 

From the study evaluation perspective, this work is also limited to using a single head injury model 548 

and with application only to head impact in traumatic brain injury. In the future, domain-specific 549 

investigations are necessary to quantify the effectiveness of displacement voxelization technique in 550 

resolving the mesh-image mismatch problem. However, we anticipate that at least the qualitative findings 551 

in this study will remain applicable.  552 

 553 

5. Conclusion 554 

An image voxel is a special hexahedral element that can be simply scaled linearly to form a unit 555 

cube. Using interpolated displacements at image voxel corner nodes, a voxelized displacement field takes 556 
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advantage of a degenerated Jacobian matrix to allow convenient and efficient displacement interpolation 557 

and the calculation of voxel-wise strain tensor. Based on two synthetic displacement fields and simulation 558 

of a series of head impacts in the context of traumatic brain injury, we showed that displacement 559 

interpolation from voxelized displacement achieve high accuracy and efficiency in deriving dense white 560 

matter fiber strains along the entire tractography. The technique is considerably more accurate and efficient 561 

than the commonly used strain tensor projection method based on either voxel- or element-wise strain 562 

tensors. Overall, strain tensor projection overestimates fiber strains, with the overestimation magnitude 563 

strongly correlates with the strain magnitude, itself. Increasing the image voxel size degrades the accuracy 564 

of fiber strain, but displacement interpolation appears less sensitive than the voxel-wise strain tensor 565 

projection. Therefore, displacement interpolation from voxelized displacement is recommended for fiber 566 

strain calculations in the future.  567 

Finally, voxelized displacement benefits from image-based strain analyses and morphological 568 

operations but without the usual disadvantage of a voxelized mesh in numerical modeling. Therefore, this 569 

technique may be generalized more broadly across diverse biomechanical engineering fields for seamless 570 

integration of biomechanical modeling and medical imaging to facilitate multimodal analysis. The 571 

convenient image format may also promote and facilitate biomechanical data sharing in the future. 572 
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Supplementary material: Head impact kinematic profiles used for illustration.  708 
 709 
 710 

 711 

Fig. S1. Head impact rotational velocity (a) and acceleration (b) profiles for the selected concussive case. 712 

Fiber strains were evaluated and compared at time of 15 ms in this study.  713 


