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The piRNA pathway is a specialized small RNA interference that in mosquitoes is
mechanistically distant from analogous biology in the Drosophila model. Current genetic
engineering methods, such as targeted genome manipulation, have a high potential to
tease out the functional complexity of this intricate molecular pathway. However, progress
in utiizing these methods in arthropod vectors has been geared mostly toward the
development of new vector control strategies rather than to study cellular functions.
Herein we propose that genetic engineering methods will be essential to uncover the full
functionality of PIWI/piRNA biology in mosquitoes and that extending the applications of
genetic engineering on other aspects of mosquito biology will grant access to a much
larger pool of knowledge in disease vectors that is just out of reach. We discuss
motivations for and impediments to expanding the utility of genetic engineering to study
the underlying biology and disease transmission and describe specific areas where efforts
can be placed to achieve the full potential for genetic engineering in basic biology in
mosquito vectors. Such efforts will generate a refreshed intellectual source of novel
approaches to disease control and strong support for the effective use of approaches
currently in development.

Keywords: vector-borne disease, Piwi-interacting RNAs, mosquito basic biology, host-pathogen interactions,
genetic engineering technologies

INTRODUCTION

The piRNA pathway (PIWI-interacting RNA pathway) is a fascinating biological system that allows
an organism to identify parasitic nucleic acids in its cells and create a heritable, genetic memory of
these exogenous sequences (Figures 1A-D, Siomi et al, 2011). Arrays of degraded or partial
sequences from transposons and viruses are clustered into discrete genomic loci termed piRNA
clusters. Very short ribonucleic acids (>24 nt in length), now called piRNAs are encoded from
PiRNA clusters (Aravin et al., 2006; Vagin et al., 2006; Brennecke et al., 2007). Mature piRNAs, in
concert with PIWI (P-element induced wimpy testis) proteins target homologous RNA sequences
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Macias et al. Genetic Engineering and Mosquito piRNAs
FIGURE 1 | Schematics of endogenous piRNA pathway activity, highlighting
the molecular phenomena that contribute to functional complexity.
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FIGURE 1 | Continued

are the basic functional unit whereby a target is recognized by piRNA
sequence. (B) piRNAs present in a given context vary and are dictated by the
sequences present in piRNA clusters (as depicted in pink) and by whether
and how much a cluster is expressed in that context (depicted in blue).

(C) Increased functional complexity in Culicine mosquitoes is added by the
expansion of PIWI proteins in mosquitoes with respect to Drosophila and by
the varied expression across tissues and stages in Culicine mosquitoes
compared to primarily germ-line specific expression of PIWls in Drosophila.
Heat map schema is based on data from Akbari et al. (2013). (D) Protein
binding partners add a level functional complexity, including identified roles of
the PIWI/piRMNAs complex in with perinuclear proteins for transcript silencing,
interaction with protein complexes that add marks to the chromatin,
association with the siRNA pathway and, in mosquitoes, with viruses.

for destruction (Lin and Spradling, 1997). The activity against a
specific target can be amplified by ping-pong amplification,
where-by additional piRNAs are generated by interaction with
the target RNA and PIWT paralogs (Brennecke et al., 2007; Czech
and Hannon, 2016). Complexity of function within an organism
is added by protein binding partners that interact with the PTW1/
piRNA complex and direct or influence its localization and
activity (Brower-Toland et al., 2007; Czech and Hannon, 2011;
Arkov, 2018). Many specific features of this system are unknown.
For example, piRNA clusters harbor sequences that represent a
history of exposure to these invasive agents that is different
among species and perhaps across populations of the same
species, but we have little understanding of how foreign
sequences are integrated into piRNA clusters (Blair et al., 2020).

