
Letters
https://doi.org/10.1038/s41567-021-01479-7

1Department of Physics, Boston College, Chestnut Hill, MA, USA. 2Materials Department, University of California Santa Barbara, Santa Barbara, CA, 
USA. 3California Nanosystems Institute, University of California Santa Barbara, Santa Barbara, CA, USA. 4Department of Physics, University of California 
Santa Barbara, Santa Barbara, CA, USA. 5Kavli Institute for Theoretical Physics, University of California Santa Barbara, Santa Barbara, CA, USA. 6Canadian 
Institute for Advanced Research, Toronto, Canada. 7These authors contributed equally: Hong Li, He Zhao. ✉e-mail: ilija.zeljkovic@bc.edu

Recently discovered superconductors AV3Sb5 (A = K, Rb, Cs)1,2 
provide a fresh opportunity to study correlation-driven elec-
tronic phenomena on a kagome lattice. The observation of an 
unusual charge density wave (CDW) in the normal state of all 
the members of the AV3Sb5 family2–10 has prompted a large 
effort to identify any ‘hidden’ broken symmetries associated 
with it. We use spectroscopic-imaging scanning tunnelling 
microscopy to reveal pronounced intensity anisotropy between 
the different directions of hexagonal CDW in KV3Sb5. In par-
ticular, we find that one of the CDW directions is distinctly dif-
ferent compared with the other two. This observation points 
to an intrinsic rotation-symmetry-broken electronic ground 
state where the symmetry is reduced from sixfold to twofold. 
Furthermore, in contrast to previous reports3, we find that 
the CDW phase is insensitive to the magnetic-field direction, 
regardless of the presence or absence of atomic defects. Our 
experiments, combined with earlier observations of stripe 
charge ordering in CsV3Sb5, establish correlation-driven 
rotation symmetry breaking as a unifying feature of AV3Sb5 
kagome superconductors.

Quantum materials built from atoms arranged on a kagome 
network are predicted to exhibit unconventional electronic behav-
iour11–15 due to non-trivial Berry phase effects and strong electronic 
interactions. Experimental efforts on this front have primarily 
focused on transition-metal kagome magnets16–20, in pursuit of real-
izing exotic phenomena such as topological flat bands, Weyl nodes 
and tunable Dirac fermions. Distinct from magnetically ordered 
kagome systems, recently discovered kagome metals such as AV3Sb5 
(A = K, Rb, Cs)1 do not exhibit a resolvable magnetic order1,2,21. 
Surprisingly, however, they show a large unconventional anoma-
lous Hall response7,22. Furthermore, resembling the phenomena 
observed in high-temperature superconductors, AV3Sb5 also exhibit 
various density wave phases2–10 and superconductivity2,4–6,9,23,24, 
including a unidirectional 4a0 charge order4,6 (where a0 is the lat-
tice constant) and the potential emergence of a Cooper-pair density 
wave6 in CsV3Sb5.

Aside from superconductivity, a common feature identified across 
all the members of this kagome family is a 2a0 × 2a0 charge density 
wave (CDW) that develops in the normal state above the supercon-
ducting transition (CDW temperature onset TCDW ≈ 80–100 K)2,8,23. 
This CDW phase has attracted much experimental2–10,25 and theo-
retical26–32 interest, as it is the first symmetry-broken phase that 
emerges on cooling the system down from room temperature. As 
such, other phases that form at lower temperatures develop from 

this symmetry-broken state, and may carry the fingerprint of the 2a0 
CDW phase. The majority of theoretical proposals and experiments 
to date have focused on modelling and understanding 2a0 × 2a0 
CDW as an electronic phase where the three CDW directions are 
identical (3Q-CDW). In this work, using spectroscopic-imaging 
scanning tunnelling microscopy (STM), we reveal an intrinsic rota-
tion symmetry breaking in the 2a0 × 2a0 CDW phase of KV3Sb5. By 
exploring the amplitude of CDW peaks in the Fourier transforms 
(FTs) of STM differential conductance maps as a function of energy, 
we find that one of the CDW directions is different than the other 
two, which reduces the rotation symmetry from C6 to C2. By imaging 
the same area of the sample with the same STM tip in different mag-
netic fields, we reveal that this directionality is not sensitive to the 
magnitude or direction of the magnetic field, which is in contrast to 
a recent report on an unconventional CDW tunable by a magnetic 
field in KV3Sb5 (ref. 3). Our work establishes a unifying picture of 
rotation symmetry breaking as a generic feature of AV3Sb5 kagome 
superconductors.

