Domain Concretization from Examples:
Addressing Missing Domain Knowledge via Robust Planning

Akshay Sharma, Piyush Rajesh Medikeri and Yu Zhang

Abstract— The assumption of complete domain knowledge
is unwarranted for robot planning and decision-making in
the real world. Incompleteness in domain knowledge may
come from design flaws or arise from domain ramifications or
qualifications. In such cases, traditional planning methods can
produce highly undesirable behaviors. Addressing the planning
problem under incomplete domain knowledge is challenging
since the agent has no clue about what information is missing.
This is a type of unknown unknowns, which differs significantly
from partial observability, a type of known unknowns. In this
work, we assume that the missing information is encoded in a
set of examples or teacher demonstrations. We formulate the
problem of domain concretization with these examples as an
inverse problem to domain abstraction. Given a domain model
provided initially, when the model does not conform with the
teacher demonstrations, our method searches for a candidate
model set that refines the initial model under a minimalistic
and deterministic model assumption. For new problems, it
generates a robust plan with the maximum probability of
success under the set of candidate models. Together with a
standard search formulation in the model-space, we propose
a heuristic-based search method and also an online version
of it to reduce the search time. We evaluated our approach
with several International Planning Competition (IPC) domains
and a simulated robotics domain where incompleteness was
introduced by removing domain features from the complete
models. Results show that our methods increase the success
rate of planning without significantly impacting the plan cost.

I. INTRODUCTION

Most planning agents rely on the assumption of com-
plete domain knowledge for decision-making. In the case
when the domain knowledge is incomplete, these agents
will continue with decision-making assuming the knowledge
is complete, often resulting in undesirable behaviors. For
example, missing state features implies that the agent would
perceive different states as the same state if they differ only
in those features. In such cases, traditional planning agents
can generate the same plan under very different scenarios.
For similar reasons, standard learning methods, such as
reinforcement learning (RL) [1] and inverse reinforcement
learning (IRL) [2], [3], and inference methods, such as
intention recognition [4], [5], can be easily misled when
complete domain knowledge is assumed.

Consider a packing domain depicted in Fig. 1. The robot is
tasked to pack items into different boxes. The items are made
of different materials. Under the initial model provided by the

This work was supported by NSF grants 1844524, 2047186, and AFOSR
grant FA9550-18-1-0067.

Akshay Sharma, Piyush Rajesh Medikeri and Yu Zhang are with
the School of Computing and Augmented Intelligence (SCAI), Ari-
zona State University, Tempe, AZ. {ashar204, pmediker,
yu.Zhang.442} Rasu.edu.

- Fragile
. - Not fragile

Fig. 1: Scenario for packing items (1-i3) into boxes (b1-b2).

domain designer (not the user), the robot would simply stack
items into a box until it is full and continue to fill the next
box. However, items made from certain materials could be
fragile (colored yellow in Fig. 1). A fragile item would break
when stacked on. There are various reasons why such domain
knowledge may be missing in the initial model. For example,
the designer may be unaware that items made from certain
materials are fragile, or have simply ignored the problem.
A robot that assumes complete domain knowledge would
inevitably fail in action with its users. Our work aims to
allow the robot to use teacher (user) demonstrations to infer
missing information to refine its model after the user detects
problems. It has a variety of applications, such as automated
manufacturing (similar to Fig. 1), where the domain model
must be refined over time to adapt to unmodeled complexities
in the real world.

In this paper, we introduce the concept of domain con-
cretization to address incomplete domain knowledge. The
planning problem under incomplete domain knowledge is
more challenging than planning under partial observability.
Since the agent does not know what information is missing,
it is a type of unknown unknowns [6]. To address such a
challenging setting, we assume that the missing knowledge
is encoded by a set of teacher demonstrations for a set
of planning problems (referred to as training cases). Given
the domain model provided initially, when the model does
not conform with the teacher demonstrations, our method
searches for a candidate model set that refines the initial
model to conform with the teacher demonstrations. For new
planning problems (referred to as test cases), we can generate
a robust plan to satisfy as many models as possible in the
candidate model set. In our motivating scenario in Fig. 1, a
teacher demonstration may switch to a new box after packing
a yellow item even though the current box is not full. Our
method would search for ways to refine the initial model
to explain this demonstration. For example, it can impose
a new precondition on the stacking action requiring the

item to be stacked on to be non-fragile, and simultaneously
expect a subset of items (i.e., the blue items) to satisfy the
fulfilling property (i.e., being non-fragile). Note that we may
arbitrarily interpret the additional information and the robot
merely needs to understand that the property is a prerequisite
for the action. Furthermore, there may be multiple ways to
explain the demonstrations (e.g., all items are fragile vs. only
the yellow items are fragile), resulting in different candidate
models. A robust plan should work under as many such
models as possible.

Our solution is first formulated as a search problem in
the model space. To expedite the search, we then present
a heuristic-based method by restricting the set of possible
models considered. Additionally, we present an online ver-
sion that is more practical when the teachers demonstrations
are provided incrementally. It also has a computational
advantage by using only one demonstration in each iteration
and maintaining a small set of candidate models for the next
iteration. To address a test case, our method generates a
robust plan that achieves the goal of the planning problem
associated with the test case under the maximum number
of candidate models. This is achieved by transforming the
planning problem into a Conformant Probabilistic Planning
problem [7]. We evaluated our method on various IPC
domains and a simulated robotics domain where incomplete-
ness was introduced by removing certain features from the
complete domain model. Results show that the robust plans
generated by our method can increase the success rate of
planning without significantly impacting the plan cost (i.e.,
the sum of its action costs). Additional technical discussions
and complete proofs can be found in the full version [8].

