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ABSTRACT

We consider the problem of inferring the conditional independence
graph (CIG) of a high-dimensional stationary multivariate Gaussian
time series. In a time series graph, each component of the vector se-
ries is represented by distinct node, and associations between com-
ponents are represented by edges between the corresponding nodes.
We formulate the problem as one of multi-attribute graph estimation
for random vectors where a vector is associated with each node of the
graph. At each node, the associated random vector consists of a time
series component and its delayed copies. We present an alternat-
ing direction method of multipliers (ADMM) solution to minimize a
sparse-group lasso penalized negative pseudo log-likelihood objec-
tive function to estimate the precision matrix of the random vector
associated with the entire multi-attribute graph. The time series CIG
is then inferred from the estimated precision matrix. A theoretical
analysis is provided. Numerical results illustrate the proposed ap-
proach which outperforms existing frequency-domain approaches in
correctly detecting the graph edges.
Keywords: Sparse graph learning; graph estimation; time series;
undirected graph; multi-attribute graphs.

1. INTRODUCTION

Graphical models are an important and useful tool for analyzing
multivariate data [1]. Given a collection of random variables, one
wishes to assess the relationship between two variables, conditioned
on the remaining variables. In graphical models, graphs are used
to display the conditional independence structure of the variables.
Consider a graph G = (V, E) with a set of p vertices (nodes)
V = {1, 2, · · · , p} = [p], and a corresponding set of (undirected)
edges E ⊆ [p] × [p]. Also consider a stationary (real-valued),
zero-mean, p−dimensional multivariate Gaussian time series x(t),
t = 0,±1,±2, · · · , with ith component xi(t). Given {x(t)}, in
the corresponding graph G, each component series {xi(t)} is rep-
resented by a node (i in V ), and associations between components
{xi(t)} and {xj(t)} are represented by edges between nodes i and
j of G. In a conditional independence graph (CIG), there is no edge
between nodes i and j if and only if (iff) xi(t) and xj(t) are con-
ditionally independent given the remaining p-2 scalar series x`(t),
` ∈ [p], ` 6= i, ` 6= j [2].

Graphical models were originally developed for random vectors
(whose statistics are estimated via multiple independent realizations)
[3, p. 234]. Such models have been extensively studied, and found to
be useful in a wide variety of applications [4–8]. Graphical model-
ing of real-valued time-dependent data (stationary time series) origi-
nated with [9], followed by [2]. A key insight in [2] was to transform
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the series to the frequency domain and express the graph relation-
ships in the frequency domain. Nonparametric approaches for graph-
ical modeling of real time series in high-dimensional settings (p is
large and/or sample size n is of the order of p) have been formulated
in the form of group-lasso penalized log-likelihood in frequency-
domain in [10]. Sparse-group lasso penalized log-likelihood ap-
proach in frequency-domain has been considered in [11–13].

In this paper we investigate graph structure estimation for
stationary Gaussian multivariate time series using a time-domain
approach, unlike [10–12] who, as noted earlier, use a frequency-
domain approach. After reviewing some graphical modeling back-
ground in Sec. 2, we first reformulate the problem in Sec. 3 as one of
multi-attribute graph estimation for random vectors where a vector is
associated with each node of the graph. Then in Sec. 4 we exploit the
results of [14] to provide an alternating direction method of multi-
pliers (ADMM) solution to minimize a sparse-group lasso penalized
negative pseudo log-likelihood objective function for multi-attribute
graph precision matrix estimation. A theoretical analysis is pro-
vided in Sec. 5. Numerical results in Sec. 6 illustrate the proposed
approach.

Notation: We use S � 0 and S � 0 to denote that the sym-
metric matrix S is positive semi-definite and positive definite, re-
spectively. For a set V , |V | or card(V ) denotes its cardinality. Z is
the set of integers. Given A ∈ Rp×p, we use φmin(A), φmax(A),
|A| and tr(A) to denote the minimum eigenvalue, maximum eigen-
value, determinant and trace of A, respectively. For B ∈ Rp×q ,
we define ‖B‖ =

√
φmax(B>B), ‖B‖F =

√
tr(B>B) and

‖B‖1 =
∑
i,j |Bij |, where Bij is the (i, j)-th element of B (also

denoted by [B]ij). Given A ∈ Rp×p, A+ = diag(A) is a diagonal
matrix with the same diagonal as A, and A− = A−A+ is A with
all its diagonal elements set to zero.

