G-QUADRATIC, LG-QUADRATIC, AND KOSZUL
QUOTIENTS OF EXTERIOR ALGEBRAS

JASON MCCULLOUGH AND ZACHARY MERE

ABsTRACT. This paper introduces the study of LG-quadratic quotients
of exterior algebras, showing that they are Koszul, as in the commutative
case. We construct an example of an LG-quadratic algebra that is not
G-quadratic and another example that is Koszul but not LG-quadratic.
This is only the second known Koszul algebra that is not LG-quadratic
and the first that is skew-commutative.

1. INTRODUCTION

Let K be a field and let E = Ag(ei,...,e,) denote an exterior algebra
over K on n variables. The purpose of this paper is to investigate the Koszul
and G-quadratic properties of quotients of E. In the commutative setting,
we have the following implications:

quadratic GB = G-quadratic = LG-quadratic = Koszul = quadratic.

Each of these implications is strict; see |9, p. 292]. The third implication
is particularly interesting as there is only one known commutative Koszul
algebra that is not LG-quadratic due to Conca [8, Example 1.20].

Over an exterior algebra, we show that the same implications hold and
that all of them are strict. In particular, we introduce the notion of LG-
quadratic quotients of an exterior algebra and prove that they are Koszul
(Theorem . We construct an LG-quadratic quotient of an exterior al-
gebra that is not G-quadratic (Theorem , thus answering a question of
Thieu [30, Example 5.2.2]. We also construct a Koszul quotient of an exte-
rior algebra that is not LG-quadratic (Theorem . This is then only the
second such algebra and the first that is skew-commutative. It is also non-
obstructed, in the language of Conca |8, Example 1.21], meaning that there
are algebras defined by quadratic monomials with the same Hilbert function.
This is one reason for the difficulty in proving that our construction is indeed
not LG-quadratic.

One of the primary motivations for this paper comes from the theory of
Orlik-Solomon algebras of complex hyperplane arrangements, which are quo-
tients of exterior algebras. It follows from work of Peeva [25] and Bjorner
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and Zieglier [4] that a hyperplane arrangement is supersolvable if and only
if its Orlik-Solomon algebra has a defining ideal with a quadratic Grobner
basis (in a particular system of coordinates). It is an open question whether
there are Koszul Orlik-Solomon algebras arising from non-supersolvable ar-
rangements; see [28, Problem 82| and [29] p. 487].

The rest of this paper is organized as follows. Section |2] collects the nec-
essary notation and background results. In Section |3] we show that LG-
quadratic quotients of exterior algebras are Koszul. In Section [4 we con-
struct an LG-quadratic algebra (which is necessarily Koszul) that is not
G-quadratic. We first consider the depth of edge ideals associated to graphs
and construct our example as a quotient of an algebra defined by quadratic
monomials. In Section [5| we construct a Koszul algebra that is not LG-
quadratic. A final Section [6] collects some remaining relevant examples.

2. BACKGROUND

In this section we fix notation and recall some results from the literature.
Throughout this paper, let K denote a field and let V' be a K-vector space of
dimension n. Let ey, ..., e, denote a fixed basis of V and let E = A(V) =
Ax(e1,. .., en) denote the exterior algebra of V. We view E = @' (E; as a
skew-commutative, graded ring with deg(e;) =1 for 1 < i < n and with E;
denoting the K-span of the degree ¢ monomials in . An E-module is graded
if there is a K-vector space direct sum decomposition M = &@;M; such that
E;-M; C M;; for all integers ¢ and j. A monomial in E is an expression of
the form e;; Aej, A--- A ej,; we usually omit the wedge products and write
€i,€iy - - - €;, instead. An ideal generated by monomials is a monomial ideal.

2.1. Free resolutions, Hilbert series, Poincare series. Let R be a Z-
graded K-algebra, and let M be a finitely generated, graded R-module. The
Hilbert function of M is HF (M, ) = dimg(M;). Its generating series is the
Hilbert series HSp/(t) = >, HF (M, i)t". We recall that HSg(¢) = (14 ¢)™.

The module M has a minimal graded free resolution F, over R, where
F, =@, R(—j)P. Here R(—j) denotes a rank-one graded free R-module

with R(—j); = R;—j. The numbers Bg(M) are the graded Betti numbers of

M and are invariants of M. The ith total Betti number of M is BF(M) =
Zj /ij(M ). We may alternatively compute the Betti numbers of M as

BEL(M) = dimg Tor{'(M,K); and $;(M) = dimg Tor/'(M,K). Note that

most resolutions over E are infinite. The generating series of the total Betti

numbers is the Poincare series of M denoted Pif(t) = > >0 BE(M)t.

2.2. Depth, regular elements, and singular varieties. Let M be a

graded E-module. An element ¢ € E is reqular on M if
{meM | tm =0} =M.

Equivalently, ¢ € E; is regular if

M-1) 5 M5 M)
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is an exact sequence of graded E-modules.

If £ € Fy is not M-regular, we say that ¢ is M-singular. The set of M-
singular elements in FEp, denoted Vg(M), is called the singular variety of
M. The following theorem of Aramova, Avramov, and Herzog will be useful
when attempting to compute singular varieties (termed rank varieties in [1].)

Theorem 2.1 (|1, Theorem 3.1]). If the field K is algebraically closed, then
the singular varieties of finite graded E-modules M and N satisfy the follow-
ing properties:

(1) V(M) is a union of linear subspaces in Ej.
(2) If M C N, then each of Vg(M),Vg(N),Ve(N/M) is contained in

the union of the other two.

A sequence of elements f1,...,¢; is a regular sequence on M if ¢; is
regular on M/(¢q,...,4;—1)M for i = 1,...,d. The maximal length of a
regular sequence on M is the depth of M denotes depthy(M). Note that
depthy (M) > 0 if and only if Vg(M) # E;. Moreover, HSy(t) is divisible
by (1 + t)depthE(M).

The complexity of an E-module M is

exp(M) = inf{c € Z | BE (M) < ai®™! for some a € R}.

There is the following analogue of the Auslander-Buchsbaum theorem con-
necting depth and complexity.

Theorem 2.2 (|1, Theorem 3.2|). IfK is an infinite field and M is a finitely
generated E-module, then every mazximal reqular sequence has depthy (M)
elements and

depthp (M) + cxp(M) = n.