Our contribution in this work is three-fold: 1) introducing
the problem of domain concretization from examples, which
addresses a type of unknown unknowns that are little studied
in robot task planning; 2) proposing model-search and heuris-
tics based methods, combined with probabilistic conformant
planning, to address the problem with formal analyses; 3)
evaluating the proposed methods in IPC domains and a
simulated robotics domain in an automated manufacturing
setting to demonstrate the potential in real-world domains.

II. RELATED WORK

The idea of learning or refining action models using
plan demonstrations or examples has been studied exten-
sively in prior work. While some have considered refining
incomplete domain models [9], [10], others have focused
more on learning action models from scratch [11], [12],
[13], [14], [15]. For example, authors in [13] have used
transfer learning to learn the action model using a small
amount of training data. In [14], authors have moved one
step further by developing an algorithm that can learn action
models under noisy demonstrations. In [15], authors propose
to learn models under stochastic domains. One common
assumption in all these methods is the complete knowledge
of the state space, which does not hold in our problem.
While it is possible for users to directly refine the robot’s
model [16], it requires deep understanding of planning and is

impractical for regular users. Our model refinement process
may appear similar to predicate invention [17] that is often
used to describe novel high-level concept in inductive logic
programming. In contrast, we invent predicates to represent
unknown knowledge in planning domain models.

The robot’s initial model in our problem may be consid-
ered an approximate domain model and hence planning in
such a case becomes a type of model-lite planning [18].
Many existing approaches have considered planning with
such approximate (or incomplete) domain models [19], [20],
[21]. For example, authors in [20] introduce a planning
system that can generate plans for an incomplete domain
where actions may be missing certain preconditions or ef-
fects. Conformant planning [22] may also be considered as a
special type of model-lite planning where information about
the initial state is missing. Our problem can be viewed as
a more general problem where the information about what
could be missing is not available.

The ongoing research on abstraction has focused on
ensuring certain properties when creating abstractions. For
example, the authors in [23] have studied abstractions for
producing optimal behaviors that are similar to those in
the ground domain. In [24], the authors have investigated
and categorized several abstraction mechanisms that retain
properties of the ground domain like the Markov property.
The fact that the robot’s initial model is missing some domain
features in our work makes the model an abstraction of the
ground model. The relationship of domain concretization to
domain abstraction is analogous to that of RL to IRL: domain
concretization reverses domain abstraction by refining a
given abstract model. While domain abstraction is known
to benefit planning, prior work has already started to pay
attention to the appropriateness of such abstractions [25],
[24]. Our work here can be viewed as addressing unsound
abstractions that are introduced unintentionally or unknow-
ingly in the design phase, due to design flaws or arising from
domain ramifications [26] and qualifications [27], [28].

It may be tempting to solve the domain concretization
problem based on partially observable markov decision pro-
cesses (POMDPs) [29], or reinforcement learning methods
with POMDPs [30], where the state is partially observable
and the robot uses observations to update its belief about
the state of the world. However, note that a POMDP still
requires complete knowledge about the ground state space,
which is not available in our problem formulation due to
missing domain knowledge. More specifically, this means
that, neither the belief state nor the observation function
would be complete, unlike that in POMDP. While it is
possible to include the model space as part of the state space
of the POMDP, formulating it will be largely intractable.

III. DOMAIN CONCRETIZATION

We first list the assumptions made in our work: 1) Deter-
ministic domains: actions have deterministic effects. Such an
assumption is commonly made in robot task planning [31],
[32], [33]. 2) Rational teachers: the teacher demonstrations
are optimal in the complete domain model, which is a

common assumption made in the literature for learning from
examples or demonstrations [34], [35]. 3) Missing informa-
tion only in the robot’s action models and state observations,
excluding the goal. This is because goals of the robot are
given by the user (teacher) who has access to the complete
domain knowledge.

A. Planning Background

We use the Planning Domain Definition Language (PDDL)
[36] to define our domain model and problem. Here, a
planning problem is defined by a triplet P = (sq, g, M),
where sq is the start state, g is the set of goal propositions
that must be frue in the goal state and M is the domain
model. M = (O, R) where R is the set of predicates and O
is the set of operators. The set of propositions F' and the set
of actions A are generated by instantiating all the predicates
in R and all the operators in O, respectively. Hence, we
can also define M = (A, F). A state is either the set of
propositions s C F' that are true or s; = {L}. The state s
is a dead state and once it is reached, the goal can never be
achieved. The actions change the current state by adding or
deleting some propositions. Each action a € A is specified
by a set of preconditions Pre(a), a set of add effects Add(a)
and a set of delete effects Del(a), where Pre(a), Add(a)
and Del(a) C F. For a model M, the resulting state after
executing plan 7 in state s is determined by the transition
function ~y, which is defined as follows:

L if 7= ();
) {7((@%7(%’,8))

m=n7"o/{a).

In our problem, we use the Generous Execution (GE)
semantics as defined in [20] where if an action a is not
executable, it does not change the world state s. Hence, the
transition function ~ for an action sequence with a single
action a and state s under GE semantics is defined as follows:

(@)s) = { is \ Del(a)) U Add(a) ft }Z;E:Z Cs;

(D

2

A plan 7 is a valid plan for a problem P = (sq, g, M) iff
M (7, s9) 3 (entails) g. The cost of a plan 7 (denoted by
cost(m)) is the cumulative cost of all the actions in 7. For
simplicity, we assume uniform-cost actions throughout.

