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ABSTRACT 12 

Social distancing policies (SDPs) implemented in response to the COVID-19 pandemic have led 13 

to temporal and spatial shifts in water demand across cities. Water utilities need to understand 14 

these demand shifts to respond to potential operational and water-quality issues. Aided by a fixed-15 

effects model of citywide water demand in Austin, Texas, we explore the impacts of various SDPs 16 

(e.g., time after the stay home-work safe order, reopening phases) using daily demand data 17 

gathered between 2013 and 2020. Our approach uses socio-technical determinants (e.g., climate, 18 

water conservation policy) with SDPs to model water demand, while accounting for spatial and 19 

temporal effects (e.g., geographic variations, weekday patterns). Results indicate shifts in behavior 20 

of residential and nonresidential demands that offset the change at the system scale, demonstrating 21 

a spatial redistribution of water demand after the stay home-work safe order. Our results show that 22 

some phases of Texas’s reopening phases had statistically significant relationships to water 23 

demand. While this yielded only marginal net effects on overall demand, it underscores behavioral 24 

changes in demand at sub-system spatial scales. Our discussions shed light on SDPs’ impacts on 25 

water demand. Equipped with our empirical findings, utilities can respond to potential 26 
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vulnerabilities in their systems, such as water-quality problems that may be related to changes in 27 

water pressure in response to demand variations. 28 

Keywords: Water demand, socio-technical infrastructure systems, pandemic, population 29 

dynamics, operating environment, regression analysis 30 

INTRODUCTION 31 

Following the outbreak of the COVID-19 pandemic, governments worldwide have enacted a 32 

number of policies to slow the spread. These policies, referred to hereafter as social distancing 33 

policies (SDPs), include measures such as lockdowns, social distancing, and work-from-home 34 

orders (Balacco et al., 2020; Roidt et al., 2020; Sivakumar, 2020). These SDPs have impacted 35 

social activities (Balanzá–Martínez et al., 2020; Sheehan et al., 2020), businesses (Nicola et al., 36 

2020), the natural environment (Aydın et al., 2020; Elsaid et al., 2021; He et al., 2020; Mostafa et 37 

al., 2021; Paleologos et al., 2020), and infrastructure system performance (Balacco et al., 2020; 38 

Hantoko et al., 2021; Kalbusch et al., 2020; Spearing et al., 2020). Scholars have already begun to 39 

explore the implications of SDPs; prior to COVID-19, there was, for various sectors, a dearth of 40 

pandemic-focused literature (Roidt et al., 2020; Spearing et al., 2020). Indeed, the COVID-19 41 

pandemic has highlighted a gap in knowledge and practice regarding how SDPs may impact the 42 

water sector. As such, researchers are working to identify and understand the following issues: 43 

pandemic-related challenges to and responses of utilities (AWWA, 2020; Spearing et al., 2020; 44 

World Bank, 2020) as well as other water-sector companies (e.g., engineering and consulting 45 

firms) (Cotterill et al., 2020); water-demand changes and patterns (Balacco et al., 2020; Cooley et 46 

al., 2020; Kalbusch et al., 2020; Li et al., 2021; Rizvi et al., 2020); infrastructures’ operational 47 

constraints (Cooley et al., 2020) and water-service-related quality issues (Cooley et al., 2020; 48 
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Sivakumar, 2020) in response to water-demand changes; natural water resource quality (Cooley et 49 

al., 2020; Lokhandwala and Gautam, 2020; Pant et al., 2021); water security (Cooley et al., 2020; 50 

Kassem and Jaafar, 2020; Rafa et al., 2020); and sensitivity of the water-energy nexus to pandemic 51 

lockdowns (Roidt et al., 2020). 52 

Of interest to this study are the research efforts surrounding water demand and SDPs. SDPs 53 

have altered the spatial distribution of water demand (e.g., closure of businesses and working from 54 

home) (Cooley et al., 2020; Kalbusch et al., 2020). Moreover, they have altered the traditional 55 

underlying consumption dynamics (e.g., delayed morning peaks) (Balacco et al., 2020; Rizvi et 56 

al., 2020). A recent investigation (Spearing et al., 2020) into challenges confronting U.S. water 57 

utilities—challenges related specifically to technical system—reported the following: more than 58 

20% of utilities were unsure whether they had experienced demand changes in response to SDPs; 59 

the uncertainty was due to lack of information or data availability, or they had simply not explored 60 

these impacts. Yet to identify and adequately respond to system vulnerabilities, water utilities need 61 

to understand the spatiotemporal changes in their water demand and what impacts they have on 62 

system performance (Cooley et al., 2020; Zhuang and Sela, 2020). Sudden demand changes can, 63 

for instance, (1) exacerbate existing and reveal new operational issues (e.g., pressure, pipe breaks, 64 

treatment capacity) (Cooley et al., 2020) and (2) lead to water-quality problems (Cooley et al., 65 

2020; Sivakumar, 2020), especially in areas with reduced demand due to possible stagnant water 66 

inside the premise plumbing. When water demand is significantly lower than normal, say for an 67 

extended period of time, water may stagnate in the water distribution systems, something we might 68 

expect to see in commercial areas during a pandemic. This stagnation could reduce disinfectant 69 

residuals (e.g., chlorine, chloramine), leading to health risks (Gleick, 2020) if flushing operations 70 

are not implemented and/or the system is not well-looped; a looped piped system means that pipes 71 
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are connected in a manner that allows water to keep flowing in several pathways, reducing the 72 

problems associated with water stagnation (National Research Council, 2007). Therefore, areas of 73 

a system that were already, prior to a pandemic, at risk for water-quality or operational issues, 74 

could be even more vulnerable during a pandemic (Spearing et al., 2020).  75 

Framing of Social Distancing Policies 76 

Here, we frame SDPs as a form of population dynamics. Population dynamics refers to a change 77 

in spatial distribution of socio-demographics or total population (Faust and Kaminsky, 2017). In 78 

this case, the total population remains relatively unchanged; however, the distribution of where a 79 

population interacts with a system shifts spatially on a daily basis due to policies, such as working 80 

from home and business closures. In this study, we seek to better understand the spatiotemporal 81 

changes in water demand in response to SDP intervention. Such sudden shifts in demands must be 82 

assessed with the consideration of the infrastructures’ operating environment (Bakchan et al., 83 