2.3. Grobner bases. Fix a monomial order < on F and a graded ideal
I C E. Denote the leading term of f € E by LT(f) and the set of monomials
of f with nonzero coefficients by Supp(f), called the support of f. The
initial ideal of I is in<(I) = (LT(f) : f € I). Then I has a unique reduced
Grobner basis g1, ..., gt € I; in other words, (LT (g1), ..., LT (gt)) = in<(I),
each leading coefficient is 1, and no monomial in Supp(g;) is divisible by
LT(g;) for any 1 < j <t. There is a Buchberger algorithm for computing
Grobner bases and we refer the reader to [16] for more details. In particular,
we use that HSg/(t) = HSg)in_(r)(t) [2, Corollary 1.2].

Just as with initial ideals over a polynomial ring, the graded Betti numbers
of a graded ideal over an exterior algebra can only go up when one passes to
the initial ideal. One can then prove the analogous result for depth.

Proposition 2.3. Let E be an exterior algebra and let I be a graded ideal
in E. Then depthy(E/in<(I)) < depthg(E/I).
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Proof. By |2, Proposition 1.8, 8;;(E/I) < B;j(E/in<(I)) for all 7,j. Hence
exp(E/I) =inf{c € Z | BF(E/I) < ai®™! for some a € R}
<inf{c € Z | BE(E/in<(I)) < i for some a € R}
=cxp(F/in(I)).
The claim then follows from Theorem [2.21 O

2.4. Koszul algebras and regularity. A positively graded K-algebra R
is said to be Koszul if its residue field K has a linear free resolution as an
R-module. Equivalently, R is Koszul if ﬂg(K) = 0 for i # j. For more
details about Koszul algebras, see |13]| and [26].

If R = E/I is a quotient of an exterior algebra E by some graded ideal I,
R is said to be G-quadratic if I has a Grobner basis consisting of quadrics
(homogeneous elements of degree 2) with respect to some coordinates on F;
and some monomial ordering on E. A result of Froberg [15] shows that if T is
a monomial ideal, then R is Koszul. It follows from a standard deformation
argument [13| that if R is G-quadratic, then R is again Koszul.

Lastly, R is LG-quadratic if there exists a G-quadratic algebra A and
a regular sequence of linear forms /¢y,..., ¢, such that R = A/((y,...,4,).
LG-quadratic algebras were studied in the commutative setting by Caviglia
[7], Avramov, Conca, and Iyengar 3] and others. We prove in the following
section that LG-quadratic quotients of exterior algebras are Koszul; it is im-
mediate from the definition that all G-quadratic algebras are LG-quadratic.
That the G-quadratic, LG-quadratic, and Koszul quotients of exterior alge-
bras are distinct classes constitutes the bulk of this paper. For related work
on Koszul algebras and exterior algebras, see [30], [31], |20], and [21].

3. LG-QUADRATIC ALGEBRAS

In this section we show that the Koszul property is preserved when killing
a regular element. As a consequence, we show that LG-quadratic quotients
of exterior algebras are Koszul.

We first recall the following change of rings spectral sequence.

Theorem 3.1 (|27, Theorem 10.73|). Let R — S be a graded map of graded
K-algebras, let M be a graded R-module, and let N be a graded S-module.
Then there exists a spectral sequence with second page

(E2)p,q = Torj (Torf{(M, S), N)
that converges to (as the total homology of a certain double complex)

Tor’t

5 (ML),

We show that, just as in the commutative case, LG-quadratic algebras are
Koszul.
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Theorem 3.2. Let E be an exterior algebra over K, let I C E be an ideal,
and let R = E/I. If ¢ € Ry is reqular, then R is Koszul if and only if
R=R/({) is Koszul. In particular, if R is LG-quadratic, then R is Koszul.

Proof. Apply the change of rings spectral sequence to the canonical quotient
map R — R, where M = N =K.

We can simplify the terms on the second page as follows.

First, we can compute Torf(K, R) by taking the R-free resolution

S R-2)L REDL RESR 0.

Tensoring with K, the maps become zero, so the gth homology is just K(—q).

Let Fy — K be a minimal graded free resolution of over R, and let F; =
Djez R(—7)%. Twisting preserves exactness, so Fo(—q) — K(—¢q) is also a
minimal graded free resolution over R. Tensoring with K, the maps become
zero, so the pth homology is

TOI“ ( @K Bp]

JEZ

Suppose R is Koszul. Then the bigraded Betti numbers Bi,; = 0 whenever
i # j, 50 (Fa)pq = K(—p — q)P»». The differential goes right two places and
down one, i.e. from K(—p — ¢q) to K(—p — ¢ — 1). Since the differentials are
degree-preserving, they must therefore be zero. Thus, the spectral sequence
collapses at the second page. Since there is a ﬁltratmn of Tor, +q(M ,N)
given by the terms (Eu)p ¢, We have

ptq
dimg Torp+q(M, N); = Z dimg K(—p q)ﬁp,p
i=0

which is zero whenever j # p + q. Hence R is Koszul.

Now suppose R is not Koszul. Then there exist numbers p, j > 0 such that
Bp,j # 0 and p # j. Since P, is minimal and graded, we must have j > p.
Assume p is minimal. Then the differential on page two of the spectral
sequence with target (Es)po comes from K(—p + 1)%». By grading, that
differential must be zero. Likewise, the differential on page two whose source
is (E2)p0 has (E2)py2,—1 = 0 as its target, so that map must also be zero. So
this term of the spectral sequence has stabilized, and the (E)p— -filtration
of TorJ/(K, K) gives us

dimg Tor (K,K); > dimg Tor (K,K); > 1
This proves that R is not Koszul either. O

A very similar theorem is proved by Conca, De Negri, and Rossi |9, The-
orem 3.2| in the commutative setting.
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4. DEPTH OF EXTERIOR EDGE IDEALS AND LG-QUADRATIC ALGEBRAS

Our first task is to construct an LG-quadratic quotient of an exterior
algebra that is not G-quadratic. A proposed example is given by Thieu
[30, Example 5.2.2(ii)|, however we show in Example [6.1] that while Thieu’s
example has no quadratic Grobner basis in a fixed system of coordinates,
it is a monomial ideal after a change of coordinates and hence G-quadratic
afterall. We construct a different example as a quotient of an algebra defined
by the edge ideal of a graph over an exterior algebra. We begin with notation
on edge ideals of graphs over the exterior algebra.

Let G = (V, F') denote a finite, simple graph on vertex set V = {1,...,n}
with edge set F'. Let E = Ag(e1,...,ey,) denote the corresponding exterior
algebra and let S = K|z, ..., z,] the corresponding symmetric algebra. We
define the symmetric and exterior edge ideals associated to G as follows:

Is(G) = ({wi; [{i,jy € F}) €5, 1e(G) = ({eie;[{i,j} € F}) C E.
Edge ideals over polynomial rings have been extensively studied (see e.g.
[23], [32], or [10]) while those over exterior algebras have received less atten-
tion; see e.g. |17]. More generally, monomial ideals over E were studied by
Aramova, Herzog, and Hibi |2] and by Aramova, Avramov, and Herzog [1].
For terminology on graphs, we refer the reader to [5].

