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The linear separability effect refers to a benefit in search performance observed in a feature-search task,
where target and distractor features vary along a continuous feature dimension: Search performance is
best when there is a boundary in feature space that separates the distractor features from the target fea-
ture. However, the role that distractor heterogeneity plays in this effect is not well understood. Here, we
reexamined this effect in the context of a new predictive procedure from Lleras et al. (2019) that quanti-
fies the impact of distractor heterogeneity on search performance. Experiments 1A and 1B measured
people’s performance in homogeneous search conditions where they searched for the target among one
type of distractor. The parameters observed in Experiments 1A and B were then used to predict search
times in Experiments 2 and 3, where the target was presented in heterogeneous displays containing two
types of distractors. The results show that total variance accounted for was 95% to 98%, without includ-
ing any factor indexing the linear separability rule. The results demonstrate that heterogeneous search in
orientation space is a function of target-distractor similarity and interitem interactions. The study high-
lights the robustness of the predictive procedure and demonstrates the generalizability of the method to
estimate interitem interactions to new stimulus types.

Public Significance Statement
This study demonstrates that there is no linear separability effect in orientation feature space, con-
trary to suggestions from previous studies. Visual search performance in conditions where the target
feature is nested among distractor features in orientation space (nonseparable condition) does not
qualitatively differ from search performance in homogeneous conditions. The slowdown in the line-
arly nonseparable search conditions is attributable to a reduction in interitem interactions that facili-
tate performance in homogeneous conditions.

Keywords: heterogeneity effects, interitem interactions, linear separability effect, prediction, visual
search

Visual search performance suffers both in terms of speed
and accuracy when the target is accompanied by distractors
that are different from one another (heterogeneous search)
compared with when the target is embedded within a field of
identical distractors (homogeneous search). Perhaps because of
the longer reaction times and increased perceived difficulty,
homogeneous and heterogeneous search display also feel very
different at the phenomenological level (compare top with bot-
tom rows in Figure 1). However, recent studies have proposed

that the mechanisms underlying homogeneous search are not
fundamentally different from the ones underlying heterogene-
ous search because search performance in heterogeneous
search can be almost perfectly predicted by parameters
observed in homogeneous search conditions (Lleras et al.,
2019; Wang et al., 2017). These authors proposed that homo-
geneous and heterogeneous searches differ mainly in the
strength of interitem (or distractor–distractor) interactions,
which operate to facilitate distractor rejection.

Zoe (Jing) Xu https://orcid.org/0000-0002-2649-418X

Alejandro Lleras https://orcid.org/0000-0003-0391-1355

Simona Buetti https://orcid.org/0000-0002-1718-450X
Zoe (Jing) Xu, Simona Buetti, and Alejandro Lleras contributed to

writing and interpretation of results. Simona Buetti and Alejandro
Lleras contributed to the design and methodology development.
Yujie Shao contributed to software. Yujie Shao and Zoe (Jing) Xu
contributed to the investigation. Zoe (Jing) Xu contributed to the

formal analysis. The data and code are available on OSF at https://osf
.io/wra7h/.

This project was supported by a National Science Foundation Grant to
Simona Buetti (Award BCS 1921735). The authors have no competing interests.

Correspondence concerning this article should be addressed to Zoe
(Jing) Xu, Department of Psychology, University of Illinois at Urbana
Champaign, 603 East Daniel Street, Champaign, IL 61820, United States.
Email: jingxu9@illinois.edu

1274

Journal of Experimental Psychology:
Human Perception and Performance

© 2021 American Psychological Association 2021, Vol. 47, No. 9, 1274–1297
ISSN: 0096-1523 https://doi.org/10.1037/xhp0000941

T
hi
s
do
cu
m
en
ti
s
co
py
ri
gh
te
d
by

th
e
A
m
er
ic
an

Ps
yc
ho
lo
gi
ca
lA

ss
oc
ia
tio

n
or

on
e
of

its
al
lie
d
pu
bl
is
he
rs
.

T
hi
s
ar
tic
le
is
in
te
nd
ed

so
le
ly

fo
r
th
e
pe
rs
on
al
us
e
of

th
e
in
di
vi
du
al
us
er

an
d
is
no
tt
o
be

di
ss
em

in
at
ed

br
oa
dl
y.

https://orcid.org/0000-0002-2649-418X
https://orcid.org/0000-0003-0391-1355
https://orcid.org/0000-0002-1718-450X
https://osf.io/wra7h/
https://osf.io/wra7h/
mailto:jingxu9@illinois.edu
https://doi.org/10.1037/xhp0000941


Although homogeneous searches are clearly easier than hetero-
geneous searches, some heterogeneous conditions are particularly
harder than others. To explain the increased difficulty in these
harder heterogeneous conditions, novel stimulus-related factors,
such as the rule of “linear separability” between target and distrac-
tor features, have been proposed (see Bauer et al., 1996a, 1996b,
1998, 1999; Figure 2 for illustration, D’Zmura, 1991). Here we
tested the validity of this rule using a model comparison approach
that bypasses null hypothesis significance testing and focuses
instead on comparing the predictive accuracy of competing mod-
els. The models use parameters observed in homogeneous search
conditions to make specific reaction time (RT) predictions in vari-
ous heterogeneous search conditions. The goal was to test whether
there is indeed a qualitative difference between easier and harder
heterogeneous search conditions or whether both searches rely on
the same underlying mechanisms governing homogeneous search.

The Linear Separability Effect

The linear separability effect refers to a benefit in search per-
formance observed in heterogeneous feature-search tasks, where
the target and different distractors vary along a continuous feature
dimension. According to the linear separability effect, search per-
formance is best when there is a linear boundary in the feature
space that separates the distractor features from the feature that
defines the target. Search is qualitatively more difficult when there
exists no such linear boundary separating the target from the dis-
tractors (see Figure 2, Arguin & Saumier, 2000; Bauer et al.,
1996a, 1996b, 1998, 1999; Blais et al., 2009; D’Zmura, 1991;
Hodsoll & Humphreys, 2001; Saumier & Arguin, 2003). Initially,
D’Zmura (1991) found the linear separability effect in a CIE color
space defined by a green-red axis and a yellow-blue axis. When

people searched for a target among two types of distractors that
could be linearly separated from the target in this color space, the
search slope was flat, reflecting an efficient, parallel search pro-
cess; in contrast, when the distractors could not be linearly sepa-
rated from the target in this color space, the search slope was
much steeper, which was interpreted as reflecting a serial search
process. Later Bauer et al. (1996b) replicated this effect using the
CIELUV color space. The linear separability effect was also found
when stimuli were defined in orientation space (Blais et al., 2009;
Rosenholtz, 2001; Wolfe et al., 1992) and in shape space (e.g.,
varying curvature & aspect ratios, Arguin & Saumier, 2000;
Saumier & Arguin, 2003; varying size, Hodsoll & Humphreys,
2001).

Duncan and Humphreys (1989) demonstrated that search diffi-
culty is determined by two factors: (a) target-distractor similarity
and (b) distractor–distractor similarity, also referred to below as
distractor heterogeneity. Search becomes more difficult as target
and distractors become more similar and as distractors become
more dissimilar to one another. Search difficulty is typically
indexed by the steepness of the RT by set size function, aka, the
search slope. Although some of the early work on linear separabil-
ity controlled for target-distractor similarity (Arguin & Saumier,
2000; Bauer et al., 1996b), distractor heterogeneity still remained
a potential factor to explain the effect. That is, when equating tar-
get-distractor similarity for the two distractor types, the linearly
nonseparable condition always has larger distractor heterogeneity
than the linearly separable condition. To illustrate this, imagine a
circle in a feature space, centered at the target feature, with the
two distractors features moving on the periphery along a fixed ra-
dius circle, so that the target-distractor similarity is kept the same.
Linear separability is only violated (i.e., the target cannot be sepa-
rated from the distractors) when the two distractors are on opposite

Figure 1
Samples of Homogeneous and Heterogeneous Search Displays in Lleras et al.
(2019)

Note. The top row shows samples of homogeneous search displays. The bottom row
shows samples of heterogeneous search displays. The target is the red triangle pointing to
the left or right. See the online article for the color version of this figure.
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positions on the circle, which is when the distance between these
items is also the largest (the distance being an indication of how
dissimilar they are from one another, see Figure 2). As demon-
strated by Duncan and Humphreys (1989), when the distractor het-
erogeneity increases, the search also becomes more difficult.
Therefore, distractor heterogeneity offers an alternative explana-
tion to why linear nonseparable displays produce steeper search
slopes than linear separable displays.
Some studies have tried to evaluate the contribution of distractor

heterogeneity to the linear separability effect. For instance, Bauer
and colleagues (1996a) conducted a series of experiments in which
they attempted to control for distractor heterogeneity by manipu-
lating the ratio of the two types of distractors presented on the dis-
play. The logic followed results from Poisson and Wilkinson’s
(1992), who had found that search times in a conjunction search
task were affected by the ratio of the two types of distractors in the
display. Bauer et al. (1996a) attributed these distractor-ratio effects
on RTs to changes in distractor heterogeneity and thus used
manipulations of distractor ratios as a manipulation of distractor
heterogeneity. While controlling for distractor heterogeneity
across conditions via distractor ratios, the results indicated the
same linear separability effect (i.e., the linear nonseparable condi-
tion elicited steeper search slopes than the linearly-separable con-
dition). However, although the authors attempted to address the

distractor heterogeneity confound through a distractor ratio manip-
ulation, the correspondence between distractor heterogeneity and
distractor ratio was not directly tested, casting some doubts on the
conclusion that the linear separability effect does not arise from
distractor heterogeneity.

More recently, Vighneshvel and Arun (2013) used a model
comparison approach to reevaluate whether target-distractor and
distractor–distractor similarity are sufficient to explain the linear
separability effect, without including a linear-separability rule.
The authors used four sets of stimuli: crescent-like shapes vary-
ing in curvature and thickness, triangular shapes varying in point-
iness and curvature, real-world objects, and English alphabet
letters. The approach used was the following. First, for each stim-
ulus set, reaction times in four homogeneous search conditions
were evaluated: (a) search for the target among distractors of
type I, (b) search for the target among distractors of type II, and
(c–d) search for distractors of type I among distractors of type II,
and vice-versa. Set size was kept constant across all conditions
(i.e., 32). The authors then used both search RTs and the recipro-
cal of search RTs (1/RT) obtained in these different homogene-
ous search conditions to predict heterogeneous search time
performance, where participants searched for the target among
both types of distractors simultaneously. Search RT was used as
an index of similarity between stimuli. The use of 1/RT was war-
ranted based on previous work by Arun (2012), showing that 1/
RT has useful properties as a quantitative measure and is a rela-
tively good index of the distance between target and distractors
in feature space, that is, of target-distractor dissimilarity. Six pre-
dictive models were compared. In Model 1, search performance
in the heterogeneous conditions was predicted by the similarity
index (RT) from the most similar distractor to the target. Model 2
used the similarity of the two distractors to the target. Model 3
was like Model 2 but also included the measure of distrac-
tor–distractor similarity. Models 4–6 followed the same rationale
but used the 1/RT metric to predict 1/RT performance in the het-
erogeneous conditions. The results showed that the models based
on the reciprocal of RT outperformed the models based on sim-
ple search RT. Furthermore, across all four sets of stimuli, the
winning model included all three indexes of dissimilarity (Model
6). The results demonstrated that distractor heterogeneity plays a
critical role in explaining performance in heterogeneous search
conditions because most of the variability in the heterogeneous
search performance was predicted by target-distractor dissimilar-
ity and distractor–distractor heterogeneity (r = .91; R2 = 83%).
Thus, the authors concluded that there was no need to incorpo-
rate an additional linear separability factor.

