

GSA Connects 2021 in Portland, Oregon

Paper No. 163-3

Presentation Time: 9:00 AM-1:00 PM

JURASSIC AND PALEOGENE FAULTING IN THE EASTON NAPPE OF THE WESTERN NORTHWEST CASCADES THRUST SYSTEM OF WASHINGTON

MULCAHY, Sean, SCHERMER, Elizabeth and SINGLETON, Kalieh, Geology Department, Western Washington University, 516 High St, Bellingham, WA 98225

Subduction accretion complexes undergo prolonged and polyphase deformation that results in complex contact relationships between exhumed litho-tectonic units and different protoliths. The Northwest Cascades Thrust System in Washington and British Columbia is a composite nappe sequence of accreted terranes that experienced >55 million years of subduction and accretion. While the overall structure of the nappe sequence and the relative timing of nappe emplacement are well constrained, different structural interpretations exist based on the affinity of metamorphosed mafic plutonic and volcanic rocks with variable (MORB and island arc) chemistry that occur near the boundary between the Easton and Haystack nappes. One model places the mafic protoliths within the Easton nappe that were incorporated during pre- or syn-subduction faulting in the Jurassic, while an alternative model places the mafic protoliths within the overlying Haystack nappe that was faulted against the Easton nappe during the Paleogene.

Our mapping, structural analysis, geochronology and geochemistry focus on the origin and tectonic history of the nappes in the southwestern Northwest Cascades Thrust System. Building on earlier mapping, we recognize steeply dipping sheared contacts between mafic rocks and semischist and phyllite of the Easton nappe. Foliation in the Easton units is parallel to narrow mylonitic zones in the adjacent mafic rocks. The mylonitic fabric in mafic rocks contains white mica and chlorite and appears to correlate with S2 in Easton semischist. The latter was dated as ≥ 140 Ma by previous work in other parts of the Easton nappe, suggesting that the mafic igneous rocks were incorporated into the Easton before or during subduction. Mapped contacts that cross-cut foliation in Easton rocks are interpreted as younger, likely Paleogene or Neogene faults. These faults are typically steeply dipping and locally involve Eocene units. Gently dipping contacts at the base of the Haystack nappe are not observed in the study area, implying the boundary between the two nappes is located further to the south. Geochronology and geochemistry work are in progress to determine the origin and age of the mafic units protolith and the age of structural fabrics in the region.

Session No. 163--Booth# 126

[T9. Late Cretaceous–Eocene \(pre-Cascadia\) Tectonics from the Greater Pacific Northwest Margin to the Rocky Mountains \(Posters\)](#)
Tuesday, 12 October 2021: 9:00 AM-1:00 PM

Exhibit Hall A (Oregon Convention Center)

Geological Society of America *Abstracts with Programs*. Vol 53, No. 6
doi: 10.1130/abs/2021AM-369455

© Copyright 2021 The Geological Society of America (GSA), all rights reserved. Permission is hereby granted to the author(s) of this abstract to reproduce and distribute it freely, for noncommercial purposes. Permission is hereby granted to any individual scientist to download a single copy of this electronic file and reproduce up to 20 paper copies for noncommercial purposes advancing science and education, including classroom use, providing all reproductions include the complete content shown here, including the author information. All other forms of reproduction and/or transmittal are prohibited without written permission from GSA Copyright Permissions.

Back to: [T9. Late Cretaceous–Eocene \(pre-Cascadia\) Tectonics from the Greater Pacific Northwest Margin to the Rocky Mountains \(Posters\)](#)

[<< Previous Abstract](#) | [Next Abstract >>](#)