First we collect two basic lemmas comparing the singular varieties of mod-
ules in extensions of the underlying exterior algebras.

Lemma 4.1. Let E = Ag(ei,...,e,) denote the exterior algebra on n vari-
ables and let M be an E-module. If E' = E ®g N\g(z) and M' = M ®p F,
then Vg (M') = Vg(M).

Proof. Note that as F-modules, ' = E® Ex and M/ = M & Mz. Let m' =
(a,bx) € M’ where a,b € M are homogeneous with deg(b) = deg(a) — 1.
Let ¢ = (¢,ax) € E{, where ¢ € E; is M-regular and o € K, and suppose
¢m’ =0. Then
O'm! = (Ca, tbx 4 (—1)38@aaz) = 0,
and both coordinates vanish. Since ¢ is M-regular and fa = 0, we have
a = la’ for some a' € M with deg(a’) = deg(a) — 1. Since
bz + (=1)%8Waaz = tbha + (—1)%8Dara’z = £(b+ (-1)3E@Dad’)z = 0,
we have b+ (—1)%e(@qaa/ = ¢b' for some b’ € M. Therefore
O(d Vx) = (bd 0V x + azxad)
= (a, (b+ (—1)%8@qg )z + (—1)%8@) ad’z)
= (a,br) =m/.

Therefore ¢ is M’-regular.

Conversely, suppose ¢ = (¢,ax) is M’-regular. Suppose fa = 0 with
a € M. Then ¢'(a,0) = 0 and so (a,0) = ¢(¢,dx), for some ¢,d € M. In
particular, £c = a, showing that ¢ is M-regular. The claim then follows. [
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Lemma 4.2. Let E = \g(e1,...,ey,) denote the exterior algebra on n vari-
ables and let M be an E-module. If E' = E ®x N\g(z) and M' = M ®F
E'/(x), then V(M) = |J, spang (A; U{x}), where V(M) = |, spang (4;).

Proof. We use that as E-modules, B/ = E® Ex and M’ = M. Let m € M
and ¢/ = ({,ax) € E, where ¢ € Ey and o € K. Tt is clear that 'm = ¢m,
and thus ¢ is M-regular if and only if £ is M-regular. The claim follows. [

Next we compute the depth and singular variety of the edge ideal of a
path. The corresponding result over the polynomial ring is well-known.

Proposition 4.3. Let P, denote the path graph on n vertices, and let E =

Nk (€1, ... en) be the corresponding exterior algebra.
(1) If n =1(mod 3), then depthp(E/Ig(P,)) =1 and
ln/3]
Vi(B/Ip(P) = | spamgler,...&mh,- . en)
1=0

where €; denotes that e; is omitted. In particular, ZZLZ{)SJ €3i+1 1S @
reqular element on E/Ig(P,).

(2) Ifn # 1 (mod 3), then depthg(E/Ig(P,)) =0 and Vg(E/Ig(P,)) =
Fy.

Proof. We proceed by induction on n. If n = 1, then I = (0), E/I =
E = N\g(e1), and Vg(E/I) = Ey. If n = 2, then I = (eje2) and E/I =
Ak (e1,e2)/(ere2), so that xy = 0 for all z,y € E;. Hence there are no regular
elements on E/I and Vg(E/I) = E;. If n = 3, then I = (ejeq, eze3) C
Ak (ei, e, es), and I : ea = (e1, ez, e3). Again there are no regular elements
and VE(E/I> = El.

Now suppose n > 4 and that the proposition holds for smaller n. Let
I = I(P,) = (eieg,eze3,...,en_16,) C E. Let J = Ig(P,—1)E. One
computes that J : (ep—1€n) = Ip(Pn—2)E + (en—2,€n—1,€,). We have the
following short exact sequence of E-modules:

0— E —>E—>E—>O
J: (en—1en) J I '

Note that E/J = A% @y Ay (e,) and B/(J : (en-1e0)) = Defip=totl oy

/\K<en—27en—1:€n>
(en—27en—175n)

Ifn =1 (mod 3), then by induction and Lemmat.1} Vg(E/J) = spang (e1, . . ., €p—1)-
Similarly, by Lemma [4.2]

[n/3]-1
VE(E/(J : (en—1€4))) = U SPANK (€1, - -+, €3i11y--+sCn_3, €n—2,€n_1,En)-
i=0

Since none of the components of Vg (E/J) and VE(E/(J : (en—1e,))) contain
each other, it follows from Theorem [2.1[2) that Vg(E/I) = Vg(E/J) U
VE(E/(J : (én—1e,))) and the conclusion follows.
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If n = 2(mod 3), we use the same short exact sequence as above, but
in this case, Lemmas and combined with the induction hypothesis
imply that Vg(E/(J : (en—1e,))) = E1, while Vg(E/J) # E;. Again, by
Theorem [2.14), we have Vg(E/I) = Vg(E/J)UVE(E/(J : (én-1e,))) = Ei.

Finally, if n = 0 (mod 3), we consider the following short exact sequence
of E-modules:

. — £ — v —0

I:e, 1 I+ (en) ’

As B/(I+ (en) = Alens-oren 1)/ T5(Pa1) @i Aglen/(en), we have
Ve(E/(I+ (e,)) = E1 by induction and Lemma [4.2] One computes that I :

en = (e1€2,...,en—3€n—2,€n_1,€p),andso E/(I : ey) = Agle1,...,en—2)/I1p(Ph—2)®K
Nk (€n—1,€n)/(en—1,€n), and thus Vg(E/(I : e,)) # E1 by Lemma and

the inductive hypothesis. Finally by Theorem 2), we get Vp(E/I) =

E;. O

0—

If we consider the commutative edge ideal Ig(P,) in a polynoial ring S =
Klz1,...,xp], then depthg(S/Is(P,))) = [%] (see e.g. |11} Corollary 5.10]),
and we see that depthg(S/Is(G)) — depthy(E/Ig(G)) can be arbitrarily
large.

The previous result will be used to construct an LG-quadratic ideal that
is not G-quadratic. First, we need the following result on Hilbert func-
tions, which could be checked by brute force, computing the Hilbert series
of E/Ig(G) for each graph with 6 vertices and 6 edges. We give a more
conceptual argument.

