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In tightly confined, propagating optical fields, Gauss’s law requires 
that a rapidly varying electric field in the transverse direction 
must be accompanied by an electric field in the longitudinal 

direction that is 90° out of phase with the transverse field1,2. The 
transverse and longitudinal field components combine to create 
regions of elliptical polarization in which the transverse component 
of the optical spin angular momentum is locked to the direction of 
the wavevector of the optical mode. Notably, in such tightly con-
fined fields, the optical spin angular momentum has a component 
perpendicular to the propagation direction, in contrast to par-
axial circularly polarized free-space optical fields. This phenom-
enon, referred to as optical spin–orbit coupling (OSOC), has been 
observed in a variety of experimental platforms, including optical 
fibres3–5, whispering gallery mode resonators5–7, photonic crystal 
waveguides8,9, plasmonic waveguides10 and hyperbolic metamateri-
als11 and metasurfaces12.

Photonic structures exhibiting OSOC can be coupled with cir-
cularly dichroic materials—that is, materials that interact selectively 
with circularly polarized light—to generate chiral light–matter 
interfaces. Such interfaces create light–matter interactions that 
depend on the propagation direction of the light and provide a 
foundation for new photonic and plasmonic technologies, such 
as on-chip beam splitting for circularly polarized input light13 and 
optically driven optical isolation14. Beyond classical systems, OSOC 
enables directional quantum nonlinear interactions between quan-
tum states of photons and matter and has stimulated the develop-
ment of chiral quantum optics15.

An emerging platform for these chiral optical interfaces is atomi-
cally thin transition metal dichalcogenides (TMDCs). TMDC mono-
layers are direct bandgap semiconductors with optical resonances in 
the visible and near-infrared range dominated by excitonic states16,17. 
Owing to broken inversion symmetry in the monolayer crystal lat-
tice, two inequivalent sets of bandgap minima exist at the momen-
tum space K points (that is, K and K′ valleys), which couple to light 
of opposite circular polarization18–21. Preliminary demonstrations 

with plasmonic, nanowire and photonic crystal systems10,22–27 have 
shown the feasibility of coupling light to TMDC valley excitonic 
states through OSOC. However, the scalable, deterministic incorpo-
ration of such architectures in existing integrated photonic platforms 
is challenging to achieve due to large propagation losses, restrictive 
design constraints and poor processing compatibility with delicate 
TMDC materials. Moreover, the chiral TMDC interfaces demon-
strated so far are passive. A scalable nanophotonic–TMDC interface 
equipped with active electrical tunability could enable new applica-
tions in optoelectronic and integrated photonic technologies. Valley 
polarization, which characterizes the circular dichroism of TMDCs, 
can be modified via electrostatic doping28, providing an avenue for 
active control. In addition, in monolayer TMDCs, in contrast to the 
multilayer TMDCs used previously10, the exciton valley index deter-
mines the spin configurations of the underlying charge carriers in 
charged excitonic states18. Therefore, a photonic–TMDC interface 
also provides the opportunity to control semiconductor spins29 with 
integrated photonics, enabling nanoscale optical manipulation of 
solid-state memories30,31.

Results
Electrically controlled chiral interface. Here, we demonstrate an 
interface that exploits these unique material properties to realize 
electrically tunable chirality. The interface is based on deterministic 
fabrication of nanophotonic structures on arbitrary substrates and 
can be applied to a range of devices, facilitating broader applica-
tion of chiral interfaces in nanophotonic circuitry. Our device 
consists of a titanium dioxide (TiO2) nanophotonic waveguide 
fabricated on a WSe2 monolayer that is encapsulated in hexagonal 
boron nitride (hBN) (Fig. 1a). Encapsulation with hBN substan-
tially reduces inhomogeneity in TMDCs32,33 and serves as a dielec-
tric for electrostatic tuning34. Electrical control is achieved with a 
few-layer graphene (FLG) back gate and contact flakes (for fabri-
cation details, see Methods). We fabricate TiO2 waveguides on top 
of these heterostructures using templated atomic layer deposition35.  
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This fabrication method produces low-loss nanophotonic struc-
tures (Fig. 1b) without damaging the underlying substrate, mak-
ing it ideal for interfacing with two-dimensional materials (for an 
image of the measured device, see Supplementary Fig. 1). Following 
waveguide fabrication, the WSe2 monolayer exhibits narrow line-
width excitonic emission (Fig. 1c), confirming that our photonic 
integration process generates minimal inhomogeneities in the 
van der Waals heterostructure and is suitable for photonic integration  
with TMDCs.