2. GRAPHICAL MODELS

Here we provide some background material for graphical models for
random vectors and for multivariate time series.

2.1. Random Vectors

Consider a graph G = (V, E) with a set of p vertices (nodes) V =
{1, 2, · · · , p} = [p], and a corresponding set of (undirected) edges
E ⊆ V ×V . Let x = [x1 x2 · · · xp]> ∈ Rp denote a Gaussian ran-
dom vector that is zero-mean with covariance Σ = E{xx>} � 0.
The conditional independence relationships among xi’s are encoded
in E where edge {i, j} between nodes i and j exists if and only if
(iff) xi and xj are conditionally independent given the remaining
p-2 variables x`, ` ∈ [p], ` 6= i, ` 6= j. Let

x−ij = {xk : k ∈ V \{i,j}} ∈ Rp−2 (1)
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denote the vector x after deleting xi and xj from it. Let Ω = Σ−1

denote the precision matrix. Define

ei|−ij = xi − E{xi|x−ij} , ej|−ij = xj − E{xj |x−ij} . (2)

Then we have the following equivalence [1]

{i, j} 6∈ E ⇔ Ωij = 0 ⇔ E{ei|−ijej|−ij} = 0 . (3)

Note that E{xi|x−ij} is linear in x−ij since x is zero-mean Gaus-
sian, and furthermore it minimizes the conditional mean-square error

E{xi|x−ij} = arg min
b
E{(xi − b(x−ij))2|x−ij} . (4)

Similar comments apply to E{xj |x−ij}.

2.2. Multivariate Time Series

Consider stationary Gaussian time series x(t) ∈ Rp, t ∈ Z, with
E{x(t)} = 0 and Rxx(τ) = E{x(t + τ)xT (t)}, τ ∈ Z. The
conditional independence relationships among time series compo-
nents {xi(t)}’s are encoded in edge set E of G = (V, E), V = [p],
E ⊆ V × V , where edge {i, j} ∈ E iff {xi(t), t ∈ Z} and
{xj(t), t ∈ Z} are conditionally independent given the remaining
p-2 components

x−ij,Z = {xk(t) : k ∈ V \{i,j}, t ∈ Z} . (5)

Define

ei|−ij(t) =xi(t)− E{xi(t)|x−ij,Z} (6)
ej|−ij(t) =xj(t)− E{xj(t)|x−ij,Z} , (7)

and the power spectral density (PSD) matrix Sx(f)

Sx(f) =

∞∑
τ=−∞

Rxx(τ)e−j2πfτ . (8)

Then we have the following equivalence [2]

{i, j} 6∈ E ⇔ [S−1
x (f)]ij = 0 ∀f ∈ [0, 1]

⇔ E{ei|−ij(t+ τ)ej|−ij(t)} = 0 ∀τ ∈ Z . (9)

2.3. Multi-Attribute Graphical Models for Random Vectors

Now consider p jointly Gaussian vectors zi ∈ Rm, i ∈ [p]. We
associate zi with the ith node of graph G = (V, E), V = [p], E ⊆
V × V . We now have m attributes per node. Now {i, j} ∈ E iff
vectors zi and zj are conditionally independent given the remaining
p-2 vectors {z` , ` ∈ V \{i,j}}. Let

x = [z>1 z>2 · · · z>p ]> ∈ Rmp . (10)

Let Ω = (E{xx>})−1 assumingE{xx>} � 0. Define them×m
subblock Ω(ij) of Ω as

[Ω(ij)]rs = [Ω](i−1)m+r,(j−1)m+s , r, s = 1, 2, · · · ,m . (11)

Let
z−ij = {zk : k ∈ V \{i,j}} ∈ Rm(p−2) (12)

denote the vector x in (10) after deleting vectors zi and zj from it.
Define

ei|−ij = zi − E{zi|z−ij} , ej|−ij = zj − E{zj |z−ij} . (13)

Then we have the following equivalence [15]

{i, j} 6∈ E ⇔ Ω(ij) = 0 ⇔ E{ei|−ije>j|−ij} = 0 , (14)

where the first equivalence in (14) is given in [15, Sec. 2.1] and the
second equivalence is given in [15, Appendix B.3].

