

EDGE ARTICLE

Directed, Nickel-Catalyzed 1,2-Alkylsulfonylation of Alkenyl Carbonyl Compounds

Received 00th January 20xx,
Accepted 00th January 20xx

DOI: 10.1039/x0xx00000x

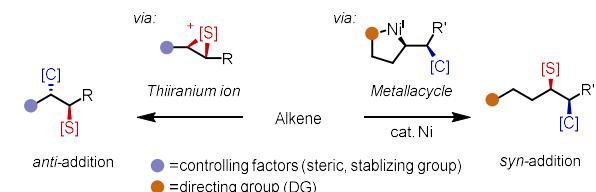
Zi-Qi Li,^a Wen-Ji He,^a Hui-Qi Ni,^a and Keary M. Engle^{*a}

We report a regioselective, nickel-catalyzed *syn*-1,2-carbosulfonylation of non-conjugated alkenyl carbonyl compounds with alkyl/arylzinc nucleophiles and tailored N-S electrophiles. This method allows the simultaneous installation of a variety of C(sp³) and S(Ar) (or Se(Ar)) groups on to unactivated alkenes, which complements previously developed 1,2-carbosulfonylation methodology in which only C(sp²) nucleophiles are compatible. A bidentate directing auxiliary controls regioselectivity, promotes high *syn*-stereoselectivity with a variety of *E*- and *Z*-internal alkenes, and enables the use of a variety of electrophilic sulfonyl (and seleno) electrophiles. Among compatible electrophiles, those with *N*-alkyl-benzamide leaving groups were found to be especially effective, as determined through comprehensive structure-reactivity mapping.

Introduction

Organosulfur compounds possess unique bioactivity and electronic properties and thus find applications in drug discovery¹ and as functional materials.² While catalytic two-component C–S bond formation³ through cross-coupling⁴ and C–H functionalization⁵ reactions has been extensively studied during the past few decades, multicomponent C–S bond-forming protocols remain underdeveloped.⁶ In particular, reactions that merge an alkene, a carbon nucleophile, and a sulfur electrophile together in a programmable fashion are appealing. Pioneering methods on alkene carbosulfonylation by Trost⁷, Denmark⁸, and others⁹ harness the oxidative properties of sulphenium ion reagents for the generation of a thiiranium ion intermediate, which subsequently undergoes nucleophilic ring opening to account for the *anti*-selectivity of the reaction (Scheme 1A, left panel).¹⁰ Regioselectivity is controlled by alkene substitution patterns. While these methods are useful to access some sulfur-containing products, the intrinsic reactivity of the thiiranium ion intermediate introduces inherent limitations with respect to functional group compatibility and has hampered the development of a general three-component version of this methodology. Namely, only a small collection of sulphenyl groups (–SMe, –SPh) and carbogenic nucleophiles (cyanide, acetylide, and organozinc reagents)^{7,9d} have been reported to participate in three-component couplings. To complement these methodologies with a *syn*-selective counterpart that has broad electrophile and nucleophile scope would be highly enabling.

Nickel-catalyzed redox-neutral 1,2-difunctionalization^{11–12} of unactivated alkenes has emerged as an attractive means of quickly assembling structurally complex products from feedstock alkenes, a nucleophile, and an electrophile in a regio- and stereoselective fashion. The presence of a directing group leads to formation of a metallacycle intermediate, which controls regioselectivity and suppresses potential side reactions; diastereoselectivity is dictated by the inner-sphere migratory insertion mechanism (Scheme 1A, right panel). While 1,2-dicarbofunctionalization^{13–15} has been extensively studied, 1,2-carboheterofunctionalization remains less explored and is largely limited to transformations introducing metalloid (semimetal) elements, namely borylative and silylative functionalizations, where the new C–B(Si) bond is formed via migratory insertion.¹⁶ For non-metal elements (N, S, Se, etc.), C–heteroatom bond formation is challenging, often requiring reductive elimination to take place from a high-valent Ni(III) intermediate.¹⁷ Hence, a strategy for intercepting the alkylnickel(I) intermediate formed upon migratory insertion with a heteroatom electrophile of interest is key to this type of transformation. Specifically, in the case of carbosulfonylation reactions, potential pitfalls include competitive β -hydride elimination caused by less reactive sulfur electrophiles and oxidative dinucleophile coupling caused by over-reactive sulfur electrophiles. With weakly coordinating directing groups, specially tailored sulfur electrophiles have been found to enable selective coupling at a specific point along the reaction coordinate,^{17e} namely in oxidative addition with an alkylnickel(I) intermediate. As a complementary approach, we envisioned that strongly coordinating directing groups/auxiliaries may accommodate more diverse sulfur electrophiles, as examined in this study.