Lemma 4.4. There is no graph G such that HSg1, () (t) = 1+6t+9t2 413,

Proof. The nth coefficient on the Hilbert series of a graph is the number of
independent sets of G of size n. So if G is a graph with such a Hilbert series,
then it must have 6 vertices, (g) —9 = 6 edges, and precisely one set of three
vertices such that no two of them are adjacent.

Suppose we have a graph G on 6 vertices where {a, b, c} is the lone inde-
pendent set.
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That leaves 9 potential edges with one vertex in {a,b,c} and the other in
{d,e, f} (colored red), and three with both vertices in {d,e, f} (colored
black). Since we want G to have 6 edges, we have to eliminate 6 of the
potential edges.

However, we can eliminate no more than three of the red edges; otherwise,
two of the eliminated edges would share a vertex in {d, e, f}, creating another
independent set (the shared vertex and the two from {a, b, c} corresponding
to the other endpoints of those two edges).

But then we would be forced to eliminate all three black edges, making
{d, e, f} a second independent set. In any case, it is impossible for G to have
precisely one independent set of size 3. (]

We can now construct our example as a quotient of an edge ideal algebra.

Theorem 4.5. There exist LG-quadratic quotients of exterior algebras that
are not G-quadratic.

Proof. Consider the graph P7, a path of length 7, with corresponding edge
ideal
I(Pr) = (e1e2, e2e3, €364, €4€5, €5€6, €6€7).

A quick computation shows that
HSp /1Py (t) = 1+ Tt 4+ 15¢% + 10t% + t* = (1 + 6t + 9¢% + %) (1 + 1).

(The first three terms are clear. That HF(E/Ig(Pr),3) = 10 follows from the
fact that there are 10 independent sets of size 3 in P; and HF(E/Ig(P7),4) =
1 since there is one independent set {x1,x3,x5,z7} of size 4.) By Proposi-
tion depthy(E/Ig(P;)) = 1 and e; + e4 + e7 is a regular element on
E/Ig(P;). Thus by definition,

E ~ /\K<617627€3a€47€5>€6>

~ Ig(Pr)+(er+ester)  (e1ea, ezes, eseq, eses, eseq, e(e1 + €a))
is LG-quadratic and hence Koszul by Theorem Moreover, HSg(t) =
1+6t+9t2+t3. If R were G-quadratic, there would be a quadratic monomial

ideal J corresponding to a graph on 6 vertices with the same Hilbert series,
but this is impossible by Lemma Therefore R is not G-quadratic. O

Remark 4.6. This construction gives a simpler proof that the algebra B(0) of
Shelton and Yuzvinsky from [29, Example 5.2| is Koszul. There the authors
define

B(0) = \\ x(z1, 72, 3, 24, 25, x6) / (2176, Toa, T3T5, 1124, T2T5, (24 — 23)T6)

as a certain deformation of an Orlik-Solomon algebra of a hyperplane ar-
rangement. They use a complicated Koszul duality argument to show that
it is Koszul. Here we recover this by recognizing B(0) as R from Theorem
under the identification:

€1 <> —Xx3, €9 <> T5, €3<>rT2, €4<> T4, €5<rT1, €Eg<>Tg.
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5. A KOSZUL QUOTIENT OF AN EXTERIOR ALGEBRA WHICH IS NOT
LG-QUADRATIC

In the case of commutative algebras, Conca [8] has shown that not every
Koszul algebra is LG-quadratic. As of this writing, this is the lone example
of a Koszul algebra that is not LG-quadratic.

Example 5.1 (|8, Example 1.20]). Consider the polynomial ring Kla, b, ¢, d]
and the ideal I = (ac,ad,ab — bd,a® + be,b?). That the quotient ring
R = S/I is Koszul follows from a filtration argument. That R is not LG-
quadratic follows by showing that no quadratic monomial ideal has the same
h-polynomial. This example negatively answered a question of Caviglia |7,
Question 1.2.6]. See also |3, Question 6.4] and [9, Question 2.12].

The authors were motivated to answer the following parallel question:

Question 5.2. s there a Koszul quotient of an exterior algebra that is not
LG-quadratic?

The purpose of this section is to answer this question in the affirmative.
One distinction between our construction and that of Conca is that our
example is non-obstructed — that is, there exist quadratic monomial ideals
with the same Hilbert function as our example. Thus it takes significant
work to show that the example we construct is not LG-quadratic.

To prove Koszulness, we take advantage of the following result of Froberg
and Lofwall:

Theorem 5.3 (|14, Theorem 10.2|). Let K be a field of characteristic 0,
let E = N\g(e1,...,en), and let I = (f1,..., fi) be an ideal generated by t

generic quadrics. If t > (g) — %2, then E/I is Koszul.
The primary goal in this section is then to prove the following result.

Theorem 5.4. Let E = A\g(e1,...,e6). Consider anideal I = (f1,..., fs) C
E generated by 6 generic quadrics. Then E/I is Koszul but not LG-quadratic.

The proof of this theorem will require several steps, which we now summa-
rize. That such an ideal is Koszul follows from Theorem [5.3] We show that
all quadrics in such an ideal have rank at least 4 by computing the height
of the ideal of 4 x 4 minors of a generic alternating matrix. The Hilbert
series for the ideal of 6 generic quadrics in 6 exterior algebra variables is
1+ 6t 4 9t2 = (1 + 3t)2. If this ideal defined an LG-quadratic algebra, then
since Hilbert functions are preserved when passing to the initial ideal, there
would be a graph G on n > 6 vertices with 6 edges whose edge ideal would
have Hilbert series (1+3t)2(1+4¢)"~5. If there were no such graphs, we would
be done. However, there are three such graphs, ignoring isolated vertices.
Finally we must check that for each graph G, if I is an ideal with initial ideal
in<(I) = Ig(G), then I must contain a rank 2 quadric. This step is long
and technical since we cannot make assumptions about the monomial order
itself. Since the rank of a quadric can only go down after killing a linear
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form, we conclude that the ideal of 6 generic quadrics in 6 variables cannot
be LG-quadratic.

The idea to consider the ranks of the quadrics defining a G-quadratic
algebra is inspired by a result of Eisenbud, Reeves, and Totaro |12, Theorem
19]; however, their result gives a bound on rank in terms of the codimension
on a polynomial ideal and the number of variables. We need a stronger
statement in the exterior algebra setting. First we prove a lower bound on
the rank of quadrics in ideals generated by generic quadrics in an exterior
algebra.

Aclet, ... en) be an ideal generated by t generic quadrics. Then rank(q) >
n—2r+1)(n—2r+2)
5 .