2021, 2020; Hamilton et al., 2015), that is, environmental, financial, social, and institutional 84 

considerations within which a system exists or operates. These considerations, along with the 85 

physical system, are referred to as socio-technical dimensions. In general, water demand is affected 86 

by numerous factors (Haque et al., 2015; House-Peters and Chang, 2011) that span these socio-87 

technical dimensions; these factors are, henceforth, referred to as socio-technical determinants. 88 

Such determinants include climate (within the environmental dimension), water price (financial), 89 

water conservation policy (institutional), and population growth (social) (House-Peters and Chang, 90 

2011). For instance, an increase in the maximum air temperature can lead to increases in water 91 

demand—especially during dry periods—largely due to increases in outdoor watering (Bougadis 92 

et al., 2005). Additionally, water demand varies across geographic areas (House-Peters and Chang, 93 

2011) (e.g., residential areas versus commercial areas) and typically exhibits different patterns 94 
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throughout weekdays (Cutore et al., 2008; Pesantez et al., 2020). We refer to these temporal and 95 

spatial trends as spatial and temporal effects in water demand. By framing pandemic-induced 96 

SDPs as population dynamics, this study considers the system’s operating environment for 97 

assessing SDPs’ impacts on the temporal behavior of water demand—i.e., changes in longitudinal 98 

demand. This is a major contribution over existing studies (e.g., Balacco et al., 2020; Cooley et 99 

al., 2020; Kalbusch et al., 2020; Li et al., 2021) that focus on pandemic-induced water-demand 100 

changes. Although their intellectual contributions to pandemic planning are important (further 101 

discussed in the subsequent section), these studies do not consider the socio-technical 102 

determinants, as well as spatial and temporal effects when studying water-demand changes. Failing 103 

to integrate these effects introduces uncertainty into knowing whether changes arose from policy 104 

intervention or from shifts in the operating environment. For instance, a reduction in citywide 105 

water demand could be attributed to a major increase in the rainfall amount (Bougadis et al., 2005) 106 

during that period rather than to the enactment of policies.  107 

Existing Efforts on Pandemic-induced Water-Demand Changes and Hypothesis 108 
Development 109 

Existing work (Balacco et al., 2020; Cooley et al., 2020; Kalbusch et al., 2020; Li et al., 2021) that 110 

explores pandemic planning in regard to water demand is limited, especially prior to the COVID-111 

19 pandemic. A study (Balacco et al., 2020) conducted in southern Italy compared 2020 water-112 

demand patterns to those of 2019. The authors found that in certain cities during the pandemic 113 

there was a noticeable decrease in demand due ultimately to an absence of commuters. Another 114 

work (Kalbusch et al., 2020), based in southern Brazil, examined changes in water consumption 115 

across various customer classes (e.g., residential, industrial), comparing the consumption in two-116 

equal periods—before and after the enactment of SDPs. The authors noticed a drop in the 117 

commercial, industrial and public water consumption, and an increase in the residential 118 
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consumption. Two other studies (Cooley et al., 2020; Spearing et al., 2020) suggested that such 119 

shifts in demand between customer classes could be the reason behind the insignificant change in 120 

overall demand during SDPs. As such, we broadly posit that business closures and work-from-121 

home orders may lead to no change at the system scale. However, when businesses reopen and 122 

people start to go back to work, we expect to see more significant changes in overall demand. 123 

Accordingly, we formulate two hypotheses related to water demand changes during work-from-124 

home periods and reopening of businesses (further discussed in the subsequent section). 125 

Purpose, Research Questions, and Hypotheses 126 

This study seeks to answer two questions: In times of a pandemic, what changes in water demand 127 

occur during imposed SDPs? To what extent are these demand changes a result of the SDPs, with 128 

attention given to the socio-technical determinants and considering spatial and temporal effects in 129 

water demand? To answer these questions, we formulate two hypotheses, as follows: 130 

Hypothesis 1: At a system scale, there will be no significant change in water demand during 131 

business closures and work-from-home orders. 132 

Hypothesis 2: At a system scale, there will be significant change in water demand during the 133 

reopening of businesses, subsequent to the work-from-home periods. 134 

Our study is enabled by a fixed effects (FE) model of total water demand in Austin, Texas (TX), 135 

bounded at the service area of the local utility. The analysis explores the effects of various COVID-136 

19 SDPs (e.g., business closures, reopening phases) that have been enacted since March 19, 2020, 137 

in Austin. Our proposed approach on water-demand changes during a pandemic provides further 138 

empirical evidence for the necessity of considering population dynamics through a lens of 139 

integrated operating environment for resilient water infrastructure systems. Furthermore, our work 140 

can inform emergency-response plans for pandemics in regard to water infrastructure planning, 141 
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management, and operations, considering spatiotemporal changes in water demand. In fact, a 142 

survey (AWWA, 2020) of U.S. utilities found that 61% of utilities did not have a specific pandemic 143 

plan in place, prior to COVID-19, and they are in the process of developing one. By exploring the 144 

implications of SDPs on water demand, utilities can proactively plan for an adequate response to 145 

potential vulnerabilities in a system during pandemics.  146 

MATERIALS AND METHODS 147 

Operating Environment of Water Demand 148 

Our proposed approach for the assessment of SDPs’ impacts on the water demand considers the 149 

environmental, institutional, financial, and social effects—i.e., incorporating the physical system 150 

and its operating environment through the lens of population dynamics (see Figure 1). To identify 151 

the various socio-technical determinants of temporal water-demand patterns—spanning the five 152 

socio-technical dimensions—we turned to water-demand modelling and forecasting literature (see 153 

