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Abstract 

We present an experimental study on mixed-mode crack propagation in thin sheet specimens 

of a soft silicone elastomer. To introduce mixed-mode loading, we adopted the widely applied 

pure shear fracture testing geometry, but oriented the initial crack at an inclined angle relative to 

the direction perpendicular to the external tensile loading. Because of the inclined angle, locally 

the crack tip was subjected to both tensile and shear loading even though the global loading was 

tensile, thus resulting in a mixed Mode-I and Mode-II condition for the crack. Altering the 

inclined angle led to different degrees of mode-mixity and hence different crack propagation 

trajectories. Using a particle tracking method, we were able to measure the nonlinear deformation 

fields throughout the entire course of crack propagation. Based on the measured deformation 

fields, we used J-integral to calculate the energy release rate during crack propagation and found 

that the results were insensitive to the tangent direction of the crack trajectory, suggesting that the 

fracture toughness was approximately mode independent. Moreover, the tangent direction of the 

crack trajectory, when plotted in the reference configuration, was observed to be perpendicular to 

the direction of maximum principal stretch. The experimental results pave the way for 

establishing quasi-static mixed-mode fracture criteria for soft silicone elastomer, which has not 

yet been well understood in the literature.  
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1. Introduction 

Soft polymeric materials with high deformability have been widely applied in many 

technological applications. Examples include sealant [1], pressure sensitive adhesives [2], soft 

robotics [3], biomedical devices [4], and stretchable electronics [5]. In these applications, the 

underlying soft materials are required to undergo large deformation and yet resist fracture. 

Fracture refers to the deformation and propagation of originally sharp cracks and is a major failure 

mode in soft materials. Experimental characterization of crack propagation in soft materials was 

first carried out in rubber [6] and more recently extended to hydrogels and elastomers [7–10]. 

Most fracture testing configurations for soft materials have been focused on the Mode-I condition 

where the crack opens symmetrically under a tensile loading perpendicular to it. Specifically, the 

pure shear test [6], simple extension test [6] and single edge notch test [11], which represent the 

most frequently adopted fracture test configurations for rubber, elastomers and hydrogels, can all 

be categorized as Mode-I. There are a few exceptions such as the tearing test [12] where the crack 

is mainly subjected to an out-of-plane shear loading (i.e., Mode-III) and the lap-shear fracture test 

[13] or bilayer stretch test [14] where the crack is mainly subjected to an in-plane shear loading 

(i.e., Mode-II). Although the latter two tests are designed for characterizing adhesive fracture 

between two dissimilar soft materials, in principle they can also be used to study cohesive fracture 

in a single soft material.   

A unique challenge with soft material fracture is the nonlinearity associated with large 

deformation of the crack. In linear elastic fracture mechanics (LEFM), the crack tip deformation 

field can always be decomposed into the superposition of three basic fracture modes. However, 

such mode decomposition is no longer valid in soft materials because the superposition principle 

breaks down under large deformation. For example, theoretical analyses suggest that pure Mode-

II solution, which is anti-symmetric about the crack, does not exist under the framework of 

nonlinear elasticity [15–17]. Note that these analyses were based on the fully nonlinear governing 

equations of hyperelasticity, which require the assumption of certain hyperelastic models. To 

draw general conclusions for isotropic homogeneous solids, Knowles [18] considered a “small-

scale nonlinear” problem where the crack was subjected to pure Mode-II loading far away from 

the crack tip, and found that nonlinear effects would lead to crack opening or interpenetration 

(i.e., Mode-I deformation) near the crack tip. This conclusion, implying the non-existence of pure 

Mode-II solution under nonlinear elasticity, was also derived by Harpaz and Bouchbinder [19] 
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using the weakly nonlinear elastic theory (i.e., second-order nonlinearity in addition to the first-

order linear elasticity), which covers both the quasi-static and dynamic regimes. Therefore, under 

large deformation, a two-dimensional (2D) crack (i.e., plane strain or plane stress) can only be 

subjected to pure Mode-I or mixed-mode conditions.  

In practice, mixed-mode (Mode-I and II) crack propagation is particularly relevant when 

interfaces between dissimilar materials are present. For example, Wang et al. [20] demonstrated 

that composites combining a soft elastic matrix and stiff elastic inclusions exhibit high toughness, 

low hysteresis and high fatigue threshold [21]. The key underlying mechanism is that when a 

crack propagating in the soft matrix approaches a stiff inclusion, the crack is deflected away from 

its original propagating direction, presumably due to the mixed-mode condition near the inclusion 

interface. Similarly, by engineering z-shaped soft domains in a stiff polymer, Cox et al. [22] 

achieved crack guiding along tortuous paths under global tensile loading, which also relied on the 

mixed-mode condition near the interface. Despite the theoretical significance and practical 

relevance, experimental studies on mixed-mode fracture of soft materials has been very limited. 

Unlike adhesive fracture of soft materials where one can control mode-mixity (e.g., by changing 

the peel angle in a peel test [23]), it can be challenging to experimentally characterize mixed-

mode cohesive fracture in soft materials due to large deformation near the crack tip.  Few studies 

have been dedicated to this problem.  In Sun et al. [24], tearing test (i.e., out-of-plane shear loading) 

was applied to a tough hydrogel, resulting in a fracture toughness comparable to that measured 

from the Mode-I pure shear fracture test.  Ronsin et al. [25] found that a crack in gelatin gels 

under mixed Mode-I and Mode-III condition is subjected to a échelon instability. To the best of 

our knowledge, there has been no experimental studies for crack propagation in soft materials 

with controllable mode-mixity between tensile (Mode-I) and in-plane shear (Mode-II) loading.  

In this paper, we present an experimental approach where mixed-mode condition is introduced 

by orienting the initial crack in the pure shear test geometry at an inclined angle  (≥ 0) to the 

horizontal direction (Fig.1a). Stress transformation implies that the inclined crack will be 

subjected to a combination of tensile and shear loadings with respect to a local coordinate system 

𝑥ଵ
ᇱ -𝑥ଶ

ᇱ  aligned with the crack. Our goal is to understand the critical conditions governing the 

mixed-mode crack propagation, which consist of two components: fracture toughness and crack 

propagation direction. First, the fracture toughness , defined as the energy required to advance 
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a crack by a unit area, characterizes a material’s capability to resist crack growth. For quasi-static 

crack propagation in an elastic solid, linear or nonlinear, equilibrium dictates that  is equal to 

the energy release rate G representing the energetic driving force supplied by external loading 

[26]. In conventional pure shear geometry (i.e.,  = 0), G can be readily calculated using the global 

stretch  = 1 + /H, where  is the applied displacement and H is the sample height [27]. However, 

when  > 0, the equation relating G and the global stretch  is no longer valid due to the loss of 

symmetry and translational invariance. Alternatively, for elastic solids, G can also be evaluated 

by a path-independent J-integral that encloses the crack tip [28], but this would require the 

deformation and stress fields around the crack. Second, under mixed-mode loading, the direction 

of crack propagation is not known a-priori. In LEFM, multiple criteria have been developed to 

predict the direction of mixed-mode crack propagation [26]. Little is known about what kind of 

criterion should be imposed for mixed-mode crack propagation with large deformation. 