The specialization of piRNA pathways among species has
captivated the minds of scientists who study diverse organisms
with questions about their activity in somatic tissues and roles
such as in stem cell maintenance, genome architecture and
integrity, behavior, evolution and cancer (Gibson et al, 2015;
Lewis et al,, 2018; Waldron et al, 2018; Liu et al., 2019; Ozata
et al., 2019). Although mosquitoes share hallmark piRNA
pathway features with Drosophila, such as phased biogenesis
and ping-pong signatures resulting in 1U and 10A trends on
piRNAs (Gainetdinov et al., 2018), specialized features of piRNA
pathway function is evident in mosquitoes (Gamez et al., 2020).
A prominent difference is the antiviral activity of the piRNA
pathway observed in mosquitoes, but not Drosophila (Petit et al.,
2016). piRNAs that may regulate virus replications are generated
both from the virus genome (Hess et al., 2011; Morazzani et al,,
2012; Vodovar et al., 2012; Leger et al, 2013; Miesen et al., 2015;
Miesen et al., 2016; Goertz et al., 2019) and from Endogenous
Virus Elements (EVEs) in the mosquito genome, fragments of
viruses often integrated into piRNA clusters (Lequime and
Lambrechts, 2017; Palatini et al., 2017; Suzuki et al., 2017;
Whitfield et al.,, 2017; ter Horst et al,, 2018; Aguiar et al., 2020;
Blair et al, 2020; Suzuki et al,, 2020). Further specialization in
mosquitoes is evidenced in both Aedes and Anopheles species: 1)
PIWI genes and other piRNA pathway genes have expanded and
diverged in Aedes mosquitoes (Bernhardt et al, 2012; Miesen
et al., 2015; Marconcini et al., 2019; Ma et al., 2020). 2) Cluster
content, number and genomic distribution is diverged in both
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genera [(George et al., 2015; Crava et al., 2020; Palatini et al.,
2020). 3) A strong activity of PIWIs and piRNAs in the soma and
4] multiple distinct roles in gene expression are evident in both
genera (Belda et al, 2019; Halbach et al, 2020). As such, the
piRNA pathway represents an enigmatic biological system in
mosquitoes, warranting a more aggressive study of the system in
mosquito species.

THE PIRNA PATHWAY EXEMPLIFIES
BASIC BIOLOGY IN MOSQUITOES THAT
IS IMPORTANT, BUT ENIGMATIC

Knowledge of the basic interactions between pathogens and
hosts serves as basis for the development of strategies to
interrupt those interactions. From what is already understood
about the piRNA pathway, several possible applications to
disease control can be imagined. The piRNA pathway
genetically encodes targeted destruction of RNA. This brings
forward several questions: is it possible that we could engineer
the pathway to recognize and repress viral RNA, preventing
transmission to humans? Knowing that this biology targets
foreign and integrated mobile DNA elements, is it possible that
genetically modified mosquitoes could also recognize transgenes,
such as those being developed and deployed for public health
efforts to mitigate mosquito-borne diseases? If the answer to
either of these questions is yes, a myriad of additional
mechanistic questions will follow. To answer these, we need a
much better handle on the PIWI/piRNA activity in individual
cells, across tissues and even up to the level of population effects
in diverse environmental contexts.

Despite the intellectual draw of untangling the complexity of
the piRNA biology in mosquitoes and its relevance to host-virus
interactions, little is known about this pathway. The current
knowledge has mostly been generated in model organisms by
rigorous and elegant combinations of immunohistochemistry
and next-generation sequencing methods. The availability
of many antibodies has enabled the characterization of
protein-protein and protein-small RNA interactions and the
characterization of cellular localization of PIWI proteins. Well-
annotated model genomes along with increasingly robust and
affordable small RNA sequencing have been applied to identify
sequences and patterns of piRNAs and piRNA clusters as well
as to compare piRNA populations among experimental
conditions. This body of knowledge provides a basis for
studies in non-model organisms. Unfortunately, studies in
non-model arthropods suffer from a paucity of specific
antibodies and, while sequencing can be used in various
experimental contexts, the absence of good reference genomes
for several arthropods and Aedes species, except for Ae. aegypti,
makes high-precision bioinformatic analyses difficult
(Richards, 2018).

