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Abstract. A G-extension of a fusion category C yields a categorical action of G on the
center Z(C). If the extension admits a spherical structure, we provide a method for recov-
ering its fusion rules in terms of the action. We then apply this to find closed formulas for
the fusion rules of extensions of some group theoretical categories and of cyclic permutation
crossed extensions of modular categories.
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1. Introduction

The theory of fusion categories has found significant applications in the study of two di-
mensional quantum physics, most notably in conformal field theory [MS90,FRS02,BKLR15,
HL13] and topological phases of matter [Kit06, NSS+08, Wan10]. In both these contexts
modular tensor categories appears as important invariants of physical models. If the model
has a group G of global symmetries, one obtains a G-crossed braided fusion category which
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is a G-extension of the original invariant [Kir02,Müg05,BBCW14]. This makes understand-
ing of G-extensions of fusion categories of fundamental importance for the study of two
dimensional symmetry enriched physical systems.

The theory developed by Etingof, Nikshych, and Ostrik [ENO10] provides the basic tools to
construct and classify G-extensions of fusion categories. They show that every extension of C
can be constructed from a categorical action, i.e. a monoidal functor M : G→ Autbr

⊗ (Z(C)),
provided a certain cohomology class o4(M) ∈ H4(G,C×) is trivial. In the case this ob-
struction vanishes, the possible extensions associated with this action form a torsor over
the group H3(G,C×), but all the extensions have the same fusion rules. This tells us that
in principle the fusion rules of the extension can be computed from the initial categorical
action M . However in practice this problem is usually difficult. Naively following the proofs
of the above statements from [ENO10] requires the computation of the data for the associ-
ated bimodule categories, their relative Deligne products, and the bimodule functors used to
define the monoidal product on the extension (see Section 2.3). The amount of computation
required to find the data in these intermediate steps quickly becomes infeasible as the rank
of the fusion category grows.

In this paper, we provide a method for computing the fusion rules of an extension in
an elementary way from a detailed knowledge of M and Z(C). Our approach bypasses the
computation of the associated bimodule categories and their data. It allows for the derivation
of closed form expressions of fusion rules for families of extensions in some general cases. The
key observation in our approach is that the fusion rules can be recovered from the composition
and convolution operations on the space of endomorphisms of the canonical Lagrangian
algebra I(1) ∈ Z(C) (see Corollary 3.4). This may be viewed as a direct generalization of
character theory for the representation category of a finite group .

We now give an outline of how this works. It is well known (for spherical fusion categories)
that End(I(1)) ∼= K0(C) ⊗Z C as associative complex algebras. However, given End(I(1))
as an abstract algebra, to find the fusion rules we need more information. We also need to
identify the canonical basis elements {[X]}X∈Irr(C) (or perhaps some scaled version of them)
so that we can recover the fusion rules by examining the coefficients under multiplication.

Luckily there is an additional operation on End(I(1)) that allows us to recover the (appro-
priately scaled) canonical basis in a canonical way. For any commutative Frobenius algebra
A in a braided fusion category, there are two associative binary operations on the vector
space End(A). The first is the usual composition of morphisms, which in general is noncom-
mutative. The second is the convolution operation ∗ (see equation 4, [Bis17, BD18]). This
operation makes the vector space End(A) into a commutative algebra in the usual sense. If
A = I(1) ∈ Z(C) is the canonical Lagrangian algebra, we show the minimal idempotents
eX with respect to ∗ are in bijective correspondence with equivalence classes simple objects
X ∈ Irr(C) (see equation 11). Since the algebra (End(I(1), ∗) is commutative and semi-
simple, the minimal idempotents give a canonical basis for the space End(I(1)). We then
show that eX ◦ eY =

∑
Z∈Irr(C)

dXdY
dZ

NZ
XY eZ (where dX indicates (any) spherical dimension

function, see Proposition 3.3). Thus while the basis {eX}X∈Irr(C) is not quite the canonical

basis {[X]}X∈Irr(C) for the fusion ring described above, the quantity dXdY
dZ

is independent of

the spherical structure, and thus we can recover the fusion rules NZ
XY by examining the

numbers CZ
XY defined by (eX ◦ eY ) ∗ eZ = CZ

XY eZ , and renormalizing (see equation 13).
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Therefore, for a G-extension C ⊆ D, the fusion rules of D can be determined by computing
the composition and convolution products on the endomorphisms of the canonical Lagrangian
algebra in Z(D). By [GNN09], the latter category is equivalent to the equivariantization of
the G-crossed braided relative center ZC(D). Here the G action restricts to M on the trivially
graded component Z(C) ⊆ ZC(D). Furthermore, the canonical Lagrangian algebra for D lives
in the subcategory Z(C)G ⊆ Z(D). In particular, if IG : Z(C) → Z(C)G is the adjoint of
the forgetful functor FG : Z(C)G → Z(C), then ID(1) ∼= IG(IC(1)) ∈ Z(C)G ⊆ Z(D). Using
the adjunction between IG and FG, we can compute the triple (End(ID(1), ∗, ◦) terms of the
data of Z(C) and the category action M . (Section 3.2). We can then recover the fusion rules
as described above.

A subtlety is that for the numbers we produce to actually be the fusion rules of the
extension, we need to assume that D admits a spherical structure, though we do not need to
explicitly choose one (see Remark 3.5). Unfortunately, the extension theory of [ENO10] has
not been developed to take spherical structures into account, hence it is not clear a-priori
if the G-extensions constructed from a given categorical action admit spherical structures.
However, if we make the mild assumption that C is pseudo-unitary, then any extension is
automatically so and hence our hypothesis is satisfied (see Proposition 2.8). In this case our
results apply to any G-extension, without additional hypothesis.

As a first application, we utilize our method to give general formulas for fusion rules of
G-extensions of Vec(Â × A, q)L where A is an abelian group, q is the canonical hyperbolic

quadratic form, and L ≤ Â × A is a Lagrangian subgroup. The extensions depend on
an initial braided categorical action on Vec(Â × A, q) ∼= Z(Vec(Â × A, q)L) (see Theorem

3.7). Here Vec(Â×A, q)L denotes the fusion category of modules of the group algebra object

associated to the Lagrangian subgroup. Note that the categories Vec(Â×A, q)L are precisely
those which are Morita equivalent to Vec(A).

We then focus on the case when C is modular, and the categorical action can be factored
G→ Autbr

⊗ (C)→ Autbr
⊗ (Z(C)), where the second functor acts on the right factor in Z(C) ∼=

C � Crev. If a corresponding extension exists, it has the additional structure of a G-crossed
braided extension of C. These are the extensions which naturally appear both in conformal
field theory [Müg05] and topological phases of matter [BBCW14], hence are of the greatest
interest in applications. In this case, the nice form of the Lagrangian algebra and of the
action allows us to describe the convolution product in a general way.

The examples of this type we consider are permutation actions on C�n. These have long
been of interest to physicists in the context of rational conformal field theory [BHS98,Ban02,
LX04,KLX05,Müg05] as an intermediate step in the study of permutation orbifold theories.
More recently, permutation extensions have been of interest in the theory of topological
phases under the guise of “genons” for their potential in quantum computing applications
[BJQ13,BBCW14].

Permutation crossed extensions have also come to attract the attention of mathematicians.
They have been studied from the point of view of modular functors [BS11]. From an algebraic
viewpoint, the o4 obstruction for permutation actions was shown to vanish in [GJ19], hence
these extensions always exist. They have been studied in the Z/2Z case ([BS11, BFRS10],
[EMJP18, Pas18]). Very recently, Delaney has given an algorithm for computing the fusion
rules of general permutation extensions using the concept of bare defects [Del19]. Here we
will use our method to give a closed formula for the fusion rules in the case of maximal cyclic

3



permutation extensions (see Theorem 4.5). Our formulas for the fusion rules involve the
dimensions of vectors spaces assigned by the modular functor derived from C to surfaces
with field insertions. While our approach for fusion rules is different from [Del19], we have
verified that their algorithm produces the same numbers as our formula in several examples.

The outline of the paper is as follows. The preliminary section briefly collects some facts
about fusion categories, modular categories, equivariantizations, and extension theory that
will be used in the paper. In Section 3, we demonstrate how to reconstruct the based
fusion ring from the canonical Lagrangian algebra in Z(C) and apply this to G-extensions as
described above. Finally, we turn to the case of G-crossed extensions of modular categories,
giving explicit examples of the computation of fusion rules for G-extensions from a given
categorical action. We an include an appendix with a list of fusion rules for the Z/4Z cyclic
permutation extension of the modular category Fib�4

1.1. Acknowledgments. The authors would like to thank Colleen Delaney, Cain Edie-
Michell, Dave Penneys and Julia Plavnik for very useful discussions and comments on an
early draft. We also thank Colleen Delaney for sharing an early draft of [Del19] with us
and for coordinating arXiv submissions. Marcel Bischoff was supported by NSF grant DMS-
1700192/1821162. Corey Jones was supported by NSF Grant DMS-1901082.

2. Preliminaries

Recall a fusion category is a k-linear, finitely semi-simple, rigid, monoidal category with
simple unit [EGNO15, Chapter 4]. In this paper, we assume k = C. The semi-simplicity
gives us well behaved fusion rules, described by the non-negative integers NZ

XY = Dim(C(X⊗
Y, Z)) for X, Y, Z ∈ Irr(C). Here and for the rest of the paper, we use Irr(C) to denote a
fixed choice of representative for each equivalence classes of simple object in C. If C is any
category, we use here and throughout the paper the notation C(X, Y ) := Hom(X, Y ). We
typically use f ◦ g to represent composition of morphisms.

For fusion categories, there are several notions of dimension that are important to con-
sider. First, there is a unique function FPdim: Irr(C) → R

+ such that FPdim(1) = 1
and FPdim(X) FPdim(Y ) =

∑
Z∈Irr(C) N

Z
XY FPdim(Z) called the Frobenius-Perron dimen-

sion, [EGNO15, Section 3.3]. This dimension depends only on the based ring K0(C), and is
insensitive to the details of the categorification.

The second notion of dimension depends on a choice of spherical structure. This is a
monoidal natural isomorphism from the identity to the double dual functor X 7→ ¯̄X such
that the associated left and right pivotal traces are equal [EGNO15, Chapter 4.7]. A
spherical structure gives us a single, well-defined spherical trace for every object X ∈ C,
TrX : C(X,X)→ C. We can then define the spherical dimension function d : Irr(C)→ R 6=0,
dX := TrX(1X) which satisfies dXdY =

∑
Z∈Irr(C) N

Z
XY dZ . Spherical structures also allow us to

make use of the spherical graphical calculus, which we use freely [BW99,Tur94,BK01,Sel11].
It is an open question whether every fusion category admits a spherical structure [ENO05].