Recently, we reported a *syn*-(hetero)arylsulfonylation of unactivated alkenes with (hetero)arylboronic acid neopentyl ester nucleophiles that enables installation of a C(sp²)

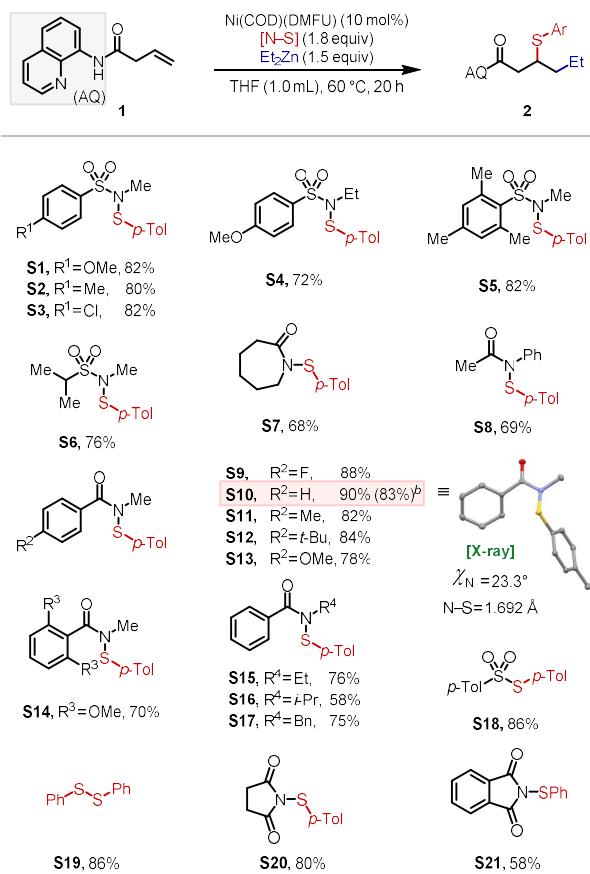
^a Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States, E-mail: keary@scripps.edu.

[†] Electronic Supplementary Information (ESI) available. For ESI see DOI: 10.1039/x0xx00000x

carbogenic group.^{17e} Complementing this previous study by expanding the nucleophile scope to include C(sp³) partners is appealing given the potential for simultaneous C(sp³)–C(sp³) and C(sp³)–S formation (Scheme 1B). In this transformation, *syn*-selectivity is proposed to arise from the inner-sphere migratory insertion mechanism. Critical to the success of the present study is the use of a bidentate directing auxiliary (8-aminoquinoline, AQ) and the identification of a family of *N*-alkyl-*N*-(arylsulfenyl)benzamide sulfur electrophiles.

