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Figure 1: Nomon being used to enter the phrase “should i start playing it again”. The user has typed “should i st” thus far. To 
write the letter “a”, the user clicks a switch when the clock near “a” is at noon. Target selection may require multiple clicks 
depending on the user’s switch precision (visualized by the histogram). The user can select word completions to speed writing. 

ABSTRACT 
Some individuals with motor impairments communicate using a 
single switch — such as a button click, air puf, or blink. Row-
column scanning provides a method for choosing items arranged in 
a grid using a single switch. An alternative, Nomon, allows poten-
tial selections to be arranged arbitrarily rather than requiring a grid 
(as desired for gaming, drawing, etc.) — and provides an alterna-
tive probabilistic selection method. While past results suggest that 
Nomon may be faster and easier to use than row-column scanning, 
no work has yet quantifed performance of the two methods over 
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longer time periods or in tasks beyond writing. In this paper, we 
also develop and validate a webcam-based switch that allows a user 
without a motor impairment to approximate the response times of 
a motor-impaired single switch user; although the approximation 
is not a replacement for testing with single-switch users, it allows 
us to better initialize, calibrate, and evaluate our method. Over 10 
sessions with the webcam switch, we found users typed faster and 
more easily with Nomon than with row-column scanning. The ben-
efts of Nomon were even more pronounced in a picture-selection 
task. Evaluation and feedback from a motor-impaired switch user 
further supports the promise of Nomon. 

CCS CONCEPTS 
• Human-centered computing → Empirical studies in acces-
sibility; Keyboards; Empirical studies in HCI. 
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1 INTRODUCTION 
Individuals with severe motor impairments, such as cerebral palsy 
or locked-in syndrome, often communicate via augmentative and 
alternative communication (AAC) devices with single switch input 
[13, 30, 42]. Users control the activation time of the switch by, e.g., 
pressing a button, releasing a puf of air, or blinking [3, 14, 15]. Most 
commonly, these switch activations (henceforth "clicks") are used as 
input to a scanning interface [52, 54]. The graphical user interface 
highlights diferent options in turn; the interface chooses whichever 
option is highlighted when the switch is activated. But highlighting 
every option in sequence can be inefcient for even a moderate 
number of options. While a popular variant called row-column 
scanning is more efcient, it requires that options be arranged in 
a grid. Computer users often need to choose among options not 
arranged in a grid; e.g. in drawing, gaming, and web browsing.1 

Nomon [6, 7] ofers a more fexible user experience. Nomon 
places an indicator next to each selection option, and uses a prob-
abilistic selection mechanism to avoid inefciently visiting each 
option in turn. Previous research suggests users can type more 
quickly and easily using Nomon than using row-column scanning 
[6, 7]. However, there were four main defciencies in past work: 

(A) Previous research tested each user for less than an hour total 
using Nomon. Performance may difer with more experience. 

(B) In past research, non–motor-impaired users triggered Nomon 
using a joystick button. In this paper, we refer to individu-
als who do not regularly use AAC switches as “non–switch 
users.” Motor-impaired individuals often exhibit diferent 
single-switch reaction times relative to non-switch users.2 

(C) Previous research had users enter phrases consisting primar-
ily of common words. Such phrases are easier to write in 
Nomon due to its use of a language model and the interface’s 
word completions. But a text entry method also needs to 
support the input of uncommon words (e.g., proper names). 

(D) Previous research tested only text entry. But Nomon promises 
to enable efcient input for tasks beyond text entry. 

Not only do we address these concerns in the present study, 
but we also improved the Nomon program to increase accessibility 
before running our study. To improve the Nomon program, we 
frst consulted with AAC experts3 and a single-switch user. Based 
on their feedback, we designed a more accessible interface for 

1Currently switch users are primarily limited to games and websites that have certain, 
constrained switch-friendly formats; see, e.g., https://www.bltt.org/switch/activities. 
htm and https://everydayspeech.com/adventures-switch-accessible-websites/.
2See the frst row of Figure 16 (Section 5) below, showing data kindly provided by Dr. 
Heidi Koester and collected in [22, 24].
3The AAC experts we consulted include staf at charities SpecialEfect https://www. 
specialefect.org.uk/ and the Ace Centre https://acecentre.org.uk/. 

Nomon. Moreover, our AAC consultants fagged that the original 
Nomon initialization was likely to require impractical or costly 
manual interactions. So we developed a more suitable initialization 
process. Further, we adapted simulation methods used to optimize 
internal parameters in scanning systems [20, 40, 54] to design a 
more efcient keyboard layout for Nomon. 

After these updates, we addressed concern (A) by performing 
a longer user study; we collected data on each study participant’s 
use of both row-column scanning and Nomon across 10 sessions. 

We addressed (B) in two parts. First, we tested the performance 
of a single-switch user4 with the Nomon interface. Second, recog-
nizing the especially valuable time of motor-impaired users, we 
focused our larger-scale testing on non–switch users. But crucially 
we developed and validated the use of a webcam-based switch to 
allow non–switch users to better approximate reaction times of 
motor-impaired users. Although our approximation is not fully 
representative of all single-switch users, our results in the present 
paper employ click timings that are better aligned with the target 
population than the original Nomon study. This approximation 
allowed us to develop and test our new initialization method and 
the general efect of a noisier switch with non–switch users. Our 
results were also useful to convince our collaborating charities that 
a study involving single-switch users would be worthwhile since a 
practical initialization procedure was deemed critical. 

To address (C), we selected phrases so that a third contained a 
challenging word not in our language model’s vocabulary. With 
this diverse sent of phrase prompts, we could not only measure user 
performance with relatively simple text, but also explore whether 
Nomon degrades gracefully in the face of harder-to-predict text. 

To address (D), we also compared performance of row-column 
scanning and Nomon in a task beyond text entry. There are many 
potential uses of Nomon such as gaming [32–36], drawing ([6], 
Section 7.1), and general operating system control ([6], Section 
7.3, Section 2 of our supplement). But to facilitate comparison, we 
focus on a task where row-column scanning can still be applied: 
selection from a large set of pictures. We expect similar behavior 
when selecting among fles on a desktop, selecting a computer 
application to launch, or selecting products at an online retailer. 

Our results demonstrate that, under these conditions, users fnd it 
faster and easier to enter text using Nomon than using row-column 
scanning. In the text-entry task, participants typed 15% faster with 
Nomon and rated it easier to use. The benefts of Nomon are even 
more pronounced in the picture-selection task where participants 
selected targets 36% faster. We make the following contributions: 

• An updated and easily available Nomon interface, redesigned 
to increase accessibility through feedback from switch users 
and AAC specialists. 

• A model of a Nomon user and a subsequent simulation study 
to optimize the design of the Nomon interface. 

• A user study comparing non–switch users’ performance 
with Nomon and row-column scanning in: (1) a text entry 
task with challenging out-of-vocabulary words and (2) a 
picture-selection task to simulate applications beyond text 
entry. 

4The user we consulted about interface design and the user whose performance we 
tested were two diferent single-switch users. 

https://doi.org/10.1145/3491102.3517738
https://www.bltt.org/switch/activities.htm
https://www.bltt.org/switch/activities.htm
 https://everydayspeech.com/adventures-switch-accessible-websites/
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• A user trial of Nomon in a text-entry task with a motor-
impaired switch user. 

• A method for approximating motor-impaired reaction times 
with non–switch user inputs, and a validation of this method. 