B. Problem Setting and Analysis

Let us revisit the motivating example in Fig. 1. The
complete domain model (denoted by M*) using PDDL is
provided in Fig. 2, which includes 4 operators: open_box,
grasp, place and stack. place is used when the box
is empty and stack is used when the box already contains
other items. The goal is to pack all items. The items made
of glass are fragile. Note the predicate not _fragile used.

In our problem setting, the user (teacher) is assumed to
have access to M*. The robot’s initial model (denoted by
M), however, may not have knowledge about fragility: the
predicate not _fragile would be missing (highlighted in
Fig. 2). The teacher demonstrations are generated using M™
and projected onto M when observed by the robot, with the

missing information removed. More specifically, the robot
would observe all actions in a teacher’s demonstration but
a different state trajectory from the user’s perspective. Let
us look at an example based on Fig. 1. To simplify the
discussion, assume that we concern with only the two items
il and i2 (fragile). Given a training case with the initial
state that 12 is on top of i1:

e A robot’s would-be plan 7 based on M (5 ac-
tions): (openbox bl, grasp i2, place i2 bl,
grasp il, stack 11 i2 bl);

Initial state observed by the robot: i2 on top of i1l

e A teacher’s demonstration z based on M* (6 ac-
tions): (open box bl, grasp i2, place i2 bl,
open.box b2, grasp il, place il b2);

Initial state observed by the teacher: 12 on top of i1

and i2 is fragile
In the teacher demonstration z, the teacher opens another
box to pack i2 since i1l cannot be stacked on a fragile
item. Since this information is unknown to the robot, the
robot’s plan would ignore such a constraint, resulting in a
shorter (and less costly) plan. However, note that the teacher
demonstration provide hints about the hidden issue. In par-
ticular, from the robot’s perspective, z does not conform
with its model M since z and 7 have different costs for
the same problem, thus violating the assumption of rational
teachers if M = M™. The process of domain concretization
is hence hinged on addressing such nonconformities. Given a
teacher demonstration z as shown above, a nonconformity is
introduced when cost(z) # cost(m): the teacher has chosen a
more or less costly plan than the optimal plan in the robot’s
model M, which should not occur if M is complete. In
fact, given our assumptions, the only possibility is cost(z)
> cost(m) since abstractions relax planning constraints.

When nonconformity is detected, M must be concretized.

In our approach, we generate new models by adding new
predicates to the preconditions and/or effects of the actions
and the initial state. Each such model is then tested for
conformity. Models passing the test become candidate mod-
els. When multiple teachers demonstrations are available, we
require a candidate model to conform with all the demon-
strations. Addressing the detected nonconformities does not
automatically guarantee recovery of the complete model.

C. Problem Formulation

A domain model M = (O, R) is incomplete in that it is
missing a set of predicates, denoted by R (unknown), that
are present in the complete domain M* = (O*, R*).

e RCR* and R=R*\R « Pre(o) = Pre(o)\ R

o Add(0) = Add(o)\ R« Del(o) = Del(o) \ R
Definition 1. The problem setting of Domain Concretization
is a setting where the agent has access to an initial domain

model M and a set of observed teacher demonstrations under
M?* (which are projected onto M).

We denote the set of teacher demonstrations as ¢*. Each
demonstration z* € (* is a tuple (s, g, 7) where sj and g

(:types box item - object

metal - item glass - item ...)
(:action open_box
:parameters (?b — box)
:precondition (and (handempty))
reffect (and (box.open ?b)))

(:raction grasp

:parameters (?m — item)

:precondition (and (on_shelf ?m) (handempty))

reffect (and (holding ?m) (not (on_shelf ?m))
(not (handempty))))

(:action place

:parameters (?ml - item ?b — box)

:precondition (and (holding ?ml) (box_open <?b)

(box_empty 7?b))

ceffect (and (item_packed ?ml) (handempty)
(on_top ?ml ?b) (not (holding ?ml))
(not (box_empty ?b))))

(raction stack

:parameters (?ml - item ?m2 - item ?b - box)

:precondition (and (holding ?ml) (box_open ?b)
(not_fragile ?m2) (on_-top ?m2 ?b))

reffect (and (item_packed ?ml) (handempty)
(on_top ?ml ?b) (not (on_top ?m2 °?b))
(not (holding ?ml))))

Fig. 2: Packing domain description in PDDL. The predicate
in bold (not_fragile) is present in the teacher’s model
M™ but is missing from the robot’s model M.

are the initial state and goal of the associated training case,
respectively. 7 is an action sequence. The robot observes a
projected demonstration (Sg, g, 7) € ¢, where Sy = s \ R.

Definition 2. Planning under Incomplete Domain Knowl-
edge (PIDK) is defined as P = (s, g, M, (, p'), which is the
problem of generating a plan that has at least p' probability
of success for P* = (sf, g, M*) (test case).

In the training phase, our method identifies a set of candi-
date domain models that explain the teacher’s demonstrations
for the training cases. In the testing phase, our method
generates robust plans for new planning problems (i.e., test
cases as initial state and goal pairs (s, ¢)) under the set
of candidate models. Note that the robot observes only
S0 = s§ \ R in test cases as well.

D. Candidate Model Generation via Model Search

To reduce the set of candidate models, we make a
minimalistic assumption: we search only for those models
that require the minimum number of new predicates and
changes to be introduced into M. Without this assumption,
the candidate model space would be infinite as we can always
introduce dummy predicates to a model without affecting its
candidacy. The motivation for minimum model changes can
be attributed to the principle of Occam’s Razor [37].