A. three-component carbosulfonylation

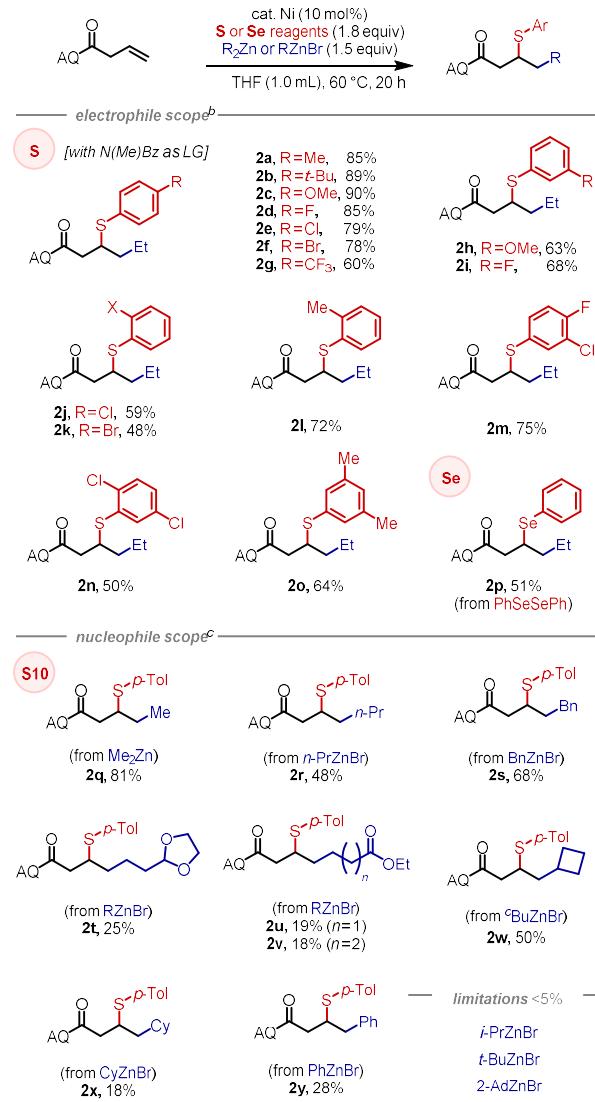
B. directed *syn*-carbosulfonylation of unactivated alkenes


Scheme 1. Background and Synopsis of Current Work.

Results and Discussion

Initial attempts to directly extend our previous method for (hetero)arylsulfonylation of alkenes^{17e} containing native directing groups¹⁴ from C(sp²) to C(sp³) nucleophiles were unsuccessful (see SI for details), with catalyst deactivation being the main cause. Based on our previous work, we envisioned that a strongly coordinating bidentate directing auxiliary would better accommodate alkyl nucleophiles, particularly alkylzinc reagents.^{13,17a} We thus launched our investigation by seeking to identify an optimal N–S electrophile using β,γ -unsaturated amide **1** as the pilot alkene substrate and commercially available diethylzinc as the standard nucleophile. After extensive screening, tractable conditions were established with 10 mol% Ni(COD)(DMFU) as catalyst¹⁸ and THF (0.1 M) as solvent. A batchwise addition protocol was employed to avoid reagent decomposition and ensure high substrate conversion (see SI for details). Under these conditions, we surveyed a wide range of sulfonylating agents. First, reagents with *N*-alkyl sulfonamide leaving groups were tested, given their unique effectiveness in our earlier work.^{17e} The electronic properties of the arenesulfonyl group (as in **S1–S3**) did not affect the yield. A slight increase in steric bulk from methyl to ethyl on the *N*-alkyl vector proved deleterious to the reaction (**S4**), while increasing steric encumbrance on the arenesulfonyl group exhibited no effect on the reaction (**S5**). An *N*-alkyl-alkylsulfonyl leaving group gave 76% yield (**S6**). We then turned our attention to N–S electrophiles with amide leaving groups. Caprolactam and *N*-acetyl aniline leaving groups gave the desired product in moderate yields (**S7–S8**). Next, a series of *N*-alkyl-*N*-(arylsulfenyl)benzamide family of sulfur electrophiles were

evaluated. Electronic effects within this class of reagents were tested by varying the substituents on the *para*- position (**S9–S13**). The commercially available *N*-methyl benzamide leaving group (**S10**) gave the highest yield of 90%. When using an *in situ* ligation protocol with Ni(COD)₂ as pre-catalyst and DMFU as ligand, the desired product was obtained in slightly diminished yield (83%). The X-ray crystal structure of **S10** revealed a slightly non-pyramidalized nitrogen center and a N–S bond of 1.692 Å.^{17e} Increasing the steric encumbrance on either the benzoyl (**S14**) or the *N*-alkyl (**S15–S17**) fragment gave diminished yields. Interestingly, **S18–S21** with BDEs ranging from 39.6 kcal/mol to 79.6 kcal/mol all furnished the desired product in moderate to good yields (58–86%). Notably, commercially available disulfides also gave reasonably good yields (typically within 25% of the optimal N–S reagent family) and thus represent a cost-effective alternative (see Supporting Information for details). The effectiveness of a structurally diverse collection of sulfonylating agents in this reaction stands in contrast to our previous findings on arylsulfonylation of alkenes with native directing groups, where efficient three-component coupling is only achieved with N–S electrophiles with a narrow range of properties. Our current hypothesis is that the origin of this difference is the stabilizing nature of the bidentate directing group, which rigidifies the key 5,5-nickelabicyclic intermediate, thereby suppressing side reactions and making the intermediate sufficiently long-lived to engage coupling partners with diverse reactivity profiles.