The rest of this paper is structured as follows. We survey ap-
proaches to single-switch text composition in Section 2. We de-
tail how our two interfaces operate, and justify our interface and 
study design choices, in Section 3. We describe our user study and 
picture-selection task in Section 4. We describe our method for 
approximating reaction times of motor-impaired users in Section 
3.5 and formally justify it in Section 5. 

2 RELATED WORK 
2.1 Input via scanning 
Individuals with motor impairments tend to write slowly using 
row-column scanning (RCS): Koester and Simpson [23] observe 
entry rates of 0.3–2.9 words per minute (wpm), and Roark et al. [48] 
observe 1.9 wpm. Researchers have investigated various approaches 
to speed text entry. Arranging letters cleverly in the grid can speed 
selection [10, 59]. Carefully confguring the scanning interface 
can substantially impact performance [2, 22–24, 28, 53]. Instead of 
scanning rows and columns sequentially, the interface can highlight 
subsets of cells in some way, e.g. via Hufman coding [4, 47, 48] or 
a language model [62]. Character or word predictions may speed 
input [29, 57], but not in all cases [20, 21, 23]. Scanning can be used 
for applications other than text input, e.g. navigation in virtual 
environments [12] or playing games [66]. However, despite these 
eforts, scanning requires choosing either (1) a fast scan rate that 
risks false selections or (2) precise target selection but with a slow 
scan rate. A further obstacle is that applications must be designed 
to ft the scanning paradigm, e.g. by placing options in a grid. 

2.2 Selecting a moving target within a time 
window 

Selecting a moving target within a particular time window is a 
task that arises in some situations, e.g., smartphone games. For this 
task, researchers have studied error rates and models of timing 
performance [25, 26] as well as automated game playtesting [27]. 
Controlling a timed activation in these cases (e.g., via a button 
or screen press) might be interpreted as an activation of a single 
switch. As it stands, though, the task remains distinct from either 
RCS or Nomon. In particular, in the moving target task, there is 
a continuous movement of some visual element, and the goal is 
to click when the element is in some spatial range, implying a 
particular time range for selection. In RCS, there is a fxed time 
window for making a selection, but there is no continuous visual 
element; instead the user is shown only the discrete highlighting 
of rows or columns. Nomon, by contrast, presents a continuous 
visual element (the rotating clock hand), but there is no fxed time 
window during which clicking realizes some goal. Rather, in Nomon, 
changing the timing of a user’s click induces a continuous change in 
the observed likelihood value, and the likelihood shape itself is user-
specifc. This shape need not be Gaussian or even unimodal, and is 
learned by the Nomon method. It would be interesting to explore 

whether using a continuous visual prompt inspired by gameplay 
might aid, e.g., in the usability of RCS interfaces. 

Additional work in this vein models the neuromechanical process 
of a fnger pressing a physical button in a non–switch user [18, 
44]. Single-switch users, though, often have specialized switches 
that may be activated by diferent body parts. For example, some 
switches detect pufs of air, electrical muscle activations, or blinking. 
It remains to be seen if modeling techniques in the same spirit might 
by usefully applied to these other forms of switch input. 

2.3 Input via a noisy switch 
In the Dasher interface, users write by navigating through a world 
of nested letter boxes [63]. The size of each letter’s box is based on 
language model that adapts as the user writes. Typically Dasher 
is operated via a pointing device such as a mouse or eye-tracker 
[49, 58]. Dasher can also be controlled via a single switch [37, 38]. 
Dasher applies Shannon’s noisy-channel coding theorem [51] to 
facilitate efcient text entry. Dasher’s navigation interface allows 
selection of multiple letters or even entire words with a single click. 
This mechanism can reduce the physical efort and time required of 
users. A pilot study showed a non–switch-using expert could write 
at 10 wpm using only 0.4 clicks per character [37]. To our knowl-
edge, there have been no further user studies of one-button Dasher. 
MacKay et al. [38] note that the capacity of the channel is substan-
tially reduced by a noisy switch with an erroneous activation a 
fraction f of the time. Also Dasher requires options be arranged 
in a strict order (e.g., alphabetically) which can limit applications 
beyond text entry. 

Unlike Dasher, Nomon does not require an ordering on selec-
tion options. Nomon also explicitly models, and nonparametrically 
learns, a distribution describing how a user clicks relative to a base-
line time. Dynamically adapting to the user’s particular clicking 
style, represented by this click-time distribution, is a novel aspect 
of Nomon in the context of single-switch text entry methods. Theo-
retically, adaptation should result in less error correcting and faster 
text entry. A game for children with motor impairments [33, 34, 36] 
demonstrates Nomon’s applicability in real life. Nel et al. [43] ex-
tended Nomon’s noise model to develop a communication method 
for single-switch users who are also visually-impaired. 

Williamson et al. [65] presented a probabilistic user interface 
for binary input devices with high noise levels when reliability can 
be ensured only 65%–90% of time (e.g., non-invasive EEG). Like 
Dasher, the interface works by progressively zooming in and draws 
heavily from information theory. The authors use Hornstein error 
correcting [1] to increase noise tolerance. Their method builds up 
certainty for a sequence of user selections before making a decision 
on all the selections rather than deciding one target at-a-time. 

3 INTERFACE DESIGN 
We use two interfaces in our study, Nomon and row-column scan-
ning. Here we describe the interfaces in detail and justify our pa-
rameter choices in each case — via both simulation studies and 
collaboration with AAC users and specialists. We also discuss how 
the COVID-19 pandemic afected our interface and user study. 
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Figure 2: Our row-column scanning keyboard interface. The user is being prompted to write “just did an undertale personality 
quiz” and has written “just did a” so far. The interface progressively highlights rows until the user clicks their switch, and 
then progressively highlights columns within the selected row until the user clicks once more. Users can also select word 
completions that are displayed at the top. 

3.1 Row-Column Scanning 
3.1.1 Background. A row-column scanning (RCS) interface presents 
the user with a 2D grid of options. For a text entry task, these op-
tions are letters and word completions. The system scans through 
each row at a constant time interval called the scan delay. When 
a user clicks their switch, the interface selects the currently high-
lighted row and proceeds to scan through each column. The user 
clicks again when the column scan highlights their target. The 
second click makes a selection. 

3.1.2 Our implementation. Figure 2 shows our RCS implementa-
tion. While there are research and commercial RCS implementations 
[9, 50, 55, 56], we implemented our own version since our goal was 
to compare the RCS and Nomon interfaces as directly and fairly 
as possible. Having our own implementation allows us to use the 
same word prediction engine in both interfaces and augment both 
interfaces with similar logging and experimental controls. As noted 
in [28, 57], word predictions can profoundly impact the entry rate 
and click load of switch users. As advised by the AAC consultants, 
we followed The Grid 3 (a popular commercial scanning software) 
design for our RCS interface. 

In both our RCS and Nomon text entry interfaces, the principal 
options were: character keys (the letters a–z); space; punctuation 
keys (comma, period, apostrophe, question mark, and exclamation 
point); and three correction keys — undo (to revert the latest selec-
tion), backspace (to delete the current fnal character), and clear (to 
clear all text that currently appears). 

In the event a user selects a row in error, we follow the recom-
mendation of [54] and set the maximum number of column scans 

to two complete cycles. After this point, the interface reverts back 
to row scanning. This procedure stands in contrast to alternative 
options, such as requiring the user select an option to stop scanning 
the columns or to reverse the direction of scanning [54]. 