Table 1). Important to note, our approach captures the spatial and temporal effects in water demand 154 

via a fixed-effects regression model (Frees, 2004). More specifically, various location-specific 155 

variables exist within the social dimension, such as household characteristics (e.g., household size, 156 

housing typology) (Bisung et al., 2014; Donkor et al., 2014; House-Peters and Chang, 2011; 157 

Polebitski and Palmer, 2010), socio-demographics (e.g., age, gender, race, income, language, 158 

education) (Bisung et al., 2014; Donkor et al., 2014; House-Peters and Chang, 2011; Miller and 159 

Buys, 2008; Randolph and Troy, 2008), social capital (e.g., voter turnover, participation in local 160 

associations, norms) (Aldrich and Meyer, 2015; Bisung et al., 2014; Miller and Buys, 2008), and 161 

water conservation technological measures (e.g., low-flow fixtures and appliances) (Donkor et al., 162 

2014; House-Peters and Chang, 2011; Williamson et al., 2002). While our study does not 163 

incorporate these variables as controls explicitly, the FE regression analysis does inherently 164 
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capture their effects via the zone-based intercepts, i.e., fixed-effects (House-Peters and Chang, 165 

2011; Polebitski and Palmer, 2010) (further discussed in the Regression Analysis section). 166 

 167 
Figure 1. Conceptual representation for assessing SDPs' impacts in the context of population dynamics 168 

Table 1. Primary socio-technical determinants of temporal water-demand patterns identified from literature 169 
Socio-technical Determinant Explanation/Reference 
Technical  
Previous water demand 
(lagged) 

§ Water demand depends on its past values (Alhumoud, 2008; Bougadis et al., 
2005; Hutton and Kapelan, 2015; Jain et al., 2001; Jain and Ormsbee, 2002; 
Jentgen et al., 2007; Pesantez et al., 2020; Wu and Zhou, 2010; Zhou et al., 
2000); e.g., weekly water demand is highly correlated with water demand in 
the previous week (Jain et al., 2001) 

Environmental  
Climatic  
Maximum air temperature 
 
 

§ Increases in water demand when maximum air temperature increases, 
especially during dry periods (Bougadis et al., 2005; Goodchild, 2003; House-
Peters and Chang, 2011; Jain et al., 2001; Jain and Ormsbee, 2002; Jentgen et 
al., 2007; Pesantez et al., 2020; Zhou et al., 2000) 

Rainfall amount § Decreases in weekly water demand when there is increasing rainfall volume 
(Bougadis et al., 2005; Goodchild, 2003; House-Peters and Chang, 2011; Jain 
et al., 2001; Jain and Ormsbee, 2002; Jentgen et al., 2007) 
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Rainfall occurrence §  Decrease in water use when rainfall occurs (defined as rainfall amount > given 
threshold value) (Jain and Ormsbee, 2002; Maidment and Parzen, 1984); i.e., 
rainfall occurrence is set to 1, with rainfall amount greater than zero (Jain et al., 
2001) or greater than 1 [in] (Maidment and Parzen, 1984) 

§ Decrease in water demand when rainfall occurs; rainfall amount has higher 
significant correlation than rainfall occurrence (Bougadis et al., 2005) 

§ Decrease in water demand when rainfall occurs; rainfall occurrence has higher 
significant correlation than rainfall amount (Jain et al., 2001) 

Days since rain § Water demand increases as the number of days since it has rained last 
increases, attributed to people watering their lawns/gardens after several days 
of no rain (Goodchild, 2003; Zhou et al., 2000) 

Seasonality  
Season § Seasonal impact (e.g. summer, winter) of water demand variations; summer 

demand is higher than winter demand (Arbués et al., 2003; Zhou et al., 2000) 

Seasonal rainfall § Defined in terms of the season and rainfall occurrence (Hansen and Narayanun, 
1981) 

§ Impact of rainfall on water demand varies seasonally; the magnitude of water 
demand decrease in response to summer rainfall (i.e., rainfall occurring in 
summer) is higher than that due to winter rainfall (Hansen and Narayanun, 
1981; Zhou et al., 2000) 

Weekday § Significant cyclic effect of the day of the week on water-demand patterns 
(Cutore et al., 2008; Gato et al., 2007; Pesantez et al., 2020; Rizvi et al., 2020; 
Zhou et al., 2000) 

Institutional  
Water conservation policy § Institutional level efforts for managing and restricting outdoor watering to 

promote better water conservation (Campbell et al., 2004; Kenney et al., 2008; 
Reynaud and Romano, 2018) 

Financial  
Water price § Water price increase can decrease water use (Burney et al., 2001; House-Peters 

and Chang, 2011; Reynaud and Romano, 2018); primarily affects long-term 
water demand planning and modelling (Donkor et al., 2014) 

Social  
Population § Impact of population change on long-term water demand modelling; water 

demand likely increases with the increase in population (Burney et al., 2001; 
House-Peters and Chang, 2011; Jain et al., 2001; Maidment and Parzen, 1984), 
especially without changes in water use efficiency and conservation policies 

 170 

Study Site 171 

Austin, TX is among the fastest growing U.S. cities, in terms of both economics and population 172 

(Leighton, 2019). Between 2010 and 2018, the population had increased by 22%—an average of 173 

100 new residents moving to the city per day (U.S. Census Bureau, 2010). A major driver of 174 

Austin’s population growth is its growing number of businesses (~ 4%) and technology companies 175 



 10 

(~ 5%) (Leighton, 2019). This growth has given rise to increases in nonresidential water demand 176 