Evaluation of the J-integral and assessment of the criterion for crack propagation direction both 

require knowledge of the deformation and stress fields in the specimen during crack propagation. 

Using a soft silicone elastomer as a model system, we demonstrate full-field measurement of the 

in-plane displacement, deformation gradient and stress components by tracking randomly 

distributed tracer particles on the sample [29]. The measured deformation fields also allow us to 

map the crack tip identified in the deformed configuration back to the reference configuration, 

thus enabling the definition of true crack extension length and speed in the reference configuration. 

These measurements make quantitative characterization of mixed-mode crack propagation 

possible. The experimental method is summarized in Section 2. In Section 3, we first describe 

experimental observations on crack propagation and the associated deformation and stress fields, 

followed by a quantitative discussion on the mixed-mode fracture toughness  and the criterion 

for crack propagation direction. Conclusions are made in Section 4.  
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Figure 1 Experimental configuration of the mixed-mode fracture test. (a) Geometry of the pure-
shear fracture test with an inclined initial crack. (b) A schematic showing the tracer particles 
deposited on the sample surface and the imaging setup.  

 

2. Materials and Method 

Material samples were made of a stretchable silicone elastomer, Ecoflex 00-30 (Smooth-On 

Inc., Macungie, PA, USA). This elastomer, recently used in our study of Mode-I fracture [29], 

was selected in this work for two reasons. First, its low modulus and moderate fracture toughness 

result in severe blunting of the crack tip during crack propagation [29], thereby allowing us to 

include the effects of large deformation. Second, this elastomer behaves as a hyperelastic solid 

with negligible hysteresis except in the vicinity of the crack tip [29], which justifies the 

application of J-integral. The samples were prepared as follows. We first mixed the Part A and 

Part B precursors of Ecoflex 00-30 in a 1:1 ratio, and deposited the mixture into a 100 mm × 100 

mm × 1.5 mm acrylic mold. After degassing for 20 minutes, the precursor mixture was heated 

and cured at 80 °C for 30 minutes. After cooling down and left at room temperature for one day, 

the thin-sheet sample was removed from the mold and a tilted crack was cut at the edge of the 

sample by a razor blade (see Fig.1a). Prior to each experiment, we randomly brushed black glass 

beads with a diameter of 150 µm ~ 180 µm (Cospheric, Santa Barbara, CA, USA) on one face of 

the sample. These black beads remained adhered to the sample surface during the entire course 

of an experiment, and thus were used as tracer particles for measuring the displacement and strain 

fields as the tilted crack deforms and propagates.  
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Figure 2 Particle tracking method for measuring displacement field. (a-b) Images of the fracture 
sample and tracer particles (a) before deformation (i.e., global stretch  ≡ 1+/H = 1) and (b) in 
the deformed configuration with ( = 1.45). The insets show zoomed-in views of the crack tip 
region. (c) Displacement vectors of tracer particles near the crack tip tracked between two time 
frames of and 1.06. (d) Quiver plot showing the displacements of ~12,000 tracer particles 
tracked between and 1.45. (e-f) Color contours of displacement components u1 (horizontal) 
and u2 (vertical) interpolated from tracer particle displacements. 

  

 We conducted fracture experiments following the pure shear test geometry except that the 

initial crack was tilted at an inclined angle (Fig.1a). The thin-sheet elastomer sample was clamped 

by two sets of rigid plates, leaving a long strip area for fracture testing with dimensions of width 

L = 100 mm, height H = 22 mm and thickness t = 1.5 mm. The initial crack, starting at the middle 

of the left edge of the sample, had a length of c0 = 10 mm and an initial tilt angle θ (≥ 0). Five 

different initial tilt angles were tested: θ = 0°, 15°, 30°, 45°, and 60°.  The sample was mounted 

on a mechanical testing machine (Instron 5965). A displacement  was applied at the top edge 

with a fixed global strain rate of ∆ሶ /𝐻  = 0.01 s−1, while the bottom edge remained fixed. 

Meanwhile, the sample deformation and crack propagation were imaged by a 4K high-speed 

camera (Canon XC10) at 30 frames per second with a typical resolution of 25 µm per pixel 

(resolution: 3840 × 2160). To enhance the contrast between the tracer particles and the 

background, we used a white light source on the opposite side of the camera to illuminate the 

sample (Fig.1b).  
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 Images of the tracer particles allowed us to measure the in-plane displacement and strain 

fields in the sample using the particle tracking method described in our recent work [29]. This 

method, consisting of the following four steps, has been demonstrated to capture the large 

deformation around a Mode-I crack in the Ecoflex 00-30 elastomer with high resolution and 

accuracy. 

 First, a video processing software (Canon XF Utility) was employed to extract individual time 

frame from the video. To increase the efficiency of image processing, we extracted one frame 

per 3s before crack propagation started. After the crack started to propagate, we increased the 

frequency of extraction to 1 ~ 30 frames per second depending on the speed of crack 

propagation.  

 Second, since each tracer particle appeared as a black circle, we used the built-in function 

imfindcircle() in MATLAB (Mathworks, Natick, MA, USA) to determine the in-plane 

coordinates of centroid for each tracer particle at each time frame. Examples of the identified 

centroids of tracer particles at two different time frames of an experiment are shown in Fig.2a 

and 2b, respectively.  

 Third, we applied the Feature-Vector-Relaxation Method (FVRM) [30] to track the tracer 

particles in two consecutive time frames. The underlying principle of FVRM is to use the 

relative positions of neighboring particles around a tracer particle as a geometrical signature 

for tracking. A representative tracking result is shown in Fig.2c. By linking the tracked pairs 

from the first to the last time frame, we determined the trajectories of the tracer particles 

during the experiment, resulting in a set of discrete displacement data at any time frame (see 

Fig.2d for example). 