3.1.3 Keyboard Layout. Proper RCS confguration is critical for 
fast writing speeds [2, 21–24, 28, 54, 59]. Therefore, we ran a sim-
ulation study to determine optimal interface parameters in our 
RCS implementation; see the supplemental materials for full de-
tails. We then verifed our results with the recommendations of the 
previous literature. Namely, we considered a maximum number of 
word completions to display at any one time Wmax ∈ {1, 2, . . . , 18}. 
We considered whether to display word completions at the top or 
bottom of the interface. We also considered whether to sort char-
acter options alphabetically or by frequency (with more-common 
letters in English near the top left of the grid to reduce scan time 
to reach them). Optimizing text-entry rate in our simulations led 
us to choose to arrange letters in frequency order and to include 
seven word completions arranged by decreasing probability in the 
top row. The frequency arrangement coincides with the recommen-
dation of [54, 59]. Our word completion arrangement matches the 
recommendation of [24]. The resulting grid was 8 × 7 in size with 
at most 42 options. 

3.1.4 User-adjustable parameters. As is common in RCS implemen-
tations [24], users could control two timing parameters: the scan 
time and the extra delay. The scan time s is how long the interface 
highlights an individual row or column. We set s = 2e−j/14 seconds 
for j ∈ {0, 1, . . . , 20}. That is, smaller values of j correspond to 
longer scanning delays with s ranging between [0.48, 2.00] seconds. 
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Figure 3: From left to right: (1) The clock used in the original Nomon interface [7], (2) the clock design used in this study, (3) 
the flling ball clock, (4) the “pac-man” clock, (5) the radar clock, (6) the progress bar. Clock sizes are relative to the clock from 
the original interface on a 2560 × 1600 pixel display. 

The extra delay d is added to the scan time for the frst row and 
column. We set d = 0.15(10 − k) seconds for k ∈ {0, 1, . . . , 10}. 
Therefore, d ∈ [0, 1.5] seconds. Smaller values of k correspond 
to longer extra delays and k = 10 corresponds to no extra delay. 
Participants started with the slowest settings of j, k = 0 and were 
allowed to increase or decrease either j or k or both by 1 between 
phrases. 

3.2 Nomon 
3.2.1 Background. In Nomon, every option in the interface has a 
clock next to it (Figure 1). Each clock has a unique phase, and the 
minute hands of all clocks rotate at a constant, shared speed. A user 
needs to look at only one clock to select its corresponding target. 
RCS and other methods are potentially more taxing in that they 
require a user to shift visual attention between diferent parts of 
the screen. The Nomon user is instructed to click when their target 
clock’s hand passes the red “noon” line. After each click, the clock 
hands change phase. The phase change is chosen to separate the 
clock phases of the most probable next targets from one another. 
The user repeatedly clicks, each time aiming for when the minute 
hand passes noon, until their target is selected. The number of 
clicks required to select a target is dependent on the precision of 
the user and on how probable the target is. In a text entry applica-
tion that makes use of a language model, an experienced user can 
select targets in around two clicks [7]. A video demonstration of 
how typing with the Nomon interface works can be found in our 
supplemental materials. 

3.2.2 End-User and AAC Consultant Involvement in the Design Pro-
cess. Throughout the process of redesigning the Nomon interface, 
we consulted with two charities specializing in individuals with 
severe motor impairments: SpecialEfect and the Ace Centre. We 
received feedback from ten of the SpecialEfect staf members and 
one consultant from the Ace Centre. In addition, a single-switch 
user afliated with SpecialEfect gave us feedback on usability and 
accessibility. All the feedback played a major role in our design 
choices, including: color options (e.g., to help prevent seizures or 
migraines), clock design, font choice, text contrast, the addition of a 
tutorial and calibration phase, and improved visual/audio selection 
feedback. 

Our AAC-charity consultants noted that it can be cumbersome 
and error-prone to initialize parameters before using an AAC in-
terface. In the case of Nomon, the click-time distribution estimate 
itself requires initialization. And we know that click-time distri-
butions can vary considerably across users; see Section 3.5. So the 
fxed initialization of the click-time distribution estimate in the 
original Nomon would generally be misspecifed for a new user. 
This discrepancy could necessitate impractical or costly manual 

intervention from carers or users. We therefore introduced a cali-
bration phase to initialize the estimated click-time distribution of a 
user before they start using Nomon. 

At our consultants’ suggestion, we also considered alternative 
indicators besides clocks; namely, from right to left in Figure 3, 
progress bars, clocks with radar trails, a “pac-man” flling clock, 
and flling circles. Based on the consultants’ feedback, we settled on 
a larger clock design with thicker borders and higher contrast, and a 
larger, bolder font. These changes are consistent with modifcations 
to Nomon to increase usability reported in [33]. 

3.2.3 Simulating a Nomon User. 

Motivation. In the Nomon keyboard interface, two parameters 
control the presentation of word completions on the screen: Wc , the 
number of word completions in each character’s box; and Wmax, the 
total number of word completions allowed across all characters. In 
the original study of Nomon, Wc was set to 3 words per character as 
it was the maximum number that could ft on the screen, and Wmax 
was left uncapped [6]. Given prior success in optimizing parameters 
in scanning systems via simulation [20, 40, 54], we investigated 
optimizing these two parameters in Nomon. We developed a model 
of a switch user that simulates text composition in the Nomon 
keyboard. We then applied this model to generate synthetic user 
selection data that could predict performance at various parameter 
confgurations. 

We emphasize that Nomon’s internal model (i.e., the model con-
trolling when a selection is made, how the clock phases are set, etc.) 
is distinct from our user simulation. To emphasize the diference, 
note that Nomon can operate, with its own internal model, without 
employing a user simulation to optimize these two parameters; for 
instance, the parameters could instead be given default values. Con-
versely, we can (and do) employ a user simulation to optimize the 
parameters of RCS even though RCS does not include an internal 
model to control its operation like Nomon does. 

Input Error Model: The Click-Time Distribution. A click-time dis-
tribution is a likelihood estimated by the Nomon interface of when 
a user clicks relative to noon. The histogram in Figure 4 visualizes 
this distribution for a particular Nomon user. Nomon estimates 
this distribution as part of its probabilistic selection mechanism [6]. 
After a series of clicks from the user, the posterior probability of 
each clock can be calculated through Bayes’ theorem. A clock is 
selected in Nomon if its posterior probability is sufciently high 
[6]. As a consequence, if a user’s click-time distribution is narrow, 
they will generally be able to select a clock with few clicks. If their 
distribution is wide, it will take more clicks to select an option. Pre-
cise users will be able to select clocks quickly, and imprecise users 
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Figure 4: Visualization of a click-time distribution. A click-
time distribution is a likelihood estimated by Nomon of 
when a user clicks relative to noon. The histogram above can 
be thought of as unraveled from the clock in the top right. 
The purple points around this clock are the samples (tim-
ings of clicks relative to noon) used to construct this likeli-
hood estimate. The mode of this histogram occurs 0.12 sec-
onds later than overlap of the moving hand with noon. 

will require more clicks to to reduce the chance of an erroneous 
selection. 

User Model. Our user model interacts directly with a running 
instance of Nomon, receiving information on the available clocks 
and their hour-hand locations, and outputting switch activations. 
Given a phrase, the user model attempts to type the phrase by tar-
geting and selecting character clocks and word completion clocks 
(if available) in the interface. It selects these target clocks by calcu-
lating the time until the target clock is at noon and simulating a 
switch event at that time. 

However, real users rarely click exactly at noon. We added input 
noise to the user model by sampling from an experienced user’s 
fxed click-time distribution. A click-time distribution sample was 
added as an ofset to when the user model simulated a switch event. 