(e.g., commercial, industrial) over years.  177 

Austin’s water infrastructure system consists of nine major pressure zones (Austin Water, 178 

2013). These zones are areas generally within lower and upper topography boundaries (elevation) 179 

to operate water pressure in the system within appropriate ranges (Austin Water, 2021a). The 180 

public water utility (Austin Water) has been investing in infrastructure advancement (Austin 181 

Water, 2020; Smart Cities Dive, 2020) across the various zones to promote system resilience and 182 

help support racial equity and environmental justice aligning with strategic direction efforts 183 

(Becker, 2017; City of Austin, 2018). In spite of these efforts, the shifts in water-demand behavior 184 

in response to COVID-19 SDPs may reveal new and varied technical challenges across the system, 185 

including the impacts of infrastructure’s age and conditions (Busch, 2015). Examples of possible 186 

technical challenges include pipe breaks, water-quality issues, and impacted fire flow capabilities 187 

due to possible changes in water pressure in response to demand variations (Cooley et al., 2020). 188 

In fact, a recent study (Spearing et al., 2020) of U.S. water utilities reported that the COVID-19 189 

pandemic amplified technical issues, and the repercussions of not addressing these issues could 190 

intensify them or make them occur earlier. By seeking to understand the implications of SDPs on 191 

water demand in Austin, our work can better inform emergency responses (City of Austin, 2020a, 192 

2016) to pandemic-incurred challenges. 193 

Data Collection 194 

To limit human contact and help slow the spread, Austin enacted a number of COVID-19 SDPs 195 

(City of Austin, 2020b). Our analysis examines policies enacted between the time period of March 196 

19, 2020, and December 10, 2020, to explore the impact of the SDPs on the water demand. Stay 197 

Home-Work Safe orders in Austin began on March 24, 2020. This included social distancing 198 
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requirements, as well as some business closures. The Stay Home-Work Safe order was followed 199 

by general multi-phase reopening (Austin Texas, 2020a; Texas Department of Health Services, 200 

2020; Texas State, 2020) when more businesses were reopening at increasing capacity limitations. 201 

It is important to note that policies relating to these SDPs were being implemented at the local, 202 

state, national and global levels, entering various stages of risk during the reopening phases (Austin 203 

Texas, 2020b). For the purposes of this study, the analysis was conducted looking at four SDPs 204 

phases based on the reopening phases outlined by the State of Texas. 205 

We obtained from Austin Water the daily total water-demand time series—disaggregated across 206 

the nine pressure zones; this is treated water volume introduced to the water distribution system to 207 

provide water service. The water-demand time series records extend from January 1, 2013, to 208 

December 10, 2020, totaling 2,899 records of daily water demand (given in million gallons per 209 

day [MGD]). Hence, we possess a large sample prior to the enactment of SDPs, permitting us to 210 

better parse the impact of the SDPs. To explore SDPs-induced water-demand changes, we 211 

implemented the proposed approach (see Figure 1) and considered the major socio-technical 212 

determinants presented in Table 1, with the following exceptions: “rainfall occurrence,” “seasonal 213 

rainfall,” “population,” and “water price.” The specifics of the water conservation policy 214 

implemented throughout the period of record—i.e., mandatory outdoor watering restrictions—215 

were obtained from Austin Water. The climatic data (i.e., daily maximum air temperature, daily 216 

rainfall amount) were gathered from the National Oceanic and Atmospheric Administration 217 

(NOAA) for the two weather stations within the study area and averaged (NOAA, 2020). 218 

We excluded the “rainfall occurrence” determinant (a binary variable with value 1 for a rainfall 219 

amount greater than a given threshold value, such as 1 inch [in] rainfall used in the literature 220 

(Maidment and Parzen, 1984)) to avoid a multicollinearity (House-Peters and Chang, 2011) issue 221 
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with the “rainfall amount” determinant. Similarly, we excluded the “seasonal rainfall” determinant 222 

to avoid a multicollinearity issue with the “season” and “rainfall occurrence” determinants 223 

(Hansen and Narayanun, 1981). We also excluded the “population” determinant, as conversations 224 

with the local utility suggested that the water conservation policy at the institutional level had 225 

already significantly contributed, more than the population growth, to water-demand changes in 226 

Austin. Austin Water has restricted outdoor watering schedules depending on conservation stages 227 

(Austin Water, 2021b), resulting in a major reduction—over years—in the average per capita water 228 

consumption (see Figure S1 in the Supporting Information). Further, recent incoming businesses 229 

(Leighton, 2019) caused a significant increase in nonresidential water demand leading to greater 230 

changes in water demand than that imposed by residential use (e.g., population). According to the 231 

literature (Burney et al., 2001; Levin et al., 2006; Miaou, 1990; Mohamed and Al-Mualla, 2010), 232 

“population” and “water price” determinants are more influential on water-demand changes when 233 

conducting long-term demand planning at a lower temporal resolution (e.g., monthly, yearly). To 234 

inform infrastructure developments, typical planning periods range from 20-30 years (Donkor et 235 

al., 2014). Given that we are analyzing water-demand changes at the system-daily scale over a 236 

relatively medium-range time period (8 years), we excluded the “water price” determinant.  237 

Regression Analysis: Model Structure and Estimation 238 

To gain an initial understanding of potential differences in water-demand patterns due to SDPs—239 

prior to developing the regression model—we plotted the 2020 weekly moving average of the 240 

system’s daily water demand against that of 2019 (see Figure 2). Following this step and using 241 

regression analysis, we accounted for factors (e.g., socio-technical determinants) that impacted the 242 

demand changes we saw in the plot. Further, we plotted the nine zones’ daily water demand to 243 

better understand the spatial effects from the regression results (see Figure 3).  244 
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The preliminary step in assessing the impacts of influential factors on water demand is to verify 245 

the normality in the distribution of water demand data (Bougadis et al., 2005). We did so using the 246 

frequency distribution (histogram) and Shapiro-Wilk test (Ghasemi and Zahediasl, 2012). We also 247 

explored if periodicity (Ollech, 2019; Webel and Ollech, 2019) exists in the demand time series, 248 

which was non-existent; however, we did account for possible seasonal shifts in water demand 249 

through the seasonality-related determinants (see Table 1) considered in modelling. We examined 250 

correlations in the predictors using the correlation matrix (Chambers, 1992), as well as the 251 