 Fourth, given that the tracer particles are randomly distributed, we adopted the Moving Least 

Square (MLS) interpolation method [31] to calculate a continuous displacement field at each 

time frame from the discrete displacement data at the tracer particles (see Fig.2e and 2f for 

example). The MLS interpolation method, originally developed for the mesh-free methods 

[32] in computational mechanics, is particularly suitable for our tracer particles, since it does 

not require a certain geometrical structure of the data points. Once a continuous displacement 

field was determined, spatial gradients of the displacement field were used to compute the 

strain fields. 
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Evaluation of stress fields based on the measured strain fields requires a constitutive model for 

the underlying elastomer. Following our recent work [29], we modeled the Ecoflex 00-30 

elastomer as an incompressible hyperelastic solid. In particular, we adopted the generalized neo-

Hookean model (GNH) to derive the stress-strain relation, and performed uniaxial tensile tests to 

calibrate the material parameters. Considering the potential sample-to-sample variations in 

mechanical properties, for each fracture sample we cut two strips (10 mm × 35 mm × 1.5 mm) 

from unused part of the sample to conduct uniaxial tensile tests (nominal strain rate = 10−2 s−1). 

 

3. Results and Discussions 

3.1 Crack propagation 

 We first examine the crack propagation trajectory as a manifestation of the mixed-mode 

condition imposed on the tilted crack. Figure 3a shows the global force-displacement response 

measured for a crack with initial tilt angle  = 0o, 30o, or 60o. Images of the sample corresponding 

to different points on the global force-displacement curve are shown in Fig.3b. We observed that 

the tilted crack first opened asymmetrically about the initial crack direction (see Frame 2-3 for 

the case of  = 30o and 60o in Fig.3b) and then took a curved trajectory after it started to propagate 

(see Frame 4 in for the case of  = 30o and 60o in Fig.3b). During crack propagation, the crack 

underwent a large opening displacement, causing the crack tip to become blunted. The post-

mortem image (Frame 5 in Fig.3b) allowed us to extract the trajectory of crack tip by examining 

the fractured edge of the sample. The crack trajectory was found to depend on the initial crack 

angle, as demonstrated by the comparison between the two cases of  = 30o and 60o in Fig.3c. 

Both the asymmetric opening and curved trajectory imply that the tilted crack was subjected to a 

mixed-mode loading condition. The case of  = 0o was used as a control, where the initial crack 

was subjected to pure Mode-I loading. As expected, in this case the crack took a straight, 

horizontal trajectory after it started to propagate (see Fig.3c). Interestingly, regardless of the initial 

tilt angle, the crack trajectory always converged to the horizontal direction, i.e., perpendicular to 

the global tensile loading. 
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Figure 3 Propagation of tilted crack. (a) Force-displacement data for fracture tests with initial 
tilt angle  = 0o, 30o or 60o. (b) Images showing crack deformation and propagation at five 
different time frames in cases with initial tilt angle  = 0o (top row), 30o (middle row), or 60o 
(bottom row). The curves superimposed to Frame 5 represent the crack tip trajectories obtained 
from the edges of the fractured samples. (c) Crack tip trajectory extracted from the post-mortem 
images of fractured sample for the three cases with  = 0o, 30o, and 60o (solid lines: initial crack; 
dashed lines: crack propagation trajectory). 

 

 An important phenomenon we observed is that the crack propagation accelerated significantly 

after the peak global force was reached (e.g., Frame 4 to 5 in Fig.3a-3b). Measurement of the 

crack propagation speed would require us to identify the length of crack extension at each time 

frame. Since large deformation alone can displace the crack tip, the crack extension length should 



10 
 

be measured in the reference configuration to decouple crack propagation from large deformation. 

Although the crack trajectory extracted from the post-mortem image (Fig.3c) is with respect to 

the reference configuration, the corresponding location of the crack tip at a given time frame on 

the trajectory is still unknown. To address this problem, we followed an iterative process 

developed in our previous work [29] which leveraged the displacement field obtained from 

particle tracking (see Figs.2e-2f for example). The displacement field, essentially a forward 

mapping from the reference configuration to the deformation configuration at any time frame, 

enabled us to map the crack tip in the deformation configuration back to the reference 

configuration. Briefly, we first identified the crack tip position in the deformed configuration of 

each frame (e.g., see red dots in the insets of Fig.4a) which will be referred to as the target. Next, 

an initial guess of the crack tip position in the reference configuration was made, which was then 

fed into the MLS interpolation program to determine its displacement and hence the projected 

position in the deformation configuration. If the distance between the projected position and the 

target was smaller than a prescribed threshold, the guessed position was taken as the crack tip 

position in reference configuration. Otherwise, a new guess was made to bring its projected 

position in the deformed configuration closer to the target. This process was repeated until the 

projected crack tip position converged to the target in the deformed configuration. Using this 

method, we were able to determine the reference crack tip position for each time frame. The crack 

propagation trajectory emerged when these reference crack tip positions were put together, which 

agreed well with that extracted from post-mortem image of the sample (Fig.4a).  

 Because of the curved crack trajectory, we define the reference crack extension length as the 

arc length measured from the initial crack tip (see c in Fig.4a). The iterative process described 

above allowed us to determine c for each time frame, as shown in Fig.4b using the case with 

initial tilt angle  = 30o as an example. Note that  – 1 ≡ /H is proportional to time since the 

global displacement  was applied with a constant rate. It can be seen that c first remained zero 

and then rapidly increased after crack propagation started. We define the reference crack speed V 

as the time derivative of c: 

      
 d c

V
dt


  .            (1) 
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For a given frame, V was evaluated by the backward difference scheme using the current and the 

immediate preceding frames. The data of V versus the global stretch  obtained for the case with 

 = 30o are shown in Fig.4c. Although in principle V should be zero before the crack started to 

propagate, we found that V was scattered but remained below about 10−2 mm/s for small , which 

is attributed to the uncertainty of mapping the crack tip in the deformed configuration back to the 

reference configuration. It is difficult to theoretically estimate the noise level in the reference 

crack speed V due to the large deformation involved in the mapping process, but the data in Fig.4c 

suggest that it is approximately 10−2 mm/s or below.  

 

Figure 4 Crack trajectory in the reference configuration. (a) Reference crack trajectory obtained 
from MLS mapping (diamond symbols) and post-mortem examination (dashed line). The initial 
crack is represented by a solid line. The insets show the deformed configurations at three different 
frames: I, II and III, where the red dots represent the crack tip locations. A 7th-order polynomial 
fitting (square symbols) was used to smoothen the crack trajectory data, based on which the crack 
propagation direction (i.e., tangent of the crack trajectory) is found, as illustrated by the local 𝑥ଵ

ᇱ -
axis. (b) Reference crack extension length c versus global stretch . (c) Reference crack speed 
V versus global stretch All data are for the case with initial tilt angle  = 30o. 

  

 The direction of crack propagation is also desired for understanding the mixed-mode fracture. 