3. MULTI-ATTRIBUTE FORMULATION FOR TIME
SERIES GRAPHICAL MODELING

Consider time series {x(t)} as in Sec. 2.2. For some d ≥ 1, let

zi(t) =[xi(t) xi(t− 1) · · · xi(t− d)]> ∈ Rd+1 (15)

y(t) =[z>1 (t) z>2 (t) · · · z>p (t)]> ∈ R(d+1)p . (16)

Let Ωy = (E{y(t)y>(t)})−1. With m = d+ 1, define the m×m
subblock Ω

(ij)
y of Ωy as

[Ω(ij)
y ]rs = [Ωy](i−1)m+r,(j−1)m+s , s, t = 1, 2, · · · ,m . (17)

Let
z−ij(t) = {zk(t) : k ∈ V \{i,j}} , (18)

ei|−ij(t) =zi(t)− E{zi(t)|z−ij(t)} (19)
ej|−ij(t) =zj(t)− E{zj(t)|z−ij(t)} . (20)

Then by Sec. 2.3,

{i, j} 6∈ E ⇔ Ω(ij)
y = 0 . (21)

Define

x̃−ij;t,d = {xk(s) : k ∈ V \{i,j} , t− d ≤ s ≤ t} , (22)

exi|−ij(t
′) =xi(t

′)− E{xi(t′)|x̃−ij;t,d} (23)

exj|−ij(t
′) =xj(t

′)− E{xj(t′)|x̃−ij;t,d} . (24)

Notice that exi|−ij(t′) above is an element of ei|−ij(t) defined in
(19) for any t− d ≤ t′ ≤ t. Then by (14) and (21), we have

Ω(ij)
y = 0 ⇔ E{exi|−ij(t1)exj|−ij(t2)} = 0, t−d ≤ t1, t2 ≤ t.

(25)
It follow from (25) that if we let d ↑ ∞, then checking if Ω

(ij)
y = 0

to ascertain (21) becomes a surrogate for checking if the last equiv-
alence in (9) holds true for time series graph structure estimation
without using frequency-domain methods.

4. SPARSE-GROUP GRAPHICAL LASSO SOLUTION TO
MULTI-ATTRIBUTE FORMULATION

We now consider a finite set of data comprised of n zero-mean obser-
vations x(t), t = 0, 1, 2, · · · , n−1. Pick d > 1 and as in (16), con-
struct y(t) for t = d, d+ 1, · · · , n− 1 with sample size n̄ = n− d.
Define the sample covariance Σ̂y = 1

n̄

∑n−1
t=d y(t)y>(t). If the vec-

tor sequence {y(t)}n−1
t=d were i.i.d., the log-likelihood (up to some

constants) would be given by ln(|Ωy|) − tr(Σ̂yΩy) [14]. In our
case the sequence is not i.i.d., but we will still use this expression as
a pseudo log-likelihood and following [14], consider the penalized
negative pseudo log-likelihood

LSGL(Ωy) = − ln(|Ωy|) + tr(Σ̂yΩy) + P (Ωy), (26)

P (Ωy) = αλ ‖Ω−y ‖1 + (1− α)λ

p∑
j 6=k

‖Ω(jk)
y ‖F , (27)

where P (Ωy) is a sparse-group lasso penalty [4, 14, 16, 17], with
group lasso penalty (1 − α)λ

∑p
j 6=k ‖Ω

(jk)
y ‖F , λ > 0 and lasso

penalty αλ ‖Ω−y ‖1, λ > 0 is a tuning parameter, and 0 ≤ α ≤ 1
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yields a convex combination of lasso and group lasso penalties. The
function LSGL(Ωy) is strictly convex in Ωy � 0.