Variance Inflation Factor (VIF) (Fox and Monette, 1992), to determine any possible collinearity 252 

across independent and control variables. We also plotted the relationships between water demand 253 

and previous water demand across multiple lag periods—e.g., 1-day lag of demand (i.e., demand 254 

in the previous day), 2-day lag of demand—to identify the lag with the highest correlation. For our 255 

water-demand time series, 1-day lag was the best lagged-demand determinant, aligning with the 256 

literature (Bougadis et al., 2005; Jain et al., 2001). To see the lag plots, refer to Figure S2 in the 257 

Supporting Information. 258 

To control for the spatial and temporal effects in water demand, we applied FE regression—259 

based on panel data procedure (Frees, 2004)—on water demand across the nine pressures zones. 260 

Panel data is defined as a data set—in longitudinal format—that contains repeated observations of 261 

multiple subjects over multiple time periods (Frees, 2004; Polebitski and Palmer, 2010). For this 262 

work, the subjects (i.e., spatial unit) are the nine pressure zones, and the repeated observations are 263 

changes in daily water demand, socio-technical determinants, and SDPs within each zone over 264 

days (i.e., temporal unit) throughout the period of data record. The original pooled data set (i.e., 265 

n=2,899 records) was thus transformed to a panel data set of n=26,083. The FE regression model 266 

allows the intercept term to vary across the spatial subjects when estimating the regression 267 
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coefficients (Polebitski and Palmer, 2010)—see Eq. (1): 268 

!!" =	$! +	∑ '!",$($%
$&' +	)!"; with * = 1, 2, … /; and 0 = 1, 2, …1                                     (1) 269 

where S is the total number of spatial units (zones), T is the total number of temporal units (days) 270 

in the panel data, N is the number of influential factors, !!" is the dependent variable representing 271 

observed water demand for spatial unit s at temporal unit t, $! is the unobserved spatial (zonal)-272 

specific heterogeneity, X is the vector of influential factors (independent variables: SDPs; control 273 

variables: sociotechnical determinants), b is the vector of estimated parameters, and )!" is the error 274 

term. By incorporating spatial and temporal attributes into coefficient estimates as well as the 275 

separation of zone-specific effects from the error term, FE regression generates more reliable 276 

parameter estimates compared to classical pooled OLS regression (Arbués et al., 2003). From a 277 

water-demand perspective, the analysis of demand while accounting for the effects of variations 278 

across the zones can provide a better understanding of the citywide water-demand changes due to 279 

SDPs. Important to note, random effects—i.e.,  spatial effects treated as random variable 280 

(Polebitski and Palmer, 2010)—were also tested, but results verified that fixed effects were more 281 

suitable for representing our data (Wallace and Hussain, 1969). To assess model fit (Zhou et al., 282 

2000), we used the coefficient of determination R2. Further, using the likelihood ratio test (Fox, 283 

1997), we compared the fit of the five-level SDPs model (i.e., Non-enactment of SDPs, Stay Home-284 

Work Safe, Reopening Phase 1, Reopening Phase 2, Reopening Phase 3) with that of a two-level 285 

SDPs model (before SDPs, during SDPs); results indicate a significant improvement by the five-286 

level SDPs model, compared to the two-level SDPs model (see Table S1 in the Supporting 287 

Information). We performed all statistical analyses using R version 1.3.1093 (R Core Team, 2020) 288 

and various supporting packages (e.g., tidyverse, gplots, lmtest, plm, seastests, bestNormalize). 289 

 290 
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RESULTS AND DISCUSSION 291 

Exploratory Analysis and Descriptive Statistics 292 

Figure 2 compares the 2020 total water demand’s temporal patterns to those of 2019. Notably, the 293 

total water demand denotes the overall demand bounded at the service area of the local utility. We 294 

refer to this as the system scale, as it is geographically defined by the water infrastructure system. 295 

At the beginning of 2020, the average daily total demand (~123 MGD) was higher than that of 296 

2019 (~111 MGD), with the increase possibly being attributed to a variety of socio-technical 297 

determinants; on March 24, 2020, however, when SDPs—Stay Home-Work Safe—were enacted, 298 

demand fell slightly below that of the corresponding dates in 2019. The largest relative decrease 299 

in average daily demand was on April 7, (-8.6%) when the city demand was ~11 MGD less than 300 

it was in 2019. By the end of April 2020, when businesses began to reopen in Austin (Texas 301 

Department of Health Services, 2020), citywide demand started to increase again, similar to levels 302 

prior to social distancing. Of course, these changes in water demand—depicted in Figure 2—303 

cannot be attributed merely to SDPs, and it does emphasize the need for further investigations that 304 

consider the socio-technical determinants, as well as spatial and temporal effects. 305 

 306 
Figure 2. Comparison of 2020 average daily system-total water demand to that in 2019 307 

Table 2 shows the descriptive statistics for the water demands (total, nine zones) and previously 308 
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identified variables impacting water demands. Almost half of the average total water demand is 309 

consumed by two pressure zones—Zone 1 and Zone 2 (see Table 2). Furthermore, the average 310 

maximum air temperature and rainfall amounts are over 80 [◦F] and 0.1 [in], respectively, reflecting 311 