In spite of the overall success of Vighneshvel and Arun’s
(2013) study, there are some shortcomings that need to be consid-
ered. First, the methodology is based on measures that are col-
lected at a fixed set size. As a result, the dissimilarity metric (1/
RT) is impractical because the dissimilarity between the same two
stimuli will be different for different levels of set size, which con-
sequently harms the generalizability of the model. Further,
because set size is not manipulated, the measure 1/RT also com-
pounds search-related processing time with nonsearch related
processing time, such as response selection, response execution,
and so forth. One problem with this confound is that stimuli that
have better stimulus–response compatibility mappings will have
smaller RTs, and thus inflated dissimilarity metric ratings, that are

Figure 2
Illustration of the Linear Separability Rule

Note. The circle illustrates the position of features with identical target-
distractor similarity in feature space with respect to a target feature
located at the center of the circle. According to the linear separability
rule, searching for the target T among two different types of distractors is
easy if a decision line can be drawn in feature space to separate the target
feature from the distractor features. In this example, searching for T
among D1 and D3 will be easy because the two distractor features are on
one side of the dotted line and the target feature is on the other. The same
is true when searching for T among D2 and D3 distractors (dashed line
separation). On the other hand, searching for T among D1 and D2 will be
hard because no line can be drawn in this space to separate target from
distractor features. In the latter example, note that the distance between
the two distractor features is maximal, indicating that the dissimilarity
between D1 and D2 is the largest.

1276 XU, LLERAS, SHAO, AND BUETTI

T
hi
s
do
cu
m
en
ti
s
co
py
ri
gh
te
d
by

th
e
A
m
er
ic
an

Ps
yc
ho
lo
gi
ca
lA

ss
oc
ia
tio

n
or

on
e
of

its
al
lie
d
pu
bl
is
he
rs
.

T
hi
s
ar
tic
le
is
in
te
nd
ed

so
le
ly

fo
r
th
e
pe
rs
on
al
us
e
of

th
e
in
di
vi
du
al
us
er

an
d
is
no
tt
o
be

di
ss
em

in
at
ed

br
oa
dl
y.



unrelated to the actual dissimilarity relation to the distractors they
are measured against (Madison et al., 2020). Finally, Arun (2012)
showed that the 1/RT metric suffers from a range limitation. That
is, the dissimilarity metric is linearly related to 1/RT only over a
range of dissimilarity values; at larger dissimilarity values, the
measure saturates.
In spite of the findings questioning the existence of a linear-sep-

arability effect (Vighneshvel & Arun, 2013), many researchers in
the visual search literature continue to believe in this effect, likely
biased by the earlier papers (Arguin & Saumier, 2000; Bauer et
al., 1996a, 1996b, 1998, 1999; D’Zmura, 1991; Saumier &
Arguin, 2003) and perhaps wanting stronger evidence against it.

A Predictive Approach to Understand Search

To test for the validity of the linear separability rule, the present
study used the predictive approach first developed by Wang et al.
(2017) to study heterogeneity effects in visual search. This
approach allows one to evaluate the extent to which factors
indexing target-distractor similarity in homogeneous search con-
ditions can predict performance in distractor-heterogeneous
search conditions.
The approach follows three steps. First, performance is eval-

uated in efficient search conditions with only one distractor type
present at a time (i.e., the homogeneous search condition), as

illustrated for instance in Figure 1 (top row). The goal is to esti-
mate search efficiency—indexed by the logarithmic slope D—for
each specific target-distractor similarity level (Figure 3A).

Second, these search efficiencies from Step 1 are then used to
predict search performance in heterogeneous search conditions
based on Equation 1, when two or three distractor types are simulta-
neously present in the display (Figure 1 bottom row). As shown in
Lleras et al. (2020), Equation 1 represents the closest mathematical
solution when one is trying to compute how long it will take to pro-
cess in parallel NT distractors (i.e., all locations are processed simul-
taneously), in a stochastic fashion, where each distractor is
processed independently and at its given rate, reflecting its own
level of target-distractor similarity. Distractors of type I (N1) are
associated with search efficiency D1, distractors of type II (N2) are
associated with search efficiency D2, and so forth (see Lleras et al.,
2020; for full details). These search efficiencies are estimated dur-
ing Step 1, using homogeneous displays. Lleras et al. (2020) pro-
posed that the processing at each location involves accumulating
evidence to reject peripheral distractors as nontargets. The evidence
being accumulated at each location is the contrast between the item
and the target template, and contrast accumulates stochastically.
Several factors influence the contrast accumulation rate, such as tar-
get-distractor similarity (the larger the similarity, the smaller the
contrast, and the slower an item will be rejected) and stimuly
(slower accumulation rates as eccentricity increases).

Figure 3
Search Efficiencies Observed in Homogeneous Conditions From Buetti et al. (2016) and Search Time Predictions
in Heterogeneous Conditions from Lleras et al. (2019)

Note. (A) Search efficiencies (i.e., logarithmic search slopes) observed in homogeneous search when searching for a red triangle
among either blue circles, yellow triangles, or orange diamond. (B) Observed reaction times in heterogeneous search tasks as a
function of predicted reaction times. By using the parameters observed in homogeneous search applied to Equation 1, 90% of the
variance was accounted for in 45 different heterogeneous search conditions. Search Efficiencies Observed in Homogeneous
Conditions is adapted from “Towards a better understanding of parallel visual processing in human vision: Evidence for exhaus-
tive analysis of visual information,” by S. Buetti, D. A. Cronin, A. M. Madison, Z. Wang, & A. Lleras, 2016, Journal of
Experimental Psychology: General, 145(6), p. 680. Copyright [2016] by APA. Adapted with permission. Search Time
Predictions in Heterogeneous Conditions adapted from “Predicting search performance in heterogeneous scenes: Quantifying the
impact of homogeneity effects in efficient search,” by A. Lleras, Z. Wang, A. Madison, S. Buetti, R. Zwaan, & J. Henderson,
2019, Collabra: Psychology, 5(1), p. 5. Copyright [2019] by Collabra: Psychology. Adapted with permission. See the online arti-
cle for the color version of this figure.
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RTPredicted ¼ aþXL
j¼1

Dj � Dj�1ð Þ3 ln NT � Xj�1

i¼1
Ni

 !
3 1 2;1½ Þ jð Þ þ 1

 !

(1)

In Equation 1,1 L represents how many types of distractors there
are in the heterogeneous search display being predicted; NT repre-
sents the total number of distractors in the display; Ni represents
the number of type i distractors; and Dj represents the observed
logarithmic slope associated with type j distractor from homogene-
ous displays. As the type j distractor becomes more similar to the
target, the value of Dj becomes larger. Dj values are organized
from smallest (D1) to largest (DL), with D0 = 0. Note that the loga-
rithmic slope D is an index of target-distractor similarity and is
inversely proportional to the evidence accumulation rate in a drift
diffusion process aimed at rejecting peripheral distractors as non-
targets (see Lleras et al., 2020). Distractors that are least similar to
the target template (smaller Ds, shallower search functions) have
larger evidence accumulation rates and are rejected faster than
distractors that are similar to the target (larger Ds, steeper search
functions), for which accumulation rates are smaller. In Figure
3A, D1 would correspond to the search slopes associated with blue
circle distractors, D2 the slope associated with yellow triangle dis-
tractors and D3 the slope for orange diamond distractors. The con-
stant a represents the response time when there is only the target
and no distractor in the scene. Finally, the index function 1 [2, 1]
(j) means that the sum over i applies only for terms when j . 1.
That is, when there are multiple distractors in the display, this sum
term keeps track of the number of distractors in the display that
have been rejected over previous iterations of j. When j = 1, this
sum term is zero, which indicates that initially all distractors con-
tribute to RT.
In the final step, predicted RTs are then plotted against the

Observed RTs that were obtained in separate experiments with the
corresponding heterogeneous conditions. As shown in Wang et al.
(2017; see also Lleras et al., 2019), the resulting graph is a linear
function (see Figure 3B), of the type:

RTObserved ¼ C þ b 3 RTPredicted (2)

C and b are parameters that are optimized to maximize the fit of
the model predictions to the observed RTs, as with any linear regres-
sion. b is therefore a free parameter that is only observed in this final
step. As RTPredicted in Equation 2 is replaced by the formula in
Equation 1, it becomes clear that b amounts to a multiplicative fac-
tor that modulates the time cost incurred to reject the distractors:

RTObserved ¼ C þ b � að Þ

þ b � XL
j¼1

Dj �Dj�1ð Þ3 ln NT � Xj�1

i¼1

Ni

 !
3 1 2;1½ Þ jð Þ þ 1

 !

(3)

Note that the term in the first parenthesis is a constant that is in-
dependent of the number of distractors. Regarding the interpreta-
tion of b, Lleras et al. (2019) proposed that b is a quantitative
estimate for the strength of distractor–distractor interactions. This
conclusion was reached by comparing two heterogeneous search
conditions: one where distractors were randomly intermixed

around the display and a second one where distractors were segre-
gated by type, such that all distractors of one type would be on the
same side of the display. As can be intuited, performance in the
intermixed condition was much slower than in the segregated con-
dition. However, Equation 2 correctly accounted for the over-
whelming majority of the variance across both conditions (average
R2 in the intermixed conditions: 93%; average R2 in the segregated
conditions: 95%), indicating that target-distractor similarity factors
governed both easy segregated search conditions and hard inter-
mixed search conditions. The difference across the two arrangement
conditions was entirely accounted for by changes in the b value. In
the segregated condition, b was close to 1 (.9) for both simple geo-
metric shapes and real-world objects; whereas in the intermixed
condition, the value of b changed as a function of stimulus com-
plexity (1.8 for simple geometric shape stimuli, 1.3 for more com-
plex real-world objects). In sum, when the value of b is close to 1,
similar strengths interactions are being observed in homogeneous
and heterogeneous conditions. When the value of b is larger than 1,
it indicates a slow-down in the processing rate of the distractors in
the heterogeneous condition compared with the homogeneous con-
dition. The larger the b value is, the stronger the slow-down.

This approach was successful at predicting people’s perform-
ance in heterogeneous performance using both geometric shapes
(Lleras et al., 2019; Figure 3B) and images of real-world objects
(Lleras et al., 2019; Wang et al., 2017).

The Present Study

The goal of the present study was to reevaluate the existence of
the linear separability effect using the same predictive approach as
Wang et al. (2017) and Lleras et al. (2019) to better quantify the
contribution of distractor heterogeneity to the slow down typically
observed in nonlinearly separable conditions (Experiment 2). In
addition, the approach was also applied to linearly separable con-
ditions (Experiment 3) to demonstrate that these conditions follow
the same processing rules as the nonlinearly separable conditions.
We also tested a second nonlinearly separable condition (Experi-
ment 4) to confirm our findings and validate the mathematical
logic behind the model. Note that the approach used in the present
study presents several advantages compared with the one used by
Vighneshvel and Arun (2013). First, heterogeneous search times
predictions rely on the logarithmic search slopes observed in ho-
mogeneous distractor conditions (D values in Equation 1). This
parameter indexes only the search component of RT, and not some
of the nonsearch processes included in RT and 1/RT measures. It
is also a measure of target-distractor similarity that is invariant to
set size (by definition). As a result, this similarity index will not
change when set size changes. Previous studies have also demon-
strated that the D value for a specific target-distractor pair remains
stable across groups of participants and across studies, and can
therefore be used to predict performance in novel groups of partic-
ipants and in novel search conditions (Buetti et al., 2019; Lleras et
al., 2019; Wang et al., 2017). Finally, the logarithmic slope is the-
oretically grounded as it indexes the average rejection time for a
specific distractor type, given a fixed target.