Having identified an effective leaving group, our focus then shifted to exploring the scope of the method with respect to each of the three components, namely electrophiles, nucleophiles (Table 1), and alkene substrates (Table 2). Using *N*-methyl-benzamide as leaving group, N–S electrophiles analogous to **S10** were used to examine the electrophile scope. We first evaluated *para*-substituted arylsulfonyl coupling partners with different electronic properties and found that higher yield was obtained with N–S electrophiles that bear an electron-donating substituent (**2a–2g**). Moderate yields were obtained with reagents bearing *meta*-substituents (**2h–2i**). *ortho*-Substitution gave diminished yields due to steric hindrance (**2j–2l**). Arylsulfonyl units with diverse substitution patterns were tolerated, giving moderate to good yields (**2m–2o**). Preliminary data showed limited success (<5% of the desired product) with alkylsulfonyl electrophiles. To our delight, 1,2-carboselenation was also achieved using diphenyl diselenide as an electrophile (**2p**).

Scheme 2. Optimization of Sulfur Electrophile^a


^aReaction conditions: $\text{Ni}(\text{COD})(\text{DMFU})/1/\text{Et}_2\text{Zn}/[\text{N-S}] = 0.01/0.1/0.15/0.18$ (mmol). Batchwise addition: 1) $[\text{N-S}]/\text{Et}_2\text{Zn} = 0.12/0.1$ (mmol), 30 min; 2) then $[\text{N-S}]/\text{Et}_2\text{Zn} = 0.12/0.1$ (mmol), 20 h. Reaction was run in THF (0.1 M) at 60°C . All percentages represent ^1H NMR yields with CH_2Br_2 as internal standard. DMFU = dimethyl fumarate. ^bResult in parentheses obtained with $\text{Ni}(\text{COD})_2$ (10 mol%) as pre-catalyst and DMFU (20 mol%) as ligand.

Compatible nucleophiles include commercially available diorganozinc or organozinc bromide reagents, though some examples provided modest yields. When using Me_2Zn as nucleophile under the established condition, **2q** was obtained in 81% yield. However, applying the same protocol to alkylzinc bromide reagents was lower yielding, likely stemming from their attenuated reactivity. In these cases, yields could be slightly improved by using $\text{Ni}(\text{COD})_2$ as pre-catalyst in place of $\text{Ni}(\text{COD})(\text{DMFU})$ (see SI for details). One possible explanation is that the electron-deficient olefin ligand, DMFU, slows down the rate of transmetalation. Primary alkylzinc bromide reagents with *n*-propyl or benzyl groups provided the corresponding products in (**2r-2s**) in moderate yields. Synthetically useful functional groups such as dioxolane (**2t**) and ethyl esters (**2u-2v**) were tolerated as well, albeit in diminished yields. Cyclic secondary alkyl nucleophiles, such as cyclobutyl and cyclohexyl groups, could be introduced in moderate yields (**2w-2x**). Due to

steric hindrance or susceptibility to β -hydride elimination of the zinc reagents, acyclic secondary and tertiary alkylzinc reagents were incompatible in the reaction, as was the extremely hindered cyclic secondary alkyl coupling partner, 2-AdZnBr. Using phenylzinc bromide as nucleophile, 1,2-arylsulfenylation could be achieved in 28% yield (**2y**).