To represent the crack propagation direction, we built a local coordinate system 𝑥ଵ
ᇱ -𝑥ଶ

ᇱ  at the crack 

tip that was aligned with the tangent direction of the crack trajectory in the reference configuration 

(Fig.4a). However, the MLS mapping to locate crack tip in the reference configuration inevitably 

resulted in noises in the crack trajectory data, making it impractical to directly extract the tangent 
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direction from the crack trajectory. Therefore, we applied a smoothening step by using a 7th-order 

polynomial function x2 = g(x1) to fit the crack trajectory data (see Fig.4a). The choice of this 

fitting function was purely empirical: we found that lower order polynomial functions were not 

sufficient to fit the crack trajectories and the 7th-order polynomial was needed to accurately 

capture the tangent direction of the crack trajectory. For each crack trajectory, we have compared 

the fitted function and the experimental data to ensure there was no overfitting. After the 

smoothening step, we were able to reliably evaluate the crack propagation direction (i.e., the 𝑥ଵ
ᇱ -

axis) for any frame by calculating the derivative dx2/dx1 based on the fitted polynomial function.   

 

3.2 Deformation and stress fields during crack propagation 

 This main goal of this work is to quantitatively characterize the mixed-mode fracture 

behaviors of soft elastomer by measuring the deformation and stress fields associated with crack 

propagation. Such data would allow us to evaluate the energy release rate G through J-integral 

and to understand the crack propagation direction. Because of the large deformation involved in 

our experiments, we adopted the theory of finite strain kinematics and used the deformation 

gradient tensor F as the metric for deformation. The in-plane components of F are given by 

     
u

F
x


 


 
 


    (,  = 1, 2),         (2) 

where is the Kronecker delta (i.e., equal to 1 if  =  and 0 otherwise), x is the coordinate of 

a material point in the reference configuration, and u is the in-plane displacement component of 

this material point. Because of the thin-sheet shape of our samples, we assume plane stress 

condition which implies F3 = F3 = 0 ( = 1, 2). The incompressibility constraint dictates that 

the out-of-plane stretch is 

     33 3
11 22 12 21

1
F

F F F F
 


.           (3) 

To interpolate the discrete displacement data at tracer particles into a continuous field, we applied 

the MLS method which required polynomial basis and a weight function [31]. Similar to our 

recent work [29], we adopted the linear polynomial basis and an exponential weight function with 

a cut-off radius rc = 1mm. After interpolation, we computed the gradients of the continuous 
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displacement field to obtain the fields of F at each time frame. Examples of the measured 

deformation fields, plotted in the reference configuration, are shown in Fig.5 under four different 

global stretches  for the case with initial tilt angle  = 30o. The highly amplified deformation at 

the crack tip is evident from the fields plotted in Fig.5. Moreover, we observed that the 

deformation fields were asymmetric about the initial tilted crack (e.g., see F11 at = 1.45 and 

1.75). As the crack propagation proceeded, the crack trajectory became horizontal, subjecting the 

crack tip to the Mode-I condition. Consequently, the F11 and F22 fields near the crack tip became 

symmetric about the crack, while F12 and F21 fields became anti-symmetric about the crack, as 

expected for Mode-I fracture. The same fields of F, but plotted in the deformed configurations, 

are shown in Appendix A to illustrate the effect of large deformation and crack blunting. It should 

be emphasized that the fields of F were directly measured from the particle tracking data and 

thus do not depend on any assumptions on the constitutive relation. 

 

 

Figure 5 Deformation fields during crack propagation. Color contours of the in-plane 
deformation gradient components F (,  = 1, 2) at four frames with different global stretch  
for the case with initial tilt angle  = 30o are plotted in the reference configuration.  
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The stress fields were calculated by plugging the experimentally measured Fij into the 

constitutive model. As mentioned in Section 2, we adopted the incompressible GNH model with 

the following strain energy density function W: 

     11 3 1
2

n
b

W I
b n

            
 ,           (4) 

where  is the shear modulus at infinitesimal strain, I1 is the trace of the left Cauchy-Green tensor 

FFT, and b, n are dimensionless material constants specifying the degree and onset of strain 

stiffening, respectively. Components of the Cauchy stress tensor  are given by 

     
1

2ij ij ik kj

dW
F

dI
Fp    ,  (i, j, k = 1, 2, 3),            (5)                        

where p is a Lagrange multiplier enforcing the incompressibility constrain. Note that the 

summation convention of summing over repeated indices is used throughout this work. We 

leveraged the plane stress condition that 33 = 0 to determine p and obtain the following equation 

for the Cauchy stress components: 

           
1

2
1 31 3

n

F
b

I F
n    


    




   (,  , = 1, 2),        (6)  

where 3 is the out-of-plane stretch ratio given in eq. (3). For example, the Cauchy stress fields 

for the case of initial tilt angle  = 30o are shown in Fig.6 using the material parameters calibrated 

from uniaxial tensile tests (see Table 1). Similar to the deformation gradient fields in Fig.5, the 

stress fields also transitioned from being asymmetric about the initial tilted crack (i.e., the column 

for = 1.45 and 1.75) to exhibiting a Mode-I structure near the crack tip (i.e., the column for = 

1.83). 

 Because of the nonlinearity associated with large deformation, one can no longer decompose 

the crack tip deformation and stress fields into the superposition of two separate Mode-I and 

Mode-II components as in LEFM. To our best knowledge, it is still an open question how to 

define the mode-mixity under large deformation. Theoretical analyses [15,17] suggested that a 

measure for mode-mixity may emerge from the leading order asymptotic behavior of the crack 

tip fields. The full deformation and stress fields obtained in our experiments can provide data to 

test the theoretical approach for defining mode-mixity. However, such investigations would 
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require an extensive discussion on the crack tip fields and therefore will be reported in a separate 

work. The focus of this work is on the fracture toughness and the direction of crack propagation.  

 

 

Figure 6 Stress fields during crack propagation. Color contours of Cauchy stress components 
  (,  = 1, 2) at four frames with different global stretch  for the case with initial tilt angle  
= 30o are plotted in the deformed configurations. 

 

3.3 J-integral 

 We computed the energy release rate G for each time frame of the fracture test using the J-

integral. If the initial orientation and propagation direction of the crack is aligned with the x1-axis 

(e.g., the case of initial tilt angle  = 0o in Fig.3c), the J-integral is given by [17]: 

  1
1C

u
J WN S N ds

x


 

 
   
               (, = 1, 2),          (7)                        

where C is a contour in the reference configuration enclosing the crack tip, W is the strain energy 

density function in eq. (4), Nis the component of the unit outward normal vector of C, S is the 

component of the first Piola-Kirchhoff stress tensor S, u is component of the displacement vector, 

and s is the arc length along the contour C. The Piola-Kirchhoff stress tensor S is related to the 
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Cauchy stress tensor  in eq. (6) by S = det(F)F−T, where det(F) = 1 due to incompressibility. 