There is a third important notion of dimension in fusion categories. Let X be a simple ob-
ject in a fusion category, and let X̄ be a (two-sided) dual object. Choose arbitrary evaluation
and coevaluation morphisms RX ∈ C(1, X̄⊗X), R̄X ∈ C(1, X⊗X̄), R∗X ∈ C(X̄⊗X,1), R̄∗X ∈
C(1, X ⊗ X̄) satisfying the duality equations. Then the quantity
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d{X,X̄}11 := (R∗X ◦RX)(R̄∗X ◦ R̄X) (1)

is called the paired dimension and does not depend on the choices of X̄ or evaluation and
coevaluation morphisms. This number is strictly positive [Bar16], and thus we can define
the fusion dimension of X as the positive square root

d+
X :=

√
d{X,X̄} .

We note that we are using different notation from [Bar16] for the various dimensions. In
particular we use d+

X for the fusion dimension instead of for the Frobenius-Perron dimension.
Like the Frobenius-Perron dimension, the paired dimension and the fusion dimension are
intrinsic to a fusion category and do not depend on a choice of additional structure. However,
the fusion dimension depends on the associator of the category and cannot be determined
by the fusion ring alone.

Definition 2.1. A fusion category is pseudo-unitary if FPdim(X)2 = d{X,X̄} for all X ∈
Irr(C).

We note that our definition has many equivalent formulations (see [ENO05, Section 8.3,
8.4]. If C is pseudo-unitary, there exists a canonical spherical structure on C whose spherical
dimensions are the Frobenius-Perron dimensions [ENO05, Proposition 8.23]. All unitary
fusion categories are pseudo-unitary, and thus in applications (most relevant) to physics all
examples are pseudo-unitary.

2.1. Modular categories. Recall a braided fusion category is a fusion category equipped
with a family of natural isomorphisms σX,Y : X⊗Y → Y ⊗X satisfying a family of coherences
(namely the hexagon axioms). If {X ∈ Irr(C) : σY,X ◦ σX,Y = 1X⊗Y for all Y ∈ Irr(C)} =
{1}, then we say C is non-degenerately braided, or simply non-degenerate. If C is non-
degenerate and in addition equipped with a spherical structure, we say C is modular.

We refer the reader to [BK01] for an overview of modular categories, modular data, and
some of their important properties. Here we use the conventions SX,Y := TrX,Ȳ (σȲ ,X ◦σX,Ȳ ).
Furthermore, we use Dim C :=

∑
X∈Irr(C) d

2
X which is a positive number independent of the

spherical structure. We use
√

Dim C to denote the positive square root. Non-degeneracy of
the category C is equivalent to the invertibility of the matrix S [Müg02].

For modular categories we have the relation

S2 = Dim C · C

where CX,Y = δX,Ȳ is the charge conjugation matrix, hence S−1
X,Y = 1

Dim CSX,Ȳ .
We write

NY1,...,Ym
X1,...,Xn

= dimC C(X1 ⊗ · · · ⊗Xn, Y1 ⊗ · · · ⊗ Ym) .

for the generalized fusion coefficients. Note that Frobenius reciprocity for fusion categories

gives us NY1,...,Ym
X1,...,Xn

= NY1,...,Ym,X̄n

X1,...,Xn−1
.

For g ∈ Z≥0 we define the genus g fusion coefficients by

gNX1,...,Xn =
∑

Z0,...,Zg∈Irr(C)

N
Z0,...,Zg

X1,...,Xn
N1

Z0,...,Zg
. (2)
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and use the notation
gNY1,...,Ym

X1,...,Xn
= gNX1,...,Xn,Ȳ1,...,Ȳm . (3)

The terminology is motivated by Remark 2.3 (below) and the following generalized Verlinde
formula. This formula is well known to experts, but we could not find it recorded in the
literature, so we provide a proof.

Proposition 2.2. We have

gNX1,...,Xn =
∑

Y ∈Irr(C)

SX1,Y

S1,Y
· · · SXn,Y

S1,Y

(√
Dim C
S1,Y

)2g−2

= (Dim C)g−1
∑

Y ∈Irr(C)

SX1,Y · · ·SXn,Y

dn+2g−2
Y

.

Proof. We recall the usual Verlinde formula for modular categories [Tur94,BK01]

N1

X1,X2,X3
=

1

Dim C
∑

Y ∈Irr(C)

SX1,Y SX2,Y SX3,Y

S1,Y

and the “sewing” relation ∑
U∈Irr(C)

SŪ ,XSU,Z = Dim C · δX,Z .

Then we obtain the n-point Verlinde formula

N1

X1,...,Xn
=

1

Dim C
∑

Y ∈Irr(C)

SX1,Y · · ·SXn,Y

Sn−2
1,Y

.

by induction on n.
To see this by semi-simplicity and Frobenius reciprocity,

N1

X1,...,Xn+1
=
∑
U

N1

X1,...,Xn−1,Ū
N1

U,Xn,Xn+1

Assuming our formula works for n, then

N1

X1,...,Xn+1
=

∑
U∈Irr(C)

N1

X1,...,Xn−1,Ū
N1

U,Xn,Xn+1

=
1

(Dim C)2

∑
U,V,Y ∈Irr(C)

SX1,Y · · ·SXn−1,Y SŪ ,Y

Sn−2
1,Y

SU,V SXn,V SXn+1,V

S1,V

=
1

Dim C
∑

Y ∈Irr(C)

SX1,Y · · ·SXn+1,Y

Sn−1
1,Y

Applying sewing to∑
Z0,...,Zg∈Irr(C)

N
Z0,...,Zg

X1,...,Xn
N1

Z0,...,Zg

=
∑

Z0,...,Zg∈Irr(C)

N1

X1,...,Xn,Z̄0,...,Z̄g
N1

Z0,...,Zg

=
1

(Dim C)2

∑
Z0,...,Zg ,U,V ∈Irr(C)

SX1,U · · ·SXn,USZ̄0,U · · ·SZ̄g ,U

Sn+g−1
1,U

SZ0,V · · ·SZg ,V

Sg−1
1,V
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gives the desired result. �

Remark 2.3. Associated to a modular tensor category C is an (anomalous) 3-2-1 topological
quantum field theory called the Reshetikhin-Turaev TQFT [BDSPV15]. To a closed surface
with a series of marked points labelled with by simple objects in C, the TQFT assigns a finite
dimensional vector space. The number MC(g;X1, · · · , Xn)g = NX1,...,Xn is the dimension of
this vector space for a genus g surface with marked points Xi ∈ C. While the vector space
itself depends on the ordering and position of the marked points, the dimensions themselves
do not. The formula for MC(g;X1, · · · , Xn) in terms of S-matrix appeared in the physics
literature [MS89, Eq. (A.7)].

The next two subsections review the basics of categorical actions and equivariantization
which we will need in the sequel, and the extension theory of [ENO10].

2.2. Equivariantization. We now recall some facts about equivariantizations of fusion cat-
egories. As a general reference see [EGNO15,BN13]. Let C be any fusion category, and G a
finite group. Let us first recall some notions related to categorical actions of G on C:

• G is the monoidal category whose objects are elements of G and the only morphisms
are identities. The monoidal product of objects is the product in the group.
• Aut⊗(C) is the monoidal category whose objects are monoidal autoequivalences, and

whose morphisms are monoidal natural isomorphisms. The monoidal product of
objects is composition of functors, and the monoidal product of natural isomorphisms
is the usual one.
• If C is braided, then Autbr

⊗ (C) is the full monoidal subcategory of Aut⊗(C) whose
objects preserve the braiding.
• A categorical action is a monoidal functor M : G→ Aut⊗(C).
• If C is braided, a braided categorical action is a monoidal functor M : G→ Autbr

⊗ (C)

Notation for categorical actions. In what follows below, given a categorical action, we
typically denote the functor assigned to g simply by g(·). The tensorator for g is typically
indicated by ρgX,Y : g(X) ⊗ g(Y ) → g(X ⊗ Y ). The tensorator for the categorical action is

usually written µg,h = {µXg,h : g(h(X))→ gh(X)}X∈C.

Given an arbitrary categorical action, recall its equivariantization CG is defined as follows:

• Objects are pairs (X, λ) where λ = {λh : h(X) ∼= X}h∈G is a family of natural
isomorphisms satisfying

g(h(X)) (gh)(X)

g(X) X

g(λh)

µXg,h

λgh

λg

• Morphisms from (X, λ) to (Y, δ) consist of f ∈ C(X, Y ) such that

δgg(f) = λgf

for all g ∈ G.
7



There is a canonical monoidal structure on this category which makes CG a fusion category
if C is.

Let FG : CG → C denote the forgetful functor, which simply forgets the equivariant struc-
ture. In this section we provide an explicit realization of an adjoint to this functor.

Remark 2.4. We briefly remark on our use of the term adjoint. Recall that every linear
functor F between semi-simple categories has an adjoint functor, which is both a left and
a right adjoint. Since left (and right) adjoints are (respectively) unique up to natural iso-
morphism, then any left adjoint of F is also a right adjoint, since it must be isomorphic
to a two sided adjoint. This is simple a reflection of the fact that in rigid, semi-simple 2-
category (in this case, the 2-category of finitely semi-simple categories) left and right duals
of 1-morphisms (in this case functors) coincide up to isomorphism. Below we will sometimes
need an explicit choice of units and counits for either a left or right adjunction, in order
to equip the adjoints of (strong) monoidal functors with oplax and lax monoidal structures
respectively.

We now define a functor IG : C → CG which we call the induction functor. On objects, we
set

IG(X) := (
⊕

g∈G g(X), ηX)

where the equivariant structure ηX = {ηXh }h∈G is given by

ηXh =
⊕
g∈G

µXh,g : h(
⊕
g∈G

g(X)) =
⊕
g∈G

h(g(X))→
⊕
g∈G

hg(X) =
⊕
g∈G

g(X) .

For a morphism, f ∈ C(X, Y ), we simply define

IG(f) :=
⊕
g∈G

g(f) .

Proposition 2.5. IG as defined above is adjoint to the forgetful functor FG : CG → C

Proof. By Remark 2.4, to show IG is an adjoint, it suffices to show IG is either left adjoint or
right adjoint to FG. However, in this proof we will choose specific left and right adjunctions
between IG and FG in order to obtain concrete oplax and lax monoidal structures on IG
respectively.

To establish IG as a left adjoint to FG it suffices to build a bijection CG(IG(X), (Y, λ)) ∼=
C(X, Y ) natural in both X and (Y, λ).