We transform the problem of generating candidate models
to a search problem in the model space. When noncon-
formities are detected, we gradually increase the number
of predicates to be added until a candidate model can
be identified. Denote the set of possible predicates as X,
which is generated from all possible combinations of typed

arguments (e.g., box and item in Fig. 2) in the domain with
a maximum arity. Each search state in the model space is a
domain model (denoted by M) generated by adding some
predicates from X to their possible missing positions in M.
Since these new predicates may also be present in the initial
state (as propositions), each candidate model M must also
be checked against an initial state so whose projection onto
M is 5g. so may not be unique. A model M is accepted as
a candidate model if it passes the model test below for at
least one so. Our model-space search is defined as follows:

- Initial State: M = M

- Action Set A: {af"“1 U {af4y U (a2}

Vx € X and Vo € O where O € M.

An action « in the model-space search represents a
predicate x being added to Pre(o), Add(o) or Del(o) of
an operator o in the current model M. Each action thus
represents a unit change to the model.

- Successor Function T: T(M,at ™) = M'. T
produces new model M’ where R' = RU x and Pre(o') =
Pre(o) U x where o' € O' and O’ € M. Similarly, we can
define T(M, a2y and T(M, a2°()).

- Model (Goal) Test: Cy (M) A Co(M) A C3(M):

1) C1(M): Plan Validity Test returns true if:

V{50, 9,7) € (7 (7,50) D g 3)

This ensures that all the teacher demonstrations are exe-
cutable and achieve the goal under M.
2) C3(M): Well-Justification Test returns true if:

Y(50,9,7) € C,Va; € 7,y (7 \ {ai},s0) 2g @)

This ensures that the demonstrations are well-justified [38]
in M, which means that if any action is removed from the
demonstration the goal will not be achieved.

3) C3(M): Plan Optimality Test returns frue if:

V(80,9,7) € E, COSt(TI’M) = cost(T) (5)

where 7 is the optimal plan for the problem P = (sq, g,
M). This condition ensures that the teacher demonstrations
are optimal under M. Note that C'5 and C; imply C5 but Co
is easier to test than C3. When C; succeeds but Cy fails, Cg
is guaranteed to fail so its test is no longer needed.

Claim 1. Cy and C3 are necessary and sufficient to ensure
model M can generate T, V(s0,9,7) € (.

Claim 2. C5 is a necessary condition for a demonstration
7 to be optimal, where (50,g9,7) € (.

We solve the problem by uniform cost search. For any
search state in the model space, let X’ (X' C X) be the
set of predicates added to the current domain model M. We
generate U as the set of possible propositions that can be
instantiated from X’. The possible initial state sy satisfies
5o = So U p, where p € 2V, We gradually increase |p| until
a candidate model can be found that passes the model test
and return all candidate models for that |u|. Each candidate
model is associated with a set of sy’s for which the model

tests were passed for the set of training cases. When the
same model passes the tests with different sets of sg’s, they
will be considered as different candidate models.

In our packing domain in Fig. 2 discussed in Sec. III-
B, we start with M as the model M and one predicate
missing. Denote the missing predicate as pred_1. Since
M fails C3(M), the search is started by generating X.
X includes all the possible predicates like (pred-1 ?b -
box), (pred.-1 ?b - box ?m - item), (pred.1 ?b -
box ?m - metal), etc. We order them first based on the
number of arguments, and then from the most to the least
general argument types. Using X, we generate the set of
actions A, such like afjra(smdﬂ) Vx € X, which means y
will be added to the preconditions of operator stack.

E. Heuristic-based Model Generation

To contain the computational complexity, we further
present a heuristic-based search method. The idea is to
identify model changes that (partially or fully) address the
nonconformity with the teacher demonstrations, instead of
checking all possible models. For the packing domain in
Fig. 2, consider a case where M is missing the predicate
(box_open ?b) so that any teacher demonstration with
the open_box action will create a nonconformity: Cs (un-
Jjustified action) will fail because the goal will be achieved
even after deleting the open_box actions. In such as case,
we can generate the next set of models such that C'y returns
true. For example, we can generate a model by inserting a
new predicate to the add effects of action open_box and to
the preconditions of the action place.

The action set A’ now is a set of actions where each
encodes multiple model changes (instead of a unit change).
The search process is similar as before except that if a model
fails the model test on a teacher demonstration (sg, g, 7),
instead of returning false, it returns a set of actions B C A’,
which is used to generate the possible models for the next
step. Furthermore, instead of checking the model M for all
possible sg’s, we check only for those that are returned along
with the action set. The action set B is returned as follows:

- Unsatisfied Precondition: Here, the demonstration is not
executable in M because of some unsatisfied precondition.
This means C (M) returns false for an action a; € 7, 1 <
, such that Pre(a;) € vM(.a;_1),50). In
such a case, we return the action set B = {(afdd(oj))}
Va; € T and for x € A, where A is the set of preconditions
missing for a; and o; is the operator corresponding to action
aj and 1 < j < ¢ — 1. Alternatively, x (after instantiation
according to (sg, g, 7)) may be added to the initial state sq.
This is because a missing proposition could either be present
in the add effects of any previous action or in the initial state.

- Unjustified action: This happens when some ac-
tion in the demonstration is not well-justified in M.
This means Cy(M) returns false for some action a;
such that ™ (7 \ {a;},s0) 2 g¢. In such a case,
we return the action set B {(a®e) gFretein
{(afdd(oi),afre(oj), Del(o;))} Ya; € 7 and Vx € X. o;
and o; are operators correspondmg to actions a; and a;

<a1, as, ..

respectively and ¢ + 1 < j < |7|. Intuitively, this generates
B such that a; cannot be removed from 7, which makes it
well-justified under the updated M.