Excellent work in cell lines has enabled us to make headway in
light of these impediments (Schnettler et al., 2013; Varjak et al.,
2017; Joosten et al., 2019; Ma et al., 2020), but the expansion of
mosquito PIWTs from germ-line restricted functions (Figure 1C)

leaves us with many questions about multi-tissue functions such
as might be relevant to virus regulation that are better answered
in live mosquitoes (Akbari et al., 2013; Wang et al, 2018). It is
therefore valuable to develop our ability to perturb the function
of this pathway in vivo, but direct manipulation of endogenous
PiRNA sequences for direct hypothesis testing is not yet straight-
forward in any organism. Although transgenesis and targeted
genome editing using Cas9 in mosquitoes were accomplished by
1998 and 2015 respectively, opening up the possibility use
genome modifications to explore the piRNA biology, the first
report to do so came out this year (Coates et al, 1998; Jasinskiene
etal, 1998; Basu et al., 2015; Dong et al., 2015; Kistler et al., 2015;
Suzuki et al., 2020).

Similar to many processes that are involved in pathogen
transmission in mosquitoes, such as host-seeking, blood-meal
acquisition and digestion, and pathogen traversal of the gut, the
pIiRNA pathway is sufficiently specialized that the closest model
organism, Drosophila melanogaster, offers little for extrapolation
to mosquitoes (Nouzova et al,, 2019). This exacerbates the
investigational lag induced by technological disadvantages and
provides impetus to aggressively pursue new discoveries in
disease vector biology. Because arthropod host stages of human
disease pathogens are the most tractable targets for pathogen
control, studies into specialized mosquito functions have led to
novel approaches to disease control (Shaw and Catteruccia,
2019). Thus, the piRNA-pathway biology is an apt example of
a pool of knowledge that, while potentially beneficial to efforts to
control mosquito-borne disease, is just out of reach. We submit
that a more aggressive application of genetic engineering will
lengthen that reach and that existing genetic tools are not being
applied to their full potential.

THE PARTICULAR NECESSITY OF
GENETIC ENGINEERING IN MOSQUITOES
FOR PIRNA RESEARCH

We can imagine many ways in which molecular genetics,
especially genetic engineering and sequencing, can allow us to
answer the outstanding questions in piRNA biology (Figure 2).
For example, direct targeting of mosquito genomes by
programmable endonucleases will allow us to not only encode
PIiRNA sequences within clusters, but also to test elements of the
clusters that may be involved in expression, such as promoters,
enhancers and repressors (Figure 2A) (Olovnikov et al., 2014).
Target mutations in PIWI genes sequences can allow us to
produce specific protein modifications to inhibit or alter
function (Figure 2B). The scarcity of specific antibodies also
can be addressed using genetic engineering; targeted
transgenesis, insertion of new DNA into a gene, can be used to
add fluorescence or epitope tags, such as FLAG or Myc, onto the
endogenous PIWI protein. These tags can be visualized or
immunoprecipitated using well characterized antibodies to
characterize proteins localization or determine proteins and
piRNA populations bound to a specific PIWI under different
experimental conditions (Figure 2B) (Stadler et al., 2013;
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Tassetto et al, 2019). Similarly, transgenesis can be used to
encode functional domains onto PIWI genes, such an RNA
tether domain that can be used to detect PIWI cleavage
activity on synthetic reporter transcript (Keryer-Bibens et al,
2008). Genetic manipulation can allow us to overcome the
challenges of genes suppression and ablation in the germline
where the piRNA pathway is greatly active, but which is mostly
inaccessible to RN Ai-based injection methods of knockdown and
where much of the gene function is necessary for reproduction
(Huvenne and Smagghe, 2010; Balakrishna Pillai et al., 2017).

THE GENERAL IMPETUS TO EXPAND
GENETIC ENGINEERING FOR
MOLECULAR BIOLOGY

IN DISEASE VECTORS

In general, molecular genetic applications in mosquitoes is largely
being moved forward by laboratories with defined, direct
objectives for developing genetic technologies for mosquito
control, but there is a real advantage in applying resources to
vector biology with the explicit goal of understanding the basic