Proposition 5.5. Fix positive integers n,r,t. Let I = (f1,...,f;) C E

2r for all nonzero quadrics q € I if and only if t < (

Proof. First we identify a quadric ¢ = ) ,_. o je;e; with the point p =

[a12 @ -+ ap—1,) in the projective space P = IP’(%)A, so that ¢ = eAe',
where A is the alternating n x n matrix with (7, j) entry %ai,j if ¢ > j and
—%am- if j > i, and 0 along the diagonal. Then rank(q) < 2r if and only if
p € V(J), where J is the ideal of (2r) x (2r) minors of a generic alternating
n xn matrix X. It follows from |6, Corollary 2.6] that v/.J = Pfo,(X), where
Pf,.(X) denotes the ideal of (2r) x (2r) Pfaffians of X. By [19, Corollary
2.5, codim(J) = codim(Pfa(X)) = (=2rtl)n=2rt2)

A choice of t generic quadrics corresponds to a choice of ¢ generic points
from P, whose span is a linear space L of dimension ¢ — 1. Thus if ¢t <
(”_2r+1)2(n_2r+2), then LNV (J) = @. The result follows. O

Corollary 5.6. If I = (f1,...,fs) € E = Ac(e1,...,e6) an ideal generated
by generic quadrics, then every nonzero quadric in I has rank at least 4.

1<j

Proof. We apply the previous proposition with n =6, r=2and t=6. O

Corollary 5.7. If q1,q2 € Nc(e1, ez, e3,e4) are linearly independent quadrics,
then there is a quadric q € (q1,q2) with rank(q) = 2.

Proof. We argue as in the proof of Propostion The subvariety of P(BC
corresponding to the space of rank at most 2 quadrics corresponds to the
hypersurface X = V(2 2234 — 21,3224+ 21 422,3). Two linearly independent
quadrics correspond to a line L which must intersect X in at least one point.

]

Next we consider edge ideals of graphs that have the right Hilbert series to
match an LG-quadratic lift of the ideal of six generic quadrics in six variables.
We will eventually show that none of these can possibly be the initial ideal
of an ideal of quadrics of large rank.

Lemma 5.8. Let G be a graph on n vertices and let E = Ac(e1,...,en)
denote the corresponding exterior algebra. If HSp/r,q)(t) = (1 + 3t)2(1 +
)78, then G must be one of the following graphs. The number of isolated
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vertices in graphs of class (i) is given by n — 5 — i, represented below by
discrete nodes to the right.

COAN e

(2)

| o o ® &---0

(3)
o000

o0 0 °

In particular, G has no vertex of degree greater than 2.

For the proof, we will need the following lemma. To simplify notation,
we write HS(G) for HSg(E/Ig(G)), where G is a graph on n vertices and

E = A\c(er, ... en).
Lemma 5.9. If G = G1 U Gs, then HS(G) = HS(G1) - HS(G2).

Proof. Let Fn, E5 denote the corresponding exterior algebras for G; and Ga,
respectively so that £ = F1 ®c F2. The statement follows from the fact that
El/IEl(Gl) ®(CE2/IE2(G2):E/IE(G). O

Proof of Lemma[5.8. Recall that the coefficient on " in HS(G) is the number
independent sets of G of size n.

Let n = 6, so HS(G) = (1 + 3t)2. If G has more than one connected
component, then the Hilbert series of each component must be 1+ 3¢, which
corresponds to a graph on three vertices with three edges, i.e. a triangle.
Suppose G is connected. It cannot be a tree, since it has six vertices and six
edges, so there must be a cycle. It is easy to eliminate the six graphs with
six edges on six vertices with a cycle of length four or greater by calculating
their Hilbert series, because they all have independent sets of size 3. So,
there exists a 3-cycle in G. Let’s call it ajasas, and label the remaining
vertices b, c,d. Without loss of generality, bc is an edge since there must
be an edge among b,c,d. There must also be an edge among a;,b,d for
all ¢ since {a;,b,d} is not independent, but the only possibility with two
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remaining edges is bd. The same argument for a;, ¢, d shows that c¢d must be
an edge. This completes the proof for this case.

Let n = 7, so HS(G) = (1 + 3t)%(1 +t). If G is connected, then it is a
tree on seven vertices. We can classify these trees by girth, i.e., the maximal
length of a path in G. There is only one such tree of girth m = 2, obtained
by connecting one vertex to all other vertices, but its Hilbert series has
the wrong coefficient on ¢*. For girth at least three, consider the following
pictures.

, N N

If m = 3, then there is an induced path of length three as above and the
remaining edges must be chosen among the dashed lines. There cannot be an
edge among the three vertices in the bottom row since that would produce
a path of length at least four. In any case, the four red square vertices form
an independent set, which means this graph has the wrong Hilbert series.

o N o N

= e

If m = 4 and the two remaining vertices are connected, then the above
graph is the only possibility, and its Hilbert series has the wrong coefficient
on t* as shown by the red square vertices.

If m = 4 and the two remaining vertices are not connected, then the rest
of the edges must be chosen from the dashed lines above, and in any case
the four red square vertices will have no edges between them.

~ - N Vi -

If m = 5, the remaining edge must be one of the dashed lines, but then
the three red square vertices and one of the green pentagon vertices will form
an independent set of size 4.

If m = 6, then G is a simple path on seven verticesa—b—c—d—e— f—g,
and a,c, e, g is an independent set.

Thus, G is not connected, i.e. G = G U Go. It is worth noting that if
any graph has Hilbert series (1 4 t)*, then that graph is k isolated vertices
(with no edges). This allows us to perform induction if we find a connected
component with such a Hilbert series. The only way to factor (1+3t)?(1+t)
into two polynomials such that neither is 1 4+ ¢ is HS(G1) = 1 + 3t and
HS(G2) = (14 3t)(1 +t). Then G is a triangle as shown above, and G is
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a graph on four vertices with three edges. If we assume G has no isolated
vertices (which would reduce to the case n = 6), then G is connected, hence
a tree. There are only two trees on four vertices, and the only one with the
right Hilbert series is the simple path a — b — ¢ — d.

Let n = 8. The Hilbert series indicates that G has eight vertices and six
edges, so it must have at least two connected components G = G1LIGs. The
only way to factor HS(G) = (1 + 3t)%(1 + t)? into two polynomials so that
neither is a power of 1+¢ (hence isolated vertices and reduction to a case on
fewer vertices) is HS(G;) = (1 + 3t)(1 + ¢) for ¢ = 1,2. But then, as shown
above, G; either has isolated vertices or is the simple path on four vertices.