Figure 1d illustrates the directional coupling that emerges 
between the waveguide modes and the TMDC material. The elec-
tric field distribution (for full simulation data, see Supplementary 
Section 2) of the propagating transverse electric mode is tightly 
confined (waveguide width < λ/2), manifesting in-plane, circu-
larly polarized evanescent fields (Fig. 1d, right inset). The sign 
of the polarization, σ+ or σ− (for definitions, see Supplementary  
Section 2), inverts across the waveguide and with the propagation 
direction. Depending on their location, excitons in the K and K′ val-
leys (Fig. 1d, left inset) will selectively couple to left- or right-wards 
propagating modes of the waveguide, thus establishing chiral–
directional coupling at the waveguide–monolayer interface.

To characterize the interface, we first generate excitons and 
observe their radiative emission into the guided optical modes of 
the waveguide. The monolayer is excited from the far-field using 
a 660 nm laser with a spot size ~495 nm (see Supplementary  
Section 1). Excitonic photoluminescence (PL) couples to the wave-
guide and is detected via collecting the light scattered from gratings 
at the waveguide ends. Figure 1e displays the measured PL inten-
sity from the left port (for the right port data, see Supplementary  
Fig. 9d) when a linearly polarized excitation is scanned around the 
waveguide. To study the chiral–directional coupling, we switch the 
polarization of the excitation laser from linear to circular, σ+ and σ−, 
creating valley-polarized excitonic states that preferably emit with 
the same polarization as the excitation (Fig. 1d). We characterize the 
interface using the chiral–directional coupling efficiency (CDCE). 
Here, CDCE(x,y) = [IGP(x,y)σ+ − IGP(x,y)σ−]/[IGP(x,y)σ+ + IGP(x,y)σ−], 
where IGP(x,y)σ+(σ−) is the PL intensity measured from a specific grat-
ing port under σ+(σ−) excitation at position (x,y). Figure 1f shows 
the spatial mapping of the CDCE for left port collection (for the 
right port data, see Supplementary Fig. 9e). As anticipated10,25, we 
observe that the sign of the CDCE inverts as the excitation spot 
crosses the waveguide, approaching a magnitude of 20%, and that 
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Fig. 1 | Chiral nanophotonic–TMDC interface. a,b, Optical (a) and scanning electron microscope (b) images representative of the TMDC–waveguide 
interface. The WSe2 monolayer is marked by the yellow dotted line. c, PL spectrum of encapsulated WSe2 at 4!K shows prominent exciton, trion and 
charged biexciton peaks. d, Schematic depicting chiral–directional coupling. Left inset: valley-dependent optical selection rules of monolayer TMDCs. 
Right inset: polarization of electric field distribution of waveguide mode with wavevector k propagating out of the page. e, Spatial mapping of PL intensity 
measured through the left port under linear far-field excitation. f, Spatial mapping of CDCE through the left port under circular far-field excitation. g, Line 
cuts of CDCE across the waveguide along the arrow direction in e and f for left (open circles) and right (filled circles) ports. Lines show the total intensity 
(that is, IGP

σ+!+!IGP
σ−) measured for each port. Data points are presented as mean values over the full spectral range with error bars corresponding to 1!s.d. of 

the background noise.
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the sign of the CDCE flips between the two outcoupling ports  
(Fig. 1g). We also note that under linearly polarized excitation, the 
chiral–directional coupling vanishes as expected (see Supplementary 
Fig. 9c,f). For both ports, the CDCE goes to zero near the centre 
of the waveguide (x = 0 μm), where the mode polarization is linear 
(Fig. 1d, right inset). Far from the waveguide centre, the CDCE 
also falls to zero as the low signal-to-noise ratio dominates. These 
experimental signatures directly verify the predicted chiral interface 
between the TMDC monolayer and the photonic waveguide.

The integration of contacts and electrodes in our device archi-
tecture enables us to electrically dope the TMDC monolayer and, 
in turn, potentially control the chirality of our integrated pho-
tonic interface. To study this tunability, we apply a gate voltage to 
the TMDC monolayer and investigate the impact on the chiral– 
directional coupling. Figure 2a,b show the spatially mapped CDCE 
measured for gate voltages of −5 V and 5 V, respectively (for the right 
port data, see Supplementary Fig. 10d,f). The CDCE notably dimin-
ishes under negative applied bias. Comparing transverse line cuts 
across the waveguide (Fig. 2c), the CDCE spatial dependence at −5 V 
flattens to zero, whereas at +5 V it displays the expected crossing  

at x = 0 μm. At a fixed displacement of ~300 nm away from the 
waveguide, we observe a sharp transition in CDCE from near 0% 
at −5 V to around 15% at −2.5 V (Fig. 2c, inset). This result directly 
demonstrates the active electrical control over the chirality of the 
TMDC–waveguide interface.