- Sub-optimal demonstration: This happens when the op-
timal plan under M is less costly (shorter) than a teacher’s
demonstration. In such a case, C3(M) would return false,
which means there exists an action that is not possible
in 7 under M* but is possible in M under M. Hence,
the operator corresponding to that action is missing some
precondition. In such a case, Ja;, a; such that a; € 7 and
a, € 7™ and a; # al, 1 <i <n (n = |7™]). We return the
action set B = { (o Pre(o;))} U {(ax") o)) v, €

1 and Vy € X, Where 0; is the operator corresponding to
a;» and i < j < n.

For the example mentioned where box_open is missing,

if 7 = (openbox bl,grasp il,place il bl) while

the action open_box is considered not needed in M,
then B = Add(Ope” box) Pre(gmsp) Add(Open bo:z:)

Pre(place) U Add(open boz§< Pre(grasp) Del(grasp))
b

Qry
(Add(open. bom) Pre(place) Del(placf‘))} VX c X. This

w111 generate 4 new models for each predicate x € X.

Theorem 3. (Soundness) The candidate models found by
the heuristic-based search can generate all the teacher
demonstrations, with the minimum number of changes to M.

Proof. While generating the action set B in the heuristic-
based search, the process checks to see if the model test is
satisfied. If so, it accepts the model as a candidate. Under
Claim 1, it can be concluded that a candidate model will
be able to generate all the teacher demonstrations if the
heuristic-based search finds it. A uniform cost search ensures
that the number of changes made to M is minimum. O

Theorem 4. (Completeness) The heuristic-based search finds
all the models satisfying the model test with the minimum
number of changes to the incomplete model M.

Proof Sketch. We can prove this by induction. The basic
idea is to show that in each iteration, B includes all the
possibilities in which a predicate may be added to make the
model satisfy the model test for the training case (teacher
demonstration) considered. The uniform cost search ensures
that the number of changes is minimal. O

FE. Online Model Generation

In the real world, it is desirable to have an online search
method that consider teacher demonstrations as they arrive.
The search procedure is similar to the heuristic-based method
above and starts with the incomplete model M. The differ-
ence being that search process is performed against only one
teacher demonstration at a time, referred to as an iteration.
Within each iteration, the search finds a set of candidate
models M that conform to the demonstration considered.
The next iteration begins with these models when a new
teacher demonstration is provided. In terms of computation,
the online heuristic-based search is expected to perform
better. This is because it greedily searches for a set of
candidate models at each iteration with the minimal changes.

Hence, the solution produced by the online method may
be dependent on the order of the teacher demonstrations
considered. It is not guaranteed to recover a candidate model
for all training cases even when one exists. This is because
the online search considers only a single demonstration at
a time. Hence, it can stop prematurely at shallower levels
when the true model resides at deeper levels.

G. Robust Planning

Given the set of candidate models M, when given a
new task (Sp,g), we find a robust plan such that it has the
highest probability of achieving the goal under the weighted
set of candidate models M. Similar to [20], we compile
the problem of generating a robust plan into a Conformant
Probabilistic Problem (CPP). A Conformant Probabilistic
Problem [7] is defined as P’ = (I, g, D, p) where T is
the belief over the initial state, D is the domain model, and
p is the acceptable goal satisfaction probability. The domain
model D = (A’, F’), where F” is the set of propositions
and A’ is the set of actions. Each o’ € A’ has the set of
preconditions Pre(a’) C F’ and E(a’), the set of conditional
effects. Each ¢’ € E(a’) is a pair of con(e’) and o(e’), where
con(e’) C F’ enables €’ and 0(¢’) is a set of outcomes €. The
outcome ¢ is a triplet (Pr(e), add(e), del(e)), where add(e)
adds the proposition e to and del(e) deletes it with probability
Pr(e). A compilation that translates the PIDK problem
P = (80,9,M,(,p'), when given M, to a conformant
probabilistic planning problem P’ is defined as follows:

For each candidate model M; € M, a proposition m; is
introduced. Let the set of these propositions be M. Further,

a set [= U F; is introduced, where F; is the set of

propositions 1nstant1ated by predicates R; € M;, where
M; € M and n is the total number of models in M. In
the compiled problem, the set of propositions F’ = MUF.
For each model M; € M, aset U/ is created, Aw/hlch is the set
of new propositions that are not present in M. The domain
model D for P’ is created from M as follows:

« A new action qay that initializes the initial state with
the missing propositions introduced for each candidate
model M;. The action ay has Pre(ap) = 0; further-
more, Vm; € M, a conditional effect e, € E(af) is
created such that con(e;) = {m;} and each outcome
€ € o(e) has add(e;) = p' and del(e;) = () where
WoE 29", For cach outcome, Pr(ej) = 1/|
This initializes the initial state for each model M;,

considering all the possibilities equally likely (since we
have no information about them in the test case).