For the tilted crack in our experiments, the crack propagation took a curved trajectory. Recall that 

the tangent direction of the reference crack trajectory was identified for each frame, as represented 

by a local coordinate system 𝑥ଵ
ᇱ -𝑥ଶ

ᇱ  (see Fig.4a). Therefore, we recast the J-integral in the local 

coordinate system 𝑥ଵ
ᇱ -𝑥ଶ

ᇱ  as follows, since the 𝑥ଵ
ᇱ -axis is along the crack propagation direction: 

    1
1C

u
J WN S N ds

x


 

      
 ,                                            (8) 

where 𝑢ఈ
ᇱ , 𝑆ఈఉ

ᇱ , and 𝑁ఉ
ᇱ  are components of the displacement u, the first Piola-Kirchhoff stress S, 

and the unit normal vector N with respect to the 𝑥ଵ
ᇱ -𝑥ଶ

ᇱ  coordinate system, respectively. Denote 

the angle of rotation from the global coordinate system x1-x2 to the local coordinate system 𝑥ଵ
ᇱ -𝑥ଶ

ᇱ  

as  (see Fig.7a). Transformation between the global and local coordinates systems can be 

achieved using the following orthogonal matrix: 

     11 12

21 22

cos sin

sin cos

Q Q

Q Q

 
 

   
   
  

.          (9) 

Specifically, the following equations for transformation: 

    1
1

uu
Q Q

x x


 





 
, S Q Q S     ,  N Q N    ,       (10) 

where all the indices range from 1 to 2 and the summation convention is used. For the J-integral 

in eq. (8) to be independent of the contour C and be equal to the energy release rate G, the 

integrand should be zero on the crack surface. While the second term of the integrand is zero on 

the crack surface due to the traction-free condition (𝑆ఈఉ
ᇱ 𝑁ఉ

ᇱ ൌ 0), the first term 𝑊𝑁ଵ
ᇱ is not 

necessarily zero because of the curved crack trajectory. To justify eq. (8), we note that 𝑊 is only 

non-zero near the crack tip. Since the crack trajectories in all of our experiments only had small 

curvatures (i.e., no steep change of slope), 𝑁ଵ
ᇱ vanishes near the crack tip. Therefore, the integral 

of 𝑊𝑁ଵ
ᇱ along the crack surface should be negligible. We verified this point by evaluating the J-

integral along different contours using the measured deformation fields and confirmed that it was 

indeed path-independent. However, in case of curved cracks with large curvatures, eq. (8) may 

no longer be valid for evaluating the energy release rate.  
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 We use the case with θ = 30° as an example to demonstrate the calculation of J-integral and 

show the results in Fig.7a-7c. In this case, the angle  of the local coordinate system 𝑥ଵ
ᇱ -𝑥ଶ

ᇱ  was 

first equal to  = 30o before crack propagation (Fig.7a). After the crack propagation started,  

first changed from being positive to negative, and then back to nearly zero. In addition, we 

performed uniaxial tension tests using two strips cut from the unused part of the fracture sample. 

By fitting the data with the GNH model (Fig.7b), we found that the following parameters:  = 

20.6 kPa, b = 0.0415, n = 2. Using the angle the measured deformation fields and the material 

parameters, we evaluated the J-integral in eq. (8) along 9 different paths at each frame (see Fig.7a). 

The results of J-integral, or the energy release rate G, are plotted in Fig.7c as a function of the 

global stretch , showing that the J-integral calculated based on our measurements was path-

independent. 

 

Figure 7 J-integral and the energy release rate. (a) Top panel: schematic showing the curved 
crack trajectory in the reference configuration, the local coordinate system 𝑥ଵ

ᇱ -𝑥ଶ
ᇱ  and the rotation 

angle . Bottom panel: 9 paths of J-integral used in the case with initial tilt angle  = 30o. (b) 
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Nominal stress versus stretch ratio of uniaxial tension tests using two strips cut from the sample 
with initial tilt angle  = 30o. The dashed line represents the fitting based on the GNH model with 
 = 20.6 kPa, b = 0.0415, and n = 2. (c) J-integral calculated using 9 different paths versus global 
stretch l in the case with initial tilt angle  = 30o. (d) Energy release rate G evaluated using the J-
integral versus reference crack extension c for five cases with different initial tilt angle .  

  

 Using the J-integral approach, we measured the energy release rate G during crack 

propagation for five cases with different initial tilt angles: θ = 0°, 15°, 30°, 45°, 60°. With these 

tilt angles, the initial crack was subjected to different degrees of mode-mixity ranging from pure 

Mode-I (θ = 0°) to strongly mixed mode (θ = 60°). For each case, we performed uniaxial tensile 

tests to calibrate the parameters of the GNH model. It was found that the data for all samples can 

be well fitted by the GNH model with n = 2, but there were slight variations in  and b, as listed 

in Table 1. The average G for 9 different integration paths is plotted in Fig.7d as a function of the 

reference crack extension c for all five cases. We notice that the case of θ = 60° exhibits a more 

significant increase in G with increasing c than the other four cases. This is due to the higher 

crack speed in the case of θ = 60°, which will be elaborated in Section 3.4.  

 

Table 1 Material parameters µ and b of the GNH hyperelastic model (n = 2) and the fracture 
toughness in for the initiation of crack propagation measured for the five cases with different 
initial crack tilt angle .  

Initial tilt angle θ (°) 0 15 30 45 60 

µ (kPa) 21.4 21.2 20.6 20.4 21.0 

b 0.0344 0.042 0.0415 0.0347 0.04 

in (kJ/m2) 0.154 0.179 0.156 0.167 0.232 

 

3.4 Mixed-mode fracture toughness 

 The curves in Fig.7d are reminiscent of the crack growth resistance curve, i.e., the R-curve, 

typically observed in elastic-plastic materials. When the energy release rate G was below a critical 

value, the crack underwent large deformation but c remained zero, indicating that crack 

propagation had not started yet. After crack propagation started (c > 0), G increased as c grew. 

Given that the crack propagation in our experiments was quasi-static, during crack propagation 
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G is equal to the fracture toughness . The results in Fig.7d suggest that the elastomer is not 

characterized by a single value of fracture toughness as in an ideal elastic solid [27].  

 We define the critical value of G associated with the initiation of crack propagation as the 

initiation toughness in. The values of in for the five cases with different initial crack tilt angles 

were extracted from Fig.7d (Table 1 and Fig.8a). Note that uncertainty of the mapping process to 

locate the crack tip in the reference configuration (see Section 3.1) resulted small noises in c. 