To investigate the electrical tuning in more detail, we perform 
spectrally resolved measurements of the out-coupled PL. Figure 2d–g  
shows gate-dependent PL spectra collected from the right grating 
port for fixed-position off-waveguide σ+ and σ− excitations. We 
attribute the characteristic peaks to the neutral and charged exci-
ton and biexciton states delineated in recent literature reports28,36,37. 
Combining this spectroscopic information with the electrostatic 
control afforded by our high-quality interface, we analyse the chi-
ral–directional coupling for each excitonic state. From the spec-
tra in Fig. 2d–g, we find that the positive trion (X+) and neutral 
exciton (X0) states display balanced emission into the waveguide, 
independent of the excitation polarization. By contrast, the nega-
tive trion (X− and X−−) and biexciton (XX0 and XX−) states exhibit 
directional emission. More completely, Fig. 2h–k(l–o) shows the 
wavelength-resolved right (left) port CDCE versus the position of 
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the excitation beam. Minimal variation is observed for the X+ and 
X0 peaks, whereas for the X−, X−−, XX0 and XX− peaks, the CDCE 
inverts across the waveguide and reaches magnitudes near 20% on 
either side (for complete data, see Supplementary Fig. 11). These 
measurements indicate that the different excitonic states in the 
monolayer exhibit varying degrees of chiral–directional coupling 
and that the electrostatic control of this coupling correlates with 
switching between the dominant excitonic states.

To better understand the doping-dependent chiral–directional 
coupling for different excitonic states, we perform gated far-field 
PL measurements of the encapsulated WSe2. Figure 3a shows the 
unpolarized PL versus the wavelength and gate voltage, which 
exhibits characteristic peaks for different doping regimes. Figure 3b 
plots the degree of circular polarization (DOCP), which character-
izes the valley polarization Pv, defined as Pv = [Ico − Icross]/[Ico + Icross], 
where Ico(cross) refers to the PL intensity collected co(cross)-circularly 
polarized to the excitation. Importantly, the valley polarization 
results revealed here agree with the chiral–directional couplings of 
the respective excitonic states at the interface. Notably, X+ shows 
no valley polarization, which explains the quenched waveguide 
coupling in the hole region, while X−

T

 (triplet trion) and X−− show 
the strongest far-field polarization, as well as the clearest CDCE 
signatures. Considering these far-field valley polarization results, 
we fit the measured CDCE profiles for the excitonic states to  

simulations and find an isolated interface fidelity as high as 90 ± 2% 
(see Supplementary Section 2).

Our observation of widely differing valley polarizations for dif-
ferent species can be understood by considering valley relaxation 
processes that occur at differing rates. We consider two distinct 
processes that contribute to valley relaxation: the exchange inter-
action and the intervalley charge-carrier scattering. The exchange 
interaction is considered the primary depolarization mechanism for 
neutral excitons and negative trions38,39. The fast scattering of elec-
tron–hole pairs into the opposite valley depolarizes neutral excitons 
(Supplementary Fig. 16a). Through this same process, the K valley 
triplet trions rapidly relax to the energetically lower singlet trions 
(X−

S

) in the K′ valley, quickly eroding the polarization of existent 
singlet trions (Supplementary Fig. 16b). Inversely, the depolariza-
tion of triplet trions can result from exchange-interaction-induced 
intervalley scattering from energetically lower singlet trions 
(Supplementary Fig. 16c). However, this process is energetically 
unfavourable and, thus, highly suppressed, leaving triplet trions 
highly valley polarized. In addition to these exchange-interaction 
mechanisms, intervalley scattering of charge carriers also can lead 
to valley depolarization. For positive trions, the small spin split-
ting of the conduction band allows ready scattering of electrons 
into the opposite valley (Supplementary Fig. 16d), leading to fast 
depolarization40. For negative trions (triplet case in Supplementary 
Fig. 16e), the large valence band splitting suppresses the hole scat-
tering in between the valleys. Such scattering processes, then, will 
not contribute substantially to the valley depolarization of nega-
tive trions. The measured results described by these depolarization 
pictures confirm that the tuning of the chirality in the photonic 
interface is due to gate modification of the valley dynamics in  
monolayer TMDCs.