« For each action a € A in M, if [, if model M; € M adds
a proposition u; € U] to Pre(a), a conditional rule
e; € E(a) is created, such that con(e;) = Pre(a) U
{m; }U{u.}, add(e;) = Add(a) and del(e;) = Del(a).
For example, if in model M;, action place il has
the new proposition (pred_0 i1) in its preconditions,
then the action in the compiled domain will have a

conditional rule where con(e;) = Pre(placeil) U

{m;} U {(pred-0 i1)}; add(e;) and del(e;) will
remain the same.

o For each actiona € A in M, if model M; € M adds a
proposition u; € U; to Add(a), a conditional rule e; €
E(a) is created, such that con(e;) = Pre(a) U {m;},
add(e;) = Add(a) U {u}, del(e;) = Del(a).

o For each action a € A in M, if model M; € M adds a
proposition u; € U] to Del(a), a conditional rule e; €

Pre(a) U {m;},

Del (YU {ui}.

r = (A A

f€so

(oneof(my,ma,...my)) where oneof returns frue when

exactly one of its input is true. In the compiled problem,

we set p = p/. A conformant plan is calculated for the
given problem using a conformant probabilistic planner. The

plan so obtained is a robust plan for problem P = (s, g,

M, ¢, p') with success probability of at least p’ (see below).

To search for the most robust plan, we can start with p’ = 1

and gradually decrease it until a plan is found.

E(a) is created, such that con(e;) =
add(e;) = Add(), del(e;) =

The initial Dbelief state

Theorem 5. If 7' = (a(,a},ab, ak,...a),) is a plan for the
complied problem P’ with goal satisfaction probability p,
then p is also the (lower bound of the) probability of success
of the plan ™ = (a1, as, as, ...a,,) for the problem P.

Proof Sketch. The action qf, initializes all possible initial
states for each model M; € M in M, resulting in a set
of new candidate models (denoted by M’) that also specify
the initial state. Given the set of all such models M’, it
is easy to see that there is a bijective mapping between
the initial state in the conformant planning problem and the
candidate models in M’. We can use induction to prove that a
solution to any given initial state in the conformant planning
problem is also a solution to a planning problem under the
corresponding candidate model. Therefore, we can conclude
that if 7’ achieves the goal with probability p in P’, then the
probability of success of 7 in the problem P is also p. [

IV. EVALUATION

We first evaluate our methods on various IPC domains to
show their effectiveness under incomplete domain knowl-
edge. Then, we create a more complex version of our
packing domain to show the practical benefits. Plans are
generated with Fast-Downward [39]. For solving conformant
probabilistic planning problems, probabilistic-FF [7] is used.

A. IPC Domains

For this evaluation, we used two IPC domains. In the
rover domain, there are multiple rovers each equipped with
capabilities like sampling soil, rock, and capturing images
at different waypoints. The second domain is a slightly
modified version of the gold-miner domain. In this domain,
we have a grid-world and the task is to pick up gold from
a particular cell and deposit it in another. Some cells have a
laser or a bomb that could be used to clear the blocked cells.
We introduced incompleteness by removing predicates that

Doms 4T ‘ Model Searched ‘ Candidate Models ‘ Time(secs) ‘ Plan Success ‘ Avg Cost Inc
i | BF | HS | HS+ | OS | BF [HS | HS+ [OS | BF | HS] HS+ | OS | HS [HS+ [OS [Baseline | HS | HS+ [OS
One predicate missing at a time
3 1500 400 70 400 | 2 2 1 2 205.78 20.11 4.95 37.80 8/8 8/8 8/8 0/8 +0.25 | +0.25 | +0.25
Rovers 3 1500 200 40 200 [2 2 1 2 47.62 10.51 38 10.98 8/8 518 8/8 0/8 +0.63 [+0.8 +0.63
5 10300 840 70 300 | 3 3 1 3 520.29 80.06 6.05 18452 | T1/11 8/11 TI/T1 0/11 +0.64 [+0.75 | +0.64
2 700 30 10 30 1 1 1 1 8.74 0.90 0.82 1.12) 12/12 | 12/12 | 12/12 0/12 +1.25 | +1.25 | +1.25
Miner 4 2520 430 30 70 1 1 1 1 517.69 156.14 12.83 31.07 [10/10 | 10710 | 10710 0/10 +1.00 [+1.00 | +1.00
2 140 10 3 10 1 1 1 1 242 0.49 0.45 0.62 [12/12 | 12712 | 12712 0/12 +1.25 [+1.25 | +1.25
Two predicates missing at a time
3 - 26500 5900 26600 4 1 4 645.11 142.8 484.96 71 3/7 1 0/7 +0.57 | 1.33 +0.57
Rovers 6 179620 14470 31900 3] 3 7873.6 753.18 1484.72 8/8 58 8/8 0/8 +0.25 [+04 +0.25
6 185200 14620 32000 3 1 3 7456.40 741.49 1671.37 8/8 8/8 8/8 0/8 +0.00 [+0.00 | +0.00
4 10140 620 3600 1 1 1 560.09 55.05 192.62 | 10/10 | 10/10 | 10/10 0/10 +1.00 | +1.00 | +1.00
Miner 4 - 3920 610 620 - 1] 1 - 298.35 41.17 41.72 | 10710 | 10/10 | 10/10 0/10 +1.00 [+1.00 | +1.00
2 121300 260 110 260 1 1 1 1 1610.92 3.29 2.69 283 | 12/12 | 12/12 | 12/12 0/12 +1.25 | +1.25 | +1.25
Three predicates missing at a time
Rovers [6 | -] - [127940 T 1175000] [- [1T T3] -] - [3172.64 | 25610.00] 88 [88 [08] [+0.25 T +0.25
Miner | 4 | -] 227110 | 3900 | 11420 | [T [1 T 1] - [644161 | 9598 | 36422 | 10/10 | 10/10 | 10/10 [0/10 [+1.00 | +1.00 | +1.00

TABLE I: Comparison results of the proposed methods with a baseline (assuming complete models) for the IPC domains

can be generated by some actions and are simultaneously
preconditions of other actions. For example, in the rover
domain, the precondition to capture an image is that the
camera should be calibrated, which can be produced by
the calibrate action. For each domain, we created multiple
incomplete domains by removing a different number of pred-
icates (up to 3) randomly from the set of possible missing
predicates under the given domain. For this experiment, we
removed only those predicates that were not present in the
initial state. Using the complete domain model, optimal plans
were generated for training cases and used as the teacher
demonstrations. These demonstrations were then projected
onto the incomplete model and given to the agent.