We then generated synthetic user data by running our user model 
on the corpus of phrases used for the text entry task in our user 
study (Section 4.3.1). We repeated these simulations while varying 
the two parameters that control the word prediction layout. 

Keyboard Layout and Simulation Results. Figure 1 shows the 
Nomon interface we used for our text entry study. We divided the 
layout into a 6 × 5 grid of principal options, with characters alpha-
betically arranged. Each character option could have a maximum 
of 3 word completions displayed next to it in the grid. Thus, there 
could be up to 3 · 26 word completions in total. 

We ran simulations of our user model to choose the number of 
word completions per character (Wc ∈ {1, 2, 3}) and the number of 
total word completions (Wmax ∈ {1, 2, . . . ,Wc · 26}) to display. Our 
simulations in Figure 5 showedWc = 3 and Wmax = 17 achieved the 
maximal text entry rate while keeping click load (number of switch 
activations per selection) to a minimum. More selection options 
can increase the click load depending on the width of the user’s 
click-time distribution. The addition of word completions past 17 
did not have a noticeable efect on entry rate gains; however, each 
additional word increased the click load. Therefore, we chose the 
lowest value of Wmax that achieved the maximal entry rate. As a 

result, there were at most 52 total options present on the screen at 
any one time. 

Note that our results indicate that Nomon can handle more 
word completions than an RCS interface without seeing a drop in 
performance. We expected this behavior a priori: adding word com-
pletions increases the number of options RCS must cycle through 
before arriving at other options; Nomon is not so directly afected 
— though greatly increasing the number of options in Nomon can 
ultimately require more clicks from the user to disambiguate. Fur-
ther, our choice of fewer word predictions for the RCS interface 
was guided by our simulations and corroborated by existing litera-
ture on RCS optimization (detailed in Section 3.1.3). However, no 
such work has determined optimal values for these parameters in 
Nomon. The original Nomon interface included up to 3 · 26 = 78 
word completions [7] — a number that our simulations suggest is 
too many. 

3.2.4 User-adjustable parameter. Users could set the rotation speed 
of the clocks T to values of T = 4e−l /10 seconds for l ∈ {0, 1 . . . 20}. 
That is, smaller values of l correspond to slower rotation, with 
T ∈ [0.5, 4] seconds. Participants started with the slowest setting 
of l = 0 and were allowed to increase or decrease l by 1 between 
phrases. 

3.3 Open-Source and Browser-based Interface 
We originally designed our interfaces to run as standalone appli-
cations installed on a user’s computer. We had started conducting 
an in-person lab study using these applications. But due to the 
COVID-19 pandemic, we suspended this study in March 2020. In 
the following months, we ported our applications to web interfaces 
running in a user’s browser via HTML and JavaScript. Though it 
was a setback, we believe our implementations are now much more 
accessible than before; anyone can run our implementations in a 
standard browser without the need for local software installation. 
We encourage the reader to try it out at https://nomon.app and 
share any feedback. Our code for the Nomon application is open 
source and can be accessed via the link. At the same link, we also 
provide the code used to run the text-entry simulations with Nomon 
described in Section 3.2.3 and the simulations with RCS described 
in the supplemental materials. 

3.4 Word Predictions and Character 
Probabilities 

In text entry applications, Nomon and RCS can make use of word 
predictions based on the text written so far. If the user has not 
started typing a word, Nomon and RCS predict the most likely words 
based on the previous words. If the user has started entering a word, 
the interfaces predict the most probable words that complete the 
current word. In calculating the clock phases, Nomon also uses the 
probability distribution over the next character given the current 
text. 

To take advantage of this language information, our interfaces 
need to query language models at the word and character levels. 
Our language models were trained on data from a crawl of the web, 
social media, and movie subtitles. Our goal was to create models 
that approximate the sort of text AAC users might need for written 

https://nomon.app
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Figure 5: User model simulation results for entry rate (left) and click load (right) for the Nomon keyboard. We ran simulations 
across values ofWc ∈ {1, 2, 3} (word completions per character) and Wmax ∈ {1, 2, . . . ,Wc · 26} (total word completions displayed). 
Lines show the mean across 150 phrases. Error bands show bootstrapped 95% confdence intervals. Samples were drawn from 
the click-time distribution of an experienced user — hence the relatively high text-entry rate. Clicks per selection were, as 
expected, in line with experimental results for the picture selection task in our user study. Note that selections can include a 
word in this simulation. Participants averaged around 2.5 clicks/selection for the text entry task (with Wmax = 17) and reached 
3.5 clicks/selection in the emoji task when there were 60+ options on the screen (which is similar to larger values of Wmax ). 

or person-to-person communications. We started with 286 B words 
of data and used cross-entropy diference selection [41] to flter 
this down to 8.5 B words of data. Filtering used a set of in-domain 
language models trained on conversational AAC-like data [61], 
short email messages, and two-sided dialogues [31]. We trained 
our 12-gram character model using Witten–Bell smoothing [5] and 
the 4-gram word model using modifed Kneser–Ney smoothing [8]. 
The character and word language models had a compressed size 
of 782 MB and 837 MB respectively.5 We used BerkeleyLM [45] for 
efcient language model queries. 

These language models have a large memory footprint and rank-
ing words can be computationally expensive. Rather than perform-
ing these calculations in the browser, we instead built a web API 
that our interfaces queried. The Nomon and RCS interfaces predict 
the most likely words from the subset of a 100 K vocabulary that 
matches the currently entered prefx. Specifcally, for this subset of 
words, we calculated the log probability of the remaining letters of 
each word, including a trailing space, under the character language 
model. To each word, we also added the log probability of the word 
under the word language model. Both language models conditioned 
on any text written prior to any current partial word. 

Since we could not control the latency between users and our 
language model server, we added caching API endpoints. These 
caching endpoints allowed the interface to look up all probabilities 
for all possible next selections by the user, thereby preventing 
noticeable lag after selecting a character or word. The language 
model was hosted as an API on a separate Apache Tomcat server 
with 8 CPUs and 8 GB of RAM. The predictions for a particular 
API call were computed in parallel to utilize all CPUs. Server load 
never exceeded 2 participants at a time to prevent lag in presenting 
predictions. 

5Specifcally we used the large models from https://imagineville.org/software/lm/ 
dec19_char/ and https://imagineville.org/software/lm/dec19/. 

3.5 A Single Switch via Webcam Input 
Motivation. Individuals with severe motor impairments are chal-

lenging to recruit; their time and insight is particularly valuable. 
We feel ethically that we should thoroughly vet any system before 
consuming substantial time and efort of single-switch users. In 
line with this thinking, many preliminary studies on AAC methods 
include non–switch-using participants. In a survey of 42 studies on 
AAC software, 21% included non–switch users [19]. Furthermore, 
when researchers include motor-impaired participants, the sample 
sizes can be limited. In the same survey, 21% of studies included 
only a single participant [19]. Non-switch users provide a way to 
ameliorate noisy data from (often few or one) motor-impaired users 
and to gain statistical power to distinguish interface performance 
[17]. Since non–switch users play a prominent role in the study 
of AAC software, we want to ensure they approximate the target 
population as well as possible. For our studies, we designed a single 
switch based on input from a webcam. In particular, we chose our 
webcam switch over a button press in order to better approximate 
motor-impaired reaction times, as we describe below. 