KV3Sb5 is a layered kagome superconductor (superconducting 
transition temperature Tc ≈ 0.9 K) characterized by a hexagonal 
crystal structure (a = b = 5.4 Å and c = 9 Å)23 composed of alternately 
stacked V–Sb slabs and K layers (Fig. 1a,b). Each V–Sb slab can be 
described by a kagome lattice of V atoms interweaved by a hexagonal 
lattice of Sb atoms. Consistent with previous works3–6, we find that 
the sample cleaves between the alkali (K) layer and Sb layer. This 
exposes either a K surface often prone to reconstruction (Extended 
Data Fig. 1) or a complete Sb surface (which we focus on in this 
work). STM topographs of the Sb layer show a honeycomb-like 
surface structure (Fig. 1c). To visualize the large-scale electronic 
band structure, we use quasiparticle interference imaging. This 
method relies on the detection of elastic scattering and interfer-
ence of electrons as static, periodic charge modulations in dif-
ferential conductance dI/dV(r,V) maps. In our sample, FTs of the 
dI/dV(r,V) maps show an isotropic scattering vector q1 near the 
FT centre in the momentum-transfer space (q space) (Fig. 2a,b). 
Similar to the spectroscopic mapping of the Sb surface of CsV3Sb5 
(ref. 4), q1 can be observed across a wide range of energies. Its mag-
nitude and dispersion are consistent with an electron-like band at 
the centre of the Brillouin zone, primarily associated with the Sb 
orbitals (Fig. 2c). The Fermi vector kf ≈ 0.18 Å−1 determined from 
our data (q1(E = 0) = 2kf) also shows a close match to that measured 
by angle-resolved photoemission spectroscopy22 and expected from 
calculations23, thus demonstrating an approximate consistency 
between theory and different measurement techniques.
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In addition to the hexagonal lattice, STM topographs also reveal 
periodic conductance variations between neighbouring unit cells 
(Fig. 1c,d). This is consistent with the established 2a0 × 2a0 CDW 
phase of AV3Sb5 (refs. 2–9), with momentum-space ordering wave 
vectors Qi

2a0 =
1
2Q

i
Bragg (i = a, b, c) that can be clearly seen in the 

FT of an STM topograph (Fig. 1d). We note that the FT peak corre-
sponding to a 4a0 charge-ordering peak observed in CsV3Sb5 (refs. 4,6)  
is absent in KV3Sb5 (Fig. 1d). To demonstrate the CDW origin of 
Qi

2a0 peaks, as opposed to energy-dispersive quasiparticle interfer-
ence features, we point that these peaks do not disperse in the FTs 
of dI/dV(r,V) maps as a function of bias (Fig. 2d). We note that 
we apply the Lawler–Fujita drift-correction algorithm33 to all our 
data to align the atomic Bragg peaks onto single pixels with coor-
dinates that are even integers (defined with respect to the centre of 
the FT). This processing method, in turn, confines the CDW FT 
peaks Qi

2a0 =
1
2Q

i
Bragg (i = a, b, c) to a single pixel, which enables an 

easy readout and comparison of the CDW amplitudes at different 
wave vectors and across different datasets. This process also mini-
mizes the smearing of FT peaks across neighbouring pixels due to a 
small piezoelectric drift and thermal effects. Our first observation 
is that different CDW peaks display a small difference in amplitude 
(peak height), as shown in Fig. 1d. Moreover, the relative amplitude 
between the different peaks depends on the imaging bias, and the 
anisotropy between different directions becomes very pronounced 
near the Fermi level (Fig. 1e). Although the STM tips are typically 

somewhat anisotropic, we point out that the amplitude of the stron-
gest atomic Bragg peak Qb

Bragg actually corresponds to the weakest 
CDW peak Qb

2a0 (Fig. 1d, inset). As we will demonstrate below, this 
directionality is not a trivial consequence of STM tip anisotropy 
and it is rooted in the underlying rotation symmetry breaking of the 
electronic structure.