1 Equation 1 is consistent with two different models of parallel processing:
the one initially put forward by Buetti et al. (2016) and a more recent
improved revision of the model proposed in Lleras et al. (2020).
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Experiment 1A and 1B aimed at evaluating the logarithmic
search efficiency (D value parameters) when searching for a target
among a set of homogeneous distractors. The stimuli from Experi-
ment 1A were then used to construct heterogeneous displays in
Experiments 2 and 4, where the target was nonlinearly separable
from the distractors. The stimuli from Experiment 1B were used to
construct heterogeneous displays in Experiment 3, where the target
was linearly separable from the distractors. Different participants
completed Experiments 1A, 1B, 2, 3 and 4. Predictions were made
using Equation 1 and two other models to provide a comparison
(see Equations 5 and 6)
We made the following predictions. If the linear separability

effect exists, then Equation 1 should completely fail to predict the
performance in the heterogeneous conditions tested in Experi-
ments 2–4. This follows because Equation 1 does not take into
consideration the relationship in feature space between the target
and the two distractors. Only the similarity relationship between
the target and each distractor j is taken into account (Dj). If Equa-
tion 1 succeeds at predicting search performance in the heteroge-
neous displays of Experiments 2–4, this would support the idea
that neither easy (linearly separable) nor hard (nonlinearly separa-
ble) heterogeneous searches are qualitatively different than search-
ing for the same target among homogeneous search displays
where only one distractor type is present.
Beyond the linear-separability effect, this study also represents

a further test of the validity and generalizability of the predictive
approach used by Wang et al. (2017) and Lleras et al. (2019). In
particular, the nonlinearly separable condition (which is the hard-
est of the oriented line search conditions) represents the toughest
test of the predictive power of Equation 1 thus far. This is because
in our previous studies on distractor heterogeneity, there were no
expectations from the literature that intermixing items would
somehow change search performance in a qualitatively different
manner, quite the way this expectation exists in orientation search.
Finally, from a methodological standpoint, this type of predictive

approach sidesteps many of the current issues with Null-Hypothesis
Significance Testing. Indeed, the main goal is to evaluate how pre-
cisely one can predict performance in novel, complex conditions,
based on independent estimates made from somewhat easier condi-
tions. The success of a model is then quantified by how much var-
iance it can predict, rather than by whether or not a critical statistic
beats the .05 alpha level. Another advantage of this method is that
the same data set can be examined multiple times. Indeed, we make
our data publicly available and other investigators can try to fit
novel models to the same data and perhaps discover better models
than the ones tested here, without the need of further data collec-
tion, nor the worries of doing multiple NHST tests on the same
data.

Method

The methods and experimental protocols were approved by the
Institutional Review Board at the University of Illinois, Urbana-
Champaign, and are in accordance with the Declaration of Helsinki.

Participants

Participants for Experiments 1A, 1B, 2, and 3 were recruited
from the University of Illinois at Urbana Champaign in exchange

of course credit. Participants for Experiment 4 were recruited from
either the University of Illinois at Urbana Champaign or Prolific,
in exchange for course credit or pay ($6 for 50 minutes). Previous
experiments in our lab (e.g., Buetti et al., 2016; Lleras et al., 2019;
Madison et al., 2018; Wang et al., 2017) have shown that a sample
size of 20 participants is sufficient to obtain an accurate estimate
of logarithmic search slopes in homogeneous search (e.g., in
Buetti et al., 2019; the mean standard error of the slopes was 3.25
ms/log unit). Note that this sample size consideration differs from
the standard ones that focus on statistical power. Because our goal
is not to test a null hypothesis but rather to make specific RT point
predictions, what we care more about is that our parameter esti-
mates are precise.

Because of scheduling constraints, we initially ran 25 partici-
pants in Experiment 1A (3 male, 22 female; mean age = 18.9, age
range = 18–22), 24 participants in Experiment 1B (2 male, 22
female; mean age = 19.5, age range = 18–22), 26 participants in
Experiment 2 (one participant’s demographic information missing
because of experimenter error, for the rest 25 participants: eight
male, 17 female; mean age = 19.8, age range = 18–28), 24 partici-
pants in Experiment 3 (11 male, 13 female; mean age = 19, age
range = 18–21), and 25 participants in Experiment 4 (eight male,
17 female; mean age = 23.5, age range = 18–31).

For Experiments 1–2, accuracy rate was calculated as the per-
centage of trials where participants made a correct response di-
vided by the total number of trials. Because Experiments 3 and 4
were conducted online, we anticipated potential technical prob-
lems such as unstable Internet connection and environmental dis-
tractions. The accuracy rate was calculated as the percentage of
the trials where participants made a correct response divide by the
number of trials where participants made a response, i.e., we
excluded time-out trials as errors because it was impossible to as-
certain the reason for the time out. In Experiment 1A, three partici-
pants with an accuracy rate lower than 90% were excluded. In
Experiment 1B, one participant who did not complete the experi-
ment and two participants with an accuracy rate lower than 90%
were excluded. In Experiment 2, because search difficulty was
higher, seven participants with an accuracy rate lower than 70%
were excluded. In Experiment 3, one participant who self-reported
Internet connection problem and two participants with an accuracy
rate lower than 90% were excluded. In Experiment 4, one partici-
pant who self-reported not understanding the instruction and four
participants with an accuracy rate lower than 90% were excluded.

Thus, the data analysis included 22 participants in Experiment
1A (group accuracy = .97, SD = .022), 21 participants in Experi-
ment 1B (group accuracy = .98, SD = .016), 19 participants in
Experiment 2 (group accuracy = .86, SD = .081), 21 participants in
Experiment 3 (group accuracy = .98, SD = .019), and 20 partici-
pants in Experiment 4 (group accuracy = .98, SD = .022).

Stimuli and Design

Experiments 1A, 1B, and 2

All stimuli were presented on a 20-in. CRT monitor at an 85Hz
refresh rate and 1024x768 resolution. The experiments were pro-
grammed using Psychopy3 and run on 64-bit Windows 7 PCs. The
target and distractors were all white rectangular bars with a white
dot on either the left or right of the long side, 46 pixels 3 13
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pixels, and about 1.9 3 .6 degrees of visual angle (height 3
width). Stimuli were randomly placed on the display based on an
invisible 5 3 4 cells rectangular grid occupying the entire 20-in.
display (40 degrees of visual angle). The background was black.
In Experiment 1A and 1B, we evaluated search performance in

separate blocks for two targets, the order being counterbalanced
across participants (sample displays are shown in Figure 4).
The displays in these experiments were always homogeneous,

meaning that the target was accompanied by one type of distrac-
tors (except for the target-only condition). Target type was
blocked, and the order was counterbalanced across participants.
The goal for running two target conditions in each experiment was
to maximize the chances of finding a stimulus set where the two
distractors produced different slope (D) values. Indeed, if the two
slope values are too similar to one another, predictions made by
Equation 2 would be difficult to distinguish from a model where
all distractors are treated in identical fashion (see the Appendix for
a mathematical discussion of this issue).
In Experiment 1A, the first target was a vertical line (0-degree)

that was surrounded by 40-degree left or right oriented lines
(referred to as �40 and 40-degree distractors). The second target
was a 20-degree right oriented line that was surrounded by 20-
degree left oriented lines or 60-degree right oriented lines (referred
to as �20 or 60-degree distractors). These conditions were inspired
by previous work by Wolfe et al. (1992) that kept the target-distrac-
tor distance in orientation space the same (here 40 degrees).
In Experiment 1B, the first target was a vertical line (0-degree)

that was surrounded by 40-degree or 80-degree right oriented lines

(referred to as 40 or 80-degree distractors). The second target was
a 60-degree right oriented line that was surrounded by 20-degree
left oriented lines or 20-degree right oriented lines (referred to as
�20 or 20-degree distractors).

In Experiments 1A and 1B, for each distractor type, there were
five possible set sizes: 0, 2, 4, 8, and 16. In total, there were 20
conditions that were repeated 40 times for a total of 800 trials.

In Experiment 2 (nonlinearly separable heterogeneous search),
we used the 20-degree right oriented target stimulus, accompanied
by �20-degree and 60-degree distractors. There was a target-only
condition. The number of distractors of each type varied independ-
ently among four possible values (2, 4, 6, 8), in a fully crossed
design. In other words, the total set size varied from 1 (target only
condition) to 17 (1 target þ 8 distractors of each kind) and the
same total set size could be achieved in different combinations of
the two distractors (e.g., eight total distractors could result from
four of each kind, or two of one kind and six of the other). In total
there were 16 possible combinations of the two distractor types,
resulting in 17 conditions that were repeated 30 times for a total of
510 trials. The displays in Experiment 2 were always heterogene-
ous (except for the target-only condition), meaning that there were
always two types of distractors in any display.

Experiments 3 and 4

Because of COVID19, data collection in the laboratory was ter-
minated, and Experiments 3 (linearly separable heterogeneous
search) and 4 (nonlinearly separable heterogeneous search) were
programmed in JavaScript and conducted on Pavlovia, with

Figure 4
Examples of Search Displays in Experiment 1A and 1B

Note. Left: Example of homogeneous search displays in Experiment 1A when the target was a vertical line (top panel) among �40-degree distractors
(left) and 40-degree distractors (right), and when the target was a line oriented 20 degrees to the right (bottom panel) among �20-degree distractors
(left) and 60-degree distractors (right). Right: Example of homogeneous search displays in Experiment 1B when the target was a vertical line (top panel)
among 40-degree distractors (left) and 80-degree distractors (right), and when the target was a line oriented 60 degrees to the right (bottom panel)
among �20-degree distractors (left) and 20-degree distractors (right).
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participants using their own computers remotely. Stimuli were as
in Experiment 1A and 1B. Because Experiments 3 and 4 were run
online, we had no control over the visual angle of the stimuli on
participants’ computers. To compensate for this, at the beginning
of the experiment we asked participants to rescale the image of a
credit card to match the real size of a credit card, so that we could
at least ensure that the stimuli across different computer platforms
and displays always had the same physical size (1.38 3 0.39cm).
Stimuli were randomly placed on the display based on an invisible
rectangular 5 by 4 grid occupying an area of 25 3 14cm on the
center of participants’ screen. This size was chosen to allow partic-
ipants with screen as small as 12.5 in. to see the full display.
In Experiment 3, we used the vertical (0-degree) target stimulus,

accompanied by 40-degree and 80-degree distractors. In Experi-
ment 4, we used the vertical (0-degree) target stimulus, accompa-
nied by �40-degree and 40-degree distractors. The study design in
Experiments 3 and 4 was identical to the one used in Experiment 2.
Sample displays of Experiments 2–4 are shown in Figure 5.

Procedure

At the beginning of each trial, participants were shown a white
fixation cross at the center of the screen, followed by the search
display. Participants were asked to search for the target and report
the left or right location of the dot by pressing the left or right
arrow keys on the keyboard. Each display lasted for 4 (Experiment
1A and 1B) or 5 (Experiments 2–4) seconds, or until the
participants pressed the response key, whichever occurred earlier.
In Experiments 1A, 1B and 2, if the response was wrong, partici-
pants heard a beep sound for .2 second. In Experiments 3 and 4,
visual feedback of “Correct!” or “Wrong!” was given after each
trial, lasting for .5 second. In all experiments, the trial ended with
a black background shown for a random interval of .8–1.2
seconds.