Switch details. Our webcam switch tracks the movement of a 
user’s face and displays their current face location in the form of 
an orange box. Users activate the webcam switch by moving their 
head in and out of two regions in succession: (1) a reset region 
and (2) a trigger region (Figure 6). To “click” (i.e., to activate the 
webcam switch) the user frst moves their head so that the orange 
box intersects the blue reset region, and then moves their head 
into the green trigger region. The reset box activates when the 
participant is in a neutral position, and the trigger box activates 
when the participant moves their head to the other side. Triggering 
our webcam switch requires a wide motion of the user’s torso and 
therefore decreases reaction time relative to a simple button press. 

https://imagineville.org/software/lm/dec19_char/
https://imagineville.org/software/lm/dec19_char/
https://imagineville.org/software/lm/dec19/
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Figure 6: An illustration of our webcam switch, designed 
to approximate motor-impaired reaction times. To cause a 
switch click, the user frst activates the blue reset box — 
which is adjusted to their resting position — and then acti-
vates the green trigger box — which is adjusted so that they 
must move their head to the side. The emojis were adapted 
from [64]. 

Preliminary justifcation. The frst author made a limited compar-
ison of reaction times using our webcam switch and a tactile button. 
We found the reaction times using our webcam switch were much 
closer to observed data of motor-impaired switch operation, col-
lected in [22, 24]. Using data from our own user study, we formally 
validate this fnding; see Section 5. 

4 USER STUDY 
Here we describe the two tasks in our user study: a text-entry task 
and a picture-selection task — as well as results for both tasks. 
We chose an extended study design with 10 sessions to provide 
insight into experienced use of both interfaces. We conclude that 
experienced users of Nomon fnd both tasks faster and easier than 
row-column scanning. 

4.1 Participants 
We recruited 13 non–switch-using participants through emails sent 
to university and community mailing lists. All participants provided 
written, informed consent. Our experimental protocol was approved 
by our institutional review board. 8 participants were female and 5 
were male. Their ages ranged from 19 to 76 (mean 35, sd 20). 8 were 
currently attending university, and their locations varied across 
the United States. None were familiar with either interface or with 
single-switch text entry software. 

In addition, we recruited a single-switch user to trial the Nomon 
keyboard. They have an advanced form of spinal muscular atrophy 
and have over 14 years of experience using single-switch scanning. 
They use an EMG switch and EZ Keys row-column scanning for 
their daily computer interaction. This switch was used throughout 
their involvement in this study. 

4.2 Procedure 
The non–switch participants took part in 10 sessions and paced 
themselves after the initial session. We instructed them to aim 
for 1–2 sessions per week, with no more than 1 session per day. 
Participants took around 8 weeks to fnish the study. 

In the frst session, we explained the purpose of the study and 
obtained informed consent. We considered this session as practice 
since participants used both interfaces for less than 5 minutes each. 
We did not analyze results from this practice session. The frst 
author was present via video conferencing during the frst session 
and second session to introduce the study and answer any questions. 

Sessions 2–9 were structured as follows. Participants used the 
Nomon and RCS interfaces for 20 minutes each to perform the text-
entry task described in Section 4.3. We alternated which interface 
(Nomon or RCS) each participant used frst to achieve a near-even 
split. We had participants alternate which interface they used frst 
from session to session. In the study, we referred to the two inter-
faces simply as A and B to minimize bias towards Nomon [11]. 

In sessions 2, 5, and 9, participants completed a questionnaire 
after using each interface. In sessions 2 and 9, participants also 
completed a NASA Task Load Index (TLX) [16]. The NASA TLX 
aims to measure the “load” experienced by a user when performing 
a task. Sessions 2 and 9 included the sources-of-load section. In 
session 5, we administered only the magnitude-of-load section. In 
session 6, participants completed a reaction time task before using 
either interface; see Section 5 for full details. 

In session 10, we had participants perform a picture selection 
task described in Section 4.4. Participants used each interface for 
this task for 20 minutes, for a total of 40 minutes. After each method, 
we administered the NASA TLX (including the sources-of-load) as 
well as a questionnaire. 

4.3 Experiment 1: Text Entry Task 
4.3.1 Procedure. In the text-entry task, participants typed as many 
phrases as possible in a 20-minute time period with each interface. 
Participants signaled that they were fnished transcribing a phrase 
by pressing the “Enter” key. We drew phrases uniformly at random 
(without replacement, both within sessions and across sessions) 
from a set of phrases. Our aim was to choose phrases that were 
easy to remember and that represent text people might chose to 
write when not artifcially constrained by AAC software. To those 
ends, we constructed two phrase subsets: (1) an out-of-vocabulary 
(OOV) phrase subset: a set of phrases containing exactly one word 
not in the language model (described in Section 3.4) and (2) an 
in-vocabulary (IV) phrase set: a set of phrases for which all words 
were in our language model. We derived both phrase subsets from 
the “challenging phrase set” developed in [60]. These phrases were 
all manually reviewed in [60] to ensure that they were easy to 
remember. The IV and OOV subsets had a mean phrase length of 
7.15 (sd 1.60) and 7.24 (sd 1.64) words respectively. 

Finally, we constructed our full phrase set by mixing the sub-
sets at a ratio of two in-vocabulary phrases for every one out-of-
vocabulary phrase. This mixture ensures we test both the word-
completion and the general text-entry abilities of both interfaces. 
While word completions allow much faster text entry in single-
switch text-entry systems [23], unusual words can sometimes arise, 
e.g. individuals’ names, places, and abbreviations. The previous 
study of text entry with Nomon [7] made use of the MacKenzie 
phrase set [39]. This phrase set has been shown to have a low inci-
dence of OOV words [60]. Further, while the MacKenzie phrases 
may have contained some OOV words, the study did not explicitly 
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Figure 7: Median text entry rate (top) and click load (botom) 
across all 8 sessions of the text entry task. Error bands show 
the frst and third quartiles of the distributions. The upper 
curve corresponds to Nomon in both plots. 

examine the efects of these OOV words on text entry performance 
[6] — whereas we are able to separately examine IV and OOV 
performance in the present study. 

4.3.2 Performance metrics. We calculate text-entry rate in words 
per minute (wpm). We defne a word as 5 characters including space. 
We include only characters present in the fnal output in our count 
(i.e., no corrected or undone text). We measured the time interval 
from the frst switch input in each phrase up until the participant 
signaled they were fnished with a phrase. 

We defne click load as clicks per character (cpc) in the fnal 
output of a phrase (excluding corrected characters). Activating a 
switch is often an arduous task for individuals with severe motor 
impairments; therefore, it is important to consider this metric and 
not merely the text-entry rate when assessing efectiveness of a 
single-switch method. 

We defne correction rate as the number of corrections divided 
by the total number of selections a user required to type a phrase. 
A correction is a selection of any of the Undo, Backspace, or Clear 
options. The correction rate gives a measure of how often a user 
made a mistake when typing. 

Figure 8: Metrics for sessions 8 and 9. The colored regions are 
the frst to third quartiles of the distributions. The whiskers 
show the 5th and 95th percentiles of the distributions. Ar-
rows in the top right show the direction of better perfor-
mance. 

We defne fnal error rate as the Levenshtein distance between 
the target phrase and a participant’s fnal text output divided by the 
length of the target phrase. The Levenshtein distance measures how 
many character insertions, deletions, or substitutions are required 
to go from one string to another. 

4.3.3 Results. 

Expert Performance. We are interested primarily in comparing 
the performance of expert users; therefore, we restrict our analyses 
to data aggregated over the fnal two sessions (eight and nine). We 
performed a Shapiro–Wilk test for normality in the paired samples 
across the two interfaces. We found the normality assumption 
was violated for click load (W = 0.667, p < 0.001) and fnal error 
rate (W = 0.479, p < 0.001). Where normality could be assumed, 
we used a dependent t-test (denoted as t ); otherwise we used a 
Wilcoxon signed-rank test. Table 1 shows numerical results and 
the corresponding signifcance tests. 