To explore this further, we track the evolution of the CDW peak 
amplitudes in the FTs of dI/dV(r,V) maps (Fig. 3a–c). For a conven-
tional 3Q-CDW phase, the three CDW directions Qi

2a0 should be 
equivalent; as such, the amplitudes at the corresponding FT wave 
vectors should, in principle, follow the same energy dependence. 
In contrast to this, we find that the peak amplitude along one of 
the CDW directions exhibits a markedly different energy depen-
dence compared with the other two. For example, in Fig. 3c, we can 
observe that the amplitude profile associated with Qa

2a0 and Qc
2a0 is 

nearly identical, but the one related to Qb
2a0 is noticeably different. 

This results in pronounced unidirectionality in dI/dV(r,V) maps 
that can also be observed in real space (Fig. 3d). The slight differ-
ence between the two equivalent peaks, namely, Qa

2a0 and Qc
2a0, may 

be related to a small tip anisotropy (Fig. 3c). We rule out tip arti-
facts in producing the apparent C2 symmetry in the STM data by 
imaging the rotation of the symmetry axis across a CDW domain 
boundary (Fig. 3e and Extended Data Fig. 2). Our observation that 
one CDW peak differs from the other two is robust across multiple 
samples scanned with different STM tip wires (Figs. 3c and 4e and 
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Fig. 1 | crystal structure of KV3Sb5 and surface morphology. a, Three-dimensional crystal structure of KV3Sb5 depicting two layers, each with a 
thickness of one unit cell, stacked on top of one another. b, Atomic structure of different a–b planes superimposed on top of one another: triangular K 
layer, hexagonal Sb layer and kagome V–Sb slab. c,d, STM topograph of a square region (approximately 11 nm) of the Sb surface (c) and its associated 
FT (d). The inset in c shows a zoomed-in view of a small region of the topograph, portraying the variation in 2a0 intensity with the V–Sb kagome layer 
superimposed on top. The three different CDW peaks and atomic Bragg peaks are enclosed by shapes of different colours. The inset in d shows the 
amplitudes (peak heights) of the atomic Bragg peaks and CDW peaks in the topograph in d. e, Amplitudes of the three CDW peaks in the FTs of five 
different STM topographs acquired over the same area of the sample with the same STM tip. STM setup conditions: current setpoint Iset = 400 pA, 
sample biasVsample = 40 mV (c). Iset = 400 pA, Vsample = 200 mV; Iset = 200 pA, Vsample = 100 mV; Iset = 60 pA, Vsample = −10 mV; Iset = 200 pA, Vsample = −100 mV; 
Iset = 400 pA, Vsample = −200 mV (e). The magnetic field (B) is set to 0 T. The data were acquired on sample A using tip 1.
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Extended Data Figs. 2 and 3). We note that this is distinctly different 
from the CDW amplitude profiles in the prototypical CDW mate-
rial 2H-NbSe2, where the amplitude profiles are comparable along 
all the three directions (Extended Data Fig. 4). This provides strong 
evidence that the electronic ground state in KV3Sb5 is C2 symmetric 
at low temperatures.

All the experiments discussed thus far have been performed at 
zero external magnetic field. Given the proposals of time-reversal 
symmetry-breaking orbital currents26,28 associated with the CDW 
phase, it is crucial to determine if and how the observed CDW 
signal couples to the external magnetic field3. To investigate this, 
we repeat the STM measurements as a function of magnetic field 
B. The relative heights of all the CDW peaks in the FTs of STM 
topographs appear comparable before and after a moderate external 
field is applied perpendicular to the c axis (Fig. 4d). Importantly, 
the amplitudes are insensitive to the magnetic-field direction (that 
is, B is applied either parallel and antiparallel to the c axis) (Fig. 4d).  
The robustness of CDW to reversal in the magnetic-field direction 
is in contrast to a recent report of a CDW order tunable by the mag-
netic field in the same material3. We note that the area shown in 
Fig. 4 does not contain defects that are occasionally seen in Fig. 2a; 
therefore, defect pinning may not explain the contrasting observa-
tions, as hypothesized elsewhere3. The observations reported here 
are confirmed in bias-dependent dI/dV(r,V) maps of defect-free 
regions (Fig. 4e) and the STM topographs of multiple samples 
(Extended Data Fig. 5). We also note that the relative amplitudes 
of CDW-ordering wave vectors do not change with magnetic-field 
reversal in the cousin compound CsV3Sb5 (Extended Data Fig. 6).