Results

Experiment 1: Search Efficiency in Homogeneous
Search

Only correct trials were included in the analysis. Figures 6 and
7 show the logarithmic slopes for each target-distractor combina-
tion used in Experiments 1A and 1B, respectively. In both experi-
ments, the target only condition was the anchor point for the
logarithmic slopes. In the right-most panels of Figures 6 and 7,
one can notice that at larger set sizes, RTs begin to decrease, likely
as a result of some sort of texture facilitation. It is unclear whether
a logarithmic function should be fit through these data. Therefore,
we extracted the logarithmic slopes D using three ranges of set
sizes: set size 1 to 5 (i.e., 1, 3, 5; note that RTs monotonically
increase in this range), set size 1 to 9 (i.e., 1, 3, 5, 9), and set size 1
to 17 (i.e., 1, 3, 5, 9, 17). The logarithmic fits are best when only
the smaller set sizes are considered and as more set sizes are
added, there is a systematic decrease in the fit of the logarithmic
function for both distractor types. The logarithmic search slopes
for the three ranges of set sizes observed in Experiments 1A and
1B are also reported in Table 1.
In Experiment 1A, the set of distractors associated with the ver-

tical target produced very similar search slopes. For instance,

when considering set sizes 1–17, the slopes were the same (134.5
ms/log unit of set size) for the �40-degere and 40-degree distrac-
tors (Figure 6 top). On the other hand, the set of distractors associ-
ated with the 20-degree right oriented line target produced
sufficiently different slope values to carry out the predictions in
Experiment 2 (Figure 6 bottom). For instance, when considering
set sizes 1–17, the slopes for the �20-degee and 60-degree distrac-
tors were 251 and 146 ms/log unit of set size, respectively. There-
fore, in Experiment 2 we used the stimuli associated with the 20-
degree target to be able to use the model comparison approach.
We also ran an analogous heterogeneous Experiment (Experiment
4) based on the vertical target with �40-degree and 40-degree dis-
tractors to validate our conclusions in yet another nonseparable
condition configuration, with the caveat that we expected the

Figure 5
Examples of Search Displays in Experiments 2–4

Note. Top: Examples of heterogeneous search displays in Experiment 2,
where the target (a 20-degree line) was nonlinearly separable from the
distractors. Two types of distractors (�20 and 60-degree) were simultane-
ously presented on the display. Middle: examples of heterogeneous search
displays in Experiment 3, where the target (a vertical line) was nonli-
nearly separable from the distractors. Two types of distractors (40 and 80-
degree) were simultaneously presented on the display. Bottom: Examples
of heterogeneous search displays in Experiment 4, where the target (a ver-
tical line) was nonlinearly separable from the distractors. Two types of
distractors (�40 and 40-degree) were simultaneously presented on the
display. In all these experiments, there were always two types of distrac-
tors present in the display (aside from trials in the target-only condition)
and the number of distractors of each type (2, 4, 6, 8) was fully crossed.
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results to be less discriminating between different models because
of the similarity in numerical value between the slopes for the two
types of distractors (see the Appendix for more on this point).
In Experiment 1B, the set of distractors associated with the ver-

tical target produced substantially different search slopes. For
instance, when considering set sizes 1–17, the slopes for the 40-
degree and 80-degree distractors were 123 and 49 ms/log unit of
set size, respectively (Figure 7 top); The difference between slopes
was smaller for the set of distractors associated with the 60-degree
target (83 and 99 ms/log unit of set size, Figure 7 bottom). In
Experiment 3 we used the stimuli that produced the larger slope
difference (vertical target with 40- and 80-degree distractors).
We note that the results from Experiment 1A confirm Wolfe

et al.’s (1992) findings that target-distractor distance in orienta-
tion space does not solely determine search efficiency in orien-
tation search. In spite of the fact that both target conditions in

Experiment 1A had identical target-distractor separations (40
degrees), search for the 20-degree oriented target was half as
efficient as search for the vertical target. Similarly, although
both target conditions in Experiment 1B had one type of dis-
tractor that differed from the target by 80 degrees, the search
for the 0-degree oriented target among 80-degree distractors
was twice more efficient than the search for a 60-degree target
among �20-degree distractors.

Experiment 2: Search Performance Observed in
Nonlinearly Separable Heterogeneous Displays

Only correct trials were included in the analysis. The observed
response times for all distractor combinations are shown in Table 2.

In previous studies using heterogeneous displays, it is often the
case that the same number of distractors of each type are used in a

Figure 6
Logarithmic Search Efficiency in Experiment 1A

Note. Top: Reaction times observed in the homogeneous search conditions of Experiment 1A as a function of distractor set sizes and distractor types
when the target was a vertical line (0-degree) and the distractors were �40- and 40-degree lines. Bottom: Reaction times observed in the homogeneous
search conditions of Experiment 1A as a function of distractor set sizes and distractor types when the target was a 20-degree right oriented line, and the
distractors were �20- and 60-degree lines. The left panels show the results when set sizes 1–5 are considered to compute the logarithmic slope, and the
middle and right panels, the results for set sizes 1–9 and 1–17, respectively. Dotted lines show the best logarithmic fit. Error bars indicate one standard
error of the mean. See the online article for the color version of this figure.
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given set size condition (e.g., Wolfe et al., 1992). Figure 8 plots
the data from those conditions and allows for a more direct com-
parison to the results from the homogeneous search condition. A
quick glance at the data confirms that RTs in the heterogeneous
search conditions (black dots in Figure 8) are indeed much slower
than RTs in the homogeneous conditions in Experiment 1A (or-
ange triangles and blue squares in Figure 8). As can be seen on
Figure 8, in Experiment 1A, RTs in the homogeneous conditions
ranged from 963 to 1,361 ms (excluding the target-only condition).
In contrast, in Experiment 2, RTs were almost twice as long, rang-
ing from 1,578 to 2,570 ms (see Table 2). The logarithmic fit for
the heterogeneous search function was 636 ms/log unit of set size,
which was 2.5 times steeper than the slope observed when search-
ing for the 20-degree target among �20-degree distractors and 4.4
times steeper than the slope observed for the 20-degree target
among 60-degree distractors. This confirms previous findings from

the literature and would suggest a linear separability effect is at
play because of the much more elevated RTs.

Predictive Approach: Predicting RTs in the Nonlinearly
Separable Conditions in Experiment 2 by Using the
Parameters Observed in Experiment 1A

We used three models to predict what response times ought to
be in the nonlinearly separable heterogeneous search conditions in
Experiment 2 based on the parameters from the homogeneous con-
ditions in Experiment 1A.

Model 1: Distractor Rejection Cost Model

When solved for two distractor types, Equation 1 becomes
Equation 4:

Figure 7
Logarithmic Search Efficiency in Experiment 1B

Note. Top: Reaction times observed in the homogeneous search conditions of Experiment 1B as a function of distractor set sizes and distractor types
when the target was a vertical line (0-degree), and the distractors were 40- and 80-degree lines. Bottom: Reaction times observed in the homogeneous
search conditions of Experiment 1B as a function of distractor set sizes and distractor types when the target was a 60-degree line, and the distractors
were �20 and 20-degree lines. The left panels show the results when set sizes 1–5 are considered to compute the logarithmic slope, and the middle and
right panels, the results for set sizes 1–9 and 1–17, respectively. Dotted lines show the best logarithmic fit. Error bars indicate one standard error of the
mean. See the online article for the color version of this figure.
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RTPredicted ¼ aþ D1 3 ln NT þ 1ð Þ þ D2 � D1ð Þ3 ln N2 þ 1ð Þ
(4)

Equation 4 is the equation previously used by Lleras et al. (2019)
and Wang et al. (2017). Here is a brief explanation to get an intuition
for what the different terms in the equation mean. This equation
assumes that all distractors on the display start to be processed simul-
taneously. Type I distractors are less similar to the target and thus fin-
ish getting processed and rejected first with a temporal constant of
D1 ms per distractor. The total number of type I distractors is N1. But
importantly, all distractors are being processed during this time, even
those of type II, which is why the first term in the equation includes
all items (NT, with NT = N1 þ N2). Type II distractors are more simi-
lar to the target; thus, they take longer to reject. As a result, they con-
tinue to be processed after type I distractors are rejected. Their
accumulators continue to gather evidence until they reach a threshold
and get rejected. Alone, they would be rejected at a time cost of
D2 3 ln(N2 þ 1). Given that during the time taken to reject type I
distractors, type II distractors were also being processed, that corre-
sponding time cost must be subtracted from the overall processing
time, leading to the term (D2 � D1) 3 ln(N2 þ 1). The constant a
corresponds to the RT observed in the target only condition.

Model 2: Single-Threshold Model

As a comparison model for Equation 4, Equation 5 assumes a single
rejection decision structure, which predicts that all distractors are proc-
essed as the distractor that is the most similar to the target (i.e., D2 ms/
log unit of set size per distractor). This type of rejection criterion
approximates several ideas proposed in other visual search models,
where only one decision threshold is applied to reject noncandidates
(e.g., Guided Search, Wolfe, 1994; TAM, Zelinsky, 2008).

RTPredicted ¼ aþ Dmax 3 ln NT þ 1ð Þ (5)

Why is this equation representative of single-decision threshold
models? Single-decision threshold models like Guided Search

and TAM assume that there is an initial parallel analysis of the
scene, though these models do not specify how long that process
takes. They do, however, propose that following that initial anal-
ysis, a single decision criterion is applied across the whole scene/
priority map to separate obvious nontargets from stimuli that
could potentially be the target (candidate stimuli). This decision
criterion is directly inspired by signal-detection models, and it
produces misses (i.e., candidates that fall below criterion) and
false alarms (i.e., very dissimilar distractors that make it above
threshold and thus, might get inspected by focused attention). As
demonstrated by Townsend and Ashby (1983) and further devel-
oped by Buetti et al. (2016), a model that proposes parallel analy-
sis of the scene with stochastic variability and an exhaustive
processing rule produces processing costs that increase logarith-
mically with total set size. The assumption that processing in the
parallel stage is exhaustive is implied by the fact that the priority
map in these models is computed over the entire scene (i.e., every
element must have a priority score) before a decision criterion is
applied to the priority map. In other words, single-decision
threshold models assume that activation signals are accumulated
during the parallel analysis stage at all locations; once this evi-
dence accumulation process ends, a single decision threshold is
applied to the resulting activation map to differentiate target-
likely locations (above threshold) from target-unlikely locations
(below threshold). Thus, if one introduces a temporal duration to
the parallel stage of the single-decision threshold models, this
temporal duration will increase as a logarithmic function of the
number of elements in the scene, with all items being processed
at some constant evidence accumulation rate, likely determined
by the sensory processing rate. Here, we used Dmax as the param-
eter that characterizes the time constant associated with this evi-
dence accumulation process, because it tends to indicate the
duration required to reject the most similar distractors to the tar-
get in parallel. That said, as explained below, the actual numeri-
cal value chosen for the logarithmic slope of this model does not

Table 1
Logarithmic Search Slopes Observed in Experiment 1A and 1B

Logarithmic search slope (D)

Target
orientation

Distractor
orientation

Set size
1�5

Set
size 1�9

Set size
1�17

Experiment 1A
0 �40 198.2 185.0 134.5

40 181.1 172.1 134.5
20 �20 487.3 377.5 251.2

60 306.5 233.9 146.5
Experiment 1B
0 40 174.8 148.7 122.6

80 102.9 71.3 48.8
60 �20 266.9 173.2 82.6

20 267.1 182.7 98.6

Note. Logarithmic slopes (D, in ms/log unit of set size) and conditions
tested in Experiment 1A and 1B. In Experiment 1A, the vertically oriented
target was presented among �40 and 40-degree distractors, and the 20-
degree target was presented among �20 and 60-degree distractors. In
Experiment 1B, the vertically oriented target was presented among 40 and
80-degree distractors, and the 60-degree target was presented among �20
and 20-degree distractors.