Hence c was not exactly zero before crack propagation started. Therefore, we implemented a 

tolerance threshold for c to accommodate potential noises. The in values in Table 1 and Fig.8a 

were extracted by setting a threshold of 0.15 mm in c, which is comparable to the size of the 

tracer particles. The error bars in Fig.8a were generated by varying the threshold in c from 0.1 

mm to 0.18 mm. We can see that in was insensitive to the initial tilt angle , except that the case 

of  = 60o exhibited a slightly higher in than the other cases. Given that there is no consistent 

trend in the data of in versus , we attribute the higher in for  = 60o to the variation among 

samples, which may be in terms of the material property or the initial crack (e.g., sharpness of the 

initial cut). Overall the results in Fig.7a suggest that the fracture toughness corresponding to the 

onset of crack propagation is independent of the mixed-mode condition.   

 

Figure 8 Fracture toughness measured using the tilted cracks. (a) The initiation toughness in 
versus the initial tilt angle . The error bars were obtained by varying the tolerance threshold in 
c from 0.1 mm to 0.18 mm when identifying the onset of crack propagation. The symbols were 
obtained using a threshold of 0.15 mm in c. (b) The normalized fracture toughness /in versus 
the reference crack speed V for the five cases with different crack tilt angle . The dashed line is 
given by the function Γ/Γ୧୬ ൌ 𝑎𝑉଴.ଵ with a = 2.4 (mm/s)0.1. 



20 
 

 After the onset of crack propagation, the fracture toughness  increased with c. More 

importantly, the measured i.e., G in Fig.7d) changed as the initial tilt angle  was increased, 

especially when  = 60o. To understand this observation, we first note that the R-curves in Fig.7d 

indicate that the elastomer used in our experiment was not exactly elastic, otherwise the R-curve 

should be a step function leveled at in. It was reported in our recent work [29] that the Ecoflex 

00-30 elastomer under cyclic tensile tests exhibited hysteresis when the stretch ratio was large (> 

~ 3), suggesting that bulk energy dissipation may occur in a very small region around the crack 

tip (size < 0.3mm) [29], similar to the “small scale yielding” condition in LEFM. Such bulk 

dissipation was responsible for the increase in with crack propagation. Moreover, our previous 

study [29] on pure Mode-I fracture of the Ecoflex 00-30 elastomer revealed that  scaled weakly 

with the reference crack speed V: ~ V0.11, indicating that the bulk dissipation was rate-dependent. 

Motivated by these findings, we hypothesize that the crack growth resistance behavior in Fig.7d, 

i.e., increasing  with c, is due to the acceleration of crack propagation after the onset, which is 

supported by the rapid increase in V found in Fig.4c. Accordingly, the difference in  after the 

onset of crack propagation, as observed in Fig.7d, should be attributed to different crack speeds. 

For example, the large in the case with  = 60o was because the crack speed V in this case was 

much larger than the other cases. To verify this hypothesis, we normalized the  after the onset 

of crack propagation by the initiation toughness in and plotted in versus the reference crack 

speed V for all five cases in Fig.8b. The normalization was motivated by the scattering in in (see 

Fig.8a). Interestingly, the data points from all five cases with different initial tilt angle  collapsed 

to a master curve (Fig.8b), which can be fitted by the following power-law function:  

       m

in

aV





,                     (11) 

with m = 0.1 and a = 2.4 (mm/s)0.1. The exponent m = 0.1 is close to that found in our previous 

work [29] (i.e., ~ V0.11) for pure Mode-I fracture of the same elastomer. Given the variation in 

the angle  (see Fig.7a) during crack propagation, the collapse of data points from all five cases 

in Fig.8b further demonstrate that the rate-dependence of  is also insensitive to the mixed-mode 

condition.  
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 The data in Fig.8b can also explain the higher R-curve for the case of θ = 60°. In the cases 

with relatively low tilt angles (i.e.,  = 0o, 15o and 30o), the crack speed V settled at roughly 1 

mm/s (see Fig.8b), which corresponds to the R-curve plateaus in Fig.7d. In contrast, in the case 

of  = 60o, the crack speed increased rapidly after the initiation of crack propagation and reached 

20 mm/s. This rapid increase of crack speed corresponds to the increase in the R-curve for the 

case of  = 60o. To understand this phenomenon, we note that the energy release rate G depends 

on both the global loading /H and the crack direction. In the case of  = 60o, when the crack 

propagation direction transitioned from the initial tilted angle to approximately horizontal (see 

the bottom row of Fig.3d), the energy release rate G increased substantially, which led to the 

increase in crack speed. Such effect is not as significant in the cases with lower tilt angles, since 

the change in the crack propagation direction was not as large. 

 Recall that in Fig.3 we observed severe blunting of the crack tip due to the large crack opening 

displacement. The extent of crack opening can be estimated using the nonlinear length scale /E, 

where E is the Young’s modulus of the elastomer [33]. This length scale describes the crack 

opening displacement as well as the size of the crack tip nonlinear zone during crack propagation 

[34]. Assuming incompressibility for the elastomer, we have E = 3 ≈ 60 kPa (see Table 1). Using 

the values of initiation toughness in Fig.8a, i.e., in ranging from 154 to 232 J/m2, we find that 

in/E is 2.6 to 3.9 mm. After the crack started to propagate, the fracture toughness  is larger and 

can reach 350 to 700 J/m2 (see Fig.7d), which implies /E = 5.8 to 12.5 mm. The nonlinear length 

scale, in terms of either in/E or /E, is comparable to the sample height (H = 22 mm), indicating 

significant nonlinear effects in our crack propagation experiments. However, it should be 

emphasized that crack blunting does not affect our data analysis. Although the crack tip is blunted 

in the deformed configuration, it is sharp when mapped back to the reference configuration (e.g., 

see Fig.4). This is consistent with our approach of evaluating the J-integral in the reference 

configuration to determine the energy release rate. On the other hand, crack blunting may affect 

the fracture process at the crack tip.  Even for the tilted cracks, after crack blunting the crack tip 

deformation field was still dominated by the F22 component (see Fig.5 and Fig.10). Based on this 

observation, we speculate that the crack tip process zone is primarily subjected to tensile loading, 

despite the global mixed-mode condition introduced by the tilted crack, which may explain why 

the fracture toughness is mode-independent. 
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3.5 Direction of crack propagation 

 Finally, we examine the direction of crack propagation, which was identified as the tangent 

of the crack trajectory in the reference configuration. As mentioned in Section 3.1, in all cases 

with different initial tilt angle , the crack trajectory eventually became horizontal, i.e., 

perpendicular to the global tensile loading. This observation leads us to hypothesize that the crack 

propagation direction is perpendicular to the direction of maximum principal stretch ahead of the 

crack tip. Both of these directions should be with respect to the reference configuration. 

Specifically, the crack propagation direction is represented by the local 𝑥ଵ
ᇱ -axis (Figs.9a), while 

the direction of maximum principal stretch can be determined by solving the eigenvectors of the 

right Cauchy-Green tensor, C ≡ FTF. It is worth pointing out that for isotropic hyperelastic solids, 

the principal directions of C are aligned with those of the second Piola-Kirchhoff stress tensor. 