Table 1. Electrophile Scope and Nucleophile Scope^a

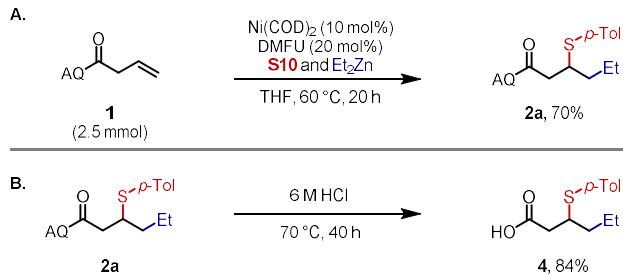

^aReactions performed on 0.1 mmol scale. Percentages represent isolated yields. Batchwise addition: 1) $[\text{E}]/[\text{Nuc}] = 0.12/0.1$ (mmol), 30 min; then 2) $[\text{E}]/[\text{Nuc}] = 0.12/0.1$ (mmol), 20 h. ^bReaction conditions: $\text{Ni}(\text{COD})(\text{DMFU})/1/\text{Et}_2\text{Zn}/[\text{N-S}] = 0.01/0.1/0.15/0.18$ (mmol). ^cReaction conditions: $\text{Ni}(\text{COD})_2/1/\text{RZnX}/\text{S10} = 0.01/0.1/0.15/0.18$ (mmol). For **2q**, $\text{Ni}(\text{COD})(\text{DMFU})/1/\text{Me}_2\text{Zn}/\text{S10} = 0.01/0.1/0.15/0.18$ (mmol).

Table 2. Alkene Scope^a

^aReactions performed on 0.1 mmol scale. Percentages represent isolated yields. Batchwise addition: 1) [E]/[Nuc] = 0.12/0.1 (mmol), 30 min; then 2) [E]/[Nuc] = 0.12/0.1 (mmol), 20 h. ^bReaction conditions: Ni(COD)(DMFU)/alkene/Et₂Zn/**S1** = 0.01/0.1/0.15/0.18 (mmol). ^cReaction conditions: Ni(COD)(DMFU)/alkene/Et₂Zn/**S10** = 0.01/0.1/0.15/0.18 (mmol).

A series of alkenyl amide substrates with different substitution patterns were evaluated. Alkenes with *α*-substituents benefited from using the more reactive sulfonamide-derived N-S electrophile **S1**, giving the corresponding products in moderate to good yields (**3a**–**3f**), with larger steric encumbrance leading to lower yields and slightly higher diastereoselectivity. We then tested internal alkenes with both *Z* and *E* configurations with the expectation that the diastereochemistry of the product would provide insight into the mechanism of the reaction. First, using (*E*)-3-pentenoic acid derived substrate, **3g** was obtained in 89% yield and >20:1

diastereoselectivity. The relative configuration was confirmed by X-ray crystallography, indicating a *syn*-addition process that arises from a migratory insertion mechanism. Interestingly, in the example of **3g**, changing the electrophile to **S18** or **S19** (featuring vastly different BDE) gave the corresponding product with consistent diastereoselectivity (>20:1) albeit in lower yields, 84% and 70%, respectively (see SI for details). Opposite relative diastereoselectivity could be obtained with the combination of (*E*)-3-hexenoic acid derived substrate and dimethylzinc nucleophile (**3h**). Using (*Z*)-alkene as substrates, the desired products could be obtained in moderate to good yields and high diastereoselectivity (**3i**–**3l**). Alkenes bearing masked –OH and –NH₂ moieties were tolerated as well (**3m**–**3p**), with –NH₂Boc, as in **3n**, led to diminished yield due to the incompatibility with zinc reagent. The present method shows high diastereoselectivity with both *E*- and *Z*-alkenes compared to our previous study on 1,2-(hetero)arylsulfenylation using monodentate directing group where only the more reactive *Z* alkenes gave consistently high diastereoselectivity (10–20:1). Our current hypothesis is that the 5,5-nickelabicyclic intermediate that arises through use of a bidentate auxiliary is key to suppressing the homolysis/recombination pathway that erodes d.r. with weakly coordinating monodentate directing groups.

Scheme 3. Large-Scale Experiment and Deprotection of Directing Auxiliary^a

^aLarge-scale reaction performed with: Ni(COD)₂/DMFU/1/Et₂Zn/[N-S] = 0.25/0.5/2.5/3.75/4.5 (mmol). Batchwise addition: 1) [N-S]/[Et₂Zn] = 3.0/2.5 (mmol), 30 min; then 2) [N-S]/[Et₂Zn] = 1.5/1.25 (mmol), 20 h. Deprotection of directing group experiment performed with **2a** (0.1 mmol). Percentages represent isolated yields.