Let f ∈ CG(IG(X), (Y, λ)). Then as a morphism in C, we may write f =
⊕

g∈G fg, where

fg : g(X) → Y . Our bijection will be defined by sending f 7→ f1. Since f is equivariant,
we see that fgh = λg ◦ g(fh) ◦ (µXg,h)

−1 and in particular, fg = λg ◦ g(f1) ◦ (µXg,1)−1 and
so f is uniquely determined by f1. Furthermore, for any choice of f ′ ∈ C(X, Y ), defining
fg = λg ◦g(f ′)◦(µXg,1)−1 yields an equivariant morphism by setting f =

⊕
g∈G fg, establishing

the bijection. Naturality in both variables is clear.
The construction of a right adjunction is very similar, we simply reverse the order of the

arrows. In particular for the right adjunction, we need to build a family of natural isomor-
phisms CG((Y, λ), IG(X)) ∼= C(Y,X). A morphism f ∈ CG((Y, λ), IG(X)) is represented as a
direct sum f =

⊕
g∈G fg, where fg ∈ C(Y,X). As before, we define our bijection by sending

f 7→ f1. As above, since f is equivariant we have for all g, h ∈ G, fgh = µXg,h ◦ g(fh) ◦ λ−1
gh .
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In particular, fg = µXg,1 ◦ g(f1) ◦ λ−1
1 , hence f is completely determined by f1. Given any

f ′ ∈ C(Y,X), define fg := µXg,1◦g(f ′)◦λ−1
1 . Then f =

⊕
g∈G fg gives an equivariant morphism

CG((Y, λ), IG(X)) which is clearly inverse to the above assignment. �

By [Kel74], since FG is (strong) monoidal, then any right adjoint to FG can be equipped
with the structure of an oplax monoidal functor. Similarly, any left adjoint can be equipped
with a structure of a lax monoidal functor. These structures depend on the choice of ad-
junction (i.e. on the units and counits). Since IG is both a right and left adjoint to FG, we
can use the adjunctions described in the previous proposition to construct both a lax and
oplax monoidal structure on IG.

Unpacking the construction in [Kel74], we obtain a lax monoidal structure νX,Y : IG(X)⊗
IG(Y )→ IG(X ⊗ Y ) which we can describe explicitly as follows.

Define

(νX,Y )kg,h : g(X)⊗ h(Y )→ k(X ⊗ Y )

by

(νX,Y )kg,h := δg,hδg,kρ
g
X,Y ,

where ρgx,y is the tensorator for the monoidal functor g. Then set

νX,Y :=
⊕
g,h,k

(νX,Y )kg,h

Furthermore, the “unit” map of IG is given by a morphism u : 1CG → IG(1C),

u = ⊕g∈Gg(11) .

Similarly we can describe the oplax monoidal structure arising from the (left) adjunction in
the proof of 2.5 as follows. Define

ν ′X,Y : IG(X ⊗ Y )→ IG(X)⊗ IG(Y )

by

ν ′X,Y :=
⊕

g,h,k∈G

(ν ′X,Y )g,hk

where

(ν ′X,Y )g,hk := δk,gδk,h(ρ
g
X,Y )−1 .

In fact, these lax and oplax structures have an additional compatibility: it’s easy to verify
that ν and ν ′ equip IG with the structure of a “special Frobenius functor” [DP08].

Now let (A,m, ι) be an algebra object, with multiplication m : A⊗A→ A and unit ι : 1→
A. The lax structure ν on IG allows us to define the algebra (IG(A), IG(m) ◦ νA,A, IG(ι) ◦ u).
If A in addition comes with a coproduct m′ : A→ A⊗A making it into a special Frobenius
algebra, then ν ′A,A ◦ IG(m′) makes IG(A) into a special Frobenius algebra.
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2.3. Extension theory. In this section, we briefly review the extension theory from [ENO10].
Let G be a finite group. A (faithful) G-grading of a fusion category C is a decomposition
as linear categories C =

⊕
g∈G Cg such that Cg ⊗ Ch ⊆ Cgh and Cg 6= 0 for all g ∈ G. If C is

a fusion category, a G-extension of C is a (faithful) G-graded fusion category D =
⊕
g∈G

Dg

with D1 = C.
Theorem 2.6. [ENO10, Theorem 7.7] (Faithful) G-extensions of a fixed fusion category C
are classified by monoidal 2-functors

G→ BrPic(C) .
Here G is the monoidal 2-category whose objects are elements of G and the 1 and 2

morphisms are all identities. The monoidal product is given by group multiplication on
objects, and the obvious composition of identities. BrPic(C) is the monoidal 2-category
whose objects are invertible bimodule categories, 1-morphisms are bimodule equivalences,
and 2-morphisms are bimodule functor natural isomorphisms. The monoidal product is
defined by taking the relative product of bimodules (functors, natural transformations) over
C [ENO10, Definition 4.5].

This classification is fairly transparent. The table below gives a correspondences between
the data of a monoidal 2-functor and the data of the extension (in the table below we neglect
units).

Data of monoidal 2-functor Data of extension C ⊆ D
Assignment g 7→ Dg Definition of g components D =

⊕
g Dg

Bimodule equivalences Tg,h : Dg �C Dh ∼= Dgh
Definition of tensor product bi-functor
⊗ : Dg �Dh → Dgh

ag,h,k : Tgh,k◦(Tg,h�C Idk) ∼= Tg,hk◦(Idg�CTh,k)
Associator
α : (Xg ⊗ Yh)⊗ Zk → Xg ⊗ (Yh ⊗ Zk)

It is then shown that the coherence that the ag,h,K is required to satisfy is equivalent to
the pentagon axiom for the corresponding associator.

While this result is conceptually straightforward, for it to be useful requires an under-
standing of the monoidal 2-category BrPic(C), which in general is a complicated beast.
However, if we truncate the top level and take isomorphism classes of bimodule equivalence
as 1-morphisms, we obtain the monoidal category BrPic(C).

This monoidal category is easier to understand. For a fusion category C, let Z(C) denote
the Drinfeld center of C [EGNO15]. Given an invertible bimodule categoryM, we have two
equivalences LM, RM : Z(C) ∼= EndC−C(M) given by left and right multiplication respec-
tively, where EndC−C(M) denotes the monoidal category of bimodule endofunctors of M
[EGNO15]. The composition L−1

M ◦RM gives a braided auto-equivalence αM ∈ Autbr
⊗ (Z(C)).

Theorem 2.7. [ENO10, Theorem 1.1] The assignment M 7→ αM described above extends
to a monoidal equivalence BrPic(C) ∼= Autbr

⊗ (Z(C)).

Thus given an extension with classifying functor M : G → BrPic(C), decategorifying
canonically gives a monoidal functor

M : G→ BrPic(C) ∼= Autbr
⊗ (Z(C)) .

10



A monoidal functor M : G → Autbr
⊗ (Z(C)) is precisely a braided categorical action of G

on the Drinfeld center Z(C). The goal of this paper, is to recover the fusion rules of the
extension from just the categorical action M . The reason this is useful is that often we use
the above theorems in the reverse direction.

Namely, suppose we want to construct and extension from scratch. We can start from a
categorical action M : G→ Autbr

⊗ (Z(C)) ∼= BrPic(C). Then we can lift this to a monoidal 2-
functor M : G→ BrPic(C) if and only if a certain obstruction o4(M) ∈ H4(G,C×) vanishes.
If it does, then we know an extension exists, and the possible associators form a torsor over
H3(G,C×).

In practice, one can often show the o4 obstruction vanishes for general reasons (for example
[EG18,GJ19]). In this situation, we know extensions exists, but it is often very difficult to say
anything about the structure of such extensions in general. Thus new methods are required
to work out the details of what an extension looks like when constructed in this way. The
goal of this paper is precisely to provide such methods to determine the fusion rules of the
extension.

In the sequel our method will require the existence of a spherical structure on the extension
D. As mentioned in the introduction, to our knowledge there has been no general theory
developed for constructing spherical structures on extensions, though it should certainly
exist. In particular, there is a natural spherical analogue of the Braur-Picard groupoid, and
one would expect spherical extensions would naturally be classified by monoidal 2-functors
from G to this category. However, as this theory has yet to be developed, thus having
conditions on C which guarantee the existence of a spherical structures on our extensions
automatically makes it easier to apply our results.

We have the following proposition.

Proposition 2.8. Let C be a pseudo-unitary fusion category, and let C ⊆ D be a G-extension.
Then D is pseudo-unitary.

Proof. Let X ∈ D be in the g-graded component. Then choose a dual object X̄ ∈ Dg−1 ,
and solutions to the duality equations RX , R̄X , R

∗
X , R̄

∗
X (here we use the notation preceding

equation 1). Then X ⊗ X̄ ∈ C is canonically equipped with the structure of a connected
special Frobenius algebra, with multiplication m := 1X ⊗ R∗X ⊗ 1X̄ , co-multiplication ∆ :=
1X ⊗RX ⊗ 1X̄ , unit ι := R̄X and counit ε := R̄∗X .

Then this algebra is special, with constants m ◦∆ = (R∗X ◦RX)1X⊗X̄ and ε ◦ ι = R̄∗X ◦ R̄X .
Thus the invariant quantity β associated to any special Frobenius algebra defined by ε ◦m ·
∆ ◦ ι = β11 in this case is precisely the paired dimension d{X,X̄}.

Since X is simple, the algebra X ⊗ X̄ is connected (also called haploid in the literature).
Thus by [FRS02, Corollary 3.10], this algebra will be symmetric with respect to any spheri-
cal structure for which the spherical dimension of X⊗ X̄ is non-zero. But symmetric special
Frobenius algebras A satisfy β = dA. In particular, choosing the canonical pseudo-unitary
spherical structure, the above shows that the connected Frobenius algebra X ⊗ X̄ is sym-
metric, hence dD{X,X̄} = β = dC

X⊗X̄ = FPdimC(X ⊗ X̄) = FPdimD(X ⊗ X̄) = FPdimD(X)2,

where we have used pseudo-unitarity for the third equality. Thus D is pseudo-unitary. �
11



3. Recovering fusion rules from the Lagrangian algebra

In this section, we will explain how the fusion rules of a fusion category can be derived
from a pair of algebraic operations on the vector space EndZ(C)(I(1)). We use these results
together with the facts we’ve assembled about equivariantizations to describe the fusion rules
for extensions. Our conventions for half-braidings and spherical structures follow [Müg03a],
[Müg03b]. We make extensive use the graphical calculus for spherical fusion categories. We
use the “optimistic” convention, so that our diagrams are read bottom to top.

We refer the reader to [FRS02] for definitions concerning algebras in tensor categories
and their various adjectives. We warn the reader that following [EGNO15] we use the word
connected to mean dimC C(1, A) = 1, whereas in many references (including [FRS02]) the
word haploid is used. Let A be any commutative, connected special Frobenius algebra in a
braided spherical fusion category with dA 6= 0, normalized so that

A

A

=

A

A

, ε · i = A = dA .

We define the convolution product on EndC(A) by

A

A

a∗b :=

A

A

a b . (4)

This operation on EndC(A) makes it into an associative, commutative algebra. The unit
with respect to the convolution product is given by

i ◦ ε =

A

A

We note that EndC(A) also has the usual composition, and thus we have two operations
on this vector space (EndC(A), ◦, ∗). By [BD18, Corollary 2.5], (EndC(A), ∗) is a semi-
simple commutative algebra and is thus isomorphic to Cn. Thus we can “diagonalize” the
multiplication by finding minimial idempotents. We note this idempotents give a canonical
basis for the vector space EndC(A) and (EndC(A), ◦) becomes a based algebra.