Therefore, the maximum principal stretch direction is also the maximum principal direction of 

the second Piola-Kirchhoff stress.  

 We verify the hypothesis stated above by computing the direction of maximum principal 

stretch at the crack tip using the deformation fields measured. To mitigate the uncertainties of 

particle tracking and MLS interpolation, instead of directly evaluating C at the crack tip, for each 

frame we constructed a 5 × 5 square grid in the reference configuration, with the center grid point 

in the first column located at the crack tip and the spacing between adjacent grid points being 0.1 

mm (see inset of Fig.9a for example). We then computed the tensor C and its maximum principal 

direction at each grid point, and took the average vector over the 25 grid points as the direction 

of maximum principal stretch, as illustrated by the blue arrows in Fig.9a. The angle between the 

local 𝑥ଵ
ᇱ -axis and the direction of maximum principal stretch, denoted as  (≥ 0), was used to 

quantify the relative orientation of these two directions. Figure 9b plots the value of  versus the 

reference crack extension length c for all five cases. The inset shows an example of the reference 

crack trajectory and the directions of maximum principal stretch every five frames. Despite the 

noises, it can be seen that  remained close to 90o, which verifies our hypothesis. This result 

suggests that one may use the direction of maximum principal stretch directly ahead of the crack 

tip to predict the crack propagation direction in the Ecoflex 00-30 or similar elastomers, which 

can facilitate computational modeling of mixed-mode crack propagation with curved trajectory.  
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Figure 9 Direction of crack propagation. (a) Crack trajectory in the case with initial tilt angle  
= 30o. The local coordinate system  𝑥ଵ

ᇱ -𝑥ଶ
ᇱ  , the direction of maximum principal stretch (blue 

arrows) and the angle  are schematically shown. The left inset shows the 5 × 5 square grid in the 
reference configuration with the maximum principal stretch direction on each grid point when the 
global stretch is 1.75. The right inset shows the corresponding grid points and maximum 
principal stretch directions (i.e., eigenvector of the left Cauchy-Green tensor B ≡ FFT) in the 
deformed configuration. (b) The angle  versus reference crack extension c for the five cases 
with different initial tilt angle . The inset shows an example of the reference crack trajectory and 
the maximum principal stretch directions (every five frames) using the case with  = 30o as an 
example. 

 

4. Conclusion 

 We presented an experimental study on the mixed-mode crack propagation (i.e., Mode I and 

II) in thin-sheet samples of a soft silicone elastomer. The mixed-mode condition was achieved by 

introducing an inclined crack at the edge of the pure shear fracture sample. The degree of mode-

mixity was controlled by varying the initial tilt angle of the crack. We observed that the tilted 

crack followed a curved trajectory once it started to propagate. Using the particle tracking method, 

we were able to measure the displacement and deformation gradient fields at any frame during 

our experiments. These fields enabled us to monitor the trajectory of crack tip in the reference 

configuration and further determine the reference crack extension length c, the reference crack 

speed V and the direction of crack propagation. More importantly, by combining the measured 

deformation gradient fields and the calibrated GNH hypereleatic model for the elastomer, we 

determined the energy release rate G using the J-integral approach, based on which we measured 

the fracture toughness for cracks with different initial tilt angles.  
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 Our data revealed that both the initiation toughness in, which corresponds to the onset of 

crack propagation, and the subsequent rate-dependent toughness, as manifested in the function 

in versus reference crack speed V, were insensitive to the initial tilt angle . This finding 

suggests that the elastomer used in our experiments exhibits mode-independent fracture toughness, 

at least within the range of mode-mixity attained in our experiments. Regarding the direction of 

crack propagation (i.e., the tangent direction of crack trajectory in the reference configuration), 

we found that it was approximately perpendicular to the direction of maximum principal stretch 

ahead of the crack tip in the reference configuration. These experimental results can provide 

insights towards establishing criteria for modeling curved crack propagation under mixed-mode 

loading. More broadly, the test configuration with tilted crack and the particle tracking method 

can be extended to any predominantly elastic elastomer or gels, therefore opening a new paradigm 

for measuring the mixed-mode fracture toughness of soft materials. 
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Appendix A Deformation gradient fields in the deformation configurations 

 Figure 10 below shows the fields of deformation gradient components F (,  = 1, 2) 

corresponding to those in Fig.5 but plotted in the deformed configurations. 

 

 

Figure 10 Deformation fields during crack propagation. Color contours of the in-plane 
deformation gradient components F (,  = 1, 2) at four frames with different global stretch  
for the case of initial tilt angle  = 30o are plotted in the deformed configurations.  

 

 

Reference 

[1] L. Dong, H. Jiang, Autonomous microfluidics with stimuli-responsive hydrogels, Soft 

Matter. 3 (2007) 1223–1230. https://doi.org/10.1039/b706563a. 

[2] C. Creton, Pressure-sensitive adhesives: An introductory course, MRS Bull. 28 (2003) 

434–439. https://doi.org/10.1557/mrs2003.124. 



26 
 

[3] H. Yuk, S. Lin, C. Ma, M. Takaffoli, N.X. Fang, X. Zhao, Hydraulic hydrogel actuators 

and robots optically and sonically camouflaged in water, Nat. Commun. 8 (2017) 14230. 

https://doi.org/10.1038/ncomms14230. 

[4] K. Yasuda, J.P. Gong, Y. Katsuyama, A. Nakayama, Y. Tanabe, E. Kondo, M. Ueno, Y. 

Osada, Biomechanical properties of high-toughness double network hydrogels, 

Biomaterials. 26 (2005) 4468–4475. https://doi.org/10.1016/j.biomaterials.2004.11.021. 

[5] C. Keplinger, J.-Y. Sun, C.C. Foo, P. Rothemund, G.M. Whitesides, Z. Suo, Stretchable, 

Transparent, Ionic Conductors, Science (80-. ). 341 (2013) 984–987. 

https://doi.org/10.1126/science.1240228. 

[6] R.S. Rivlin, A.G. Thomas, Rupture of rubber. I. Characteristic energy for tearing, J. Polym. 

Sci. 10 (1953) 291–318. https://doi.org/10.1002/pol.1953.120100303. 

[7] J.P. Gong, Why are double network hydrogels so tough?, Soft Matter. 6 (2010) 2583–2590. 

https://doi.org/10.1039/b924290b. 

[8] C. Creton, M. Ciccotti, Fracture and adhesion of soft materials: a review, Reports Prog. 

Phys. 79 (2016). https://doi.org/10.1088/0034-4885/79/4/046601. 