Austin’s typically long, hot summers and mild winters. This trend is highlighted by the system’s 312 

temporal water-demand behavior, shown in Figure 2, indicating a much higher water demand 313 

during summer months. Notably, throughout the period of data record, Austin Water implemented 314 

two stages of its water conservation policy. On May 18, 2016, the conservation stage was changed 315 

from Stage 2 to Stage 0, specifying outdoor watering schedules (Austin Water, 2021b) throughout 316 

the week based on the customer class (e.g., residential, commercial), technology used (e.g., hose-317 

end sprinklers, automatic irrigation), and whether the address number is odd or even (see Table S2 318 

in the Supporting Information for further details). 319 

Table 2. Descriptive statistics and categorical levels for water demands and influential variables (units in 320 
brackets) 321 

Variable Mean ± Std. Deviation Median Interquartile Range 
Total water demand 

Total demand [MGD] 132.29 ± 24.19 125.67 33.45 
Water demands across zones 

Zone 1 [MGD] 30.16 ± 7.50 27.17 9.90 

Zone 2 [MGD] 30.20 ± 6.36 30.19 8.38 

Zone 3 [MGD] 23.33 ± 5.26 22.50 7.66 

Zone 4 [MGD] 11.88 ± 3.18 11.10 4.47 

Zone 5 [MGD] 2.26 ± 0.88 2.06 1.06 

Zone 6 [MGD] 20.52 ± 3.84 20.06 4.68 

Zone 7 [MGD] 10.69 ± 2.85 9.98 2.96 

Zone 8 [MGD] 3.24 ± 1.42 2.95 1.62 

Zone 9 [MGD] 1.18 ± 0.68 0.97 0.48 

Control variables: Socio-technical determinants 
1-day lag of demand a [MGD] – – – 

Maximum air temperature [◦F] 81.23 ± 14.94 83.5 21.97 

Rainfall amount [in] 0.11 ± 0.43 0 0.005 
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Days since rain [days] 8.06 ± 8.41 5 10 

Season 1 – Winter, 2 – Spring, 3 – Summer, 4 – Autumn 

Weekday 1 – Mon, 2 – Tue, 3 – Wed, 4 – Thurs, 5 – Fri, 6 – Sat, 7 – Sun 

Water conservation policy 0 – Stage-2 conservation, 1 – Stage-0 conservation 

Independent variables: Social distancing policies  
SDPs 1 – Non-enactment of SDPs, 2 – Stay Home-Work Safe, 3 – 

Reopening Phase 1, 4 – Reopening Phase 2, 5 – Reopening Phase 3 

a Descriptive statistics values for the lag demand of system-total and nine pressure zones are the same as 322 
their corresponding water demands. 323 

FE Regression Water Demand Model 324 

The water-demand was skewed to the right, so we adjusted it for normality using the Box-Cox 325 

transformation (Box and Cox, 1964) prior to developing the FE regression model. Further, no 326 

collinearity issues were found across the socio-technical determinants and SDPs (refer to Table S3 327 

and Table S4 in the Supporting Information for the correlation matrix and VIF values, 328 

respectively). Table 3 summarizes the FE regression analysis of the relationships between the 329 

water demand and various SDPs’ levels, while also considering the socio-technical determinants’ 330 

effects. For the regression analysis of relationships with the socio-technical determinants and fixed 331 

effects of the nine zones, see Table S5 and Table S6 in the Supporting Information, respectively. 332 

Notably, the relationships between the water-demand and socio-technical determinants are all 333 

statistically significant at 1% significance level (Table S5). The sign of behavioral demand changes 334 

in response to these socio-technical determinants align with the literature (Bougadis et al., 2005; 335 

Goodchild, 2003; House-Peters and Chang, 2011; Jain et al., 2001; Jain and Ormsbee, 2002; 336 

Jentgen et al., 2007; Zhou et al., 2000); refer to the FE Regression Results section in the Supporting 337 

Information for further details. 338 

Regarding the determinants of categorical data type (e.g., SDPs, season, weekday), it should be 339 

noted that the model assesses parameter estimates for the various categorical levels relative to a 340 
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reference level. For instance, the “SDPs” determinant has five categorical levels: Non-enactment 341 

of SDPs, Stay Home-Work Safe, Reopening Phase 1, Reopening Phase 2, and Reopening Phase 3 342 

(see Table 2). The parameter estimates of the SDPs’ levels in the FE model—shown in Table 3—343 

are relative to the reference level Non-enactment of SDPs, assessed at -0.004 MGD (p = 0.49), 344 

0.021 MGD (0.025), 0.014 MGD (0.144), and 0.025 MGD (0.000), respectively. In the following 345 

section, we discuss the relationships with SDPs and how the consideration of the spatial and 346 

temporal effects in water demand provides a better understanding of these relationships. 347 

Table 3. Regression results of SDPs’ relationships with the water demand a 348 

SDPs Variable b ($ [10-5 MGD] Std. Error [10-5 MGD] t p 

Water Demand (panel data set, n = 26,083 records) 

Stay Home-Work Safe -423.81 614.30 -0.69 0.49 

Reopening Phase 1 2,142.5 954.11 2.25 0.025* 

Reopening Phase 2 1,435.6 982.74 1.46 0.144 

Reopening Phase 3 2,483.5 308.15 8.06 0.000*** 

Note: The full FE model, including regression results of socio-technical determinants (control variables), 349 
is included in Table S5 in the supporting information. 350 
a FE regression analysis; *p < 0.05; **p < 0.01; ***p < 0.001. 351 
b Reference level: Non-enactment of SDPs 352 
  Model information: Total sum of squares = 1463.9; Residential sum of squares = 350.2; R2 = 0.76; 353 

Adjusted R2 = 0.76; F-statistic = 4601.77; p = 0.000***. 354 

Discussion 355 

Demand Changes during Stay Home-Work Safe Period (Hypothesis 1) 356 

Our descriptive (Figure 2) and regression (Table 3) analyses are well aligned. After the Stay Home-357 