Subsequently, a large-scale experiment was performed to demonstrate the practicality of this methodology (Scheme 3A). Alkylsulfenylation of alkene substrate **1** offered **2a** in 70% isolated yield using an in situ DMFU ligation procedure, compared with 85% on 0.1 mmol scale (Table 1). Deprotection of the aminoquinoline directing group in using 6M HCl afforded **4** in 84% yield with arylsulfenyl group intact (Scheme 3B).

Conclusions

In summary, a series of sulfenyl (and seleno) electrophiles were identified to enable the 1,2-alkylsulfenylation and -selenolation of unactivated alkenes with alkylzinc reagents as C(sp³) nucleophiles.

Among the effective sulfonylating agents, a *N*-alkyl-*N*-(arylsulfonyl)benzamide family of sulfur electrophiles were systematically studied through structure–reactivity analysis. The reaction was enabled by a removable bidentate directing auxiliary that controls the regio- and diastereocchemical outcome of this reaction. High *syn*-selectivity derived from an inner-sphere migratory insertion mechanism was obtained for a variety of *E*- and *Z*- internal alkenes.

Conflicts of interest

There are no conflicts to declare.

Acknowledgements

This work was financially supported by the National Science Foundation (CHE-1800280). We thank Bristol Myers Squibb for a Graduate Fellowship (Z.-Q.L.) and Nankai University College of Chemistry for an International Research Scholarship (W.-J.H.). We thank Dr. Nana Kim for providing the nickel pre-catalysts used in this study. Dr. Milan Gembicky and Dr. Jake B. Bailey are acknowledged for X-ray crystallographic analysis. Quynh Nguyen Wong and Brittany Sanchez (Scripps Research Automated Synthesis Facility) are acknowledged for HRMS analysis. We thank Camille Z. Rubel for carefully proofreading this manuscript.