Table 2
Response Times Observed in Experiment 2

N of �20-degree
distractors

N of 60-degree
distractors

Observed RT
(SE) (ms)

0 0 750.88 (39.7)
2 2 1,578.38 (66.4)
2 4 1,784.22 (78.1)
2 6 1,904.67 (89.0)
2 8 1,969.50 (72.2)
4 2 1,847.60 (91.8)
4 4 2,074.13 (89.9)
4 6 2,096.09 (87.8)
4 8 2,239.30 (90.7)
6 2 2,120.77 (81.6)
6 4 2,241.79 (83.5)
6 6 2,331.64 (83.6)
6 8 2,395.76 (80.4)
8 2 2,227.61 (65.9)
8 4 2,402.16 (65.5)
8 6 2,465.13 (91.6)
8 8 2,570.02 (95.4)

Note. RT = reaction time. Mean reaction time (standard error) observed
in each condition in Experiment 2. In each condition, there was always a
target (20 degrees) and a combination of two types of distractors (�20 and
60 degrees), each with its own set size.
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alter how much variance this model will account for in the pre-
diction stage. By comparison, the Distractor Rejection Cost
model is mathematically equivalent to arguing that each distractor
has its own “rejection decision threshold.” This follows because
in this model distractors are analyzed at a rate that depends on
the overall contrast signal between that item and the target: dis-
tractors with different levels of similarity to the target will require
different amounts of processing time before they can be ruled out
as nontargets, with the least similar distractors requiring much
fewer processing time than more similar ones. Having a model
that has varying processing rates with a fixed threshold (like
TCST) is mathematically equivalent to a model that has a con-
stant processing rate and a variable decision threshold. In sum,
Equation 5 represents models where target-unlikely locations are
rejected at about the same speed2 (i.e., where rejection time is in-
dependent of an item’s similarity to the target), whereas Equation
4 represents models where target-unlikely locations are rejected
at varying speeds that are directly determined by their degree of
dissimilarity to the target (the target contrast signal).
A second important consideration regarding the importance of

using Equation 5 as a comparison model is that it represents all RT
functions that are a simple logarithmic function of total set size.
That is to say, if RTs in the heterogeneous conditions are simply a
logarithmic function of total set size, Equation 5 would account for
the entirety of the variability in the predicted results (i.e., R-squared
would be close to 1), irrespective of the value of the slope parameter

in Equation 5. That follows because the slope value Dmax in
Equation 5 works as a linear transformation of log of total set size (i.
e., Dmax3 ln NT þ 1ð ÞÞ. As a result, the actual value of Dmax would
not impact the total variance accounted for by Equation 5; it would
only impact the slope of the function relating observed RTs to pre-
dicted RTs.

In sum, the Single-threshold model is a tough test for the Dis-
tractor Rejection Cost model because its ability to capture variance
does not represent a specific model but rather an entire family of
models of the form RT = a þ b 3 ln (NT þ 1Þ. If Equation 5 fails
to win in the model comparison, it would represent strong evi-
dence that (a) RTs in heterogeneous search conditions are not a
simple function of log of total set size, as RTs in homogeneous
conditions are; (b) that distractors are rejected at rates that are
determined by their own level of similarity to the target, rather
than by a single, overall decision threshold applied over the entire
priority map; and (c) that the parallel analysis of the scene in a vis-
ual search model, is best understood as a multithreshold signal
detection problem, as opposed to a single decision threshold
model, as it is usually studied (Eckstein et al., 2000; Palmer et al.,
1993; Verghese, 2001).

Figure 8
Comparison of Heterogeneous Search and Homogeneous Search Performance

Note. Orange triangles and blue squares: Reaction times observed in the homogeneous conditions of
Experiment 1A for the 20-degree target, as a function of distractor set sizes (for set size 1–17) and distractor
types, replotted for comparison. Black dots: The figure shows a subset of reaction times observed in
Experiment 2 for the 20-degree target. RTs were plotted as a function of total distractor set sizes but only in
conditions where there were equal numbers (0, 2, 4, 6, and 8) of �20 and 60-degree distractors in the display
(that is when the total set size was 1, 5, 9, 13, and 17), as is typically done in the linear-separability literature.
Error bars indicate one standard error of the mean. See the online article for the color version of this figure.

2 All else being equal. Other factors, such as eccentricity, might impact
processing speeds at different locations but the key is that these other
factors are independent of target-distractor similarity.
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Model 3: Swap Model

The third comparison model is a swapped similarity relationship
model (Equation 6) based on Equation 4. Remember that the loga-
rithmic slope values (Dj) represent the time to process and reject a
given type of distractor j given a specific target template in mind.
Distractors of type I (N1) are associated with search efficiency D1,
distractors of type II (N2) are associated with search efficiency D2,
and so forth (see Lleras et al., 2020). Model 3 pairs the number of
distractors of type II (N2) to the search efficiency D1, and vice-
versa. This model serves as a sanity check for Equation 4 because
it demonstrates the importance of matching the specific number of
a given type of distractor present in the display to its corresponding
temporal constant (Dj). When simplified, the equation becomes:

RTPredicted ¼ aþ D1 3 ln NT þ 1ð Þ þ D2 � D1ð Þ3 ln N1 þ 1ð Þ
(6)

Note that the first term in the equation is identical to the first
term in Equation 4. That is because all items are initially processed
with the smallest temporal constant (D1). However, the last term
corresponds to the number of items that were not successfully
rejected during that initial time period, thus, if N1 is associated
with the term (D2 � D1), it means that N2 items were rejected dur-
ing the first time period associated with D1. In sum, the Swap
model uses the same parameters to predict performance as the Dis-
tractor Rejection Cost model, except that the parameters are paired
in a slightly different manner.

Model Comparison

The predicted RTs from these three models were then compared
with the observed RTs from Experiment 2. Figure 9 shows the pre-
diction accuracy, and Table 3 shows the R2 and Akaike information
criterion (AIC) for the three models across the three ranges of set
sizes. For the three ranges of set sizes, the R2 associated to the Dis-
tractor Rejection Cost model were always substantially higher than
the R2 of both Single-threshold model and Swap model. Furthermore,
we computed the AIC relative likelihood for the three models, sepa-
rately for the three ranges of set sizes, using exp((AICmin-AICi)/2) to
evaluate the strength of evidence in favor of the winning model. For
set sizes 1–5, the AIC model comparison results showed that the Dis-
tractor Rejection Cost model (AIC = 163.3) better accounted for the
variability in the observed data and was 1.67 3 106 and 4.87 3 1010

times more likely than Single-threshold model (AIC = 191.95) and
Swap (AIC = 212.51) model respectively. For set sizes 1–9, the AIC
model comparison results showed that the Distractor Rejection Cost
model (AIC = 164.24) better accounted for the variability in the
observed data and was 1.033 106 and 3.613 1010 times more likely
than Single-threshold model (AIC = 191.95) and Swap (AIC =
212.86) model, respectively. Finally, for set sizes 1–17, the AIC
model comparison results showed that the Distractor Rejection Cost
model (AIC = 168.41) better accounted for the variability in the
observed data and was 1.29 3 105 and 8.6 3 109 times more likely
than Single-threshold model (AIC = 191.95) and Swap (AIC =
214.16) model, respectively. Overall, the AIC model comparisons on
the three ranges of set sizes showed that predictions from the Distrac-
tor Rejection Cost model were a much superior fit to the data than
the ones from the Single-threshold model and Swap model.

Experiment 3: Search Performance Observed in
Linearly Separable Heterogeneous Displays

Only correct trials were included in the analysis. The observed
response times for all distractor combinations are shown in Table 4.

Compared with Experiment 2, in Experiment 3, RTs in the het-
erogeneous condition do not appear to be slower than RTs in the
homogeneous conditions (see Figure 10). This is in accordance
with prior literature suggesting that in linearly separable condi-
tions, search unfolds in much the same way in both homogeneous
and heterogeneous conditions, unlike in the nonlinearly separable
conditions (see Figure 8).

Predictive Approach: Predicting RTs in the Linearly
Separable Conditions in Experiment 3 by Using the
Parameters Observed in Experiment 1B

We used the same three models to predict what response times
ought to be in the linearly separable heterogeneous search condi-
tions in Experiment 3, based on parameters from the homogeneous
conditions in Experiment 1B.

The predicted RTs from these three models were then com-
pared with the observed RTs from Experiment 3. Figure 11
shows the prediction accuracy, and Table 5 shows the R2 and
AIC for the three models across the three ranges of set sizes.
For the three ranges of set sizes, the R2 associated with the Dis-
tractor Rejection Cost model were always substantially higher
than the R2 of both Single-threshold model and Swap model.
Furthermore, for set sizes 1–5, the AIC model comparison
results showed that the Distractor Rejection Cost model (AIC=
127.36) better accounted for the variability in the observed data
and was 7.48 3 105 and 5.81 3 108 times more likely than Sin-
gle-threshold model (AIC = 154.41) and Swap (AIC = 167.72)
model, respectively. For set sizes 1–9, the AIC model compari-
son results showed that the Distractor Rejection Cost model
(AIC = 121.44) better accounted for the variability in the
observed data and was 1.44 3 107 and 3.18 3 1010 times more
likely than Single-threshold model (AIC = 154.41) and Swap
(AIC = 169.8) model, respectively. Finally, for set sizes 1–17,
the AIC model comparison results showed that the Distractor
Rejection Cost model (AIC = 121.1) better accounted for the
variability in the observed data and was 1.71 3 107 and 6.93 3
1010 times more likely than Single-threshold model (AIC = 154.41)
and Swap (AIC = 171.02) model, respectively. Overall, the AIC
model comparisons on the three ranges of set sizes showed that pre-
dictions from the Distractor Rejection Cost model were a better fit
to the data than the ones from the Single-threshold model and Swap
model. It is important to note that the Distractor Rejection Cost
model was able to predict performance across two very different
sets of conditions: the nonlinearly separable conditions of Experi-
ment 2 and the linearly separable conditions of Experiment 3.

Experiment 4: Search Performance Observed in a
Second Nonlinearly Separable Heterogeneous Condition

Only correct trials in Experiment 4 were included in the analy-
sis. The observed response times for all distractor combinations
are shown in Table 6.
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Compared with Experiment 2, in Experiment 4, RTs in the
heterogeneous condition are not slower than RTs in the homo-
geneous conditions (see Figure 12). This is different from the
nonlinearly separable condition presented in Experiment 2
(see Figure 8 for comparison), and it also differs from prior
literature suggesting that in nonlinearly separable conditions,
search ought to unfold in a more difficult way than both homo-
geneous and separable heterogeneous conditions. Instead, this
result serves as evidence that linear separability per se does
not necessarily determine the search difficulty. Note that this
result replicates the pattern observed in this same search con-
dition in Wolfe et al. (1992), the study that inspired our selec-
tion of stimuli. These authors also failed to find a substantial
increase in difficulty in the 0 among �40 and 40-degree
distractors.