Table I shows the results of our experiments. For each
incomplete domain, the results are presented for 4 meth-
ods: Brute Force (BF), Heuristic-based Search (HS), and
Online heuristic-based Search (OS); For HS, we also im-
plemented a random select strategy with parallel instances
that maintains only a fixed percentage of the children nodes
when expanding any node, which we referred to as HS+.
For our experiments we used 20%. Here, each incomplete
domain was given multiple training cases (#T column in
table) with teacher demonstrations. It turned out only a few
cases (around 2-6) were needed for most methods in this
experiment. For HS+, we ran 12-15 instances in parallel
and chose the one that found candidate models the fastest.
After identifying the candidate models, we then generated
8-12 test cases of different problems and tested our robust
planning method. Blank cells (“-”) in the table represents the
situation where the model search time exceeded a predefined
limit (180 mins for scenarios missing 2 predicates and 480
mins for scenarios missing 3 predicates). The brute-force
approach timed-out in almost every domain tested when
multiple predicates were missing. Heuristic-based search
(either HS, HS+ or OS) reduced the number of models
searched by a considerable amount. We can also observe that,
as the number of missing predicates increased, computational
time increased by a significant amount. This is due to the
exponential growth of the search space. The online search
method performed better than the heuristic-based search
method especially when multiple predicates were missing.
HS+ is the fastest among all but it does not always cover the
complete model (and hence its plan is not always successful).
Note that had we used M to generate the plans, they would

often fail (see the Baseline column in the table). Results also
show that the plans generated by our methods only slightly
increased the plan cost (i.e., the average length for successful
plans), when compared to the plan in the complete domain.

Fig. 3: Comparison of the action sequences generated with
a standard planning method (left) and our method provided
with a few teacher demonstrations (right). A video for com-
paring the different behaviors is provided as an attachment.

B. Simulated Robotics Domain

In this experiment, we have created a simulated robotics
domain which is a more complex version of our packing
domain. In this domain, we now have two constraints for
packing items into boxes. As before, the first constraint is
that a fragile item cannot be stacked. The second constraint is
that a fragile item cannot be dropped into the box (via drop)
and instead must be placed carefully (via place). We
also introduced two grasping actions: horizontal_grasp
and vertical_grasp. For horizontal_grasp, the
surroundings of the item to be picked up should be clear. For
vertical_grasp, clear surroundings are not a necessity.

Some of the items may be stored in containers (see Fig. 3).
In such cases, when using vertical_grasp, the container
must be opened first by pressing a button on the top. On
the other hand, this is not needed for horizontal _grasp
since the contains are directly accessible from the side.
Furthermore, if the robot picks up an item horizontally, it
must use drop action instead of place since it cannot
twist its wrist (assumed). For vertical grasp, both place
and drop are possible. The goal is the same as before.

Fig. 3 shows the setup of our simulated experiments.
The left sequence (top to bottom) is the one that used M
to plan, which is missing knowledge about the fragility of
items. As expected, the robot was not able to distinguish
between fragile items (in yellow) and non-fragile items (in
blue). Hence, it used horizontal_grasp to pick up the
fragile item and drop to put the fragile item into the box,
which could damage the item. Furthermore, in the subsequent
actions, the robot stacked an item over the fragile item, which
was also undesirable. On the other hand, the actions executed
using our method (HS) is shown on the right of Fig. 3, after
providing the teacher demonstrations for a few training cases
(different from the scenario shown in Fig. 3). The robot first
picked up the non-fragile item using horizontal_grasp
and then put it into the box using the drop action. Then it
used vertical_grasp followed by place to stack the
fragile item carefully over non-fragile item.

V. CONCLUSIONS & FUTURE WORK

In this paper, we have formally introduced the problem of
Domain Concretization and discussed its prevalence to robot
planning. We have presented a solution that uses teacher
demonstrations and an initial model to generate a set of
candidate models and then search for a robust plan that
achieves any test case under the maximum number of candi-
date models. We have formulated the model search process
and developed a heuristic-based search to make the search
more efficient. For practical use, we have also presented an
online version of this search method. Our methods were
tested on IPC domains and a simulated robotics domain
where our methods significantly increased the success rate of
planning. This work opens up many research directions. For
example, the conditions under which domain concretization
will converge to include the complete model would be useful
to study. Furthermore, this work is limited to deterministic
domains and rational teachers. Extending our approach to
relax these assumptions would be meaningful next steps.

REFERENCES

[1] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduc-
tion. Cambridge, MA, USA: A Bradford Book, 2018.

[2] A. Y. Ng and S. J. Russell, “Algorithms for inverse reinforcement
learning,” in /ICML, 2000.

[3] B. D. Ziebart, A. Maas, J. A. Bagnell, and A. K. Dey, “Maximum
entropy inverse reinforcement learning,” in AAAI, 2008.

[4] W. Mao and J. Gratch, “A utility-based approach to intention recog-
nition,” in AAMAS, 2004.

[5] O. Schrempf and U. Hanebeck, “A generic model for estimating user
intentions in human-robot cooperation,” in ICINCO, 2005.