Our experiments reveal a pronounced rotation symmetry break-
ing in the 2a0 × 2a0 CDW phase of KV3Sb5, with a single reflection 
symmetry preserved along the dominant CDW direction (Figs. 3c 
and 4e and Extended Data Figs. 2 and 3). Given the reports of uni-
directional CDWs4 and anisotropic transport measurements34,35 in 
CsV3Sb5, which clearly break the rotation symmetry of the lattice, 
our measurements establish rotation symmetry breaking as a uni-
fying feature of this family of kagome superconductors. Removing 
the randomly oriented CDW domains (Fig. 3e)—possibly by uni-
axial stress—may facilitate the detection of electronic anisotropy by 
non-local probes. The observation of distinct spatial patterns across 
a CDW domain boundary that cannot be explained only by a simple 
rotation of the symmetry axis and different CDW intensity profiles 
on different samples (Extended Data Fig. 2 and Methods) hint that 
multiple C2-symmetric charge-ordering configurations may be real-
ized in KV3Sb5. Emergent theoretical evidence suggests several dif-
ferent possibilities for rotation symmetry breaking in the 2a0 × 2a0 
CDW state29,30,32. Coupling between adjacent kagome planes stacked 
along the c axis with an in-plane phase offset would naturally give 
rise to a preferred direction seen in experiments30,32. This can be 
achieved by the condensation of the CDW order parameter con-
necting different points within the Brillouin zone (M and/or L 
points)32. Additionally, a complex CDW ground state within an indi-
vidual kagome plane can also be at play29. A complete quantitative 
understanding of the balance between these symmetry-breaking 
channels and the relation to the observed CDW amplitude profile 
will require more detailed theoretical modelling and a comprehen-
sive comparison with experimental data, which is beyond the scope 
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STM setup conditions: Iset = 200 pA, Vsample = −100 mV, bias modulation Vexc = 10 meV, B = 0 T (a); Iset = 900 pA, Vsample = 300 mV, Vexc = 10 meV, B = 0 T (c); 
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of the current work. Nevertheless, our experiments provide strong 
evidence that the structure of the CDW in this system goes beyond 
the simple, rotationally symmetric state with either ‘Star-of-David’ 
or inverse Star-of-David morphology27.

Despite a close resemblance between the electronic band struc-
tures of KV3Sb5 and CsV3Sb5, an intriguing difference between the 
two systems is that KV3Sb5 does not show the 4a0 charge ordering. 
It may be possible that small differences in the chemical poten-
tial between the two materials play a larger role, and that the 4a0 
charge order vanishes with doping, analogous to the 4a0 order in 
cuprates36. Our work suggests that superconductivity in this sys-
tem emerges from a state where rotational symmetry is already 
broken, which should be important for developing a theoretical 
understanding of superconductivity in this material. Our experi-
ments also provide a foundation to explore how the observed 
spatial symmetry breaking could affect the topological surface 
states37.