FIGURE 2 | Schematic examples of genetic engineering applications to explore ethe biology of the piRNA pathway. (A) Modifications of the piRNA clusters through
target mutations (top) and insertion of new DNA sequence (transgenesis, bottom) to identify regulatory elements within the cluster or generate piRNAs against
chosen targets; (B) modification to the PIW/ genes through targeted mutations (top) and/or transgenesis (bottom) and paired with methods such as fluorescence
microscopy, immunoprecipitation, mass spectrometry and sequencing, to uncover in specialization of each PIWI proteins and protein partners.
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biology of the vector. Technology-driven research should remain a
major focus, but laboratories that are developing applications in
disease control have largely driven discovery. Resources should
also be put toward exploring basic biology for the sake of
understanding unique cellular mechanisms of disease vectors,
with the implications for disease control in mind. This will lay a
strong foundation for inspiration and development of new
technologies. A timely example from bacteriology is that
investigations into CRISPR/Cas biology led to one of the
most widespread revolutions in genetic technologies (Ishino
et al, 2018). Taking advantage of the ingenuity of curious
researchers to answer difficult and interesting questions,
a serious commitment to basic biology will produce
technological innovations.

Similarly, the more complete our fundamental understanding
of mosquitoes and pathogenesis at the molecular level, the more
likely our new efforts to manipulate mosquitoes and pathogens at
that level for disease control will succeed. From our example of
the piRNA pathway, if organisms can learn to recognize DNA in
their genome as foreign (and putatively deleterious), it is possible
that mosquitoes identify certain parts of transgenes as foreign
and repress them (Adelman et al., 2004; Franz et al., 2009). If we
understand what contributes to such recognition, we can
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engineer transgenic mosquitoes to avoid it. When we face an
immense and long-standing problem like vector-borne disease,
an earnest pursuit of lasting solutions requires efforts and
resources to complete our knowledge of the basic biology of
disease vectors.

We highlight the need for a concerted effort to translate
genetic tools currently available in model organisms to mosquito
and other disease vectors. The potential shift in momentum that
we are hoping will occur will require coordination and
persistence. An encouraging example of this is the creation of
the field of Disease Vector Biology which was inspired by a
coincidence of the resurgence of mosquito-borne diseases, a
recognition that we were critically under-equipped to address
this situation and a conviction that an application of modern
genetic tools would lead to innovations that would bolster the
resources available (Beaty et al., 2009). A collaborative and well-
organized effort to translate techniques that were available for
Drosophila genetics into mosquitoes paid off: in the early 2000s a
renewed effort was made to eradicated malaria and leishmania
and incredible gains have been made in decreasing the burden of
disease spread caused by arthropod vectors in the decades that
followed (Alonso and Noor, 2017; Benelli and Beier, 2017).
Remembering the gains made in the first malaria eradication
agenda and the resurgence that followed, we can reflect that the
gains that gren’t made can reverse progress.

In light of the advancement of molecular genetic methods in
model organisms, the current lag in the translation of molecular
genetic methods in mosquitoes highlights major knowledge gaps
in our understanding of vector biology. We propose the
following areas of focus to support the robust application of
molecular genetics to fill these gaps:

1. Pursue and Support Difficult Projects for New Discovery in
the Biology of Mosquitoes. These projects are often difficult
and long, but the investment is worthwhile as novel methods
will be required for specialized experimentation in arthropod-
borne diseases. An analogous moment in the history of the
field of vector biology is the accomplishment of Drosophila
genome transformation using the P-element (Bachmann and
Knust, 2008) and subsequent efforts to translate this
technology into mosquitoes. What was not widely known or
demonstrated at the time was that transposable elements
generally behave differently in distinct organisms and in this
case the P-element is not effective for mosquito genome
transformation. When this became apparent, assays to find
and test the activity of alternate transposable elements led to
the genome transformation in mosquitoes, 16 years after
genome transformation in D. melanogaster (Spradling and
Rubin, 1982; Coates et al,, 1998; Jasinskiene et al,, 1998). The
lesson here is that the technologies we need will not necessarily
be directly translatable from one system to another and in
extension that time, energy and funding should be allocated to
make necessary discoveries.

2. Improve and Publish Information on Insect Rearing and
Handling Generally, and in Relationship to Genetic
Manipulation and Screening Methods. The expansion of

genetic methods to laboratories that are not specialized in
mosquito genetics will be supported by development and
publication of methods with low-cost and straight-forward
implementation, such as those available for Anopheles from
MR4 (Methods in Anopheles Research Manual). Several
groups develop methods that work for their laboratory to
efficiently manage mosquitoes with limited equipment or
insect-rearing space, for example the oviplate and glytube
(Costa-da-Silva et al,, 2013; Ioshino et al., 2018) but many of
these may not be published. This can be supported by an
expansion of current information hubs to support small
methods publications, foster discussion and questions that
can support this effort and by introducing more descriptive
methods sections in the primary literature.