As in [14], we use the ADMM approach [18] with variable split-
ting. Using variable splitting, consider

min
Ωy�0,W

{
tr(Σ̂yΩy)− ln(|Ωy|) + P (W )

}
subject to Ωy = W .

(28)

The scaled augmented Lagrangian for this problem is [18]

Lρ = tr(Σ̂yΩy)− ln(|Ωy|) + P (W ) +
ρ

2
‖Ωy −W + U‖2F

(29)

where U is the dual variable, and ρ > 0 is the penalty parameter.
Given the results Ω(i),W (i),U (i) of the ith iteration, in the (i+1)st
iteration, an ADMM algorithm executes the following three updates:

(a) Ω
(i+1)
y ← arg minΩy La(Ωy), La(Ωy) := tr(Σ̂yΩy) −

ln(|Ωy|) + ρ
2
‖Ωy −W (i) + U (i)‖2F

(b) W (i+1) ← arg minW Lb(W ), Lb(W ) := αλ ‖W−‖1 +

(1− α)λ
∑p
i6=j ‖W

(ij)‖F + ρ
2
‖Ω(i+1)

y −W + U (i)‖2F

(c) U (i+1) ← U (i) +
(
Ω

(i+1)
y −W (i+1)

)
Remark 1. We follow the detailed ADMM algorithm given in

[14] for the above updates; details may be found therein (where we
need to replace Ω with Ωy). The parameter tuning (selection of λ
and α) approach given in [14] does not apply (strictly speaking) in
our case since our {y(t)} is not an i.i.d. sequence. �

5. THEORETICAL ANALYSIS

In this section we analyze consistency (Theorem 1) by invoking
some results from [14]. The difference from [14] is that while the
observations in [14] are i.i.d., here {x(t)}, and {y(t)} constructed
from it, are dependent sequences. Therefore, we need a model for
this dependence. This influences concentration inequality regarding
convergence of sample covariance Σ̂. Once this aspect is accounted
for, [14, Theorem 1] applies immediately.

To quantify the dependence structure of {x(t)}, we will follow
[19]; other possibilities include [20, 21].

(A0) Assume {x(t)} obeys

x(t) =

∞∑
i=0

Aie(t− i) , (30)

where {e(t)} is i.i.d., Gaussian, zero-mean with identity co-
variance, e(t) ∈ Rp, Ai ∈ Rp×p, and

max
1≤q≤p

√√√√ p∑
k=1

([Ai]qk)2 ≤ ca
(max(1, i))γ

(31)

for all i ≥ 0, some ca ∈ (0,∞), and γ > 1.

Assumption (A0) is satisfied if x(t) is generated by an asymp-
totically stable vector ARMA (autoregressive moving average)
model with distinct “poles,” satisfying x(t) = −

∑q
i=1 Φix(t −

i) +
∑r
i=0 Ψie(t − i), because in that case ‖Ai‖F ≤ a|λ0|i for

some 0 < a < ∞ where |λ0| < 1 is the largest magnitude “pole”
(root of c(z) :=

∣∣I +
∑q
i=1 Φiz

−i∣∣ = 0) of the model. It can

be shown that there exist 0 < b < ∞ and 1 < γ < ∞ such that
a|λ0|i ≤ b i−γ for i ≥ 1, thereby satisfying assumption (A0).

By Assumption (A0), it follows that y(t) =
∑∞
i=0 Biē(t − i),

ē(t) ∈ Rmp is i.i.d., Gaussian, zero-mean with identity covariance,
m = d+ 1, Bi ∈ R(mp)×(mp), for some Bi’s such that

max
1≤q≤mp

√√√√mp∑
k=1

([Bi]qk)2 ≤ ca
(max(1, i))γ

(32)

for all i ≥ 0, with ca, and γ as in Assumption (A0). Then we have
Lemma 1, following [19, Lemma VI.2, supplementary] for the case
γ > 1 (γ is called β in [19]).
Lemma 1: Under Assumption (A0), the sample covariance Σ̂y satis-
fies the tail bound

P

(
max
k,l

∣∣∣[Σ̂y −Σy0]kl

∣∣∣ ≥ δ) ≤ 2 exp(−Cun̄min(δ2, δ))

(33)
for any δ > 0, where Cu ∈ (0,∞) is an absolute (universal) con-
stant. •
Constant Cu results from the application of the Hanson-Wright in-
equality [22].