Driving valley(spin)-polarized exciton fluxes. In addition to 
enabling electrical control over chiral–directional coupling of the 
excitonic emission, the TMDC–waveguide interface opens new pos-
sibilities to locally create and manipulate excitons and spins. With 
improvements in sample quality and the observation of long-lived 
excitons in heterostructures, exciton diffusion in two-dimensional 
semiconductors has recently garnered increasing interest, providing 
a context for the fundamental exploration of planar spatial dynamics 
in systems with many-particle interactions41,42 and enabling opto-
electronic technologies such as room-temperature excitonic transis-
tors43. Unlike in bare, few-layer samples26, the encapsulated TMDC 
monolayers in our interface provide reduced-disorder environ-
ments for studying exciton propagation44 and preserve spin-valley 
locking, enabling the simultaneous transport of spin-polarized 
charge carriers. Compared with the far-field optical excitations cur-
rently utilized to drive exciton diffusion, the waveguide modes of 
high-index nanophotonic structures can act as compact, tailored, 
on-chip sources of exciton fluxes. Moreover, the high DOCP of 
their evanescent fields enables the generation of valley-polarized 
exciton fluxes45–47, which can be directionally reconfigured (Fig. 4a).  
Therefore, a new modality for injecting spin currents in semicon-
ductors with integrated photonics—in contrast to the case with 
conventional ferroelectric contacts48,49—can be realized, promising 
advancements in optical computing and spintronics50.

With our device, we first show that the waveguide can locally gen-
erate diffusive excitons. To probe this functionality, we couple the 
excitation laser into the right grating port and collect the PL emit-
ted from the TMDC monolayer into the far-field. Figure 4b shows 
the spatial distribution of the exciton PL spectrally selected over the 
wavelength regions of interest (for representative spectra with peak 
identifications, see Supplementary Fig. 14). The shaded area illus-
trates the simulated electric field intensity of the waveguide mode. 
The quickly decaying evanescent tail implies a large density gradi-
ent of the excitonic states generated by the mode, which induces 
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their diffusive transport away from the waveguide. Considering the 
measured resolution of our collection channel (see Supplementary 
Section 1), we compute the anticipated PL spatial distribution in 
the absence of exciton diffusion (dotted line in Fig. 4b; for simula-
tion information see Supplementary Section 2). We find that the 
profiles of the excitonic states extend beyond this boundary, indi-
cating their diffusion away from the waveguide. For the charged 
excitons, both negative and positive, we extract the 1/e diffusion 
lengths L

X

± ≈ 0.45 µm based on the predicted no-diffusion pro-
file. The neutral exciton displays a diffusion length L

X

0 ≈ 0.25 µm. 
These diffusion lengths of hundreds of nanometres are comparable 
to literature values51. The excellent sample quality and comprehen-
sive electrostatic control over our interface enable this extraction of 
state-specific diffusion.

We next examine the valley(spin)-polarization of these 
near-field-driven exciton fluxes. As before, the evanescent fields on 
either side of the waveguide exhibit opposite nearly circular polariza-
tions and therefore populate the excitonic states in opposite valleys 
(Fig. 4a). To measure this resulting valley polarization, we analyse 
the circular polarization of the far-field PL. The valley polariza-
tion of the excitonic states is characterized by the PL DOCP. Here, 
DOCP(x,y) = [IFF(x,y)σ+ − IFF(x,y)σ−]/[IFF(x,y)σ+ + IFF(x,y)σ−], where 
IFF(x,y)σ+(σ−) is the σ+(σ−) component of the far-field PL intensity 
collected at position (x,y). Figure 4c shows the DOCP measured 
under left port excitation and 5 V gate bias, confirming the genera-
tion of valley-polarized excitonic states (for additional port and gate 
voltage results, see Supplementary Figs. 12 and 13). Figure 4d–g 
displays the position-dependent, spectrally resolved DOCP for the 
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respective X+, X0, X− and X−− peaks, respectively. Like the CDCE 
(Fig. 2d–g) and far-field Pv (Fig. 3b) results, negative trions exhibit 
a large DOCP, whereas positive trions and neutral excitons show 
nearly zero DOCP. We also note the presence of prominent dark 
trion peaks at ~750 nm (ref. 52) (Supplementary Fig. 14). Owing to 
their linear out-of-plane dipole moment34, dark trions predomi-
nantly couple to the transverse magnetic mode, showing biased 
DOCP with a spatial profile that is independent of the excitation 
port. For negative trions, owing to valley–spin locking, the paired 
hole spin is fixed by the valley index (see Supplementary Section 5).  
Thus, spin-polarized holes are injected with the valley-polarized  
X− and X−− states. With the diffusion measurements described 
above, we conclude that our chiral photonic interface serves as a 
directionally reconfigurable source for injecting hole spin currents 
in atomically thin semiconductors.