Predictive Approach: Predicting RTs in Experiment 4
by Using the Parameters Observed in Experiment 1A

We used the same three models to predict what response times
ought to be in this nonlinearly separable heterogeneous search
conditions in Experiment 4, based on parameters from the homo-
geneous conditions in Experiment 1A. That said, as demonstrated
in the Appendix, we did not anticipate that the model comparison
approach would be able to meaningfully discriminate between
models, given the numerical similarity between D1 and D2 values.
Yet, as the results revealed, Experiment 4 does contribute mean-
ingfully to the discussion regarding the plausibility of a linear sep-
arability rule in visual search.

The predicted heterogeneous search RTs from the same three
models (Equations 4–6) were compared with the observed RTs in

Figure 9
Plot of Observed RTs in Experiment 2 as a Function of Predicted RTs for the Three Models Being Compared

Note. The figures show the observed RTs in Experiment 2 plotted against the predicted RTs. Data are shown for the Distractor Rejection Cost model
(top row), Single-threshold model (middle row), and Swap model (bottom row). For each row, the Dj parameters from Experiment 1A (homogeneous
conditions) were extracted for the three different ranges of set sizes 1–5 (left column), 1–9 (middle column), and 1–17 (right column), respectively.
Error bars on each data point indicate the standard error of the observed reaction time for each specific condition. See the online article for the color ver-
sion of this figure.
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Experiment 4. Figure 13 shows the prediction accuracy, and Table
7 shows the R2 and AIC for the three models across the three
ranges of set sizes.
As was done for Experiments 2 and 3, we computed the AIC

relative likelihood for the three ranges of set sizes separately,
using exp((AICmin�AICi)/2). For set size 1–5, the AIC model
comparison results showed that the Distractor Rejection Cost
model (AIC = 142.15) better accounted for the variability in the
observed data and was 4.31 and 14.78 times more likely than Sin-
gle-threshold model (AIC = 145.08) and Swap (AIC = 147.54)
model, respectively. For set size 1–9, the AIC model comparison
results also showed that the Distractor Rejection Cost model
(AIC= 142.59) better accounted for the variability in the observed
data and was 3.46 and 8.89 times more likely than Single-thresh-
old model (AIC = 145.08) and Swap (AIC = 146.96) model,
respectively. Finally, for set size 1–17, the AIC model comparison
results showed that the Single-threshold model (AIC = 145.08)
and Swap (AIC = 145.06) model were almost as equally likely
(relative likelihood of 1.004 and 1.01, respectively) as the Distrac-
tor Rejection Cost model (AIC = 145.09), making the three
models’ fits indistinguishable from one another.
In conclusion, as mentioned above, when the two slope values from

the homogeneous search conditions are too similar to one another, the
model comparison approach does not provide strong evidence to pick
a winning model among the three. As a comparison, the largest relative
likelihood in this analysis came from predictions using set sizes 1–5,
in which the Distractor Rejection Cost model was about 15 times
more likely than the Swap model, whereas in Experiment 2, the Dis-
tractor Rejection Cost model beat the other models by at least a factor
of several thousands. This much larger level of differentiation allows
for much stronger conclusions to be drawn.

Discussion

The goal of the present study was to test whether heterogeneous
searches rely on the same underlying mechanisms governing ho-
mogeneous search. We focused on the linear separability rule as a
case study because this rule proposes a fundamental qualitative
distinction between two subsets of heterogeneous search condi-
tions: the linearly-separable conditions (easier cases of heterogene-
ous search) where a single decision rule in feature space permits
the correct categorization of features as target versus nontarget
features, and the nonlinearly separable conditions (harder cases of
heterogeneous search), where no such simple decision rule exists
in feature space. If true, this would mean that the visual system
treats certain heterogeneous search displays in a fundamentally

different manner than how it deals with homogeneous and linearly
separable heterogeneous conditions.

No Qualitative Difference Between Linearly and
Nonlinearly Separable Conditions: Both Searches Can
Be Predicted by Homogeneous Search Parameters to the
Same Extent

The success of the predictions made by Distractor Rejection
Cost model in both linearly separable (Experiment 3) and nonli-
nearly separable (Experiments 2 and 4) search conditions indicates
that the visual system fundamentally treats the two search displays
in the same way. Specifically, the same Distractor Rejection Cost
model was used to make RT predictions in all of these experi-
ments, and the results suggest there is no qualitative difference
between searching for a target among homogeneous distractors
and searching for a target that is either linearly separable or nonli-
nearly separable from the distractors in feature space. Indeed, the
Distractor Rejection Cost model accounted for 97% to 98% of the
total variance observed in the nonlinearly separable heterogeneous
conditions data in Experiment 2, across 16 separate conditions,
over a prediction range of nearly 1,000 ms (RT range: 1578 to
2570 ms), and in an overall difficult search task (accuracy range:

Table 3
R2 and AIC Results in Experiment 2 for the Three Models, Evaluated Across Three Different Ranges of Set Size: 1–5, 1–9, and 1–17

Index Model Set size 1�5 Set size 1�9 Set size 1�17

R2 Distractor Rejection Cost model 0.984 0.983 0.978
Single-threshold model 0.906 0.906 0.906
Swap model 0.66 0.652 0.622

AIC Distractor Rejection Cost model 163.3 164.24 168.41
Single-threshold model 191.95 191.95 191.95
Swap model 212.51 212.86 214.16

Note. AIC = Akaike information criterion.

Table 4
Response Times Observed in Experiment 3

N of 40-degree
distractors

N of 80-degree
distractors

Observed RT
(SE) (ms)

0 0 638.93 (37.27)
2 2 774.34 (36.02)
2 4 788.24 (39.08)
2 6 818.36 (46.53)
2 8 820.10 (46.88)
4 2 838.34 (48.14)
4 4 830.34 (37.71)
4 6 864.43 (43.26)
4 8 850.16 (43.17)
6 2 870.65 (42.74)
6 4 883.84 (47.15)
6 6 884.17 (47.81)
6 8 911.51 (54.5)
8 2 902.46 (49.2)
8 4 924.17 (51.18)
8 6 931.30 (51.91)
8 8 936.67 (45.7)

Note. RT = reaction time. Mean reaction time (standard error) observed
in each condition in Experiment 3. In each condition, there was always a
target (0 degree) and a combination of two types of distractors (40 and 80
degrees), each with its own set size.
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.71 to .97, mean accuracy: .86). The parameters used to make these
predictions were obtained in the much easier homogeneous search
task (RT range: 963 to 1,361 ms, accuracy range: .83 to 1, mean
accuracy: .95), and were extracted from a separate sample of par-
ticipants, implying strong robustness and generalizability of the
results. Furthermore, the Distractor Rejection Cost model pre-
dicted performance in both hard (Experiment 2) and easy (Experi-
ment 4) nonseparable conditions. Indeed, the Distractor Rejection
Cost model accounted for 90% to 92% of the total variance
observed in in Experiment 4, which was an overall much easier
search task than Experiment 2 both in terms of RT (RT range: 815
to 1,014 ms, compared with 1,578–2,570 ms in Experiment 2) and
accuracy (accuracy range:.93 to 1, mean accuracy: .98, compared
with .86 in Experiment 2). The parameters used to make these pre-
dictions were also obtained in a homogeneous search task (RT
range: 706 to 907 ms, accuracy range: .96 to 1, mean accuracy:
.98). Furthermore, the same Distractor Rejection Cost model also
accounted for 95% to 97% of the total variance observed in the lin-
early separable heterogeneous conditions data (Experiment 3),
over a prediction range of 163 ms (RT range: 774 to 937 ms),
which was a relatively easier search task (accuracy range: .92 to 1,
accuracy mean: .98). The parameters used to make the predictions
for Experiment 3 were again obtained in a homogeneous search
task (RT range: 718 to 932 ms, accuracy range: .96 to 1, mean ac-
curacy: .99), and were also extracted from a separate sample of
participants. One initial conclusion from these results is that the
success of the predictive approach demonstrates that the logarith-
mic slope parameters D are a useful index of target-distractor
similarity. These slope parameters are robust across different
tasks and different groups of subjects (see also Buetti et al.,

2019, for further demonstrations; Lleras et al., 2019; Wang et al.,
2017).

The conclusion that there is no qualitative difference between
separable and nonseparable searches might appear to run counter
to some specific aspects of the data. Results from Experiment 2
indicated that distractor heterogeneity in nonlinearly separable
conditions almost doubled search time compared with conditions
where distractors were homogeneous (Experiment 1A, Figure 8).
In contrast, results from Experiment 3 showed that distractor
heterogeneity in linearly separable conditions produced comparable
performance to conditions where distractors were homogeneous
(Experiment 1B, Figure 10). In terms of the coefficient of the
predicted by observed RT function, b, the nonseparable condition
in Experiment 2 was associated with a b value larger than 1
(1.7–3.2), indicating that the speed at which the distractors were
rejected in nonseparable displays was slower than they were in
homogeneous displays. In contrast, the linearly separable condi-
tion in Experiment 3 was associated with a b value around 1
(.8–1.1), meaning that the distractors were rejected at similar
speed in homogeneous and linearly separable displays. One could
argue that this is evidence in favor of a linear separability effect.
However, results from the nonseparable condition in Experiment
4 similarly showed a b coefficient around 1, suggesting that in
some nonseparable conditions, distractors are rejected at the same
speed as in homogeneous conditions. That is, search time in the
nonseparable condition was in the same range as in the homoge-
neous search conditions (see Figure 12). As a result, one must
conclude that the difficult search observed in Experiment 2 was
not due to the nonseparability of the distractors in feature space.
Instead, we propose the slowdown was a result of two factors:

Figure 10
Comparison of Heterogeneous Search and Homogeneous Search Performance

Note. Red triangles and blue squares: Reaction times observed in the homogeneous conditions of Experiment
1B for the vertical target, as a function of distractor set sizes (for set size 1–17) and distractor types, replotted
for comparison. Black dots: The figure shows a subset of RTs observed in Experiment 3 for the vertical target.
RTs were plotted as a function of total distractor set sizes in conditions where there were equal numbers (0, 2,
4, 6, and 8) of 40 and 80-degree distractors, that is when the total set size was 1, 5, 9, 13, and 17. Error bars
indicate one standard error of the mean. See the online article for the color version of this figure.
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interitem interactions which are driven by the overall similarity
between neighboring items (more on this below) and the fact that
this similarity measure might depend on specific characteristics
of the feature space where those distractor features are selected.
For instance, in orientation feature space, it has been demonstrated

that categorical status can strongly influence search performance
(Wolfe et al., 1992). That is, in addition to the absolute angular
difference between two stimuli, the similarity between them also
depends on the categorical status of the stimuli (same category
vs different category), with categories like “steep,” “oblique” and

Figure 11
Plot of Observed RTs in Experiment 3 as a Function of Predicted RTs for the Three Models Being Compared

Note. The figures show the observed reaction times plotted against the predicted reaction times in Experiment 3. Data are shown for the Distractor
Rejection Cost model (top row), Single-threshold model (middle row), and Swap model (bottom row). For each row, the Dj parameters from
Experiment 1B (homogeneous conditions) were extracted for the three different ranges of set sizes 1–5 (left column), 1–9 (middle column), and 1–17
(right column), respectively. Error bars on each data point indicate the standard error of the observed reaction time for each specific condition. See the
online article for the color version of this figure.