Lemma 3.1. Let A,B be connected special Frobenius algebras with non-zero dimension,
normalized as above, which are isomorphic as algebras. Then

(EndC(A), ◦, ∗) ∼= (EndC(B), ◦, ∗).
12



Proof. By [FRS02, Corollary 3.10], A and B are symmetric, hence by [FRS02, Theorem
3.6] there is a unique comultiplication with the desired normalization. Therefore any alge-
bra intertwiner ψ ∈ C(A,B) must also intertwine the comultiplications. Indeed, if mB ∈
C(B ⊗ B,B) and nB ∈ C(B,B ⊗ B) denote the normalized Frobenius multiplication and
comultiplication for B respectively, then (ψ−1 ⊗ ψ−1) ◦ nB ◦ ψ ∈ C(A,A ⊗ A) provides an
appropriately normalized comultiplication for mA and therefore must be nA (a similar argu-
ment applies to counits). Thus the map EndC(A)→ EndC(B), f 7→ ψ ◦ f ◦ ψ−1 ∈ EndC(B)
is an isomorphism with respect to ◦ and ∗. �

3.1. The canonical Lagrangian algebra. Recall that on object in the Drinfeld center
Z(C) consists of pairs (Y, φY ) where Y ∈ C and φY is a natural isomorphisms from the
functor Y ⊗ · → · ⊗ Y called half-braidings satisfying a version of the hexagon coherence
[Müg03b]. Morphisms between such pairs consist of morphisms between the underlying
objects which intertwine the half-braidings. The functor from Z(C) to C which sends a pair
(Y, φY ) to the object Y and morphisms to themselves is called the forgetful functor, denoted
F: Z(C)→ C.

Let C be a spherical fusion. Let us once and for all pick a square root
√
dX for each

X ∈ Irr(C). The forgetful functor admits an adjoint I : C → Z(C) (see Remark 2.4). By
[KJB10], we can represent I with the following explicit formula:

I(X) := (
⊕

Y ∈Irr(C) Y ⊗X ⊗ Y , φI(X)) , (5)

φI(X),W :=
⊕

Y,Z∈Irr(C)

∑
i

√
dY
√
dZ

Y

Z

X

XW

Ȳ

Z̄

W

i i• , (6)

here {i} is a basis for C(Y,W ⊗ Z) and {i•} ⊆ C(Ȳ ⊗W, Z̄) is a dual basis defined via

δi,j := Ȳ
W

Z

i

j•

. (7)

Remark 3.2. Here and throughout this paper, we make extensive use of the following
elementary fact: for a finite dimensional vector space V , there is a canonical element in
V ⊗ V ∗ defined by

∑
i bi ⊗ b∗i where {bi} ⊆ V is a basis and {b∗i } ⊆ V ∗ is the dual basis

satisfying b∗i (bj) = δi,j. Though we have picked a basis to define it, this element does not
actually depend on the choice of basis. Throughout this text we will have vector spaces of
morphisms arising from our category that are linked together with (various) non-degenerate
pairings. Since our monoidal categories are linear, inserting morphisms into planar diagrams
is multi-linear. It follows that any of our pictures which have a summation over diagrams
which consist of a basis element together with its dual with respect to some non-degenerate
pairing, the resulting overall morphism will not depend on the choice of this basis. This will
be a key ingredient of many of our arguments.

In [KJB10, Theorem 2.3], the authors establish I as a adjoint to the forgetful functor.
In particular, they provide a (left) adjunction between I and F by establishing a bijection

13



C(X,F (Y, φY )) ∼= Z(C)(I(X), (Y, φY )) defined by

X

Y

f 7−→
⊕

Z∈Irr(C)

√
dZ

X

Y

f

φY,Z̄

Z Z̄

. (8)

The object I(1) is endowed with the structure of a (symmetric) special Frobenius algebra in
Z(C), with structure maps

I(1) I(1)

I(1)

=
⊕

X∈Irr(C)

1√
dX

X̄ XX

X

X̄

X̄

, (9)

I(1)

=
⊕

X∈Irr(C)

√
dX

X̄X

(10)

The comultiplication and counit are given by the reflected diagrams of the multiplication
and unit maps respectively, with the same normalizing coefficients. Thus I(1) is a connected
special Frobenius algebra normalized as in the previous section (note dI(1) =

∑
X∈Irr(C) d

2
X =

Dim(C) > 0).
From above we see

EndZ(C)(I(1)) ∼= C(1, F ◦ I(1)) ∼=
⊕

X∈Irr(C)

C(1, X ⊗ X̄) .

We have a basis for
⊕

X∈Irr(C) C(1, X ⊗ X̄) consisting of cups. Namely, set

rY :=
√
dY

YȲ

.

Then {rY } form a basis for
⊕

X∈Irr(C) C(1, X ⊗ X̄) (note that here we are implicitly using

the spherical structure to identify Ȳ with its representative in Irr(C) and ¯̄Y with Y ). Now
we consider the image of rY under the canonical adjunction from Equation 8, which from
Equation 5 reads

eY =
⊕

X,Z∈Irr(C)

∑
j

dY
√
dX
√
dZ

X

Z Z̄

X̄

Ȳ

j j∗ =
⊕

X,Z∈Irr(C)

∑
i

dY
√
dX
√
dZ

X

Z

Y

X̄

Z̄

i•

i

. (11)

The summation of i is over a basis for C(Y ⊗ X̄, Z̄), and i∗ is a dual basis with respect to a
reflected version of the graphical pairing defined 7, given explicitly by

14



δi,j := X̄
Z

Y

i∗

j

. (12)

To see that the graphical terms in equation 11 are equal, note that the rotated j and j•

form a basis and dual basis with respect to the graphical pairing as well (this can be easily
seen using sphericality with the Z string and using pivotality to apply a 2π rotation to the
resulting twisted morphism j, which results in the graphical pairing from 7). Thus we can
apply Remark 3.2.

A straightforward computation then gives us the following:

(1) {eY } forms a basis for EndZ(C)(I(1)),
(2) eY ∗ eZ = δY,ZeY .

To see the second point,

eY ∗eZ =
⊕

X,V ∈Irr(C)

∑
i,j

dY dZ
√
dX
√
dV

X

V

Y

X̄

V̄

Z

X̄

V̄

i•

i

j•

j

= δY,Z ·
⊕

X,V ∈Irr(C)

∑
i

dY
√
dX
√
dV

X

V

Y

X̄

V̄

i•

i

since

Y

X̄

V̄

Z

i

j•
= δY,Z

1

dX

Y

Y

Y

X̄

V̄

Y
i

j•

= δY,Z
1

dY

Y

Y

V
Y

Z

i

j•
. = δY,Z

1

dY
δi,j

Y

Y

.

In other words, the collection {eY } diagonalizes the convolution product.

Proposition 3.3. eY ◦ eZ =
∑

X∈Irr(C)
dY dZ
dX

NX
Y ZeX .

Proof. We see that

eY ◦ eZ =
⊕

P,R∈Irr(C)

∑
Q∈Irr(C)

∑
i,j

dY dZdQ
√
dR
√
dP

P

R

Z

Y

P̄

R̄

i•
i

j•
j

Q

Q̄
.

However, the sets

dQ

Y

R̄

Z P̄

Q̄
j

i
, dU

Y

R̄

Z P̄

U k

l
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as Q,U runs over Irr(C) and i, j, k, l run over the graphically normalized bases both form a
(graphically normalized) basis for C(Y ⊗Z⊗ P̄ , R̄). Since the first basis set appears together
with its dual in the above expression, we can replace it with the latter (Remark 3.2), to
obtain

eY ◦ eZ =
⊕

P,R∈Irr(C)

∑
i

dY dZN
U
Y,Z

√
dR
√
dP

P

R

U

P̄

R̄

k•

k

=
∑

U∈Irr(C)

dY dZ
dU

Nu
Y,ZeU . �

Now let C be a fusion category and d a spherical dimension function. Then consider
(K0(C), ·, ∗d), where K0(C) = C[Irr(C)], [X] · [Y ] =

∑
Z∈Irr(C) N

Z
XY [Z], and [X] ∗d [Y ] =

δX,Y

dX
[X]. Then the above proposition and a straightforward computation gives us the follow-

ing corollary:

Corollary 3.4. The assignment eX 7→ dX [X] gives an isomorphism

(EndZ(C)(I(1)), ◦, ∗) ∼= (K0(C), ·, ∗d) .

Thus if we have the algebraic structure (EndZ(C)(I(1)), ◦, ∗) and we know the spherical
dimension function, we can determine the fusion rules by rescaling the canonical basis.
Unfortunately this is not information we will have a-priori.

In the extension construction described in Section 2.3 the input is a categorical action
M : G → Autbr

⊗ (Z(C)). Suppose o4(M) vanishes, so there exists a (several) extension C ⊆
D. We would like to compute the fusion rules for this extension. We will assume the
extension D admits a spherical structure. In the next section we will show how to compute
(EndZ(D)(I(1)), ◦, ∗).

As we’ve mentioned, a-priori this is not quite enough to reconstruct the fusion rules, since
we don’t know which dimension function d our basis is scaled with respect to! Indeed, we
do not even know the fusion rules of D yet, so trying to determine the possible dimension
functions is premature.

However, we can use Proposition 3.3 to determine the square of the dimensions (i.e. the
paired dimensions) as follows: first determine the canonical basis element acting as the unit
under composition, e1 which is straightforward. For each eY , there will be a unique element
eȲ such that eY ◦ eȲ has a coefficient of e1. This coefficient will be d2

Y = d{Y,Ȳ } > 0, the
canonical paired categorical dimension (see equation 1). Recall the positive square root (i.e.
the fusion dimension) is denoted d+

Y . We have dY = γY d
+
Y , where γ· : Irr(D) → {±1} is

determined by (and determines) the spherical structure. More explicitly, to have a spherical
structure we need to find a function γ· as above such that whenever Z ≺ X ⊗ Y , we have
γXγY
γZ

= TZXY is the pivotal operator (See [Bar16, Theorem 5.4]). In particular, for such a

spherical structure defined by γ· to exist, we must have TZXY = ±1 is constant whenever
Z ≺ X ⊗ Y .