Discussion
We have demonstrated a photonic waveguide interfaced with an 
hBN-encapsulated, electrically gated WSe2 monolayer. The inter-
face exhibits a CDCE that is electrically tunable from 0% to 20% 
and generates valley(spin)-polarized exciton fluxes via near-field 
excitation. Beyond linear waveguides, our versatile nanophotonic 
fabrication method can interface TMDCs with more complicated 
photonic structures where device geometry and size are limited 
only by the constraints of advanced lithography35, enabling pho-
tonic ring modulators and inteferometers53 and exciton–polaritons 
in photonic crystals27. Combined with recent advances in large-area 
growth54, exfoliation55,56 and assembly57 of two-dimensional mate-
rials, which will improve heterostructure yield and scalability 
beyond current limitations, this work establishes a universal plat-
form for their deterministic, wafer-scale integration with nano-
photonic circuitry. Importantly, this interface’s tunable chirality, 
previously unavailable in other chiral optical interfaces, relies on the 
doping-dependent valley dynamics of exciton states in the TMDC 
monolayer. Multilayer and twisted van der Waals heterostructures 
display engineered, exotic valley properties58–60 that can also be 
combined with this waveguide interface for additional chiral func-
tionalities, such as gate-reversible emission routing61, and offering 
new photonic logic and control schemes based on two-dimensional 
materials. In addition, nanophotonic driving of exciton diffusion in 
atomically thin semiconductors creates a bridge between distrib-
uted photonic elements and local excitonic circuits62–64. Moreover, 
near-field optical pumping through chiral TMDC–photonic inter-
faces can be used to generate the spin polarization of resident charge 
carriers in monolayers65–67. Such optically prepared spin-polarized 
electronic states, which are sensitive to the carrier doping level, 
can break the time-reversal symmetry of the interface, enabling 
gate-activated all-optical non-reciprocity in integrated nanopho-
tonic architectures68.
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Methods
Monolayer WSe2 was mechanically exfoliated from bulk crystal (2D 
Semiconductors) onto (silicon dioxide/silicon) SiO2/Si substrates with a 285 nm 
oxide thickness. The FLG and thin hBN flakes were similarly exfoliated from bulk 
materials (HQ Graphene). Optical contrast and atomic force microscopy were 
used to verify that each flake was smooth and of the appropriate thickness. After 
exfoliation, the hBN flakes were annealed in an inert argon atmosphere at 350 °C 
for 30 min to release any strain and remove tape residue.

Flakes were assembled into the gated monolayer WSe2 heterostructure 
via a dry-transfer technique69. Using a stamp of polycarbonate (PC) film on 
polydimethylsiloxane, the top hBN layer (11 nm thick), the FLG contact gate, 
monolayer WSe2, and bottom hBN layer (17 nm thick) were picked up in sequence. 
The PC film with the heterostructure then was stamped onto the exfoliated FLG 
back gate on the SiO2/Si substrate. The PC film was dissolved in chloroform for 
15 min at room temperature, leaving the bare heterostructure.

Titanium/gold contacts were patterned on the exposed FLG flakes using 
photolithography and deposited via electron beam evaporation (5 nm/95 nm, 
respectively). Subsequently, a 10 nm encapsulation layer of aluminium oxide 
was deposited via electron beam evaporation to protect the heterostructure 
and ensure a uniform surface for the photonics fabrication. The waveguide and 
grating couplers were patterned on top of the heterostructure using electron beam 
lithography35. A conformal TiO2 layer was grown via atomic layer deposition into 
the device template. After etching the excess TiO2 and stripping the poly(methyl 
methacrylate) (PMMA) template with N-methylpyrrolidone (NMP) (with heating 
to 80 °C and soaking the sample overnight), the TiO2 waveguide was left on top of 
the heterostructure. The sample was then annealed in the ambient atmosphere at 
250 °C for 2 h. Finally, a layer of PMMA (1.4 µm thick) was spin-coated onto the 
chip. The presented data were collected from the device shown in Supplementary 
Fig. 1. Measurements on an additional sample yielded consistent results.
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