Work Safe order, the model detected a negative change in water demand (see Table 3), aligning 358 

with the temporal total demand patterns in Figure 2. This demand behavior aligns with a recent 359 

study (Cooley et al., 2020) on water-demand changes in several U.S. communities during social 360 

distancing. That study reported a reduction in total demand during April 2020 across larger 361 
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metropolitan systems—including Austin’s (TX). According to the study, in Austin, a 5% decrease 362 

relative to expected April demands was attributed to reduced commercial demands due to the Stay 363 

Home-Work Safe order (Clifton, 2020; Cooley et al., 2020). By considering sociotechnical 364 

determinants and accounting for the variations across the nine zones, however, our analysis reveals 365 

that the negative change in Austin’s water demand experienced during April 2020 was statistically 366 

insignificant in relation to the Stay Home-Work Safe order (see Table 3). These results may likely 367 

be attributed to the fact that the decrease in nonresidential water demand (e.g., commercial, 368 

institutional) had offset an increase in residential demand at the system scale, suggesting a spatial 369 

redistribution of water demand following the Stay Home-Work Safe order. This demand behavior 370 

at the system scale is further supported by the demand patterns at a finer spatial resolution (see 371 

Figure 3). Water-demand patterns across the nine individual zones appeared to be affected by the 372 

imposed SDPs, especially during the Stay Home-Work Safe period between March 24, 2020, and 373 

April 30, 2020 (Figure 3). For instance, a sizable decrease occurred in the average daily water 374 

demand in Zone 1—a mostly nonresidential zone—likely due to business closures following the 375 

Stay Home-Work Safe order (Austin Texas, 2020c). On the other hand, a marginal decrease was 376 

seen in the average daily water demand in Zone 7—a mixed residential-nonresidential zone. 377 

Residential demand increased due to work-from-home orders as well as to a surge in hygiene and 378 

cleaning practices to limit the virus spread (Kalbusch et al., 2020). As such, in mixed residential-379 

nonresidential zones—such as Zone 7—the increase in residential demand had likely offset the 380 

decrease in nonresidential demand during the Stay Home-Work Safe period, resulting in a marginal 381 

drop in demand. Given such spatial redistribution of water demand across the zones, the (negative) 382 

net effect of these spatial demand changes at the system scale was not detected by the model as 383 

statistically significant. These findings align with the literature (Spearing et al., 2020), which has 384 
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explained that many U.S. water utilities saw no significant change in overall demand, dependent 385 

on the utility’s customer composition, during social distancing because of a shift between customer 386 

classes. Another study (Cooley et al., 2020) on COVID-19’s impacts on water demand emphasized 387 

that the net effect of changes between residential and nonresidential demand varied from 388 

community to community, depending on their relative proportions from the overall demand. 389 

 390 
Figure 3. Comparison of 2020 average daily water demands across nine zones to those in 2019 391 

Demand Changes during Reopening Phases (Hypothesis 2) 392 

As shown in Table 3, only the Reopening Phase 1 and Reopening Phase 3 show statistically 393 

significant relationships with the water demand at 5% and 1% significance levels, respectively. 394 

When some businesses were allowed to operate at 25% capacity—Reopening Phase 1 enacted on 395 
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May 1, 2020—there occurred a statistically significant positive change in water demand (see Table 396 

3), estimated at 0.021MGD (i.e., 81.1 cubic meter per day [m3D-1]). During this reopening phase, 397 

there was still an increase in residential demand as compared to pre-pandemic due to a majority of 398 

the population continuing to both work from home and practice social distancing. However, the 399 

magnitude of this increase was likely smaller than that experienced soon after the Stay Home-Work 400 

Safe order, similarly for the magnitude of the nonresidential demand decrease given the 25% 401 

businesses’ operational capacity potential. What may also be expected during this phase is an 402 

increase in water demand from additional maintenance activities (e.g., flushing), which water 403 

utilities typically implement to alleviate potential water-quality issues associated with stagnant 404 

water inside pipes due to business closures following the Stay Home-Work Safe order (Cooley et 405 

al., 2020; Gleick, 2020; Proctor et al., 2020). The magnitude of demand increase from additional 406 

maintenance activities may be insufficient to solely cause significant shifts in total demand. 407 

Nevertheless, it is a contributor to the collective changes occurring at the system scale during this 408 

period. For the case of Austin, additional pandemic-related line flushing activities were not needed; 409 

key contributors to this include system connectivity and looping (refer to Figure S3 in the 410 

Supporting Information for further details). Additionally, in the spatial distribution of water 411 

demand across the system, even in some mostly commercial areas, there are also residential 412 

customers who were using water throughout the pandemic, thereby preventing water stagnation 413 

and alleviating the need for the utility to perform pandemic-related flushing. Onsite flushing at the 414 

customer level to maintain water quality inside the premise plumbing occurred, but the water use 415 

for these flushing activities was reflected in their metered water use. In fact, the model detected 416 

the net effect of these various changes to be a statistically significant, though marginal, positive 417 

change in total water demand of less than 0.2% (compared to an average daily demand of 123 418 



 22 

MGD). While the magnitude of SDPs’ effects on total water demand—analyzed at the system 419 

scale—may not seem large enough to matter from an operational perspective, it should be noted 420 

that it emphasizes a behavioral change of the underlying spatial demands at sub-system scales. 421 