In any case, when we have a spherical structure, the spherical dimensions necessarily
satisfy

dXdY
dZ

= ±d
+
Xd

+
Y

d+
Z

.
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With the associative algebra (EndZ(C)(I(1)), ◦) ∼= (K0(C), ·) . and the scaled basis elements
described above in hand, we can compute the coefficient of eZ in eX ◦ eY , which is CZ

XY =
dXdY
dZ

NZ
XY . We can also determine

d+
Xd

+
Y

d+
Z

as described above, and thus the fusion rule can be

recovered as

NZ
XY =

∣∣∣∣CZ
X,Y

d+
Z

d+
Xd

+
Y

∣∣∣∣ . (13)

Summary of preceding discussion. Suppose we are given a vector space V and two bi-
linear operations ◦, ∗ such that the triple (V, ◦, ∗) is isomorphic to (K0(C), ·, ∗d) for some
spherical dimension function d. Using the above procedure we can recover the fusion rules
without determining d. While our method requires the existence of a spherical structure to
produce the fusion rules, it does not require the choice of a specific one

Remark 3.5. Above we assumed the existence of a spherical structure to derive our re-
sult. In the hypothetical case that there exists a fusion category which admits no spher-
ical structure, the convolution product and composition product still make sense for the
Frobenius algebra I(1). One can show, however, that instead of recovering the fusion
rules using our procedure above, we recover the signed fusion rules Tr(TZXY ), where again
TZXY : C(Z,X ⊗ Y ) → C(Z,X ⊗ Y ) is the pivotal operator [Bar16]. The operator TZXY has

order 2 hence its eigenvalues are ±1. If we let NZ,+
XY and NZ,−

XY be the dimensions of the 1 and

−1 eigenspaces respectively, then Tr(TZXY ) = NZ,+
XY −N

Z,−
XY which motivates our terminology.

It does not seem to be possible to recover the fusion rules from this information unless we
have TZXY = ±1 for every triple of simple objects.

3.2. G-extensions. In the previous section, we showed how to recover the fusion rules of a
fusion category from the algebraic structure of the Lagrangian algebra I(1) ∈ Z(C). Given
a G-extension C ⊆ D, and have a categorical action M : G → Autbr

⊗ (Z(C)). The point of
this section is to show how to describe the endomorphisms, convolution, and composition
product of the canonical Lagrangian algebra for D in terms of the data of the Lagrangian
algebra for C and the categorical action M . Our approach is based on the results of [GNN09],
which realize the Drinfeld center Z(D) as a certain equivariantization.

Recall from Section 2.3 that given a G-extension C ⊆ D, we have a canonically associated
categorical action M : G → Autbr

⊗ (Z(C)). From [GNN09, Theorem 3.3], we have that the
relative center of the extension ZC(D) is a G-crossed braided extension of Z(C), whose G-
action on the trivial component is precisely the canonical action M .

Furthermore, we have Z(D) = ZC(D)G [GNN09, Theorem 3.5]. The forgetful functor
Z(D) → D factorizes as the composition of the forgetful functor Z(D) → ZC(D) with
ZC(D) → D, and thus its adjoint factors as a composite of the respective adjoints. How-
ever, upon identification of Z(D) with ZC(D)G, the first forgetful functor (which forgets
the half-braiding with all D and just remembers the half-braiding with the trivial compo-
nent) is identified with the equivariant forgetful functor, which simply forgets the equivariant
structures on objects.

Let ID : D → Z(D) and IC : C → Z(C) the denote the adjoints of the forgetful functors
and IG : ZC(D)→ ZC(D)G ∼= Z(D) as defined above Proposition 2.5. Then we have

ID ∼= IG ◦ IC .
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In particular, ID(1) ∼= IG(IC(1)). Thus the description of the algebra structure on IG(A)
(for an arbitrary algebra A) from Section 2.2 provides a concrete realization of the canonical
Lagrangian algebra ID(1) which is only defined up to an isomorphism.

To compute the fusion rules, our first step is to identify End(ID(1)) as a vector space. We
see

Z(D)(ID(1), ID(1)) ∼= Z(C)G(IG(IC(1)), IG(IC(1))) ∼=
⊕
g∈G

Z(C)(IC(1), g(IC(1)))

where the first isomorphism uses the equivalence Z(D) ∼= ZC(D)G together with the fact
that ID(1) ∼= IG(IC(1)) is contained in the subcategory Z(C)G ⊆ ZC(D)G, since 1 ∈ C.
The second isomorphism uses the model for IG and the adjunction from Proposition 2.5.
Let L := IC(1), with multiplication m and comultiplication m′ as described in Equation 9.
Then using the description of the adjunction to transport the convolution and composition
structures from IG(IC(1)), we have

K0(D) ∼=
⊕
g∈G

Z(C)(L, g−1(L)) .

For ag ∈ Z(C)(L, g−1(L)), bh ∈ Z(C)(L, h−1(L))

ag ∗ bh := δg,h g
−1(m) ◦ ρg

−1

L,L ◦ (ag ⊗ bg) ◦m′ ∈ Z(C)(L, g−1(L)) . (14)

For the composition product, we see

ag ◦ bh := µLh−1,g−1 ◦ h−1(ag) ◦ bh ∈ Z(C)(L, (gh)−1(L)) . (15)

Remark 3.6. Note that while we use ◦ for the composition product above, this is an abuse
of notation, and is not actually the operation of composition of the morphisms ag and
bh in the category Z(C). Indeed this doesn’t even make sense in general since they have
different sources and targets. Rather, this operation corresponds to honest composition of
the endomorphisms of IG(L) obtained by applying the adjunction from Proposition 2.5.

We now put everything together to describe an algorithm for finding the fusion coefficients
of a G-extension of a fusion category:

Algorithm for finding fusion rules of G-extension:

(1) First find arbitrary basis Bg for Vg := Z(C)(L, g−1(L)) for each g ∈ G, where L =
IC(1) is the canonical Lagrangian algebra in Z(C).

(2) Compute convolution product ∗ (see equation 14) and composition product ◦ (see
equation 15) in terms of the basis

⋃
g∈GBg.

(3) Find minimal projections of Vg with respect to convolution, label them eY . These
will correspond to simple objects in the g component of the extension.

(4) Next we want to compute the CZ
XY in the sum eX ◦ eY =

∑
Z C

Z
XY eZ . To do this, we

use (eX ◦ eY ) ∗ eZ = CZ
XY eZ .

(5) Next, we note that for each eY ∈ Vg, there is a unique eȲ ∈ Vg−1 such that C1
Y Ȳ

> 0.

Set d+
X =

√
C1
Y Ȳ

.

(6) We then determine

NZ
XY =

∣∣∣∣CZ
XY

d+
Z

d+
Xd

+
Y

∣∣∣∣ .
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3.3. Example: Fusion categories Morita equivalent to Vec(A). Let A be an abelian

group. Then Z(Vec(A)) ∼= Vec(Â × A, q), where q(ϕ, a) = ϕ(a) is the canonical quadratic

form on Â× A and Â = Hom(A,C×) is the dual group [ENO10].
Fusion categories C together with a Morita equivalence to Vec(A) are described by La-

grangian algebras in Z(Vec(A)). The Lagrangian algebra is precisely IC(1).

Lagrangian algebras in Vec(Â× A, q) correspond precisely to Lagrangian subgroups L ≤
(Â × A, q) [DS18]. By definition, these are precisely the subgroups with |L| = |A| such
that q|L = 1. By [ENO10, Proposition 10.3], these are in bijective correspondence with
subgroupsH ≤ A together with alternating bicharacters (which are, alternatively, in bijective
correspondence with elements of H2(H,C×)).

Given H ≤ A and b ∈ Alt(H ×H,C×) define

Lh,b = {(ϕ, h) ∈ Â× A : ϕ � H = b(h, · )}

and consider the Lagrangian subgroup

LH,b =
⋃
h∈H

Lh,b .

then it follows that (H, b) 7→ LH,b is a one-to-one correspondence between pairs (H, b) as

above and Lagrangian subgroups L ≤ (Â×A, q). Namely, given L ≤ (Â×A, q) Lagrangian,
define H by {1} ×H = L ∩ ({1} × A) and b(h, k) = ϕh(k) for some (ϕh, h) ∈ L.

Now, for arbitrary a ∈ Â× A, let χa be the character on Â× A defined by

χa(b) :=
q(ba)

q(b)q(a)
.

Suppose we have a homomorphism π : G → O(Â × A, q), i.e. a homomorphism π : G →
Aut(Â×A) such that q(g(a)) = q(a), where by abuse of notation we denote g( · ) = π(g)( · ).
Let ω : G×G→ Â× A be a 2-cocycle with respect to this homomorphism, i.e.

ωg,hkg(ωh,k) = ωg,hωgh,k .

Then this data defines a braided categorical action

πω : G→ Autbr
⊗ (C(Â× A, q)) ,

where the element g acts by π(g) in the obvious way as a strict monoidal functor on Vec(Â×
A). We again abuse notation and use g(·) to refer to the functor π(g). To define the
tensorator of the categorical action we use the monoidal natural isomorphisms

µag,h := χωg,h
(gh(a))1gh(a) : g(h(a)) = gh(a)→ gh(a) .

That this is a categorical action follows from the general theory of [ENO10]. However, for
the sake of completeness we give a direct verification.

We need to verify for all a ∈ Â× A, g, h, k ∈ G

µagh,kµ
k(a)
g,h = µag,hkg(µah,k)

Using our definition of µag,h, this becomes

χωgh,k
(ghk(a))χωg,h

(ghk(a)) = χωg,hk
(ghk(a))χωh,k

(hk(a)) . (16)
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But since g preserves q we have χa(g(b)) = χg−1(a)(b). Thus we take the left hand side of
equation 16, and we compute

χωgh,k
(ghk(a))χωg,h

(ghk(a)) = χghk−1(ωgh,k)(a)χghk−1(ωg,h)(a)

= χghk−1(ωgh,kωg,h)(a)

= χghk−1(ωg,hkg(ωh,k))(a)

= χωg,hk
(ghk(a))χωh,k

(hk(a))

as desired. It turns out every braided categorical action on Vec(Â × A, q) is equivalent to
one of this form [ENO10].

Let L ≤ Â×A be a Lagrangian subgroup, and by an abuse of notation, let L also denote
the corresponding Lagrangian algebra.

Then as an object, L =
⊕

a∈L a. The multiplication is given by

m :=
1√
|A|

⊕
a,b

ma,b :
⊕
a,b∈L

a⊗ b→
⊕
c∈L

c,

where

ma,b = 1a⊗b .

The Frobenius comultiplication is defined similarly.

Theorem 3.7. Let π : G→ Aut(Â×A, q) be a group homomorphism and ω an Â×A-valued
2-cocycle, and consider the categorical action constructed from this data as described above.
Let L be a Lagrangian subgroup and set Lg := L∩ g−1(L). Then the simple objects in the G-

graded component of any corresponding extension of Vec(Â×A, q)L (if it exists) are indexed

by irreducible characters α ∈ L̂g. For α ∈ L̂g, β ∈ L̂h, γ ∈ L̂gh we have

Nγ
αβ = δαβχω

h−1,g−1 |Lg∩Lh
,γ|Lg∩Lh

|Lg ∩ Lh|
√
|A|√

|Lg| |Lh| |Lgh|
.