Figure 8 displays the aggregate text entry metrics for sessions 
8 and 9, for all participants. Participants typed 1.15 times faster 
using Nomon over RCS; however, they had a slightly higher click 
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Metric Nomon RCS Statistical Test 
mean median mean median 

Entry Rate (wpm) 
Click Load (cpc) 
Correction Rate 
Final Error Rate 

3.10 
1.39 

0.0215 
0.0038 

3.21 
1.32 
0.0257 
0.000 

2.69 
1.27 

0.0354 
0.0031 

2.53 
1.07 
0.0170 
0.000 

t(12) = 2.88 
Wilcoxon 
t(12) = −1.76 
Wilcoxon 

r = 0.639 
r = 0.187 
r = 0.452 
r = 0.11 

p = 0.014 
p = 0.046 
p = 0.104 
p = 0.499 

IV Entry Rate (wpm) 3.48 3.37 3.07 2.92 t(12) = 2.25 r = 0.410 p = 0.033 
OOV Entry Rate (wpm) 2.32 2.43 1.90 1.81 t(12) = 3.94 r = 0.620 p < 0.001 
IV Correction Rate 0.019 0.016 0.029 0.016 t(12) = 2.25 r = 0.319 p = 0.174 
OOV Correction Rate 0.026 0.022 0.051 0.035 t(12) = −2.41 r = 0.435 p = 0.023 
NASA TLX, session 2 38.3 41.4 35.3 34.6 t(12) = 0.65 r = 0.161 p = 0.525 
NASA TLX, session 5 32.9 33.4 32.5 33.9 t(12) = 0.65 r = 0.160 p = 0.905 
NASA TLX, session 9 27.0 27.0 33.4 33.4 t(12) = 0.12 r = 0.575 p = 0.032 

Table 1: Mean and median result values and statistical tests for the text-entry task in the user study. Results are for sessions 
8 and 9. Metrics in bold were signifcant. 

load using Nomon compared to RCS. The frst published Nomon 
study [7] found that participants typed 1.35 times faster using 
Nomon over RCS. The discrepancy in results might be attributed 
to the noise we have introduced via the webcam switch, as we 
observed larger error bars compared to [7]. As in Figure 4 in [7], 
the RCS entry rate here seemed to plateau before the entry rate of 
Nomon. In our study, the RCS plateau is reached in a later session, 
which might be expected due to the learning curve associated with a 
more noisy switch. We found no signifcant diference in correction 
rates or fnal error rates between the interfaces. 

Switch User Performance. We recruited a single-switch user to 
complete the text entry task using the Nomon interface. We do not 
compare their performance between Nomon and RCS directly, as 
they use an RCS system daily and it would not lend a fair compari-
son. Rather, we compare their performance with Nomon to that of 
the hindered, non–switch users. 

The participant regularly uses the RCS software EZ Keys with 
a 100 millisecond scan speed. They have abbreviation expansion 
and custom, task-specifc word completions to speed text entry. 
Utilizing this optimized setup, they have self-reported to type at an 
impressive 13 wpm. We note the fast scan speed at which this switch 
user regularly uses an RCS interface. The switch user’s profciency 
with their switch allowed them to use Nomon with a rotation period 
of 0.76 seconds — a considerably faster period than the average 3.35 
seconds of the non–switch-using participants in this study. While Figure 9: Comparison of text entry metrics for the non– 
this level of switch accuracy and speed may not be representative switch users and the motor-impaired user after 80 min-
of a majority of single-switch users, this particular switch user’s utes of prior practice (equivalent to session 6 for the non– 
profciency and associated quick communication speed was why switch users). Each flled light-blue circle represents a sin-
we felt comfortable having this user pilot test our study methods. gle non–switch user, and the population mean is given by 
The switch user has provided us with insights into our study and a flled dark-blue diamond. Red circles represent the motor 
software design that will prove invaluable in our following work impaired user. Arrows in the top right show the direction of 
with more diverse members of the target population. better performance; e.g. we prefer a higher text-entry rate. 

We show the switch user’s results alongside those of the non– 
switch users from session 6 (after an equivalent 80 minutes of 
practice) in Figure 9. The switch user’s sessions ran identically to the higher text entry rate (1.5 times faster; 4.14 wpm) and click load (1.8 
text-entry-task sessions for the non–switch-users. The correction times larger; 2.61 cpc). The switch user’s shorter rotation period 
rate and fnal error rate of the switch user both fell within those of (4.4 times faster) than the non–switch users may account for this 
the non–switch users. However, the switch user had a considerably increase in both entry rate and click load. While a shorter rotation 
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Figure 10: Median text entry rate (top) and click load (bot-
tom) for the switch user (blue, solid line) and hindered, non– 
switch users (orange, dashed line) in Nomon. The x-axis 
shows how long users practiced with Nomon. At any time 
point, we plot a summary of the switch user’s distribution 
over performance on individual phrases, while we plot a 
summary of the non–switch users’ performances across the 
13 participants. The error bands show the frst and third 
quartiles of the relevant distribution. 

period may have allowed the switch user to minimize dead-time and 
thus increase their entry rate, the shorter period may have caused 
them to be less precise and require more clicks per selection. 

Further, we compare the learning curves of the switch user and 
the non–switch users with Nomon in Figure 10. The switch user had 
a consistently higher entry rate compared to the non–switch users 
at identical practice times with Nomon. The switch user’s perfor-
mance also increased with practice, much like the non–switch-using 
participants. However, the click load of the switch user varied much 
more throughout their practice sessions. After around 20 minutes 
of practice, the switch user reached their lowest click load of 1.6 cpc. 
The click load then continued to increase throughout the remaining 
sessions. This minimal click load occurred when the switch user 
had a rotation period of 1.62 seconds, with the larger click loads 
occurring as the user progressively shortened the rotation period. 

Challenging Text Entry. The combination of IV and OOV phrases 
allows us to test both the word completion and general text entry 

Figure 11: Entry rates and error rates for Nomon and RCS 
for in-vocabulary (IV) and out-of-vocabulary (OOV) phrases. 
In each paired comparison, IV appears to the left of OOV. 
Results are from sessions 8 and 9. The colored regions are 
the frst to third quartiles of the distributions. The whiskers 
show the 5th and 95th percentiles of the distributions. 

Figure 12: Results of the NASA Task Load Index adminis-
tered following session 2, 5, and 9. In each paired compari-
son (per session), Nomon appears to the left of RCS. 

abilities of the interfaces. As evident in Figure 11, we found that 
the addition of a single OOV word in a phrase can considerably 
lower text entry rates in both interfaces. This result is consistent 
with work investigating the efect of OOV words in mobile text 
entry in [60]. Users were able to better handle these OOV words 
using Nomon. They typed OOV phrases 1.22 times faster and with 
with half as many corrections using Nomon over RCS. This dif-
ference suggests Nomon may be better suited to less predictable 
text composition than RCS. Indeed, Nomon’s probabilistic selection 
mechanism does not seem to favor word completions for quick 
selection as dramatically as RCS (which dedicates the frst scan row 
to word predictions that are useless for OOV words). Furthermore, 
users also performed better with Nomon on IV phrases, though to 
a lesser extent; they typed 1.13 times faster using Nomon, but had 
no signifcant diference in correction rate. 