[6] D.C. Logan, “Known knowns, known unknowns, unknown unknowns

and the propagation of scientific enquiry,” Journal of experimental
botany, vol. 60, no. 3, pp. 712-714, 2009.

[7]
[8]

[9]
[10]
[11]
[12]
[13]
[14]
[15]

[16]

[17]

(18]

[19]
[20]
[21]
[22]
[23]
[24]
[25]
[26]
[27]
[28]
[29]

[30]

(31]

(32]

(33]

[34]

[35]

[36]
[37]

[38]

[39]

C. Domshlak and J. Hoffmann, “Probabilistic planning via heuristic
forward search and weighted model counting,” JAIR, 2007.

A. Sharma, P. R. Medikeri, and Y. Zhang, “Domain concretization
from examples: Addressing missing domain knowledge via robust
planning,” arXiv:2011.09034, 2020.

H. H. Zhuo, T. Nguyen, and S. Kambhampati, “Model-lite case-based
planning,” in AAAI, 2013.

——, “Refining incomplete planning domain models through plan
traces,” in IJCAI, 2013.

Q. Yang, K. Wu, and Y. Jiang, “Learning action models from plan
examples using weighted max-sat,” Artificial Intelligence, 2007.

H. Zhuo, Q. Yang, D. Hu, and L. Li, “Learning complex action models
with quantifiers and logical implications,” Artificial Intelligence, 2010.
H. H. Zhuo and Q. Yang, “Action-model acquisition for planning via
transfer learning,” Artificial Intelligence, 2014.

H. H. Zhuo and S. Kambhampati, “Action-model acquisition from
noisy plan traces,” in IJCAI, 2013.

H. M. Pasula, L. S. Zettlemoyer, and L. P. Kaelbling, “Learning
symbolic models of stochastic domains,” JAIR, 2007.

R. Cantrell, K. Talamadupula, P. Schermerhorn, J. Benton, S. Kamb-
hampati, and M. Scheutz, “Tell me when and why to do it! run-time
planner model updates via natural language instruction,” in HRI, 2012.
I. Stahl, “Predicate invention in ilp — an overview,” in Machine
Learning: ECML, 1993.

S. Kambhampati, “Model-lite planning for the web age masses: The
challenges of planning with incomplete and evolving domain models,”
in AAAI 2007.

C. Weber and D. Bryce, “Planning and acting in incomplete domains,”
in ICAPS, 2011.

T. Nguyen, S. Sreedharan, and S. Kambhampati, “Robust planning
with incomplete domain models,” Artificial Intelligence, 2017.

Y. Zhang, S. Sreedharan, and S. Kambhampati, “Capability models
and their applications in planning.” in AAMAS, 2015, pp. 1151-1159.
A. Cimatti and M. Roveri, “Conformant planning via symbolic model
checking,” JAIR, vol. 13, pp. 305-338, 2000.

D. Abel, D. E. Hershkowitz, and M. L. Littman, “Near optimal
behavior via approximate state abstraction,” in /CML, 2016.

S. Srivastava, S. Russell, and A. Pinto, “Metaphysics of planning
domain descriptions,” in AAAI, 2016.

B. Marthi, S. Russell, and J. Wolfe, “Angelic semantics for high-level
actions,” in ICAPS, 2007.

J. J. Finger, “Exploiting constraints in design synthesis,” Ph.D. disser-
tation, Stanford, CA, USA, 1987.

J. McCarthy, “Epistemological problems of artificial intelligence,” in
1IJCAL 1977.

M. L. Ginsberg and D. E. Smith, “Reasoning about action ii: The
qualification problem,” Artificial Intelligence, 1988.

L. P. Kaelbling, M. L. Littman, and A. R. Cassandra, “Planning and
acting in partially observable stochastic domains,” ALJ, 1998.

T. Jaakkola, S. Singh, and M. Jordan, “Reinforcement learning algo-
rithm for partially observable markov decision problems,” Advances
in Neural Information Processing Systems, 1999.

T. Chakraborti, G. Briggs, K. Talamadupula, Y. Zhang, M. Scheutz,
D. Smith, and S. Kambhampati, “Planning for serendipity,” in /ROS.
IEEE, 2015, pp. 5300-5306.

Y. Zhang, S. Sreedharan, A. Kulkarni, T. Chakraborti, H. H. Zhuo,
and S. Kambhampati, “Plan explicability and predictability for robot
task planning,” in /CRA. IEEE, 2017, pp. 1313-1320.

R. Alami, A. Clodic, V. Montreuil, E. A. Sisbot, and R. Chatila, “To-
ward human-aware robot task planning.” in AAAI spring symposium:
to boldly go where no human-robot team has gone before, 2006.

P. Abbeel and A. Y. Ng, “Apprenticeship learning via inverse rein-
forcement learning,” in /ICML, 2004.

B. D. Argall, S. Chernova, M. Veloso, and B. Browning, “A survey
of robot learning from demonstration,” Robotics and autonomous
systems, vol. 57, no. 5, pp. 469483, 2009.

M. Fox and D. Long, “Pddl2.1: An extension to pddl for expressing
temporal planning domains,” JAIR, 2003.

A. Blumer, A. Ehrenfeucht, D. Haussler, and M. K. Warmuth, “Oc-
cam’s razor,” Information Processing Letters, 1987.

E. Fink and Q. Yang, “Formalizing plan justifications,” 1997.
[Online]. Available: https://kilthub.cmu.edu/articles/Formalizing_Plan_
Justifications/6605831

M. Helmert, “The fast downward planning system,” JAIR, 2006.