Such behavioral changes still require a closer investigation to identify any potential operational 422 

and water-quality issues across areas within the system. The behavior of changes in residential and 423 

nonresidential demands during Reopening Phase 2 is similar to that during Reopening Phase 1, 424 

excluding the contributions from additional maintenance activities, though neither change is 425 

statistically significant (see Table 3). 426 

During Reopening Phase 3, people were more involved in public activities, and some 427 

businesses were allowed to operate at up to 75% capacity. Compared to the period before the 428 

pandemic, this still likely represents an increase in residential demand and a decrease in 429 

nonresidential demand. These demand changes could be due to Austin not completely lifting 430 

additional pandemic-related recommended hygiene and cleaning practices and stay home-work 431 

safe orders, as well as businesses not being fully operational. The net effect of these spatial changes 432 

in demand is a statistically significant positive change in total water demand, estimated at 0.025 433 

MGD (i.e., 94 m3D-1) with respect to the non-enactment of SDPs. As with Reopening Phase 1, the 434 

magnitude of this change is marginal. In the third reopening phase, the decrease in nonresidential 435 

demand was less as compared to previous reopening phases. As such, the impact of the residential 436 

demand increase on the overall water demand was detected by the model as statistically significant. 437 

Our analysis assessed the impacts of SDPs on water-demand changes using demand data 438 

disaggregated by pressure zone throughout the service area. However, the disaggregation of 439 

demand data across customer classes (e.g., commercial, industrial, residential, institutional) would 440 

have provided a deeper understanding of the underlying spatial water-demand redistributions that 441 
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shaped the net effect at the system scale. Such higher spatial resolution data, for instance, would 442 

have enabled more accurate assessment of the magnitudes of spatial changes (e.g., residential 443 

increase, nonresidential decrease). Consequently, we would possess a more comprehensive 444 

understanding of their operational effects throughout the system. In this regard, Advanced 445 

Metering Infrastructure (AMI aka “smart meters”) can provide near real-time water-demand 446 

monitoring, disaggregated at higher temporal and spatial resolutions (Cooley et al., 2020; Pesantez 447 

et al., 2020). Such advancement could help provide the continued operation and management of 448 

water infrastructure, especially with the ongoing pandemic-induced socio-technical challenges 449 

(e.g., operation outside design conditions, reduced staff, revenue loss) (Cooley et al., 2020; 450 

Spearing et al., 2020).  For this reason, the pandemic may be expected to reinforce and accelerate 451 

the need to expand the application of digital monitoring and operational technologies (Bindler, 452 

2020); indeed, such expansion is high on Austin Water’s agenda, as at the time of data collection 453 

the utility was piloting project for a new system-wide AMI (Austin Water, 2020).  454 

To further support the urgent need for utility-infrastructure investments, federal and state policy 455 

needs to address gaps in infrastructure funding (Cooley et al., 2020; Spearing et al., 2020). For 456 

instance, funding should be prioritized for capital projects and infrastructure upgrades to (1) ensure 457 

continuous operations during crises, such as COVID-19 and future pandemics; (2) provide more 458 

granular understanding on water demand behaviors; and, therefore, (3) help identify and address 459 

spatial discrepancies in the level of service, thereby enabling more equitable water-sector services. 460 

STUDY IMPLICATIONS AND CONCLUSIONS 461 

In this work, we have viewed pandemic-induced SDPs as population dynamics through a lens of 462 

integrated operating environments. Doing so offers a powerful means to empirically understand 463 

the temporal demand behavior of socio-technical water infrastructures during pandemics. We have 464 
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thus presented an integrated approach for how future research may be conducted considering 465 

socio-technical determinants, as well as spatial and temporal effects in water demand. By 466 

increasing infrastructure resilience through improved understanding of SDPs’ impacts on water 467 

demand, our approach contributes to global conversations on sustainable development (UN-CSD, 468 

2012; UN-SDG, 2015). Additionally, our study provides valuable information to water utilities as 469 

they plan for future disasters or develop pandemic response plans; it also enables them to respond 470 

adequately to potential system vulnerabilities. To adapt to changing operating environments, such 471 

responses may include (1) operating water treatment plants at reduced production levels when 472 

demand drops; or (2) prioritizing resource allocation based on demand-capacity management 473 

strategies in case of increased demand, such as limiting outdoor watering to maintain continuous 474 

service to critical customers (e.g., hospitals). These practices can improve the resilience of water 475 

resources, which is fundamental to limiting the evolution of a pandemic (Kalbusch et al., 2020).  476 

The applicability of the proposed approach may also be extended to other infrastructure sectors 477 

(e.g., energy) or other types of extreme events (e.g., humanitarian crises, compounded disasters) 478 

that trigger shifts in the population dynamics or operating environment. Such application would 479 

shed light on the impacts of policy interventions with an infrastructure’s demand behavior. Our 480 

study also sets the stage to extend the limited literature on pandemic planning and population 481 

dynamics by conducting the assessment at higher temporal and spatial resolutions (e.g., 482 

disaggregation across customer classes, household-level), using case data in varying geographic 483 

contexts. Considering additional geographic contexts would provide a more comprehensive 484 

understanding of how aspects of the operating environment impact the analysis of demand changes 485 

in response to policy interventions. 486 



 25 

Additional research is needed to incorporate time series analysis (e.g., ARIMA; Gardner et al., 487 

1980) with FE regression—through hybrid modelling—to consider the inherent autocorrelation 488 

structure of a water-demand pattern over time (Jain et al., 2001; Maidment and Parzen, 1984), 489 

thereby improving the performance of the model. Future research could also consider the 490 

integration of schedules related to maintenance operational activities—such as flushing performed 491 

by utilities and possible operational changes in treatment plants during the imposed SDPs—in the 492 

temporal modelling. Such investigation could explore the impacts of these activities on water 493 

demand and the feasibility of incorporating them as contributing factors within the technical 494 

dimension of the operating environment. As researchers continue to improve our understanding of 495 

how policy initiatives impact water demand considering the operating environments of 496 

infrastructure systems, utilities will be able to implement better-informed strategies for providing 497 

communities with continuous water-sector services. 498 
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