In rest of this section we allow p and λ to be a functions of sam-
ple size n, denoted as pn and λn, respectively. Lemma 1 leads to
Lemma 2.
Lemma 2: Under Assumption (A0), the sample covariance Σ̂y satis-
fies the tail bound

P

(
max
k,l

∣∣∣[Σ̂y −Σy0]kl

∣∣∣ > C0

√
ln(mpn)

n̄

)
≤ 1

(mpn)τ−2

(34)
for τ > 2, if the sample size n̄ = n−d > N1 = ln(2(mpn)τ )/Cu,
where m = d+ 1 and C0 =

√
N1/ ln(mpn). •

Lemma 2 above replaces [14, Lemma 2] for dependency in ob-
servations. Further assume

(A1) Let Σy0 = E{y(t)y>(t)} � 0 denote the true covariance
of y(t). Define Ey0 = {{i, j} : Ω

(ij)
y0 6= 0, i 6= j} where

Ωy0 = Σ−1
y0 . Assume that card(Ey0) = |(E0)| ≤ sn0.

(A2) The minimum and maximum eigenvalues of Σy0 satisfy

0 < βmin ≤ φmin(Σy0) ≤ φmax(Σy0) ≤ βmax <∞ .

Here βmin and βmax are not functions of n.

Let Ω̂yλ = arg minΩy�0 LSGL(Ωy). Theorem 1 establishes
consistency of Ω̂yλ and it follows by replacing [14, Lemma 2] with
Lemma 2 of this paper in the proof of [14, Theorem 1].
Theorem 1 (Consistency): For τ > 2, let m = d+ 1 and

C0 =
√

ln(2(mpn)τ )/(Cu ln(mpn)) . (35)

Given real numbers δ1 ∈ (0, 1), δ2 > 0 and C1 > 0, let C2 =√
m+ 1 + C1, and

M =(1 + δ1)2(2C2 + δ2)C0/β
2
min, (36)

rn =

√
(mpn +m2sn0) ln(mpn)

n̄
= o(1) , (37)

N1 = ln(2(mpn)τ )/Cu, (38)

N2 = arg min

{
n̄ : rn ≤

δ1βmin

(1 + δ1)2(2C2 + δ2)C0

}
. (39)
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Suppose the regularization parameter λn and α ∈ [0, 1] satisfy

C1C0

1 + α(m− 1)

√(
1 +

pn
msn0

) ln(mpn)

n̄
≥ λn

m

≥ C0

√
ln(mpn)

n̄
. (40)

Then if the sample size n̄ = n − d > max{N1, N2} and assump-
tions (A0)-(A2) hold true, Ω̂yλ satisfies

‖Ω̂yλ −Ωy0‖F ≤Mrn (41)

with probability greater than 1 − 1/(mpn)τ−2. In terms of rate of
convergence, ‖Ω̂yλ −Ωy0‖F = OP (rn) •

0 200 400 600 800 1000 1200 1400 1600 1800 2000
n

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

F 1-s
co

re
 

freq: M=2
freq: M=4
freq: M=6
IID model
GMS
proposed: lag=1
proposed: lag=3

frequency-domain

proposed: lag=1

proposed: lag=3

IID model

GMS (freq-domain)

Fig. 1: F1-scores based on 100 runs for 4 approaches. In the pro-
posed approach lag=3 refers to d = 3. IID model may be viewed as
proposed approach with lag=d = 0.