Proof. Note that C(Â × A, q)L ∼= Vec(L̂, µ) for some 3-cocycle µ ∈ Z3(L̂,C×). All these
categories are pseudo-unitary, hence we can apply our algorithm to any extension.

First we compute the convolution structure. A basis for Vec(Â × A)(L, g−1(L)) is given
by

{1a}a∈L∩g(L) , 1a ∗ 1b =
1

|A|
1ab .

Let α, β ∈ L̂g be irreducible characters. Then we have the standard formula from character
theory ∑

a∈Lg

α(a)β(a−1b) = δα,β|Lg|α(b) .

Thus we may define

eα =
|A|
|Lg|

⊕
a∈Lg

α(a)1a

and hence

eα ∗ eβ = δα,βeα .
20



For α ∈ L̂g, β ∈ L̂h, γ ∈ L̂gh we compute

(eα ◦ eβ) ∗ eγ =
|A|2

|Lg||Lh||Lgh|
⊕
b∈Lgh

 ∑
a∈Lg∩Lh

χωh−1,g−1 (a)α(a)β(a)γ(a−1b)

 1b = Cγ
αβeγ .

We know the coefficient of 11 in eγ is precisely |A|
|Lgh|

.

Using the character formula∑
a∈Lg∩Lh

χωh−1,g−1 (a)α(a)β(a)γ(a−1b) = |Lg ∩ Lh| δαβχω
h−1,g−1

|Lg∩Lh
, γ|Lg∩Lh

γ(b)

and comparing coefficients of 11 via our above expression, we obtain

Cγ
αβ =

|Lg ∩ Lh||A|
|Lg||Lh|

δαβχω
h−1,g−1 |Lg∩Lh

,γ|Lg∩Lh
.

To find the multiplicities, we see the positive dimensions satisfy

d+
α =

√
|A|
|Lg|

and therefore

Nγ
αβ = δαβχω

h−1,g−1 |Lg∩Lh
,γ|Lg∩Lh

|Lg ∩ Lh|
√
|A|√

|Lg||Lh||Lgh|
. �

We remark that these formulas can be applied to derive the fusion rules for reflection
fusion categories [EG18] in the case when the trivial component of the category (which is
an elementary abelian p-group) has trivial 3-cocycle associator.

3.4. Example: Fusion categories with center tensor equivalent to Vec(B). We can
slightly generalize the former example. Let A be an abelian group. We want to consider the
following kind of Lagrangian extensions of A. Let B be another abelian group with |B| = |A|2
and b : B × B → C

× a bicharacter, such that q : B → C
× defined by q(x) = b(x, x) is a

non-degenerate quadratic form and that there is an embedding Â ↪→ B with q|Â ≡ 1. Note
that [LN14, Lemma 4.4] implies that the modular tensor category C(B, q) is monoidally

equivalent to Vec(B). The Lagrangian subgroup Â ≤ B gives a Lagrangian algebra L in
C(B, q). We have that C(B, q)L is tensor equivalent to Vec(A, µ) for some µ ∈ H3(A,C×)
and C(B, q) is braided equivalent to Z(Vec(A, µ)). For a ∈ B let χa to be the character on
B defined by

χa(g) :=
q(ag)

q(a)q(g)
= b(a, g)b(g, a) .

Suppose as above, we have a homomorphism π : G→ O(B, q) and ω : G×G→ B a 2-cocycle

with respect to this homomorphism as above. By replacing Â×A by B we get a categorical
action of G on C(B, q) as before. All the arguments are the same replacing Â×A by B, thus
we get the slightly more general version of Theorem 3.7:

Theorem 3.8. With the above notation, set Lg := L∩g−1(L) and Ag = A/{a ∈ A | eva |Lg =
idLg} . Then the simple objects in the G-graded component of the corresponding extension

21



of Vec(A, µ) ∼= C(B, q)L (if it exists) are indexed by irreducible characters α ∈ Ag. For
α ∈ Ag, β ∈ Ah, γ ∈ Agh we have

Nγ
αβ = δαβχω

h−1,g−1 |Lg∩Lh
,γ|Ag∩Ah

|Ag ∩ Ah|
√
|A|√

|Ag| |Ah| |Agh|
.

We remark that theorem applies to any C whose center Z(C) is tensor equivalent to Vec(B).
Namely, in this case Z(C) is braided equivalent to C(B, q) where q is a quadratic form on
B which comes from a bicharacter b on B by [LN14, Lemma 4.4]. Then I(1) ∈ C(B, q)
gives a Lagrangian subgroup L and C(B, q)L is tensor equivalent to Vec(A, µ) for some

µ ∈ H3(A,C×), where A = L̂. In particular, it applies to C = Vec(A, µ) where A is of odd
order and µ is a “soft” cocycle. Here the subgroup of “soft” cohomology classes is

H3(A,C×)ab =

{
[ω] ∈ H3(A,C×)

∣∣∣∣∣ ∏
σ∈S3

ω(σ(x), σ(y), σ(z))signσ = 1 for all x, y, z ∈ A

}
.

By [MN01, Corollary 3.6], Z(Vec(A, µ)) is pointed for every [µ] ∈ H3(A,C×)ab thus braided
equivalent to some C(B, q). If A is odd, define a bicharacter b on B by

b(g, h) =

(
q(gh)

q(g)q(h)

)Exp(G)+1
2

then q(g) = b(g, g). Thus for every A odd abelian group and [µ] ∈ H3(A,C×)ab the category
Vec(A, µ) arise in the above way.

4. Examples from G-crossed extensions of modular categories

We turn our attention to the case C is modular. Then Z(C) is braided equivalent to
C � Crev, and the forgetful functor is the functor X � Y 7→ X ⊗ Y ∈ C. We first give a
description of L = I(1) in C � Crev. By [KR08, Section 2.2], we can describe the canonical
Lagrangian algebra as follows:

As an object

L =
⊕

X∈Irr(C)

X � X̄ .

The multiplication is given by

m0 =
⊕

X,Y,Z∈Irr(C)

∑
i

Z

Y

i

X

�

Z̄

Ȳ

ǐ

X̄

,

22



where {i} ⊆ C(X ⊗ Y, Z) consists of a basis for C(X ⊗ Y, Z), and {̌i} ⊆ C(X̄ ⊗ Ȳ , Z̄) is a
basis given by

Z̄

Ȳ

ǐ

X̄

=
i†

X̄

Z̄

Ȳ

.

where {i†} is the dual basis with respect to the composition pairing C(Z,X ⊗ Y ) ⊗ C(X ⊗
Y, Z)→ C, f ⊗ g 7→ 〈f, g〉 ∈ C where 〈f, g〉1Z = g ◦ f

The unit of the algebra is given by

ι0 = 11�1.

Now, by Lemma 3.1, for the purposes of computing the based algebra (EndC�Crev(L), ◦), we
can replace this algebra by any isomorphic algebra which also admits a symmetric Frobenius
algebra with our desired normalization. In particular, we can choose one for which the
normalized Frobenius comultiplication is easier to compute.

Thus we consider the same object L, but with multiplication

m :=
1√

Dim C

⊕
X,Y,Z∈Irr(C)

√
dXdY√
dZ

∑
i

i� ǐ (17)

with ǐ defined as above, and unit

ι =
√

Dim(C)11�1 .

Then the map

ψ :=
⊕

Z∈Irr(C)

√
dZ

Dim(C)
1Z�Z̄ ∈ EndC�Crev(L)

is an automorphism of the object A, but satisfies ψ ◦m = m0 ◦ (ψ ⊗ ψ) and ψ ◦ ι = ι0, and
thus (A,m, ι) ∼= (A,m0, ι0).

Furthermore, we can more easily compute the correctly normalized Frobenius comultipli-
cation to be given by

m′ :=
1√

Dim C

⊕
X,Y,Z∈Irr(C)

√
dXdY
dZ

∑
i

i† � ǐ† (18)

where {i†} ⊆ C(Z,X ⊗ Y ) is dual to {i} with respect to the composition pairing, and {̌i†}
is dual to {̌i} with respect to the composition pairing. Defining the counit

ε :=
√

Dim(C)11�1

we obtain a symmetric Frobenius algebra structure on (A,m, ι) with the correct normaliza-
tion as desired.
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We note in the modular case, the story is considerably simplified for two reasons. First,
we have (End(A), ◦) ∼= Fun(Irr(C)) as algebras, where the latter is the algebra of complex
valued functions on the set Irr(C) with pointwise multiplication. The identification is via

f ∈ Fun(Irr(C)) 7→
⊕

X∈Irr(C)

f(x)1X�X̄ .

With this notation, an easy computation gives

(f ∗ g)(Z) =
1

Dim C
∑

X,Y ∈Irr(C)

f(X)g(Y )
dXdY
dZ

NZ
XY . (19)

In terms of the basis {1X�X̄ : X ∈ Irr(C)} we have

1X�X̄ ∗ 1Y �Ȳ =
1

Dim C
∑

Z∈Irr(C)

NZ
XY

dXdY
dZ

1Z�Z̄ .

We will use both expressions in the sequel based on convenience.

Lemma 4.1. Let C be a modular tensor category, then for all V,W,Z ∈ Irr(C)

1

Dim C
∑

X,Y ∈Irr(C)

NZ
X,Y (dV SX,V )(dWSY,W ) = δV,W dV SZ,V

Proof. We have

1

dW
SX,WSY,W =

∑
Z∈Irr(C)

NZ
X,Y SZ,W

and therefore∑
X,Y ∈Irr(C)

NZ
X,Y (dV SX,V )(dWSY,W ) = dV dW

∑
X∈Irr(C)

SX,V
∑

Y ∈Irr(C)

NY
X̄,ZSY,W

= dV
∑

X∈Irr(C)

SX,V SX̄,WSZ,W

= δV,W ·Dim C · dV SZ,V .

In the last equality, we used the property of modular data SCS = CS2 = Dim C · I, where
C = (Dim C)−1 · S2 is the charge conjugation matrix given by CX,Y = δX,Ȳ and I is the
identity matrix (see [BK01, Theorem 3.1.7]). �

Proposition 4.2. The set {eV }V ∈Irr(C) with

eV =
⊕

X∈Irr(C)

dV
dX

SX,V · 1X�X̄

forms a complete set of minimal idempotents for (EndZ(C)(L), ∗).