Notes and references

REFERENCES

- (a) E. A. Ilardi, E. Vitaku and J. T. Njardarson, *J. Med. Chem.*, 2014, **57**, 2832–2842; (b) C. Zhao, K. P. Rakesh, L. Ravidar, W.-Y. Fang and H.-L. Qin, *Eur. J. Med. Chem.*, 2019, **162**, 679–734.
- K. Takimiya, I. Osaka, T. Mori and M. Nakano, *Acc. Chem. Res.*, 2014, **47**, 1493–1502.
- (a) T. Kondo and T. Mitsudo *Chem. Rev.*, 2000, **100**, 3205–3220; (b) I. P. Beletskaya and V. P. Ananikov, *Chem. Rev.*, 2011, **111**, 1596–1636; (c) Y. Fang, T. Rogge, L. Ackermann, S.-Y. Wang and S.-J. Ji, *Nat. Commun.*, 2018, **9**, 2240; (d) D. Liu, H.-X. Ma, P. Fang and T.-S. Mei, *Angew. Chem. Int. Ed.*, 2019, **58**, 5033–5037; (e) N. W. J. Ang and L. Ackermann, *Chem. Eur. J.*, 2021, **27**, 4883–4887; (f) T. Delcaillau, P. Boehm and B. Morandi, *J. Am. Chem. Soc.*, 2021, **143**, 3723–3728; (g) T. Delcaillau and B. Morandi, *Chem. Eur. J.*, 2021, **27**, 11823–11826.
- G. Mann, D. Baranano, J. F. Hartwig, A. L. Rheingold and I. A. Guzei, *J. Am. Chem. Soc.*, 1998, **120**, 9205–9219.
- C. Shen, P. Zhang, Q. Sun, S. Bai, T. S. A. Hor and X. Liu, *Chem. Soc. Rev.*, 2015, **44**, 291–314.
- (a) R. Li, Y. Zhou, K.-Y. Yoon, Z. Dong and G. B. Dong, *Nat. Commun.*, 2019, **10**, 3555; (b) W. Cai and Z. Gu, *Org. Lett.*, 2019, **21**, 3204–3209.
- (a) B. M. Trost, T. Shibata and S. J. Martin, *J. Am. Chem. Soc.*, 1982, **104**, 3228–3230; (b) B. M. Trost and S. J. Martin, *J. Am. Chem. Soc.*, 1984, **106**, 4263–4265.
- (a) S. E. Denmark and A. Jaunet, *J. Am. Chem. Soc.*, 2013, **135**, 6419–6422; (b) S. E. Denmark and A. Jaunet, *J. Org. Chem.*, 2014, **79**, 140–171; (c) S. E. Denmark, E. Hartmann, D. J. P. Kornfilt and H. Wang, *Nat. Chem.*, 2014, **6**, 1056–1064; (d) S. E. Denmark and H. M. Chi, *J. Am. Chem. Soc.*, 2014, **136**, 3655–3663; (e) Z. Tao, K. A. Robb, J. L. Panger and S. E. Denmark, *J. Am. Chem. Soc.*, 2018, **140**, 15621–15625; (f) Z. Tao, K. A. Robb, K. Zhao and S. E. Denmark, *J. Am. Chem. Soc.*, 2018, **140**, 3569–3573. For a recent review, see: (g) A. Matviitsuk, J. L. Panger and S. E. Denmark, *Angew. Chem. Int. Ed.*, 2020, **59**, 19796–19819.
- (a) J. Luo, Q. Cao, X. Cao and X. Zhao, *Nat. Commun.*, 2018, **9**, 527; (b) X.-F. Song, A.-H. Ye, Y.-Y. Xie, J.-W. Dong, C. Chen, Y. Zhang and Z.-M. Chen, *Org. Lett.*, 2019, **21**, 9550–9554; (c) Y.-Y. Xie, Z.-M. Chen, H.-Y. Luo, H. Shao, Y.-Q. Tu, X. Bao, R.-F. Cao, S.-Y. Zhang and J.-M. Tian, *Angew. Chem. Int. Ed.*, 2019, **58**, 12491–12496; (d) M. Tang, S. Han, S. Huang, S. Huang and L. G. Xie, *Org. Lett.*, 2020, **22**, 9729–9734.
- For selected examples using heteroatom nucleophiles:
 - (a) S. E. Denmark and H. M. Chi, *J. Am. Chem. Soc.*, 2014, **136**, 8915–8918; (b) S. E. Denmark, S. Rossi, M. P. Webster and H. Wang, *J. Am. Chem. Soc.*, 2014, **136**, 13016–13028; (c) A. Matviitsuk and S. E. Denmark, *Angew. Chem. Int. Ed.*, 2019, **58**, 12486–12490; (d) A. Roth and S. E. Denmark, *J. Am. Chem. Soc.*, 2019, **141**, 13767–13771.
 - (a) J. Derosa, O. Apolinar, T. Kang, V. T. Tran and K. M. Engle, *Chem. Sci.*, 2020, **11**, 4287–4296; (b) J. Diccianni, Q. Lin and T. Diao, *Acc. Chem. Res.*, 2020, **53**, 906–919; (c) X. Qi and T. Diao, *ACS Catal.*, 2020, **10**, 8542–8556.
 - (a) R. Giri and S. KC, *J. Org. Chem.*, 2018, **83**, 3013–3022; (b) S. Zhu, X. Zhao, H. Li and L. Chu, *Chem. Soc. Rev.*, 2021, **50**, 10836–10856; (c) L. M. Wickham and R. Giri, *Acc. Chem. Res.*, 2021, **54**, 3415–3437.
- For selected examples using directing auxiliaries:
 - (a) J. Derosa, V. T. Tran, M. N. Boulous, J. S. Chen and K. M. Engle, *J. Am. Chem. Soc.*, 2017, **139**, 10657–10660; (b) J. Derosa, V. A. van der Puyl, V. T. Tran, M. Liu and K. M. Engle, *Chem. Sci.*, 2018, **9**, 5278–5283. (c) P. Basnet, R. K. Dhungana, S. Thapa, B. Shrestha, S. KC, J. M. Sears and R. Giri, *J. Am. Chem. Soc.*, 2018, **140**, 7782–7786. (d) W. Li, J. K. Boon and Y. Zhao, *Chem. Sci.*, 2018, **9**, 600–607.
- For selected examples using native directing functional groups:
 - (a) J. Derosa, R. Kleinmans, V. T. Tran, M. K. Karunananda, S. R. Wisniewski, M. D. Eastgate and K. M. Engle, *J. Am. Chem. Soc.*, 2018, **140**, 17878–17883; (b) J. Derosa, T. Kang, V. T. Tran, S. R. Wisniewski, M. K. Karunananda, T. C. Jankins, K. L. Xu and K. M. Engle, *Angew. Chem. Int. Ed.*, 2020, **59**, 1201–1205; (c) V. T.