Table 5
R2 and AIC Results in Experiments 3 for the Three Models, Evaluated Across Three Different Ranges of Set Size: 1–5, 1–9, and 1–17

Index Model Set size 1�5 Set size 1�9 Set size 1�17

R2 Distractor Rejection Cost model 0.951 0.966 0.967
Single-threshold model 0.735 0.735 0.735
Swap model 0.392 0.307 0.252

AIC Distractor Rejection Cost model 127.36 121.44 121.1
Single-threshold model 154.41 154.41 154.41
Swap model 167.72 169.8 171.02

Note. AIC = Akaike information criterion.
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“horizontal,” much like the perceptual similarity between two col-
ors depends not just on the distance between two colors in color
space but also on whether the colors cross color categories
(red vs blue) or not (red vs. pink). Finally, it is worth remem-
bering that the numerical modulation provided by b represents
a quantitative shift in processing, not a qualitative one. That is, b
simply represents the extent to which distractor rejection is
slowed down under certain conditions compared with others (as
demonstrated by the manipulations of spatial configurations in

Lleras et al., 2019): the same underlying architecture and form of
visual processing is occurring under all the conditions that were
successfully predicted by Equation 4. That is, (a) separable, (b)
nonseparable easy, and (c) nonseparable hard conditions all obey
the same processing rules. There was no need to postulate new
rules or new forms of processing to account for differences in
observed variability between these three sets of conditions.
These processing rules are the same ones that seem to govern
heterogeneous search performance more generally.

One major contribution of this article is to provide a mathemati-
cal rule to understand and predict heterogeneous search perform-
ance. More specifically here, we tested whether the rule that
applies to the majority of heterogeneous search conditions where
the target is separable from the distractors by a linear boundary in
the feature space also applies to a special case of heterogeneous
search that has long been considered a theoretical unknown– the
nonlinearly separable search condition. As has been known since
at least Duncan and Humphreys (1989), performance in heteroge-
neous displays is usually worse than in homogeneous displays.
That said, the variability in search data under heterogeneous dis-
tractor conditions can be accounted for in terms of parameters
observed under homogeneous distractor conditions. Wang et al.
(2017) used Equation 1 to predict performance in displays contain-
ing up to three different types of distractors, across twenty differ-
ent conditions, accounting for 97% of the overall variance. The
stimuli used were complex images of real-life objects. Lleras et al.
(2019) used the same equation to predict performance across three
different groups of participants, with a total of 45 different condi-
tions, intermixing two or three different types of distractors, also
with great success (R2 = .9), using colored geometric shapes as
stimuli. Together with the current results, the success of this pre-
dictive approach across different types of stimuli suggests that

Table 6
Response Times Observed in Experiment 4

N of �40-degree
distractors

N of 40-degree
distractors

Observed RT
(SE)(ms)

0 0 622.97 (40.4)
2 2 815.40 (39.4)
2 4 850.56 (48.4)
2 6 889.95 (47.6)
2 8 887.05 (54.1)
4 2 861.18 (51.3)
4 4 906.17 (48.0)
4 6 946.09 (57.3)
4 8 963.05 (59.5)
6 2 911.02 (56.8)
6 4 924.50 (52.4)
6 6 994.87 (66.2)
6 8 1,010.30 (79.5)
8 2 918.18 (56.6)
8 4 979.04 (58.5)
8 6 1,013.83 (51.2)
8 8 1,004.54 (55.4)

Note. RT = reaction time. Mean reaction time (standard error) observed
in each condition in Experiment 4. In each condition, there was always a
target (0-degree) and a combination of two types of distractors (-40 and
40-degree), each with its own set size.

Figure 12
Comparison of Heterogeneous Search and Homogeneous Search Performance

Note. Blue squares and orange triangles: Reaction times observed in the homogeneous conditions of
Experiment 1A for the vertical target, as a function of distractor set sizes (for set size 1–17) and distractor types,
replotted for comparison. Black dots: The figure shows a subset of RTs observed in Experiment 4 for the vertical
target. RTs were plotted as a function of total distractor set sizes in conditions where there were equal numbers
(0, 2, 4, 6, and 8) of �40 and 40-degree distractors, that is when the total set size was 1, 5, 9, 13, and 17. Error
bars indicate one standard error of the mean. See the online article for the color version of this figure.
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there is a fundamental commonality across all three studies and
that there is nothing unique to picking a target that is nonlinearly
separable from the distractors: in some cases, heterogeneous per-
formance worsens just as it did in Wang et al. (2017) and Lleras et
al. (2019), even though in those studies targets and distractors did
not meet the nonlinearly separable criterion; and in other cases,
nonlinearly separable heterogeneous search can be as easy as ho-
mogeneous search (Experiment 4), further indicating that linearly
separability per se does not determine the search difficulty in any
meaningful or qualitatively different way.
Our results are in line with findings by Vighneshvel and Arun

(2013) showing that there was no need to consider a linear separa-
bility effect factor to understand heterogeneous visual search per-
formance. In their experiments, performance was fitted using three
parameters reflecting the dissimilarity between the stimuli (i.e.,
dissimilarity between the target and type I distractors, between the

target and type II distractors, and between type I and type II dis-
tractors), plus an additional constant. In the Introduction we
reviewed the shortcomings of the Vighneshvel and Arun’s (2013)
modeling approach but, nonetheless, their model showed great
success achieving a correlation of .91 (R2 = .83). Taken together
with the success of our approach, we see our current study as a
confirmation of Vighneshvel and Arun (2013) conclusion that
there is no linear separability effect in visual search (at least for
oriented targets).

It should also be noted that Rosenholtz (1999) had also proposed
a simple model of saliency to account for the linear-separability
effect, where the target salience determines the search efficiency
rather than the distance between the target and the boundary line
separating target from distractor features. The equation determining
the target salience in that model is the distance between the target
feature and the mean of the distractor distribution features, and it

Figure 13
Plot of Observed RTs in Experiment 4 as a Function of Predicted RTs for the Three Models Being Compared

Note. The figures show the observed reaction times plotted against the predicted reaction times in Experiment 4. Data are shown for the Distractor Rejection
Cost model (top row), Single-threshold model (middle row), and Swap model (bottom row). For each row, the Dj parameters from Experiment 1A (homogeneous
conditions) were extracted for the three different ranges of set sizes 1–5 (left column), 1–9 (middle column), and 1–17 (right column), respectively. Error bars on
each data point indicate the standard error of the observed reaction time for each specific condition. See the online article for the color version of this figure.
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also takes into account the standard deviation of the distractor distri-
bution. To our knowledge, this model has not been directly tested
with oriented lines (nor with color). One complication with Rose-
nholtz’s model is the measure of the target-distractor feature dis-
tance. As highlighted by Vighneshvel and Arun (2013), parametric
distance in feature spaces (e.g., orientation space) from which the
search stimuli are created do not necessarily correspond to people’s
subjective experience of dissimilarity between stimuli in those
spaces. To use Rosenholtz’s model, one would first need to charac-
terize how distances in the orientation feature space correspond to
the perceptual dissimilarity as perceived by the human visual sys-
tem. This is not easy to accomplish because, as demonstrated by
Wolfe et al. (1992), dissimilarity depends both on the distances
between target and distractor features as well as the location of
those features in feature space. Our current results from Experiment
1 also illustrate this point: a 40-degree difference between target
and distractors produced relatively more efficient search when the
target feature was a vertical line (134–135 ms/log unit of set size)
than when it was a 20-degree oriented line (146–251 ms/log unit of
set size). Such feature neighborhood effects cannot be captured by
Rosenholtz’s model. In contrast, the approach used in the present
study assumes that the logarithmic slope parameters D represent a
true measure of perceptual distance between two specific stimuli.
Specifically, Lleras et al. (2020) proposed that the slope parameter
D is inversely proportional to the contrast signal between the target
and distractor features (see also Buetti et al., 2019).
The idea that contrast or difference between two stimuli is criti-

cal for determining search performance is also consistent with
prior evidence from neuroscience showing search speed is propor-
tional to the discriminability between patterns of neuronal activity
in visual cortex that respond to target and distractors (e.g., Cohen
et al., 2017; Lee et al., 2002; Sripati & Olson, 2010). In fact, the
proposal that attention in visual search is driven by target-distrac-
tor contrast (or dissimilarity) stands in contrast with many previ-
ous models of visual attention and search that emphasis feature-
based attention as the mechanism guiding attention (e.g., Bunde-
sen, 1990; Palmer et al., 1993; Verghese, 2001; Wolfe, 1994;
Wolfe & Gray, 2007). That is to say, according to those theories,
attention is tuned to target-specific features (say, attending to red
elements in the scene when one is looking for a red target), and
this tuning boosts or prioritizes locations containing those target
specific features. Some more recent feature-based theories also

propose that attention is optimally tuned to a specific feature that
most discriminates between the target and distractor features pres-
ent in the display (e.g., Navalpakkam & Itti, 2007; Scolari &
Serences, 2010). For instance, when looking for an orange target
among red distractors, attention would be tuned to yellow items
because boosting the processing of yellow in the scene would
boost the processing of the target (orange) and not the distractors
(red). Feature-specific attention theories have been recently chal-
lenged by dissimilarity-based theories (e.g., Arun, 2012; Becker,
2008; Becker et al., 2013; 2014; Cohen et al., 2017; Lleras et al.,
2020; Vighneshvel & Arun, 2013), where what matters most is not
so much the specific value of a target feature but rather, the com-
putation of a difference signal between the expected target feature
and the distractor features.

The Role of Interitem Interactions in Heterogeneous and
Homogeneous Displays

One key factor that determines search performance is the extent
to which nearby items interact with one another (Lleras et al.,
2019). The present work suggests that heterogeneous searches rely
on the same underlying mechanisms governing homogeneous
search. Specifically, the same processes that improve performance
in homogeneous search conditions are responsible for slowing
down performance in heterogeneous search conditions. As pro-
posed by Lleras et al. (2019), we believe these processes are interi-
tem interactions, which facilitate distractor rejection when nearby
items are similar to one another and/or slow down distractor rejec-
tion when nearby items are dissimilar to one another.

In homogeneous search conditions, nearby items are always
identical to one another and interitem interactions maximally facil-
itate the rejection of nearby distractors. Search efficiency under
these conditions mostly indexes target-distractor similarity. Spe-
cifically, search efficiency decreases (i.e., the logarithmic slope
becomes steeper) as the similarity between distractors and the tar-
get increases. In contrast, in heterogeneous search conditions,
nearby items tend to be different from one another (in spatially
intermixed conditions), slowing down the rejection of distractors.
Wang et al. (2017) and Lleras et al. (2019) initially proposed that
the strength of interitem interactions is indexed in the data by the
b factor, which is obtained when plotting observed heterogeneous
RTs as a function of predicted RTs. Because the predicted RTs are
based on data from homogeneous conditions, the magnitude of the
b factor indicates the extent to which the interitem facilitatory
effects observed in homogeneous displays are still observed in het-
erogeneous conditions. When the value of b is close to 1, similar
strengths interactions are being observed in homogeneous and het-
erogeneous conditions. When the value of b is larger than 1, it
indicates a slowdown in the processing rate of the distractors in
the heterogeneous condition compared with the homogeneous con-
dition. The larger the b value is, the stronger the slowdown.