6. NUMERICAL EXAMPLE

Consider p = 128, 16 clusters (communities) of 8 nodes each, where
nodes within a community are not connected to any nodes in other
communities. Within any community of 8 nodes, the data are gener-
ated using a vector autoregressive (VAR) model of order 3. Consider
community q, q = 1, 2, · · · , 16. Then x(q)(t) ∈ R8 is generated as

x(q)(t) =

3∑
i=1

A
(q)
i x(q)(t− i) + w(q)(t)

with w(q)(t) as i.i.d. zero-mean Gaussian with identity covari-
ance matrix. Only 10% of entries of A

(q)
i ’s are nonzero and the

nonzero elements are independently and uniformly distributed over
[−0.8, 0.8]. We then check if the VAR(3) model is stable with all
eigenvalues of the companion matrix ≤ 0.95 in magnitude; if not,
we re-draw randomly till this condition is fulfilled. The overall data
x(t) is given by x(t) = [x(1)>(t) · · · x(16)>(t) ]> ∈ Rp. First
100 samples are discarded to eliminate transients. This set-up leads
to approximately 3.5% connected edges. The true edge set E0 for
the time series graph is determined as follows. In each run, we cal-
culated the true PSD S(f) for f ∈ [0, 0.5] at intervals of 0.01, and
then take {i, j} ∈ E0 if

∑
f |S

−1
ij (f)| > 10−6, else {i, j} 6∈ E0.

Simulation results based on 100 runs are shown in Figs. 1 and 2.
The performance measure is F1-score for efficacy in edge detection.
The F1-score is defined as F1 = 2×precision× recall/(precision+

recall) where precision = |Ê ∩ E0|/|Ê |, recall = |Ê ∩ E0|/|E0|, and
E0 and Ê denote the true and estimated edge sets, respectively. Four
approaches were tested: (i) Proposed multi-attribute graph based
approach with lags (delays) d = 1 or d = 3, labeled “proposed,
lag=1” or “proposed, lag=3” in the figures. (ii) Frequency-domain
sparse-group lasso approach of [11–13], optimized using ADMM,
using varying number M (=2,4 or 6) of smoothed PSD estimators
in frequency range (0,0.5), labeled “freq: M=2”, “freq: M=4” “freq:
M=6”. (iii) An i.i.d. modeling approach that exploits only the sam-
ple covariance 1

n

∑n−1
t=0 x(t)x>(t) (labeled “IID model”), imple-

mented via the ADMM (adaptive) lasso approach ( [18, Sec. 6.4]).
In this approach, as discussed in Sec. 2.1, edge {i, j} exists in the
CIG iff Ωij 6= 0 where precision matrix Ω = R−1

xx (0). (iv) The
frequency-domain ADMM approach of [10], labeled “GMS” (graph-
ical model selection), which was applied with F = 4 (four fre-
quency points, corresponds to M = 4 in [11–13]) and all other
default settings of [10] to compute the PSDs. The tuning parame-
ters, (α, λ) for proposed and frequency-domain sparse-group lasso
approach of [11–13], and lasso parameter λ for IID and GMS, were
selected via an exhaustive search over a grid of values to maximize
the F1-score (which requires knowledge of the true edge-set). The
results shown in Figs. 1 and 2 are based on these optimized tuning
parameters. (In practice, one would use an information criterion or
cross-validation to select the tuning parameters.)

The F1-scores are shown in Fig. 1 and average timings per run
are shown in Fig. 2 for sample sizes n = 128, 256, 512, 1024, 2048.
It is seen that with F1-score as the performance metric, our proposed
method with lag d = 3 significantly outperforms other approaches
while also being faster than frequency-domain approaches.

0 200 400 600 800 1000 1200 1400 1600 1800 2000
n

10-1

100

101

102

tim
e 

(s
) 

freq: M=2
freq: M=4
freq: M=6
IID model
GMS
proposed: lag=1
proposed: lag=3

Fig. 2: Average timing per run based on 100 runs for 4 approaches.

7. CONCLUSIONS

Graphical modeling of dependent Gaussian time series was consid-
ered. We formulated the problem as one of multi-attribute graph es-
timation for random vectors where a vector is associated with each
node of the graph. At each node, the associated random vector con-
sists of a time series component and its delayed copies. We ex-
ploited the results of [14] to provide an ADMM solution to mini-
mize a sparse-group lasso penalized negative pseudo log-likelihood
objective function for multi-attribute graph precision matrix estima-
tion. A theoretical analysis was provided. Numerical results were
provided to illustrate the proposed approach which outperforms the
approaches of [10–13] with F1-score as the performance metric for
graph edge detection.
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