ARTICLE

Journal Name

Tran, Z.-Q. Li, T. J. Gallagher, J. Derosa, P. Liu and K. M. Engle, *Angew. Chem. Int. Ed.*, 2020, **59**, 7029–7034; (d) O. Apolinar, V. T. Tran, N. Kim, M. A. Schmidt, J. Derosa and K. M. Engle, *ACS Catal.*, 2020, **10**, 14234–14239; (e) R. K. Dhungana, V. Aryal, D. Niroula, R. R. Sapkota, M. G. Lakomy and R. Giri, *Angew. Chem. Int. Ed.*, 2021, **60**, 19092–19096. (f) R. Kleinmans, O. Apolinar, J. Derosa, M. K. Karunananda, Z.-Q. Li, V. T. Tran, S. R. Wisniewski and K. M. Engle, *Org. Lett.*, 2021, **23**, 5311–5316.

15. H. Wang, C.-F. Liu, R. T. Martin, O. Gutierrez and M. J. Koh, *Nat. Chem.*, 2022, **14**, 188–195.

16. (a) K. M. Logan, S. R. Sardini, S. D. White and M. K. Brown, *J. Am. Chem. Soc.*, 2018, **140**, 159–162; (b) S. R. Sardini, A. L. Lambright, G. L. Trammel, H. H. Omer, P. Liu and M. K. Brown, *J. Am. Chem. Soc.*, 2019, **141**, 9391–9400; (c) L.-A. Chen, A. Lear, P. Gao and M. K. Brown, *Angew. Chem. Int. Ed.*, 2019, **58**, 10956–10960; (d) S. Joung, A. M. Bergmann and M. K. Brown, *Chem. Sci.*, 2019, **10**, 10944–10997; (e) Z. Zhang and X. Hu, *ACS Catal.*, 2020, **10**, 777–782; (f) A. L. Lambright, Y. Liu, I. A. Joyner, K. M. Logan and M. K. Brown, *Org. Lett.*, 2021, **23**, 612–616; (g) D. Ni and M. K. Brown, *ACS Catal.*, 2021, **11**, 1858–1862; (h) A. K. Simlandy, S. Sardini and M. K. Brown. *Chem. Sci.*, 2021, **12**, 5517–5521; (i) G. L. Trammel, R. Kuniyil, P. F. Crook, P. Liu and M. K. Brown, *J. Am. Chem. Soc.*, 2021, **143**, 16502–16511; (j) J. Wang, Z. Duan, X. Liu, S. Dong, K. Chen and J. Li, *Angew. Chem. Int. Ed.*, 2022, DOI: 10.1002/anie.202202379.

17. (a) V. A. van der Puy, J. Derosa and K. M. Engle, *ACS Catal.*, 2019, **9**, 224–229; (b) T. Kang, N. Kim, P. T. Cheng, H. Zhang, K. Foo and K. M. Engle, *J. Am. Chem. Soc.*, 2021, **143**, 13962–13970; (c) T. Kang, J. M. González, Z.-Q. Li, K. Foo, P. T. W. Cheng and K. M. Engle, *ACS Catal.*, 2022, **12**, 3890–3896; (d) L. Xie, S. Wang, L. Zhang, L. Zhao, C. Luo, L. Mu, X. Wang and C. Wang, *Nat. Commun.*, 2021, **12**, 6280. (e) Z.-Q. Li, Y. Cao, T. Kang and K. M. Engle, *J. Am. Chem. Soc.* 2022, DOI: 10.1021/jacs.1c13252.

18. (a) N. Kim, V. T. Tran, O. Apolinar, S. R. Wisniewski, M. D. Eastgate and Engle, K. M. *Synlett*, 2021, **32**, 1570–1754. (b) V. T. Tran, N. Kim, C. Z. Rubel, X. Wu, T. Kang, T. C. Jankins, Z.-Q. Li, M. V. Joannou, S. Ayers, M. Gembicky, J. Bailey, E. J. Sturgell, B. B. Sanchez, J. S. Chen, S. Lin, M. D. Eastgate, S. R. Wisniewski and K. M. Engle, *ChemRxiv* 2022, DOI: 10.26434/chemrxiv-2022-7zjvh.