Let n > 9. Then G has at least nine vertices and exactly six edges, which
implies at least three connected components. There is no way to factor
(1+3t)2(1+¢)"% into three polynomials such that none is a power of 1+,

so this reduces to one of the earlier cases. ([
As above, to a quadratic form ¢ € E = Aq(e1,...,ey,), we associate an
n X n alternating matrix A so that
q=eAe’,

where e = (e1,...,e,). The rank of ¢ is then rank(q) = rank(A). It is well-
known that the rank of an alternating matrix must be even |18, Corollary 1,
p. 351], say rank(q) = 2r, and that after a change of variables, we can write
T
q= 2627“—1627“-
i=1

As we are interested in Grobner bases, which are sensitive to changes of
coordinates, we need the following lemma. Note that when ¢ € E7, we write
e; > L if e; > e; for all variables e; € Supp(¥).

Lemma 5.10. Let g € E = A\g(e1,...,en) be a quadric of rank 2r and fix
a monomial order < on E. Then

q=ai(ei, +la)(ej +l2) + -+ arlei, + 1)(e5, + br2),
where aq,...,0p € C*, €;,...,¢€;.,€j,...,¢€j are distinct variables, {s; €
Ey with support disjoint from {e;,,... € ,€j,... €5} and with e;, > ls
and ej, > lso for all1 < s <r, and

€j1€j; > €ip€jy > - > €65, .
Proof. First note that any such ¢ as above has rank 2r. We proceed by
induction on 7. Let e;, e;, be the initial monomial of a rank 2r quadric ¢ so

that ¢ = ane;ej, + ¢/, with p € C* and all terms in ¢’ smaller than e;, e, .
By grouping terms divisible by either e;, or ej;,, we can rewrite this as

q=oa(ei, +lia)(ej, +l21) + 4",

where ¢" = —a;41 141 2+ ¢/, and all variables in the supports of ¢; 1 and ¢; 2
are smaller than e;, and e;,, respectively. In particular, the variables e;; and
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ej, are not in the support of ¢” and so rank(q”) = rank(q) —2. Applying the
inductive hypothesis to ¢”, the result follows. O

The most technical part of the proof is showing that any ideal whose
initial ideal matched the edge ideals from Lemma must contain a rank 2
quadric, which is precisely the following lemma.

There is one subtle point that deserves mentioning; when writing the rank
4 quadric g = ejeg + ejes + egey in the form of the previous lemma, we have
q = (e1 — eq)(e2 + e3) — esgeyq, but esey is not in the support of ¢. Care must
be taken with the arguments when this occurs. However, we may sometimes
avoid this problem. Given a quadric ¢ as in the previous Lemma, since
ei;, > f1,1, we can make the change of variables e;, + e;, — 11 without
changing the initial ideal. Continuing in this way, we may always assume
that one quadric in a Grobner basis has the following simpler form

q = o€4,€5, + -+ arej e
After another change of variables we may assume that a; = 1 for all 4.

Lemma 5.11. Let G be one of the three graphs from Lemmal[5.8. If I C is
a graded ideal and < is a monomial order such that in.(I) = Ig(G), then
there is a rank 2 quadric in I.

Proof. We may assume that I has a reduced Grobner basis of quadrics of
rank at least 4, or else we are done.

Claim 1: in<(I) = Ig(G), where G is the graph from Case (1) from
Lemma [5.8

Let ¢ denote one of the elements of the reduced Grébner basis with leading
term wz. By Lemma (and remarks afterward), we can write ¢ = wx +
yz + ---, where wx > yz are distinct variables, ¢1,...,¢4 € E; and w >
by, > lo,...,z > £4. Multiplying q¢ by w or z, we see that wyz,zyz €
in<(I). As yz € Supp(q), we have yz ¢ in.(I). Therefore either wy €
in<(I) or wz € in<(I). Similarly zy € in-(I) or xz € in<(I). We conclude
that each vertex of G with degree at least one actually has degree at least 2.
The only possibility for G is Case (1) from Lemma

At this point we may assume that in(I) = (wv, uw, vw, 2y, x2,yz).

Claim 2: The Grobner basis of I contains no quadric ¢ with rank(q) > 6.

Suppose I has a rank > 6 quadric ¢ in its reduced Grobner basis. After
a linear change of variables that does not change the initial ideal, we may
assume that ¢ has the form ¢ = uwv + wa 4+ bc + - - -, where u, v, w, a, b, c are
distinct variables. Taking multiples of ¢ we see that wabc,vabe € in<(I),
which forces ab € in(I) or ac € in<(I). Without loss, we may assume
q has the form ¢ = uv + wz + yc + ---, where ¢ ¢ {u,v,w,x,y,z}. (If
¢ € {u,v,w,z,y, 2z}, the only choice would be ¢ = z, in which case yz would
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be both the initial monomial of a term in the reduced Grébner basis of
I and in the support of ¢, a contradiction.) Replacing the other quadrics
by their initial terms does not change the Hilbert function and so I’ =
(uw, vw, xy, xz,yz, q) has the same Hilbert function as I. Taking the initial
ideal of I', we see that I" := (uv,uw,vw, zy, xz,yz, uryc,vryc) < in(I').
A calculation shows that the Hilbert series of E'/I" = 1 + 7t + 15t% + 8t3,
where E' = N\g(c,u,v,w,z,y,2), while (1+3t)3(1+¢t) = 1+ 7t + 15> + 9¢3.
Therefore, the Hilbert Series of E/in<(I) is too small, and we conclude that
the reduced Grobner basis for I consists of rank 4 quadrics.

Claim 3: The reduced Grobner basis of I contains a quadric of the form
xy + za, where in<(I) = (wv,vw,vw, zy,xz,yz) and a ¢ {u,v,w,z,y, z}.

Suppose this is not the case. Then each of the six quadrics in the Grébner
basis of I has the form (a4 €)(b+ ¢') 4+ (¢ + £")(d + ¢""), where {a,b,c} =
{u,v,w} and d € {z,y, z} or {a,b,c} = {x,y, 2z} and d € {u,v,w}. Without
loss, we may assume that v > v > w and > y > z. One of the quadrics
then has the form (y + £)(z +¢') + (x + £")(d + £"), with £,¢', 0" 0" € Ey,
d € {u,v,w} and yz > xd. As z > y > z, we must have z > d > w.
Another quadric has the form (v + m)(w +m') + (u +m”)(f + m™), with
m,m’,m"” . m" € By, f € {x,y,2} and vw > uf. This forces w > f > z,
which contradicts that z > w. This finishes the proof of Claim 3.