4.3.4 Subjective Feedback. We assessed user experience with ques-
tionnaires for each interface in the second, ffth, and ninth sessions. 
Participants indicated their agreement with a series of statements 
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on a scale from 1 to 5, with 1 indicating “strongly disagree” and 5 
indicating “strongly agree.” The distribution of responses across 
the sessions appears in Figure 13. 

As evident in Figure 13, participants increasingly felt they typed 
faster, more accurately, and with fewer errors as they used Nomon 
more. Conversely, participants generally rated RCS the same in 
these three areas throughout the study. Figure 12 shows no notable 
diference in the overall NASA TLX scores between RCS and Nomon 
in sessions two and fve. However, in the fnal session, participants 
rated Nomon as having a lower task load (t(12) = 0.12, p < 0.032). 
This result further indicates that participants increasingly found 
Nomon easier to use with practice. 

At the conclusion of the text entry task, we asked participants 
to choose between the two interfaces. 12 out of 13 participants 
indicated that they preferred typing with Nomon over RCS. Com-
mon reasons for this choice were that Nomon is “more forgiving 
with errors,” there is “more fexibility” and “agency” in the selection 
process, and “less downtime waiting for scanning.” 

We also received feedback from the switch user on their experi-
ence using Nomon. They noted, “I observed more word predictions 
showing up as choices. This is where I see some real potential for 
increased typing rate (in terms of words per minute). Nomon is 
distinctly diferent from traditional scanning and may ofer an eas-
ier path to higher text entry rates.” The full responses from our 
participants can be found in the supplemental materials. 

4.4 Experiment 2: Picture Selection Task 
Text entry is a particularly important task for AAC users, so our 
user study focused on this task for most sessions. But there are 
many tasks of interest beyond text entry. Nomon has the advantage 
over RCS of being adaptable to tasks that need not ft into a grid. 
However, there exist tasks beyond text entry for which the two 
interfaces can be compared. In particular, when users choose among 
a large set of fles on their computer, photos on a photo-sharing 
website, or products at an online vendor, these items can be arranged 
in a grid. Our aim was to encapsulate such a task and compare 
Nomon and RCS. We chose emojis as our set of options since we 
thought they would be easily recognizable by users and engaging 
for our participants. 

For this experiment, we adapted the Nomon and RCS interfaces 
to include 60 emojis (Figure 14). The core functionality behind both 
interfaces remained the same. The interfaces highlighted the current 
target to avoid participants spending time searching through the 
options. This search time varies widely depending on how quickly 
a participant can fnd the next target; therefore including it in entry-
rate calculations would introduce unnecessary variance. We chose 
60 emojis because 60 was close to the maximum number of objects 
that could ft on the screens of both interfaces. 

We expect Nomon to excel at this task. Under an uninformed 
prior (as in this task), previous work has shown that the number of 
switch clicks required to select a target in Nomon scales logarith-
mically with the number of options [6]. With a constant rotation 
speed, the time required for selection (excluding reaction time and 
the time spent searching for the desired option) should scale sim-
ilarly. By contrast, the mean number of scans to select an option 
in an RCS interface scales with the square root of the number of 

√
options n; the user must make an average of n/2 row scans and 

√
then n/2 column scans (if options are arranged in a square grid). 

4.4.1 Procedure and Performance Metrics. We used the fnal session 
to test this alternative task. We expected users would have ample 
experience with both interfaces by the fnal session and therefore 
would not require multiple sessions to adjust to the picture-selection 
task. In lieu of English phrases, we asked participants to write 
sequences of fve emojis at a time. We computed four metrics: 
entry rate (selections per minute), click load (clicks per selection), 
correction rate, and fnal error rate. 

4.4.2 Results. A Shapiro–Wilk test for normality in the paired 
samples found this assumption was violated for fnal error rate (W = 
0.479, p < 0.001). We used a dependent t-test (denoted as t ) where 
normality could be assumed; otherwise we used a Wilcoxon signed-
rank test. Table 2 shows numerical results and the corresponding 
signifcance tests. 

Figure 15 shows user performance in the picture selection task 
in session 10. The benefts of Nomon were even more pronounced 
in picture selection compared to text entry. Participants selected 
targets substantially and signifcantly faster using Nomon — an 
average of 36% faster. This increase in entry rate comes with a trade-
of in click load. Participants had a higher click load of 3.50 clicks per 
selection using Nomon, compared to 2.23 clicks per selection using 
RCS. However, we expected this increase given the conjectured 
logarithmic scaling in the number of required switch clicks [6]. 
Participants also made fewer corrections per selection using Nomon 
— 1.1% with Nomon versus 2.6% with RCS. We found no signifcant 
diference in fnal error rates between the interfaces. 

5 REACTION TIME STUDY 
In Section 3.5, we described the webcam switch we employ in our 
user study. In this section, we validate our claim that this switch 
yields a useful approximation of motor-impaired single-switch re-
action times with non–switch user inputs. 

Quantities to approximate. There are two key quantities [53] for 
single-switch operation that we aim to approximate: 

• Simple reaction time (SRT) — SRT is the time diference 
between the introduction of a stimulus to a user and their 
subsequent response. 

• Double click time (DCT) — DCT is the amount of time be-
tween a user’s successive switch activations. DCT measures 
how quickly a user can click their switch again after they 
have just clicked it. 

SRT and DCT dictate how quickly users can operate single-
switch software. E.g., if the scan delay or rotation time is too fast 
compared to a user’s typical SRT, they may fnd the software unus-
able [53]. RCS requires users to click their switch twice in immediate 
succession to select targets in the frst column; if the scan delay is 
too fast compared to a user’s typical DCT, they will be unable to 
select these targets. 

Single-switch user and non–switch user data. Dr. Heidi Koester 
graciously provided data on the SRTs and DCTs of non–switch-
using and single-switch-using individuals that she and her col-
leagues collected — namely, 10 motor-impaired users in [24] and 
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Figure 13: Letter-value plot of the results of questionnaires administered in the beginning, middle, and end of the user study. 
The relative width of the color regions denote how many participants gave a statement that Likert score. Statements were 
presented in the form “In this part of the study, I felt that I typed quickly.” Participants responded on a scale from 1 (strongly 
disagree) to 5 (strongly agree). Means are represented by horizontal black lines. In each paired comparison (per session), RCS 
appears to the right of Nomon. Arrows show the direction of better ratings for each prompt. 

Metric Nomon RCS Statistical Test 
mean median mean median 

Entry Rate (selections/min) 6.64 6.65 4.88 4.59 t(12) = 5.24 r = 0.834 p < 0.001 
Click Load (cicks/selection) 3.50 3.25 2.22 2.23 t(12) = 7.73 r = 0.912 p < 0.001 
Correction Rate 0.011 0.0095 0.026 0.0238 t(12) = −2.45 r = 0.577 p = 0.031 
Final Error Rate 0.0025 0.000 0.0043 0.000 Wilcoxon r = 0.072 p = 0.893 
NASA TLX, session 10 27.2 27.1 27.7 27.7 t(12) = −0.22 r = 0.064 p = 0.893 

Table 2: Mean and median result values and statistical tests for the picture-selection task. Metrics in bold were signifcant. 

Figure 14: A portion of the Nomon interface for the picture-
selection task. We adapted the RCS interface for the picture-
selection task in a similar way. 

10 motor-impaired users and 8 non–switch users in [23]. While 
this data may not fully represent the diversity of motor-impaired 
switch users, it provides insight into the extent to which unhin-
dered, non–switch-using participants can be unrepresentative of 
the motor-impaired population. Further, the data shows that by 
hindering non–switch users with our webcam switch method, we 
can better represent some subset of the motor-impaired population 
in two key metrics related to single-switch use (SRT and DCT). 