Initial evidence in favor of this proposal comes from Lleras
et al. (2019). In that study, the authors used Equation 1 to pre-
dict search performance in two heterogeneous display condi-
tions: the intermixed distractors condition (i.e., when distractors
of every kind could appear anywhere in the display) and in the
spatially segregated condition (i.e., when distractors of the same
type always appeared together in the same region of the dis-
play). When search performance from homogeneous displays

Table 7
R2 and AIC Results in Experiment 4 for the Three Models,
Evaluated Across Three Different Ranges of Set Size: 1–5, 1–9,
and 1–17

Index Models
Set size
1�5

Set size
1�9

Set size
1�17

R2 Distractor Rejection Cost
model

0.917 0.914 0.9

Single-threshold model 0.9 0.9 0.9
Swap model 0.883 0.887 0.9

AIC Distractor Rejection Cost
model

142.15 142.59 145.08

Single-threshold model 145.08 145.08 145.08
Swap model 147.54 146.96 145.06

Note. AIC = Akaike information criterion.
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was used to predict performance in intermixed displays, the b
was much larger than 1 (1.8 for colored geometric shapes; 1.3
for real world objects, from Wang et al., 2017). When search
performance from homogeneous displays was used to predict
performance in spatially segregated displays, the b was close to
1 (�.9 for both stimulus types). Thus, distractor heterogeneity
per se did not slow down performance. The slow down
occurred when different stimuli were spatially intermixed,
weakening local interitem interactions.
The results from the predictive approach in the present study

provides additional support to Lleras et al.’s (2019) interpreta-
tion of the b factor. First, the results from homogeneous dis-
plays showed that as set size increased, interitem interactions
facilitated performance so much that RTs began to decrease at
larger set sizes, a sort of textural facilitation effect. This tex-
tural facilitation was consistently observed across all distractor
orientations at larger set sizes. According to the logic described
above, a large b factor should be observed when there is a big
difference in the processing rate of the distractors between ho-
mogeneous and heterogeneous conditions. Supporting this idea,
the b values were larger when all set sizes (1–17) were used
to compute D parameters in the homogeneous conditions, com-
pared with when only small set sizes (1–5) were used to com-
pute them. For instance, in Experiment 2, a b of 3.2 and a b
of 1.7 were observed when Ds were computed over set sizes
1–17 and set sizes 1–5, respectively. We interpreted the
increase in b as an indication that interitem facilitation effects
were stronger at the larger set sizes in the homogeneous condi-
tions, and these facilitatory effects were much reduced in the
heterogeneous condition when distractors were intermixed.
Second, a comparison of the b values between the linearly separa-

ble (Experiment 3) and nonlinearly separable (Experiment 2) condi-
tions suggests that, in heterogeneous displays, the interitem
facilitatory effects varied as a function of distractor–distractor simi-
larity. Although we do not have a direct measure of the distance in
perceptual similarity space between the two distractors used in
Experiments 2 and 3, there is reason to believe that the distractors
used in Experiment 2 (�20 and þ60 degree lines, with a target at
þ20) were more different from one another than the ones used in
Experiment 3 (40 and 80 degree distractors, with a target at 0). For
one, the angular difference between the distractors was larger in
Experiment 2 (80 degree) than in Experiment 3 (40 degree). And fur-
ther, from a categorical perspective (see Wolfe et al., 1992), the dis-
tractors in Experiment 2 likely belong to different categories (-20
degree lines are tilted “left” and close to a “steep” category, whereas
the 60 degree lines are tilted “right” and closer to a “shallow” cate-
gory). In contrast, in Experiment 3, both distractors are tilted in the
same general orientation (right), and neither is particularly “steep,”
suggesting Experiment 3 distractors are more similar to one another
than Experiment 4 distractors. The same is true when comparing the
distractors in Experiments 2 and 4, which were both chosen in nonse-
parable configuration. Although the angular difference between the
two distractors were 80 degrees in both Experiments 2 and 4 (�40
and 40 degree distractors), in Experiment 4, both distractors are tilted
to the same extent (though in different directions), and both likely
belong to “shallower” or “slanted” category, while the target is the
only“steep” stimulus in the display.
As noted by Duncan and Humphreys (1989), distractor heteroge-

neity is higher when distractor–distractor similarity is low, and

distractor heterogeneity is low when distractor–distractor similarity
is high. As a result, one would predict larger b values would obtain
in Experiment 2 compared with Experiments 3 and 4 because the
distractor heterogeneity in Experiment 2 is higher than in Experi-
ments 3 and 4. This expectation was borne out in the data: the b val-
ues in Experiment 2 were larger (from 1.66 to 3.17, Figure 9) than
in Experiment 3 (from .83 to 1.12, Figure 11) and Experiment 4
(.91 to 1.32, Figure 13). Thus, this seems to indicate that in hetero-
geneous searches, the more distractors are similar to one another,
the stronger the interitem facilitatory effects will be, and the more
performance will become comparable to the one observed in homo-
geneous conditions. This can be seen in Figure 10, where perform-
ance in the heterogeneous condition of Experiment 3 (black dots) is
very similar to performance in corresponding homogeneous condi-
tions from Experiment 1B (red triangles and blue squares), and it is
also evident in Figure 12, where performance in the heterogeneous
condition of Experiment 4 (black dots) is very similar to perform-
ance in corresponding homogeneous conditions from Experiment
1A (orange triangles and blue squares). In other words, it is the dis-
tractor–distractor similarity that is at heart of the slowdown in
search time, not linear separability.

We should note that different types of stimuli (real-world
objects, geometric shape, and oriented lines) and perhaps different
feature values within a feature dimension (different orientation of
stimuli used in the current study) might afford different magni-
tudes of b. Therefore, though we expect b to increase when dis-
tractor heterogeneity increases, further research is needed to better
understand the mathematical relationship between the two, and of
the factors (if any) that may moderate that relationship.

Limitations and Generalizability

We should caution that b is not uniquely affected by interitem
interactions. Because it is a multiplicative factor in Equation 3,
any factor that will systematically impact all D parameters in the
same way will be factored out of the sum and multiplicatively
modulate the value of b. The present results illustrate this when
one looks at the predictions made by D parameters computed over
the small set sizes compared with the predictions based on D com-
puted over all set sizes: The b factor increased in systematic fash-
ion as the underlying D parameters decreased. We propose the
decrease in the D parameters was caused by textural facilitation
effects arising when a certain number of identical lines were pre-
sented on the same display. Because the decrease was systematic
for both distractor types, b increased. b’s increase reflected the
extent to which the magnitude of textural facilitation effect that
was at play in homogeneous conditions was reduced in corre-
sponding heterogeneous displays. So, one should be mindful that
other factors could also come into play and impact the value and
interpretation of b, such as changes in the eccentricity of stimuli
between Step 1 in the study (estimating Dj in homogeneous condi-
tions) and Step 3 (measuring heterogeneous performance).3 So,
when interpreting b, it is important to consider all systematic fac-
tors that may come into play.

3 This might rarely be a problem when experiments are conducted in a
laboratory, although it might come into play when collecting data online
where controlling for stimulus and display properties is more difficult.
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In terms of generalizability, Equation 1 seems to be able to pre-
dict performance across a varied set of stimuli: from single fea-
tures (oriented lines, present study), to colored geometric shapes
(of “medium” complexity, Lleras et al., 2019), to complex stimuli
(images of real-world stimuli, Wang et al., 2017). We feel confi-
dent that it demonstrates how rising complexity in displays (here,
complexity in terms of intermixing different types of distractors,
as in heterogeneous conditions) translates into slowdowns in
search.
Regarding the generalizability of the predictive approach used

here, recently, we used this same predictive approach to under-
stand how color and shape dimensions combine to guide attention
in efficient search (Buetti et al., 2019). The results indicated that
distinctiveness along color and shape combine linearly to deter-
mine the overall distinctiveness of a stimulus that differs from dis-
tractors along these two features. In that case, the slope of the
predicted versus observed function (the equivalent factor to the b
studied here) was close to one, suggesting that color and shape dis-
tinctiveness did not coactivate: the presence of distinctiveness sig-
nals across the two feature dimensions did not facilitate
performance above and beyond what would be expected when
only distinctiveness signals are present in one of these dimensions.
According to Garner’s (1974) work, there are reasons to believe
that other feature dimensions, specifically the ones referred to as
integral dimensions, might coactivate. The effect of this coactiva-
tion should be reflected in the slope factor of the predicted vs
observed function. We found evidence for coactivation when
evaluating how texture and shape (two integral features) informa-
tion combine to guide attention (Xu et al., 2021). This measure-
and-predict approach can therefore shed light into fundamental
mechanisms in vision and attention and allows us to estimate
quantitatively for the first time the strength of some of those mech-
anisms (e.g., distractor–distractor interactions, interdimension
coactivation).
We should acknowledge that our results even in the homogene-

ous search condition show RTs that are longer than previously
reported RTs in similar oriented search conditions (Wolfe et al.,
1992). Our displays were generally larger than the ones used in
Wolfe et al. (1992), thus it is quite likely that the relatively faster
RTs in their study comes from the fact that interitem interactions
and textural facilitation effects were stronger in those displays
because display density was greater in those displays. It would not
be surprising if orientation search were particularly sensitive to
display density. In addition, the present study used a relatively dif-
ficult left-right discrimination task that might have also contrib-
uted to longer RTs.
Finally, we want to briefly note that our approach focuses on

predicting correct RTs and sidesteps the issue of predicting accu-
racy in heterogeneous displays. We have not started any efforts
aimed at understanding differences in error rates across homoge-
neous and heterogeneous conditions. It is often found that accu-
racy in the latter is lower than in the former condition. This was
evident in Experiment 2, which had an average accuracy of 86%,
whereas all the other conditions had accuracies near ceiling (in the
97% to 98% range). Understanding the interaction between evi-
dence accumulation rates and error rates is certainly a subject wor-
thy of future investigation. As a reminder to the reader, data
reported in this paper is publicly available, and thus provides an

opportunity for other investigators interested in pursuing this line
of inquiry.

Conclusion

Wang et al. (2017) introduced a new measure-then-predict
methodology whereby stimulus parameters are first estimated to
make specific point predictions for what performance ought to be
on a novel set of experimental conditions. The current findings
represent another success of this new methodology, here applied
to the search for oriented lines, in a nonlinearly separable feature
arrangement. The results indicated the same equation that
describes the slowdown that occurs when real world objects are
intermixed predicted 95% to 98% of the variance observed when
oriented lines were used as distractors in both linearly separable
and nonlinearly separable configurations. These findings demon-
strate the generalizability of Equation 1 to predict performance in
heterogeneous displays, irrespective of stimulus type, based on pa-
rameters observed in homogeneous displays. With regard to the
linear-separability effect, the present findings provide strong evi-
dence against the existence of a linear separability rule in feature
search. These conclusions align well with previous studies in the
literature that have also called into question the existence of this
rule (Rosenholtz, 1999; Vighneshvel & Arun, 2013).
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Appendix

Mathematical Mechanisms Behind the Models

In the predictive approach used by Wang et al. (2017) and
Lleras et al. (2019), the slopes observed in homogeneous
search conditions are used to predict RTs in heterogeneous
search conditions. In the article, we mentioned the problem
that arises when slopes in the homogeneous conditions are too
similar to one another. Specifically, when the slopes of the two
distractors are too similar to one another, the predictions made
by the different models (Distractor Rejection Cost Mode,
Single-Threshold Model, and Swap Model) become too similar
as well.

Mathematically, when looking at Equation 4 (Distraction
Rejection Cost Model), when D1 and D2 are numerically
similar, the term (D2 � D1) will approach 0, and therefore
(D2 � D1) 3 ln(N2 þ 1) will also approach 0, leaving the
following:

RTPredicted ¼ aþ D1 3 ln NT þ 1ð Þ (7)

The same reasoning can be applied to Equation 6 (Swap
Model). Overall, when D1 and D2 are similar to one another,
Equations 4 and 6 will become indistinguishable from one
another and they will also become indistinguishable from
Equation 5, because D1 = D2 = Dmax.

RTPredicted ¼ aþ Dmax 3 ln NT þ 1ð Þ (8)

To illustrate this limitation, we ran Experiment 4 using the
stimuli from Experiment 1A: the 0-degree target accompanied
by �40-degree and 40-degree distractors. Results were
reported in the main text.
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