Proof. Note {eV }V ∈Irr(C) forms a basis of EndZ(C)(L) since S is invertible.
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Furthermore, we have

eV ∗ eW =
1

Dim C
∑
X,Y,Z

dV
dX

SX,V
dW
dY

SY,W
dXdY
dZ

NZ
XY 1Z�Z̄

=
1

Dim C
∑
X,Y,Z

NZ
XY (dV SX,V )(dWSY,W )

1

dZ
1Z�Z̄

= δV,W
∑

Z∈Irr(C)

dV
dZ
SZ,V 1Z�Z̄ = δV,W eV . �

As a consistency check, we compute the composition structure

eX ◦ eY =
⊕

V ∈Irr(C)

dXdY
d2
V

SX,V SY,V · 1V �V̄

=
⊕

V ∈Irr(C)

∑
Z∈Irr(C)

NZ
X,Y

dXdY
dZ

dZ
dV
SZ,V · 1V �V̄

=
∑

Z∈Irr(C)

NZ
X,Y

dXdY
dZ

· eZ .

This analysis was purely of the canonical Lagrangian algebra, with no categorical action.
We will now study a particular type of categorical action, which is associated to a G-crossed
braided extension of C rather than an ordinary extension.

Recall for non-degenerate fusion categories that there is a monoidal functor π : Autbr
⊗ (C)→

Autbr
⊗ (Z(C)) = Autbr

⊗ (C�Crev), where the braided C autoequivalence acts on the second factor

1�Crev ⊆ C�Crev. Furthermore, there is an equivalence ∂ : Autbr
⊗ (C) ∼= Pic(C) defined via α

induction [DN13]. Then by [DN13], the following diagram commutes up to monoidal natural
isomorphism

Autbr
⊗ (C) Autbr

⊗ (Z(C))

Pic(C) BrPic(C)

∂

π

Forget

where the arrow on the right is the canonical equivalence from Section 2.3.
Consider a G-extension of a modular category C. Lifts (indicated by the dotted line)

Autbr
⊗ (C) ∼= Pic(C)

G Autbr
⊗ (Z(C)) ∼= BrPic(C)

of the canonically associated categorical action (indicated by the horizontal sold line) cor-
respond to equivalence classes of G-crossed braidings on the G-extension with compatible
G-grading [JMPP2107, Theorem 7.2].

For g ∈ Autbr
⊗ (C), define Fixg = {X ∈ Irr(C) : g(X) ∼= X}. Choose an isomorphism

γgX : X̄ ∼= g−1(X̄) for each X ∈ Fixg = Fixg−1 (note X̄ ∈ Fixg if and only if X ∈ Fixg). Then
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we have an isomorphism (recall that g is acting only on the second factor of C � Crev)
Fun(Fixg) ∼= Z(C)(L, g−1(L))

f 7→
⊕

X∈Fixg

f(X) · 1X � γgX .

Our first step is to determine a formula for the convolution product on each component
Fun(Fixg) ∼= Z(C)(L, g−1(L)). Utilizing our choice of γgX we can define a linear operator

U g,Z
X,Y : C(X̄ ⊗ Ȳ , Z̄)→ C(X̄ ⊗ Ȳ , Z̄)

α 7→ (γgZ)−1 · g−1(α) · ρg
−1

X̄,Ȳ
· (γgX ⊗ γ

g
Y ) .

where ρg
−1

X̄,Ȳ
: g−1(X̄) ⊗ g−1((̄Y )) → g−1((̄X) ⊗ (̄Y )) are the structure morphisms of “tenso-

rator” of the monoidal functor g−1 (see Section 2.2). Then define

T g,ZX,Y := Tr(U g,Z
X,Y ) .

Applying the formula for convolution (14) together with Equations 17 and 18 for the
multiplication and comultiplication on L, we obtain the following proposition.

Proposition 4.3. Let {γgX : Z̄ → g−1(X̄)}X∈Fixg be a family of isomorphisms and X, Y ∈
Fixg. Then

(1X � γgX) ∗ (1Y � γgY ) =
1

Dim C
∑

Z∈Fixg

dXdY
dZ

T g,ZX,Y · 1Z � γgZ .

Note that both U g,Z
X,Y and T g,ZX,Y depend on the choices of the γgX . However, for a fixed g

for each X, the possible choices of isomorphism X̄ ∼= g−1(X̄) form a torsor over C×. We see

modifying a given γgX by a scalar λX , the quantity U g,Z
X,Y (and hence T g,ZX,Y ) are multiplied by

the factor λXλY
λZ

. The basis elements 1X � γgX are multiplied by the scalar λX , and we see
that the modifications cancel.

4.1. Cyclic permutation actions. Let C be a modular tensor category and G ↪→ Sn a G-
set. More precisely, we choose a natural number n, a finite group G, and a faithful action of
G on the set {1, . . . , n} which we can naturally see as a monomorphism G ↪→ Sn. Then there
is a strict action of G on C�n by permutations. We denote a G-crossed braided extension
of C�n by C o G as in [Tur10] noting that it is not necessarily unique, but always exists
by [GJ19] (see Remark 4.7). Delaney has recently given an algorithm for computing the
fusion rules of arbitrary permutation crossed extensions [Del19]. In this section we apply
our methods to obtain a closed formula in the special case of the standard cyclic subgroup
Z/nZ ∼= 〈(12 · · ·n)〉 ≤ Sn, 1 7→ (12 · · ·n).

Suppose g ∈ Z/nZ. Let us examine the equivalence class of simple objects in C�n invariant
under g. Note that for any set with a Z/nZ action, an element is left fixed by g if and only
it is fixed by the entire cyclic subgroup generated by g. Let o(g) denote the order of g. We
define the co-order of g by c(g) := n

o(g)
. Let 1 denote the standard generator of Z/nZ (we

will use additive notation here for finite cyclic groups). From the elementary theory of finite
cyclic groups 〈g〉 = 〈c(g)〉. Thus an element is fixed by g if and only if it is fixed by c(g).
Since c(g) acts on X = X1 � · · ·�Xn by

c(g)(X) = Xn−c(g)+1 �Xn �X1 � · · ·�Xn−c(g),
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then (since n − c(g) = (o(g) − 1)c(g)) then c(g)(X) = X if and only if Xi = Xkc(g)+i for
1 ≤ i ≤ c(g) and 0 ≤ k ≤ o(g)− 1. We conclude that the simple object X fixed by g up to
isomorphism are of the form

X = (X1 �X2 � · · ·�Xc(g))
�o(g)

where X1, · · · , Xc(g) ∈ Irr(C) are arbitrary. Then we have the following claim:

Lemma 4.4. The set of minimal convolution idempotents is given by {fg,X}X∈Irr(C�m), where

fg,X=X1�···�Xm =
⊕

Y=Y1�···�Ym

dX(Dim C)n−c(g)

d
o(g)
Y

c(g)∏
i=1

SXi,Yi︸ ︷︷ ︸
=SX,Y

·1Y �o(g)�Ȳ �o(g) .

Proof. We may assume g is a generator. Otherwise replace C by C�c(g) and replacing n by
o(g). Then as above X = X�n

1 and Y = Y �n
1 for X1, Y1 ∈ C. Since the action is strict, we are

free to choose γgX = 1X̄ for all simples X ∈ Fixg. Applying Proposition 4.3 to our situation
we have

1X�X̄ ∗ 1Y �Ȳ =
1

Dim C�n
∑

Z=Z�n
1 ∈Fixg

dXdY
dZ

NZ1
X1,Y1

· 1Z�Z̄

where Z = Z�n
1 . This follows since the term T g,ZX,Y from Proposition 4.3 is computing the

trace of the cyclic translate permutation on the space C�n(X ⊗ Y, Z) = C(X1 ⊗ Y1, Z1)⊗n.
But choosing a basis B ⊆ C(X1⊗Y1, Z1)⊗n the set Bn := {β1⊗· · ·⊗βn : βi ∈ B} is a basis
for the subspace of C�n(X ⊗ Y, Z) invariant under the permutation action. Thus the trace

term T g,ZX,Y is precisely the number of basis elements of Bn fixed by g. Such an element is

completely determined by its first entry β1, and thus T g,ZX,Y = dimC C(X1 ⊗ Y1, Z1) = NZ1
X1,Y1

.
Expanding further, we see

1X�X̄ ∗ 1Y �Ȳ =
1

(Dim C)n
∑

Z=Z�n
1 ∈Fixg

dnX1
dnY1

dnZ
NZ1
X1,Y1

· 1Z�Z̄

Then we have

fg,X ∗ fg,Y =
∑

U,V,W∈Irr(C)

dXdY
dnUd

n
V

SX,USY,V
(Dim C)2n−2

(Dim C)n
dnUd

n
V

dnW
NW
U,V · 1W�n�W̄�n

=
∑

U,V,W∈Irr(C)

dXdY (Dim C)n−2

dnW
SX,USY,VN

W
U,V · 1W�n�W̄�n

=
∑

W∈Irr(C)

dX(Dim C)n−1

dnW
δX,Y SW,X · 1W�n�W̄�n

= δX,Y fg,X . �
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Theorem 4.5. Let C be a modular tensor category. Consider a spherical Z/nZ-crossed
braided permutation extension

C o Z/nZ =
⊕

g∈Z/nZ

(C o Z/nZ)g

of C�n. Then Irr((C o Z/nZ)g) = {(−g,X)}X∈Irr(C�c(g)) with g ∈ Z/nZ and fusion rules are
given by

N
(g+h,Z)
(g,X),(h,Y ) = kN

(p);Z′1,...,Z
′
c(g+h)/p

X′1,...,X
′
c(g)/p

,Y ′1 ,...,Y
′
c(h)/p

, where k =
n− c(g)− c(h)− c(g + h)

2p
+ 1 .

Here g, h ∈ Z/nZ, X ∈ C�c(g), Y ∈ C�c(h), Z ∈ C�c(g+h), p = gcd(c(g), c(h)), and kN (p)

indicate the (higher) fusion matrices (see (2)) of C�p. Furthermore, X ′i, Y
′
i , Z

′
i ∈ C�p with

X = X ′1 � · · ·�X ′c(g)/p, Y = Y ′1 � · · ·� Y ′c(h)/p, and Z = Z ′1 � · · ·� Z ′c(h)/p.

Proof. By Proposition 2.2 the statement can be written in terms of S-matrices S(p) of C�p
as

N
(g+h,Z)
(g,X),(h,Y )

(20)

=
∑

W∈Irr(C�p)


c(g)
p∏
i=1

S
(p)

X′i,W

S
(p)
1,W




c(h)
p∏
i=1

S
(p)

Y ′i ,W

S
(p)
1,W




c(g+h)
p∏
i=1

S
(p)

Z′i,W

S
(p)
1,W

(√Dim Cp

S
(p)
1,W

)n−c(g)−c(h)−c(g+h)
p

.

(21)

We first note that we only need to prove the case p = 1. If p > 1 then the fusion rules factor
through a Z/n

p
Z-cyclic permutation extension of C�p and the formula is obtained from the

p′ = 1 formula by considering n′ = n/p, C ′ = C�p, g′ = g/p, and h′ = h/p.
Now, let g, h ∈ G such that gcd(c(g), c(h)) = 1 and let fg,X with X ∈ Irr(C�c(g)) and fh,Y

with Y ∈ Irr(C�c(h)) minimal convolution idempotents. Then

fg,X ◦ fh,Y =
⊕

W∈Irr C

dXdY
d2n
W

(Dim C)2n−c(g)−c(h)SX,W�c(g)SY,W�c(h) · 1W�n�W̄�n .