Procedure. We collected our data as an additional task added 
before the start of the sixth session of our user study. Participants 
used a web interface that frst had them use our webcam switch and, 
secondly, their keyboard spacebar as a switch. Following [24], for 
each switch, we had the screen fash 30 diferent times at random 
intervals. We instructed participants to click their switch twice in 
quick succession after they saw the screen fash. For each switch 
method, we recorded 30 trials and calculated the participant’s aver-
age SRT and DCT. These averages are visualized in the histograms 
in the bottom row of Figure 16. 

5.1 Results 
In the top row of Figure 16, we see that single-switch users with 
severe motor impairments generally have an SRT and DCT much 
longer than non–switch users. There is also a wide variance among 
the motor-impaired population, with some individuals much faster 
than the mean, and some much slower. 

Figure 16 shows that our webcam switch yields SRT and DCT 
values that are considerably more in line with those of the motor-
impaired target population — as compared to a spacebar switch. 
The webcam switch lowers the SRT of the participants from 350 ms 
(with the spacebar) to 1050 ms. By comparison, the mean SRTs for 
the non–switch using and single-switch using populations are 350 
ms and 820 ms, respectively. Similarly, the webcam switch lowers 
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Figure 15: Performance metrics for the picture selection task 
in session 10. The colored regions are the frst to third quar-
tiles of the distributions. The whiskers show the 5th and 
95th percentiles of the distributions. Arrows in the top right 
show the direction of better performance; e.g., we prefer a 
higher entry rate. 

the participants’ mean DCT from 180 ms to 1400 ms. These DCTs 
are consistent with those from the non–switch using and single-
switch using populations of 290 ms and 1460 ms. We conclude that 
our webcam switch technique substantially lowered both SRT and 
DCT to levels consistent with data from single-switch users with 
motor-impairments. 

6 DISCUSSION 
We investigated the efectiveness of Nomon as a method of single-
switch communication. We evaluated the performance of Nomon 
over multiple sessions compared to the widely used row-column 
scanning method. In a text-entry task, participants typed 15% faster 
using Nomon. However, they experienced a 10% higher click load 
with Nomon. This higher click load could be problematic for users 
where switch activation is tiring. 

We are exploring ideas to mitigate this higher click load. One 
such idea is to use information from an eye gaze tracker, as users will 
undoubtedly be gazing towards the clock they are trying to select. 
Interestingly, the switch user who trialed Nomon commented that 
they “notice[d] a sense of direct selection [with Nomon] (though 
technically it is not) akin to eye gaze interfaces. One important 

diference is that I did NOT experience the same eye strain/fatigue 
often associated with eye gaze mouse pointer navigation.” 

Separately, we posit that it may be possible to allow just one click 
per letter for predictable words. Currently Nomon requires each in-
dividual character to pass a probability threshold before committing 
to that character. We believe we could postpone committing to any 
text until the end of a word (similar to how auto-correction works 
on a touchscreen keyboard). With only a noisy switch as input, 
designing how users signal the end of a word, correct errors, and 
enter difcult words would be challenging — but would constitute 
interesting future work. 

Participants continued improving with Nomon even in the fnal 
session, while they appear to plateau with RCS after session 5. Fur-
thermore, participants found typing easier and faster using Nomon 
in the fnal sessions. 12 out of 13 participants indicated that Nomon 
was their preferred method of text entry. We had hoped eight text-
entry sessions would be enough for Nomon performance to plateau, 
but users continued to improve even in our fnal session. Our results 
suggests a longer study may be necessary to fully explore Nomon’s 
potential, especially when evaluating with motor-impaired users. 

To our knowledge, our study is the frst to investigate single-
switch input of text containing difcult out-of-vocabulary (OOV) 
words. When selecting OOV words, the word language model is not 
active but the character language model still provides a non-trivial 
prior over common sequences of characters. We found Nomon 
signifcantly reduced the need to perform corrections and signif-
icantly increased entry rate on OOV phrases. This advantage is 
important since error correction can be a frustrating process, espe-
cially using a single switch. Our interfaces limited word predictions 
to a vocabulary of 100 K words. We think further improvements in 
Nomon’s efcacy for OOV words may be possible by expanding 
the prediction engine’s vocabulary to a larger word list when the 
set of predictions becomes sparse or empty. This word list could 
be created from timely online data sources (e.g., Twitter) and pre-
dictions ranked via a language model with a subword vocabulary 
and trained on enormous amounts of data (e.g., GPT-2 [46]). Our 
participants also suggested other improvements such as increasing 
the probability of the undo clock, and removing word predictions 
that were not selected to free up space for other words. 

We explored applications beyond text entry with a picture selec-
tion task. The picture-selection task gives the user a large number 
of options with a uniform prior. Here, the benefts of Nomon were 
more pronounced as participants selected options 35% faster and 
with 63% fewer errors. On the other hand, participants had a 53% 
higher click load; this increase in click load seems to be fundamental 
to Nomon’s fexible selection scheme, where the number of switch 
clicks required for selection should scale logarithmically with the 
number of options. These results are promising for future work 
using Nomon in applications beyond text entry. In particular, it 
would be interesting to explore tasks that can leverage a prior over 
targets learned from individual users (e.g., the sequence of links 
clicked in an application or the control of home IoT devices). 

To aid our studies above, we designed and validated a webcam-
based switch technique for better approximating motor-impaired 
operation of a single switch with non–switch-using participants. 
We found that the simple reaction times (SRTs) and double click 
times (DCTs) of non–switch users with a physical button were 
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Figure 16: Comparison of the SRTs and DCTs of the two switch methods to those of the non–switch-using and single-switch-
using populations. On the top row is the data from [22, 24], with the non–switch users in light blue (appearing left in each plot) 
and the single-switch users in dark blue (appearing right in each plot). The bottom row contains the data we collected with 
the button and webcam switches from our non–switch-using participants. The button histogram is in light blue (appears left 
in each plot), and the webcam histogram is in dark blue (appears right in each plot). SRTs are in the left column and DCTs in 
the right. Each data point is the average value across switch clicks of a particular participant using a particular switch method; 
we show a histogram over these data points. 

unrepresentative of SRTs and DCTs of single-switch users with 
motor impairments. Our webcam method artifcially lowers a non– 
switch user’s reaction times to more closely resemble the reaction 
times of single-switch users with motor impairments. Using this 
technique with our participants allowed us to collect data that more 
closely resembles that of our target population while recruiting 
non–switch users as participants. 

To further evaluate Nomon, we are planning a similar user study 
to the one reported here but with a group of motor-impaired users. 

7 CONCLUSION 
To conclude, we made the Nomon interface more accessible through 
collaboration with switch users and AAC specialists. We further 
optimized the design of the Nomon interface via computational 
simulations. We developed a webcam-based technique to simulate 
the click timing of motor-impaired users. Our user study results 
alongside our initial trial with a switch user show that Nomon 
may currently provide accelerated text input for single-switch AAC 
users. In their fnal session (after 2.5 hours of practice), users wrote 
15% faster using Nomon than with conventional row-column scan-
ning. We found this speedup was even more pronounced when 
composing challenging text containing out-of-vocabulary words, 
and when Nomon was used in a picture selection task. Overall, our 
results show that Nomon may provide a more efcient, and more 
fexible, method for rate-limited users to control their computer via 
a single switch. 
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