. Expand Non-Embryo Injection Strategies for RNAi and

Genetic Modification to Include More Species and
Transgenesis. The translation of Cas9-mediated gene
editing using adult injections have been demonstrated to
efficiently support targeted mutagenesis in several species
(Chaverra-Rodriguez et al., 2018; Chaverra-Rodriguez et al.,
2020; Heu et al,, 2020; Macias et al., 2020). This is supported
by robust and affordable PCR and sequencing techniques
(Ran et al, 2013; Bell et al,, 2014; Carballar-Lejarazu et al.,
2020). Expansion of this will include both translation to more
vector species and engineering the techniques for DNA and
RNA delivery for heritable transgenesis and RNA
interference methods.

. Improve the Efficiency of Targeted Insertions. In vector

species in which embryo injections methods are available,
rigorous testing of methods currently used in other systems
to improve the efficiency of homology-directed repair will
improve the manipulation of genes of interest through the
introduction of a visible marker of mutation by transgenesis.
A goal in mosquito species that could serve as vector model
organisms, such as Ae. aegypti and Anopheles stephensi,
would be to mirror the situation for D. melanogaster in
which a transgenic line exists for most genes of interest
with a variety of endogenous tags.

. Improve Genome Annotations and Expand Vector

Sequencing. As traditional vector control methods such as
insecticides have become less effective, alternative methods
involving genetic manipulation of mosquitoes are being
investigated. Reliable and accurate genome assemblies of
vector species and genome resequencing data of individuals
from different populations and sub-species are not only
essential to develop newer genetic editing approaches but
also a collective tool to advance our understanding of vector
species biology, gene expression, immunity and global
variability.

. Expand Training Among Vector Biologists in Current and

Emerging Genetic Methods and Use Them. Many methods
for genome investigation and manipulation are currently
available for mosquitoes, but not widely used (Adelman
et al., 2008; O’Brochta et al., 2012; Adelman et al., 2016;
Hicker et al.,, 2017; Adolfi and Lycett, 2018; Reid et al., 2018).
Efforts to remedy this are, for example, the course on the

Frontiers in Cellular and Infection Microbiology | www.frontiersin.org

o

January 2021 | Volume 10 | Aticle 614342


https://www.frontiersin.org/journals/cellular-and-infection-microbiology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/cellular-and-infection-microbiology#articles

Macias et al.

Genetic Engineering and Mosquito piRNAs

Biology of Disease Vectors, a technical short course on Insect
Genetic Techniques and peer-to-peer training opportunities
available through the IGTRCN. An important part of
expanding this training may be for labs to recognize that
many methods already exist for use by groups that have not
traditionally used genetic techniques. For laboratories in
countries directly impacted by vector-borne disease, genetic
technologies can be combined with accessibility to relevant
samples and colonies. These are more likely to conduct field
tests with the knowledge gained and so should be a focus for
training and support in genetic engineering methods. In
parallel, labs globally that are already using existing
techniques and that leverage genetic methods for their
biological investigations, such as those studying mosquito
chemo-sensation, are taking an important part in building
momentum (DeGennaro et al., 2013; McMeniman et al.,
2014; Matthews et al., 2019). These goals are supported by
infrastructures and networks such as INFRAVEC-2 that
provides coordination of resources and projects in vector-
borne disease. Developing genetic engineering methods and
coordinating the expansion of these methods will open the
door to a phase of research that can freshly energize our
efforts against vector-borne disease with new knowledge and
new technologies.

With these areas of focus in mind, we can move the state of
mosquito transgenic technologies forward enough to support a
more robust effort to approach questions, as in those
surrounding the piRNA biology in mosquitoes, that will grant
us access to a molecular mechanisms currently out of reach and
likely to produce insight and innovation for the control of vector-
borne diseases. Doing so will provide basic knowledge and
molecular methods that will feed inspiration and innovation
for new approaches to vector and pathogen control and will
bolster current control applications.
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