Claim 4: I contains a rank 2 quadric.

By Claim 3, I has a quadric of the form ¢ = zy+za, with a ¢ {u,v,w,z,y, z}.
A second quadric has the form ¢ = (x +n)(z +n') + (y + n")(d + n""),
where n,n’,n”,n'" € Ey and d is a variable distinct from z, vy, z. Considering
xq — ¢'a, the possibly nonzero leading terms are zn’a, nza, yda,yn" a,n"da.
By our assumptions no monomial from in.(I) can divide any of these and
thus they are all zero. This forces ¢,n,n’,n”, n” € (a). Tt follows that
¢, ¢ are linearly independent quadrics in Ag(z,y, z,a). By Corollary 1
contains a rank 2 quadric. O

Example 5.12. The hypotheses of the previous lemma cannot be weakened
considerably. Consider the ideal

I = (e1ez2+e3eq, e1e3+egeq, eae3 +e1e4, €566 + €7€g, ese7 +eges, eger +eses),

in E = Ag(e1,...,es). It is clear that all 6 generators of I have rank 4 and
that they form a reverse lexicographic Grobner basis of 1. The initial ideal
iNyeviex(I) = Ip(G), where G is the graph from Case (1) in Lemma . Note
that there is a rank 2 quadric in I:

(6162 + 6364) + (6163 + 6264) = (61 + 64)(62 — 63) el

This is in some sense a limiting case later in the proof.
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Now that we have all of the ingredients, we can complete the proof of
Theorem [5.4]

Proof of Theorem [5.4. That E/I is Koszul follows from Theorem It fol-
lows from [14, Theorem 10.5] that the Hilbert series of E/I is HSg/;(t) =
1 + 6t + 9t2. Suppose I is LG-quadratic. Then there is an ideal J C
E" = A¢(W1,--.,yn) equipped with a monomial order < such that J has
a quadratic Grobner basis and there is a regular sequence £ = f1,...,04
on E'/J such that E'/(J 4 (£)) = E/I. 1t follows that HSp ;(t) =
(14+6t+9t3)(14¢)"~5. Then in.(J) = I(G) for one of the three graphs from
Lemma By Lemma [5.11, J contains a rank 2 quadric. Since rank can
only go down when we kill a regular element, I contains a rank 2 quadric.
This contradicts Proposition [5.6] and the result follows. g

Remark 5.13. In light of this example, it is reasonable to ask if one can
construct similar examples of commutative Koszul algebras that are not LG-
quadratic. Indeed, Froberg and Lofwall proved [14, Theorem 7.1] that if
A =Kz, ...,z,]/I, where I is generated by t generic quadrics, then A is
Koszul if and only if t < n or t > n?/4 + n/2. The first case corresponds
to generic complete intersections which are known to be LG-quadratic |8,
Remark 1.19]. The second case is similar to the setting considered here.
One could compute a lower bound on the ranks of the quadrics in I by
computing the codimension of the appropriate ideal of minors of a generic
symmetric matrix. However, it is not clear what one can say about the ranks
of quadrics appearing in a quadratic Grobner basis can be in a polynomial
ring. The results in [12] depend on the number of variables, which makes
arguments relating to the LG-quadratic property difficult.

6. EXAMPLES

In this section we collect examples to compare quadratic ideals over exte-
rior algebras. In particular, we have the following implications for quadratic
quotients of an exterior algebra E/I:

quadratic GB = G-quadratic = LG-quadratic = Koszul = quadratic.

The first two implications follow from the definitions. The third implication
is a consequence of Theorem The last implication is well-known [13].

Theorems [4.5] and show that the second and third implications are
strict, respectively. The examples below show that the remaining implica-
tions are strict as well.

Example 6.1. A G-quadratic ideal that has no quadratic Grébner
basis in the given coordinate system

This example is due to Thieu |30, Example 5.2.2.ii|, who shows that it is
Koszul via a filtration argument and asks whether it is G-quadratic. We
include a shorter proof of Koszulness here by showing that it is G-quadratic.
Fix a field K with char(K) # 2. Let E = Ag(e1,e2,e3,e4) be a 4-variable
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exterior algebra and consider I = (ejes — esey, e1e3 — egeyq). First we show
that I has no quadratic Grébner basis with respect to any monomial order.
Indeed, fix a monomial order < and observe that the initial terms of the
generators of I with respect to < are (e;ej, e;e;) for some distinct integers
1 <i,j,k < 4. Tt is clear that I3 = (eq, e, e3,e4)3, while not every degree
3 monomial in E is in (e;ej, ejer). Therefore I has no quadratic Grébner
basis. However, since the char(K) # 2, we have

I = ((e1e2 — ezeq) + (e1e3 — e2eq), (e1€2 — e3eq) — (e1€3 — e2e4))
= ((e1 +ea)(e2 +e3), (e1 — eq)(e2 —€3)).
Thus after a linear change of variables, I becomes a quadratic monomial

ideal, which is obviously G-quadratic.

That there are quadratic quotients of an exterior algebra that are not
Koszul is well known. This is true even when the defining ideal is principal.

Example 6.2. A quadratic principal ideal that is not Koszul This
example is due to Nguyen [24] and is derived from [22]. We include a proof
here for completeness. Let £ = Aq(e1,e2,e3,e4) and let I = (e1ez + ezey).
One checks that the Hilbert series of E/I is HSg,r(t) = 1+ 4t + 5t2. If EB/I

were Koszul, then by [13, Definition-Theorem 1| its Poincare series would be

1
Pg(t) = HSp/1(—1)

which has a negative coefficient. Therefore E/I cannot be Koszul.

=14 4t + 1162 4 243 + 41¢* + 4445 — 29¢5 . . . |

ACKNOWLEDGEMENTS

The authors thank Aldo Conca for useful conversations. The first author
was supported by NSF grant DMS-1900792.