Contrasting observations reported here and those in ref. 3 
regarding the dependence of CDW on external magnetic field 
pose an intriguing question regarding the dichotomy of the 
results. We note that subtle changes in the STM tip can dra-
matically change the apparent CDW amplitudes (Extended Data  
Fig. 7). By ruling out these trivial measurement artifacts leading 
to the substantial CDW amplitude change, it may be conceivable 
that small chemical-potential variations between the different 
areas of nominally the same crystals could explain the discrepant 
results. However, based on our experiments that show the absence 
of CDW tunability by field direction in all the samples and crys-
tals where measurements were performed, we can conclude that 
magnetic-field-based CDW tunability3 is not a robust feature. It 
can perhaps be dependent on the sample area. It remains to be 
seen whether the time-reversal symmetry in AV3Sb5 is indeed 
broken by the orbital currents26,28. Future experiments using 
high-resolution spin-polarized STM38 or neutron scattering39 
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could potentially shed light on this issue by measuring any subtle, 
underlying magnetic background.
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setup conditions: Iset = 100 pA, Vsample = 50 mV (a–d); Iset = 100 pA, Vsample = 50 mV, Vexc = 4 mV (e). The data were acquired on sample B using tip 4.
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Methods
STM measurements. Single crystals of KV3Sb5 were grown and characterized as 
described in more detail elsewhere23. We cold cleaved and studied four different 
KV3Sb5 crystals (labelled A–D), all of which qualitatively exhibited the same 
phenomena described in the main text. The STM data were acquired using a 
customized UNISOKU USM1300 microscope at approximately 4.5 K. Spectroscopic 
measurements were made using a standard lock-in technique with 915 Hz 
frequency and bias excitation, as detailed in the main text. The STM tips used 
(labelled 1–6) were home-made chemically etched tungsten tips, annealed in an 
ultrahigh vacuum to a bright orange colour before STM experiments. We apply the 
Lawler–Fujita drift-correction algorithm33 to all our data to align the atomic Bragg 
peaks onto single pixels with coordinates that are even integers. Representative data 
before drift correction are shown in Extended Data Figs. 8 and 9.

Ruling out STM tip artifacts. To completely rule out the possibility of tip artifacts 
artificially inducing the apparent CDW anisotropy, we image a CDW domain 
boundary between two distinct regions labelled (I) and (II) using the same STM 
tip. Both regions show the 2 × 2 CDW (Extended Data Fig. 2). The change in 
CDW anisotropy between the two regions is more apparent at low bias (Extended 
Data Fig. 2b). Based on the CDW amplitude profiles in the two regions, we can 
determine the rotation of the symmetry axis (Extended Data Fig. 2d,e): Qc

2a0 is the 
symmetry axis in domain (I), whereas it is Qb

2a0 in domain (II) (Extended Data  
Fig. 2d,e, bold lines). For visualization purposes, we Fourier filtered the STM 
topograph to emphasize modulations along these two wave vectors (Extended 
Data Fig. 2g,h). As such, the apparent C2 symmetry in the CDW state cannot be 
explained by STM tip artifacts.

We proceed to examine the morphology of the CDW pattern in the two domains 
more closely. In both domains (I) and (II), the CDW amplitude intensity versus 
bias shows two directions that are identical, but the third one is markedly different 
(Qc

2a0 in domain (I) and Qb
2a0 in domain (II)). If domain (II) was identical to domain 

(I) but rotated by 60°, we would expect the same CDW amplitude intensity profile 
shown in Extended Data Fig. 2d,e, but with each curve now associated with different 
indices. Instead, however, domain (II) shows two directions that have a peak near 
5–10 meV (Extended Data Fig. 2d) as opposed to only one (Extended Data Fig. 
2e). This difference is also reflected in the distinct spatial patterns (Extended Data 
Fig. 2f) that go beyond a simple rotation by 60°. This suggests that the differences 
between the two CDW domains go beyond a simple 60° rotation, and hint at the 
possibility of realizing at least two distinct C2-symmetric states.
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Extended Data Fig. 1 | STM topographs of the K layer. (a) Large scale STM topograph of 50 nm square region showing the half-K layer (K surface 
reconstruction where every other K atom is likely cleaved of) as bright regions, and the Sb layer as dark regions. (b) STM topograph zoomed in on a half-K 
termination with twice the lattice constant of a full K layer (a = 1.1 nm). STM setup condition: (a) Iset = 10 pA, Vsample = 1 V; (b) Iset = 100 pA, Vsample = 20 mV. 
Data was acquired on sample C with tip 5.
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Extended Data Fig. 2 | STM imaging of a cDW domain boundary. (a,b) STM topographs of a region encompassing a CDW domain boundary taken at (a) 
20 mV and (b) −10 mV. The white dashed line in (a,b) is a visual guide used to separate the two domains. A more obvious difference between the two 
domains can be seen in (b). Insets in upper right and lower left corners of (a) represent average dI/dV spectra over the corresponding domains. (c) Fourier 
transform (FT) of domain (I) and domain (II) in (f). Atomic Bragg peaks and CDW peaks are denoted by black and blue symbols, respectively. (d,e) The  
FT amplitude dispersions of the 3 CDW peaks extracted from the (d) green and (e) red squares in (b), demonstrating the change in the CDW symmetry 
axis from Qc