[9] X. Zhao, Multi-scale multi-mechanism design of tough hydrogels: Building dissipation 

into stretchy networks, Soft Matter. 10 (2014) 672–687. 

https://doi.org/10.1039/c3sm52272e. 

[10] R. Bai, J. Yang, Z. Suo, Fatigue of hydrogels, Eur. J. Mech. A/Solids. 74 (2019) 337–370. 

https://doi.org/10.1016/j.euromechsol.2018.12.001. 

[11] H.W. Greensmith, Rupture of rubber. X. The change in stored energy on making a small 

cut in a test piece held in simple extension, J. Appl. Polym. Sci. 7 (1963) 993–1002. 

https://doi.org/10.1002/app.1963.070070316. 

[12] A.N. Gent, Adhesion and strength of viscoelastic solids. Is there a relationship between 

adhesion and bulk properties?, Langmuir. 12 (1996) 4492–4495. 

https://doi.org/10.1021/la950887q. 

[13] X. Ni, C. Chen, J. Li, Interfacial fatigue fracture of tissue adhesive hydrogels, Extrem. 

Mech. Lett. 34 (2020) 100601. https://doi.org/10.1016/j.eml.2019.100601. 



27 
 

[14] J. Yang, R. Bai, B. Chen, Z. Suo, Hydrogel Adhesion: A Supramolecular Synergy of 

Chemistry, Topology, and Mechanics, Adv. Funct. Mater. 30 (2020) 1901693. 

https://doi.org/10.1002/adfm.201901693. 

[15] R.A. Stephenson, The equilibrium field near the tip of a crack for finite plane strain of 

incompressible elastic materials, J. Elast. 12 (1982) 65–99. 

https://doi.org/10.1007/BF00043706. 

[16] K.C. Le, H. Stumpf, The singular elastostatic field due to a crack in rubberlike materials, 

J. Elast. 32 (1993) 183–222. https://doi.org/10.1007/BF00131660. 

[17] P.H. Geubelle, W.G. Knauss, Finite strains at the tip of a crack in a sheet of hyperelastic 

material: I. Homogeneous case, J. Elast. 35 (1994) 61–98. 

https://doi.org/10.1007/BF00115539. 

[18] J.K. Knowles, A nonlinear effect in mode II crack problems, Eng. Fract. Mech. 15 (1981) 

469–476. https://doi.org/10.1016/0013-7944(81)90072-2. 

[19] R. Harpaz, E. Bouchbinder, A nonlinear symmetry breaking effect in shear cracks, J. Mech. 

Phys. Solids. 60 (2012) 1703–1709. https://doi.org/10.1016/j.jmps.2012.06.010. 

[20] Z. Wang, C. Xiang, X. Yao, P. Le Floch, J. Mendez, Z. Suo, Stretchable materials of high 

toughness and low hysteresis, Proc. Natl. Acad. Sci. U. S. A. 116 (2019) 5967–5972. 

https://doi.org/10.1073/pnas.1821420116. 

[21] C. Li, H. Yang, Z. Suo, J. Tang, Fatigue-Resistant elastomers, J. Mech. Phys. Solids. 134 

(2020) 103751. https://doi.org/10.1016/j.jmps.2019.103751. 

[22] L.M. Cox, A.K. Blevins, J.A. Drisko, Y. Qi, Y. Ding, C.I. Fiedler-Higgins, R. Long, C.N. 

Bowman, J.P. Killgore, Tunable Mechanical Anisotropy, Crack Guiding, and Toughness 

Enhancement in Two-Stage Reactive Polymer Networks, Adv. Eng. Mater. 21 (2019) 

1900578. https://doi.org/10.1002/adem.201900578. 

[23] G.P. Anderson, K.L. DeVries, M.L. Williams, The peel test in experimental adhesive-

fracture mechanics - Paper demonstrates the potential use of peel tests in obtaining 

adhesive-fracture-energy values, Exp. Mech. 16 (1976) 11–15. 

https://doi.org/10.1007/BF02328915. 



28 
 

[24] T.L. Sun, T. Kurokawa, S. Kuroda, A. Bin Ihsan, T. Akasaki, K. Sato, M.A. Haque, T. 

Nakajima, J.P. Gong, Physical hydrogels composed of polyampholytes demonstrate high 

toughness and viscoelasticity, Nat. Mater. 12 (2013) 932–937. 

https://doi.org/10.1038/nmat3713. 

[25] O. Ronsin, C. Caroli, T. Baumberger, Crack front échelon instability in mixed mode 

fracture of a strongly nonlinear elastic solid, EPL. 105 (2014) 34001. 

https://doi.org/10.1209/0295-5075/105/34001. 

[26] A.T. Zehnder, Fracture Mechanics, Springer Verlag, 2012. https://doi.org/10.1007/978-94-

007-2595-9_6. 

[27] R. Long, C.Y. Hui, Fracture toughness of hydrogels: Measurement and interpretation, Soft 

Matter. 12 (2016) 8069–8086. https://doi.org/10.1039/c6sm01694d. 

[28] J.R. Rice, A path independent integral and the approximate analysis of strain concentration 

by notches and cracks, J. Appl. Mech. Trans. ASME. 35 (1968) 379–386. 

https://doi.org/10.1115/1.3601206. 

[29] Y. Qi, Z. Zou, J. Xiao, R. Long, Mapping the nonlinear crack tip deformation field in soft 

elastomer with a particle tracking method, J. Mech. Phys. Solids. 125 (2019) 326–346. 

https://doi.org/10.1016/j.jmps.2018.12.018. 

[30] X. Feng, M.S. Hall, M. Wu, C.Y. Hui, An adaptive algorithm for tracking 3D bead 

displacements: Application in biological experiments, Meas. Sci. Technol. 25 (2014) 

55701. https://doi.org/10.1088/0957-0233/25/5/055701. 

[31] W. Liu, R. Long, Constructing Continuous Strain and Stress Fields From Spatially Discrete 

Displacement Data in Soft Materials, J. Appl. Mech. 83 (2015) 011006. 

https://doi.org/10.1115/1.4031763. 

[32] T. Belytschko, Y.Y. Lu, L. Gu, Element-free Galerkin methods, Int. J. Numer. Methods 

Eng. 37 (1994) 229–256. https://doi.org/10.1002/nme.1620370205. 

[33] C. Creton, M. Ciccotti, Fracture and adhesion of soft materials: a review, Reports Prog. 

Phys. 79 (2016) 046601. https://doi.org/10.1088/0034-4885/79/4/046601. 

[34] R. Long, C.Y. Hui, J.P. Gong, E. Bouchbinder, The Fracture of Highly Deformable Soft 



29 
 

Materials: A Tale of Two Length Scales, Annu. Rev. Condens. Matter Phys. 12 (2021) 71–

94. https://doi.org/10.1146/annurev-conmatphys-042020-023937. 

 