REFERENCES

1. Annetta Aramova, Luchezar L. Avramov, and Jiirgen Herzog, Resolutions of monomial
ideals and cohomology over exterior algebras, Trans. Amer. Math. Soc. 352 (2000),
no. 2, 579-594. MR 1603874

2. Annetta Aramova, Jiirgen Herzog, and Takayuki Hibi, Gotzmann theorems for exterior
algebras and combinatorics, J. Algebra 191 (1997), no. 1, 174-211. MR 1444495

3. Luchezar L. Avramov, Aldo Conca, and Srikanth B. Iyengar, Free resolutions over
commutative Koszul algebras, Math. Res. Lett. 17 (2010), no. 2, 197-210. MR 2644369

4. Anders Bjorner and Giinter M. Ziegler, Broken circuit complexes: factorizations and
generalizations, J. Combin. Theory Ser. B 51 (1991), no. 1, 96-126. MR 1088629

5. J. A. Bondy and U. S. R. Murty, Graph theory with applications, American Elsevier
Publishing Co., Inc., New York, 1976. MR 0411988

6. David A. Buchsbaum and David Eisenbud, Algebra structures for finite free resolu-
tions, and some structure theorems for ideals of codimension 3, Amer. J. Math. 99
(1977), no. 3, 447-485. MR 453723

7. Giulio Caviglia, Koszul algebras, Castelnuovo-Mumford regularity, and generic initial
tdeals, ProQuest LLC, Ann Arbor, MI, 2004, Thesis (Ph.D.)-University of Kansas.
MR 2706685



10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

KOSZUL QUOTIENTS OF EXTERIOR ALGEBRAS 19

. Aldo Conca, Koszul algebras and their syzygies, Combinatorial algebraic geometry,

Lecture Notes in Math., vol. 2108, Springer, Cham, 2014, pp. 1-31. MR 3329085

. Aldo Conca, Emanuela De Negri, and Maria Evelina Rossi, Koszul algebras and reg-

ularity, Commutative algebra, Springer, New York, 2013, pp. 285-315. MR 3051376
Hailong Dao, Craig Huneke, and Jay Schweig, Bounds on the reqularity and projective
dimension of ideals associated to graphs, J. Algebraic Combin. 38 (2013), no. 1, 37-55.
MR 3070118

Hailong Dao and Jay Schweig, Projective dimension, graph domination parameters,
and independence complex homology, J. Combin. Theory Ser. A 120 (2013), no. 2,
453-469. MR 2995051

David Eisenbud, Alyson Reeves, and Burt Totaro, Initial ideals, Veronese subrings,
and rates of algebras, Adv. Math. 109 (1994), no. 2, 168-187. MR 1304751

R. Froberg, Koszul algebras, Advances in commutative ring theory (Fez, 1997), Lecture
Notes in Pure and Appl. Math., vol. 205, Dekker, New York, 1999, pp. 337-350.
MR 1767430

R. Froberg and C. Lofwal, Koszul homology and Lie algebras with application to
generic forms and points, Homology Homotopy Appl. 4 (2002), no. 2, part 2, 227-258,
The Roos Festschrift volume, 2. MR 1918511

Ralph Froberg, Determination of a class of Poincaré series, Math. Scand. 37 (1975),
no. 1, 29-39. MR 404254

Jirgen Herzog and Takayuki Hibi, Monomial ideals, Graduate Texts in Mathematics,
vol. 260, Springer-Verlag London, Ltd., London, 2011. MR 2724673

Andrew H. Hoefel, Gotzmann edge ideals, Comm. Algebra 40 (2012), no. 4, 1222-1233.
MR 2912980

Nathan Jacobson, Basic algebra. I, second ed., W. H. Freeman and Company, New
York, 1985. MR 780184

Tadeusz Jozefiak and Piotr Pragacz, Ideals generated by Pfaffians, J. Algebra 61
(1979), no. 1, 189-198. MR 554859

Gesa Kampf and Martina Kubitzke, Notes on symmetric and exterior depth and
annihilator numbers, Matematiche (Catania) 63 (2008), no. 2, 197-211 (2009).
MR 2531662

, Exterior depth and exterior generic annihilator numbers, Comm. Algebra 40
(2012), no. 1, 1-25. MR 2876285

Jason McCullough, Stillman’s question for exterior algebras and Herzog’s conjecture
on Betti numbers of syzygy modules, J. Pure Appl. Algebra 223 (2019), no. 2, 634-640.
MR 3850562

Susan Morey and Rafael H. Villarreal, Edge ideals: algebraic and combinatorial prop-
erties, Progress in commutative algebra 1, de Gruyter, Berlin, 2012, pp. 85-126.
MR 2932582

Hop D. Nguyen, Koszul hypersurfaces over the exterior algebras, arXiv:1406.0489,
2014.

Irena Peeva, Hyperplane arrangements and linear strands in resolutions, Trans. Amer.
Math. Soc. 355 (2003), no. 2, 609-618. MR 1932716

Alexander Polishchuk and Leonid Positselski, Quadratic algebras, University Lecture
Series, vol. 37, American Mathematical Society, Providence, RI, 2005. MR 2177131
Joseph J. Rotman, An introduction to homological algebra, second ed., Universitext,
Springer, New York, 2009. MR 2455920

Hal Schenck, Hyperplane arrangements: computations and conjectures, Arrangements
of hyperplanes—Sapporo 2009, Adv. Stud. Pure Math., vol. 62, Math. Soc. Japan,
Tokyo, 2012, pp. 323-358. MR 2933802

Brad Shelton and Sergey Yuzvinsky, Koszul algebras from graphs and hyperplane ar-
rangements, J. London Math. Soc. (2) 56 (1997), no. 3, 477-490. MR 1610447




20

30.

31.

32.

J. MCCULLOUGH AND Z. MERE

Phong Dinh Thieu, On graded ideals over the exterior algebra with applications to hy-
perplane arrangements, Institutionelles repOSitorium der Universitat Osnabrck, 2013,
Thesis (Dr. rer. nat.)—Universitdt Osnabriick. MR 2706685

, Universally Koszul and initially Koszul properties of Orlik-Solomon algebras,
J. Algebra Appl. 19 (2020), no. 11, 2050218, 21. MR 4141687

Adam Van Tuyl, A beginner’s guide to edge and cover ideals, Monomial ideals, com-
putations and applications, Lecture Notes in Math., vol. 2083, Springer, Heidelberg,
2013, pp. 63-94. MR 3184120

Iowa STATE UNIVERSITY, DEPARTMENT OF MATHEMATICS, AMES, [A 50011
Email address: jmccullo@iastate.edu

Iowa STATE UNIVERSITY, DEPARTMENT OF MATHEMATICS, AMES, [A 50011
Email address: zwmere@iastate.edu



	1. Introduction
	2. Background
	2.1. Free resolutions, Hilbert series, Poincare series
	2.2. Depth, regular elements, and singular varieties
	2.3. Gröbner bases
	2.4. Koszul algebras and regularity

	3. LG-quadratic algebras
	4. Depth of exterior edge ideals and LG-quadratic algebras
	5. A Koszul quotient of an exterior algebra which is not LG-quadratic
	6. Examples
	Acknowledgements
	References