2a0 to Qb
2a0 across the domain wall. (f) Zoomed in image of topographs and dI/dV maps in green (upper row) and red (lower row) squares in 

(b). (g,h) Fourier-filtered STM topograph including only (g) Qc
2a0 or (h) Qb

2a0 Fourier peaks. STM setup conditions: (a) Iset = 250 pA, Vsample = 20 mV;  
(b) Iset = 60 pA, Vsample = −10 mV; (d,e) Iset = 400 pA, Vsample = 20 mV, Vexc = 1 mV; (f) Iset = 150 pA, Vsample = −10 mV, Vexc = 1 mV. Data was acquired on 
sample A using tip 2.
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Extended Data Fig. 3 | absence of magnetic field induced cDW reversal and visualizing the temperature evolution of the cDW in KV3Sb5. (a-c) STM 
topographs of the Sb termination taken at −3 T, 0 T and 3 T over an identical region with the same tip. (d) Average dI/dV spectra acquired over (a-c), 
which appear indistinguishable within the resolution of the dataset. (e-g) 2a0 CDW peak amplitude dispersion at the three magnetic fields for (e) Qa

2a0, 
(f) Qb

2a0, and (g) Qc
2a0. There is almost no difference among data at different fields. (h-j) 2a0 CDW peak amplitude dispersion at 4.5 K, 20 K, and 25 K 

respectively over the same region of the sample, showing the dominant peak Qb
2a0 getting weaker at higher temperature. (k) A Fourier transform of  

dI/dV map acquired at 2 mV. The lower left corner of (k) is a zoomed-in high resolution dI/dV map at 2 mV. Atomic Bragg peaks are marked by black 
dashed circles, while Qa

2a0, Q
b
2a0, Q

c
2a0 are denoted by red square, green circle and blue triangle, respectively. STM setup conditions: (a-c) Iset = 100 pA, 