Here we have used the fact that the only terms from fg,X and fh,Y that contribute to the
composition are the coefficients of 1R�R̄, where R ∈ Irr(C�n) is of the form R = (R1 �
R2 � · · · � Rc(g))

�o(g) = (R′1 � R′2 � · · · � R′c(h))
�o(h), with Ri, R

′
i ∈ Irr(C). However, since

p = (c(g), c(h)) = 1, we must have R = W�n for W ∈ Irr(C)., which gives the above
expression.
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Now let Z = Z1 � · · ·�Zc(g+h), so that fg+h,Z is a minimal convolution idempotent. Then
we have

(fg,X ◦ fh,Y ) ∗ fg+h,Z

=
⊕

W,U∈Irr(C)

dXdY dZ
d2n
W d

n
U

(Dim C)3n−c(g)−c(h)−c(g+h)SX,W�c(g)SY,W�c(h)SZ,U(1W�n�W̄�n ∗ 1U�n�Ū�n)

=
⊕
V

∑
W,U∈Irr(C)

dXdY dZ

d2n
W d

n
c(g+h)

U

(Dim C)lSX,W�c(g)SY,W�c(h)SZ,U
dnWd

o(g+h)
U

d
o(g+h)
V

NV
W�c(g,h),U · 1V ��V̄ � ,

where l := 2n − c(g) − c(h) − c(g + h). Comparing coefficients for V = 1, we obtain the
equation ∑

W,U∈Irr(C)

dXdY dZ
dnW

(Dim C)2n−c(g)−c(h)−c(g+h)SX,W�c(g)SY,W�c(h)SZ,W̄ c(g+h)

= C
(g+h,Z)
(g,X),(h,Y )d

2
Z(Dim C)n−c(g+h)

hence

C
(g+h,Z)
(g,X),(h,Y ) =

∑
W∈Irr(C)

dXdY
dZdnW

(Dim C)n−c(g)−c(h)SX,W�c(g)SY,W�c(h)SZ,W̄ c(g+h) .

We now see

d+
fg,X

= dX(Dim C)
n−c(g)

2 .

Hence normalizing we obtain

N
(g+h,Z)
(g,X),(h,Y ) =

∑
W∈Irr(C)

√
Dim Cn−c(g)−c(h)−c(g+h)

dnW
SX,W�c(g)SY,W�c(h)SZ,W̄ c(g+h) .

The right hand side factorizes into the expression (21).
�

Note that in the case that the genus n−c(g)−c(h)−c(g+h)
2p

+ 1 vanishes, we have that

N
(g+h,Z)
(g,X),(h,Y ) = dimC C�p

(
X ′1 ⊗ · · · ⊗X ′c(g)

p

⊗ Y ′1 ⊗ · · · ⊗ Y ′c(h)
p

, Z ′1 ⊗ · · · ⊗ Z ′c(g+h)
p

)
for example, we recover a well-known special case

N
(0,Z1�···�Zn)
(g,1),(−g,1) = NZ1,...,Zn

first observed for multiplicities in n-interval inclusions [KLM01] and later for fusion rules in
cyclic permutations [LX04] of conformal nets.

In order to relate the expression to the generalized Verlinde formula we need that g is

an integer and therefore require the exponent n−c(g)−c(h)−c(g+h)
p

to be even. As a consistency

check, we verify the following lemma which verifies that this is indeed the case.

Lemma 4.6. n−(m,n)−(k,n)−(m+k,n)
((m,n),(k,n))

is even.
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Proof. First we claim the set of numbers { (m,n)
((m,n),(k,n))

, (k,n)
((m,n),(k,n))

, (m+k,n)
((m,n),(k,n))

} is pairwise co-

prime. Note that (k,n)
((m,n),(k,n))

and (m,n)
((m,n),(k,n))

are coprime. Suppose l| (m+k,n)
((m,n),(k,n))

and l| (m,n)
((m,n),(k,n))

.

Then ((m,n), (k, n))l|m + k and ((m,n), (k, n))l|m thus ((m,n), (k, n))l|k. Because also

((m,n), (k, n))l|n we have ((m,n), (k, n))l|(k, n). Thus l| (k,n)
((m,n),(k,n))

. But (k,n)
((m,n),(k,n))

is co-

prime to l| (m,n)
((m,n),(k,n))

, thus l must be 1. A similar argument applies switching m and k, and

we get that these numbers are coprime.

We break the rest of the proof into parity cases.

(1) Suppose n
((m,n),(k,n))

is odd. Then since the other three terms in the expression must

divide this one, they are also odd so we see that the whole expression is even (odd-
odd-odd-odd=even).

(2) Suppose n
((m,n),(k,n))

is even and at least one of the other three terms is even. Then

the other 2 must be odd since they are pairwise co-prime. Thus the whole expression
is even, since (even-even-odd-odd)=even.

(3) Suppose n
((m,n),(k,n))

is even, but the other three terms are all odd. We claim this is not

possible. Indeed, suppose (m,n)
((m,n),(k,n))

, (k,n)
((m,n),(k,n))

are both odd. Then m
((m,n),(k,n))

, k
((m,n),(k,n))

must both be odd hence m+k
(((m,n),(k,n))

must be even, thus 2| m+k
(((m,n),(k,n))

and 2| n
(((m,n),(k,n))

by hypothesis, so (m+k,n)
(((m,n),(k,n))

is even. Thus this cannot occur.

�

Remark 4.7. There is a subtle point about our argument. The results of [GJ19] guarantee
the existence of such extensions as a G-crossed braided fusion category (indeed, in the cyclic
case this follows from [ENO10] since H4(Z/nZ,C×) = 1), but make no claims as to the
existence of a spherical structure. The computation of the fusion rules explicitly assumes
the existence of a spherical structure on the extension C oZ/nZ of C�n. It is widely expecting
that there exist a spherical structure on these extensions provided C itself admits one. If we
assume C is pseudo-unitary, then by Proposition 2.8, the extension will be and hence admits
a spherical structure.
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Appendix A. Fusion rules for Z/4Z permutation extensions of Fib

Let C be the Fibonacci category with Irr(C) = {1, τ} with τ⊗τ ∼= 1⊕τ and D = C oZ/4Z.
Then Irr(Di) = {(i,1), (i, τ)} for i = 1, 3 and Irr(D2) = {(2,11), (2,1τ), (2, τ1), (2, ττ)} and

(i,1)(i+ 2,1) = 1111+ 11ττ + · · ·+ 1τττ + · · ·+ 2ττττ

(i,1)(i+ 2, τ) = 111τ + · · ·+ 11ττ + · · ·+ 21τττ + · · ·+ 3ττττ

(i, τ)(i+ 2, τ) = 1111+ 111τ + · · ·+ 211ττ + · · ·+ 31τττ + · · ·+ 5ττττ

(i,1)(i,1) = 2(2,11) + (2,1τ) + (2, τ1) + 3(2, ττ)

(i,1)(i, τ) = 3(2,11) + 3(2,1τ) + (2, τ1) + 4(2, ττ)

(i, τ)(i, τ) = 3(2,11) + 4(2,1τ) + 4(2, τ1) + 7(2, ττ)

111τ(i,1) = (i, τ)

11ττ(i,1) = (i,1) + (i, τ)

1τττ(i,1) = (i,1) + 2(i, τ)

ττττ(i,1) = 2(i,1) + 3(i, τ)

111τ(i, τ) = (i,1) + (i, τ)

11ττ(i, τ) = (i,1) + 2(i, τ)

1τττ(i, τ) = 2(i,1) + 3(i, τ)

ττττ(i, τ) = 3(i,1) + 5(i, τ)

111τ(2,11) = (2,1τ)

11ττ(2,11) = (2, ττ)

1τ1τ(2,11) = (2,11) + (2,1τ)

1τττ(2,11) = (2, τ1) + (2, ττ)

ττττ(2,11) = (2,11) + (2,1τ) + (2, τ1) + (2, ττ)

111τ(2,1τ) = (2,11) + (2,1τ)

11τ1(2,1τ) = (2, τ1) + (2, ττ)

11ττ(2,1τ) = (2, τ1) + (2, ττ)

1τ1τ(2,1τ) = (2,11) + 2(2,1τ)

1τττ(2,1τ) = (2, τ1) + 2(2, ττ)

ττττ(2,1τ) = (2,11) + 2(2,1τ) + (2, τ1) + 2(2, ττ)

111τ(2, ττ) = (2, τ1) + (2, ττ)

11ττ(2, ττ) = (2,11) + (2,1τ) + (2, τ1) + (2, ττ)

1τ1τ(2, ττ) = (2, τ1) + 2(2, ττ)

1τττ(2, ττ) = (2,11) + 2(2,1τ) + (2, τ1) + 2(2, ττ)

ττττ(2, ττ) = (2,11) + 2(2,1τ) + 2(2, τ1) + 4(2, ττ)
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n 0 1 2 3 4 5 6 7
Nτn 1 0 1 1 2 3 5 8
1Nτn 2 1 3 4 7 11 18 29

Table 1. The fusion coefficients gNτn are given by the Fibonacci and Lucas
numbers for g = 0, 1, respectively.

(i,1)(2,11) = 2(i+ 2,1) + (i+ 2, τ)

(i,1)(2,1τ) = (i+ 2,1) + 3(i+ 2, τ)

(i,1)(2, ττ) = 3(i+ 2,1) + 4(i+ 2, τ)

(i, τ)(2,11) = (i+ 2,1) + 3(i+ 2, τ)

(i, τ)(2,1τ) = 3(i+ 2, τ) + 4(i+ 2, τ)

(i, τ)(2, ττ) = 4(i+ 2, τ) + 7(i+ 2, τ)

(2,11)(2,11) = 1111+ τ1τ1+ 1τ1τ + ττττ

(2,11)(2,1τ) = 111τ + 1τ11+ 1τ1τ + τττ1+ τ1ττ + ττττ

(2,11)(2, ττ) = 1111+ 111τ + · · ·+ 11ττ + · · ·+ 1τττ + · · ·+ ττττ

(2,1τ)(2,1τ) = 1111+ 111τ + 1τ11+ 21τ1τ + τ1τ1+ τ1ττ + τττ1+ 2ττττ

(2,1τ)(2, ττ) = 11τ1+ τ111+ 11ττ + 1ττ1+ τ11τ + τ1τ1+ ττ11+

+ 21τττ + 2ττ1τ + τ1ττ + τττ1+ 2ττττ

(2, ττ)(2, ττ) = 1111+ 111τ + · · ·+ 11ττ + 21τ1τ + · · ·+ 21τττ + · · ·+ 4ττττ

where we write “· · · ” for obvious permutation of objects.
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