Vsample = 50 mV, (d-j) Iset = 100 pA, Vsample = 50 mV, Vexc = 4 mV. Data was acquired on sample D using tip 6.
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Extended Data Fig. 4 | Isotropic cDW peak dispersion in 2H- NbSe2. (a) STM topograph of the Se surface of 2H-NbSe2 with the well-known tri-directional 
3a0 CDW. (b) The Fourier transform (FT) of (a). Atomic Bragg peaks are circled in black, while the three inequivalent 3a0 CDW peaks are denoted by  
the blue circle, red square and green triangle. (c) CDW peak amplitude as a function of energy (STM bias) for the three inequivalent directions. Each  
point is obtained by a two-dimensional Gaussian fit of the CDW peak in the FTs of dI/dV maps. The CDW amplitude profiles along the three directions 
closely resemble each other, consistent with the expected tri-directional nature of the CDW that does not break rotation symmetry of the lattice.  
(d) dI/dV maps at −60 mV, 0 mV and 60 mV (from left to right) over the same region shown in (a). (e) FT of 0 mV dI/dV map in (d). Black circles denote 
the atomic Bragg peaks, while the blue, red and green symbols denote the three inequivalent CDW peaks. STM setup conditions: (a,c,d) Iset = 300 pA, 
Vsample = −60 mV, Vexc = 3 mV. The data was acquired in the Hoffman lab at Harvard University, and provided for analysis by Anjan Soumyanarayanan and 
Jenny Hoffman.
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Extended Data Fig. 5 | Reproducibility of the magnetic field measurements from three different Sb regions of a KV3Sb5 sample. (a-c) From left to right: 
STM topographs as a function of magnetic field, Fourier transform (FT) of STM topograph at 0 T, and the amplitude dispersion of different CDW peaks as 
a function of magnetic field. The three inequivalent 2a0 CDW peaks are enclosed in triangle, circle and square markers, respectively. As it can be seen, the 
amplitude of different CDW peaks remains nearly identical with the application and the reversal of magnetic field. Magnetic field is applied perpendicular 
to the sample surface. STM setup conditions: (a) Iset = 400 pA, Vsample = 20 mV; (b) Iset = 150 pA, Vsample = 40 mV; (c) Iset = 150 pA, Vsample = 10 mV;  
(d) Iset = 100 pA, Vsample = 50mV. Data was acquired on sample A, using (a) tip 4 and (b,c) tip 3.
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Extended Data Fig. 6 | Magnetic field measurements of cousin compound csV3Sb5. (a-c) STM topograph of a 70 nm square Sb surface of CsV3Sb5 
in a magnetic field of 4 T, 0 T and −4 T, respectively. Magnetic field is applied perpendicular to the sample surface. (d) The Fourier transform of STM 
topograph in (b). The unidirectional 4a0 charge ordering peak, 2a0 peaks and atomic Bragg peaks are marked by orange, blue and green markers, 
respectively. (e) Fourier transform peak amplitudes of different wave vectors. We can observe that none of the charge ordering peak intensities 
significantly change. (f) The amplitude of the 4a0 CDW peak as a function of bias extracted from a DOS map acquired over the Sb surface of the CsV3Sb5 
sample. The 3 different colors in (f) denote data acquired in different magnetic fields. STM setup conditions: (a-c) Iset = 110 pA, Vsample= −40 mV.  
(f) Iset = 80 pA, Vsample = 20 mV, Vexc = 1 mV.
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Extended Data Fig. 7 | an example of how a small tip change can strongly influence cDW amplitudes. (a,b) STM topographs of the Sb termination at (a) 
−5 T and (b) +5 T magnetic field applied along the c-axis. An obvious tip change occurred while scanning at −5 T. After the image in (a) was acquired, the 
tip was withdrawn, the magnetic field was changed to +5 T, and then the topograph in (b) over the same region of the sample was taken. We refer to the 
tip before the tip change as tip 0, and the one after the tip change as tip 1. The green and red squares denote the same areas in the two topographs. Red 
square (region A) is scanned at different field with the same tip (tip 1), while the green square (region B) is scanned with slightly different tips (tip 0 at  
−5 T and tip 1 at +5 T). (c,d) The plot of CDW peak amplitudes in Fourier transforms of ±5 T topographs for regions A and B, respectively. From plot (c), the  
relative amplitude between the 3 CDW peaks is: Qc

2a0 > Qa
2a0 = Qb

2a0 for both +5 T and −5 T. In contrast, the relation between peaks changes dramatically 

in plot (d), where Qc
2a0 > Qb

2a0 > Qa
2a0 at −5 T and Qc

2a0 > Qa
2a0 > Qb

2a0 at +5 T. From this, it appears as if there is field-dependent CDW rotation. However, 
this is purely an artifact of a tiny tip change, since it did not happen in the red region above, where two topographs are taken with the same tip. We 
emphasize that the tip change is tiny and difficult to discern by comparing topographs by eye (we identified it by the abrupt height change denoted by 
purple arrow in (a)). As such, extreme caution should be taken when interpreting relative amplitudes between different data sets. STM setup conditions: 
(a,b) Iset = 400 pA, Vsample = 40 mV.
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Extended Data Fig. 8 | Representative raw data (without drift correction). (a-e) dI/dV maps of Sb termination without drift correction taken at different 
bias used in Fig. 2, and (f-j) corresponding Fourier transforms (FTs). (k-o) Raw dI/dV maps that are used in Fig. 3, and (p-t) corresponding FTs without drift 
correction. STM setup conditions: (a-e) Iset = 600 pA, 400 pA, 200 pA, 200 pA and 400 pA respectively, with Vsample= −300 mV, −200 mV, −100 mV, 
100 mV, 200 mV (in the same order); (k-o) Iset = 150 pA, Vsample = 10 mV, Vexc = 1 mV. Data was acquired on sample A using (a-j) tip 2 and (k-t) tip 3.
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Extended Data Fig. 9 | additional raw data (without drift correction). (a-c) Topographs used in Fig. 4, and (d-f) corresponding Fourier transforms without 
drift-correction. STM setup conditions: (a-c) Iset = 100 pA, Vsample = 50 mV. Data was acquired on sample B using tip 4.
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