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We introduce a simple dynamic mechanism design problem in which the designer offers 
two items in two consecutive stages to a single buyer. The buyer’s joint distribution of 
valuations for the two items is known, and the buyer knows the valuation for the current 
item, but not for the one in the future. The designer seeks to maximize expected revenue, 
and the mechanism must be deterministic, truthful, and ex-post individually rational. We 
show that finding the optimum deterministic mechanism in this situation — arguably one 
of the simplest meaningful dynamic mechanism design problems imaginable — is NP-hard. 
We also prove several positive results, including a polynomial-time linear programming-
based algorithm for the revenue optimal randomized mechanism (even for many buyers 
and many stages). We prove strong separations in revenue between non-adaptive, adaptive, 
and randomized mechanisms, even when the valuations in the two stages are independent.

© 2022 Elsevier Inc. All rights reserved.

1. Introduction

Consider the problem of a revenue maximizing seller with two items for sale, one today and one tomorrow, to a single 
buyer. The buyer knows her value for today’s item, but for tomorrow’s item she only has a prior. The seller knows the joint 
distribution (for which the buyer’s prior is the conditional). How should the seller behave in order to maximize expected 
revenue? If there was no item tomorrow, this would be a simple application of Myerson’s theorem (Myerson, 1981): the 
seller makes an offer easily calculated from the buyer’s prior. But, the second item makes things much more complicated. 
We have a dynamic mechanism design problem.

Dynamic mechanisms have been studied extensively in quite general settings; see for example Bergemann and Said 
(2011) and Bergemann and Välimäki (2019) for recent surveys. But, in contrast to previous work, our focus here is com-
putation. We propose the two-stage mechanism problem as a useful surrogate of dynamic mechanisms for the purpose of 
exploring the problem’s computational complexity. It is certainly extremely simple, and yet surprisingly hard. To see why, 
suppose that the two valuations, for today and tomorrow, are independent random variables. It is then tempting to assume 
that, in this simple case, running Myerson’s mechanism in each round should work (we refer to this as the non-adaptive

✩ A preliminary version of this paper appeared in the 27th ACM-SIAM Symposium on Discrete Algorithms (SODA) 2016.
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mechanism). Is it optimal among all truthful and ex-post individually rational mechanisms? Even if not, it must surely at 
least be a good approximation? The answer is “no”!

Example 1. Let X1 and X2 be the random variables indicating the value of the buyer for the first and second stage item. X1
takes value 2i with probability 2−i for i = 1, . . . , n, and value 0 with probability 2−n . X2 takes value 2i with probability 2−i

for i = 1, . . . , 2n , and value 0 with probability 2−2n
. It can be verified that the optimal static mechanism for both X1 and X2

extracts revenue at most 2: Consider setting some price 2k . The expected revenue is at most 2k · ∑
i≥k 2−i ≤ 2. Therefore, 

running the optimal static mechanism at each stage extracts revenue at most 4. On the other hand, there exists a dynamic 
mechanism that extracts revenue n: on the first stage the buyer pays her report v(1) . On the second stage the item is given 
for free with probability v(1)

E[X2] . Notice that E [X2] > 2n , therefore v(1)

E[X2] is a probability. An easy calculation shows that 
truthful reporting (weakly) maximizes the buyer’s utility. The revenue extracted is E [X1] = n. The intuition here is that if 
the expected value of the future item is large, the buyer is willing to pay her value on the first stage for a better probability 
of getting allocated the future item.

We note that similar behaviors have been exhibited before, e.g. see Courty and Li (2000); Krähmer and Strausz (2016). 
And, in fact, for the exact same valuations as Example 1, we can extract more revenue than the non-adaptive mechanism 
using a deterministic mechanism. Here, we overall prove that, even when restricted to ex-post IR mechanisms, there is rev-
enue loss by a non-constant factor between: non-adaptive mechanisms and the optimum deterministic adaptive mechanism 
(even for uncorrelated distributions); the optimum deterministic and the optimum randomized mechanism; the optimum 
randomized mechanism and the optimum social welfare. See Section 6 for the precise statements and proofs.

Our results

Let us focus on deterministic, ex post individually rational mechanisms. How hard can it be to find the optimum one? 
The reason we insist on determinism and ex post IR is because we believe that they draw the boundary of mechanisms 
in which people are likely to choose to participate. That is, the ex post IR constraint rules out mechanisms in which the 
seller asks an advance payment equal to the expected surplus. Ruling out such mechanisms (which would be feasible 
under ex-ante or ex-interim IR constraints) is of practical importance. For example, in online ad auctions advertisers’ bids 
are interpreted as willingness to pay, and typically the platform cannot (legally) charge advertisers more than the amount 
declared as maximum. Our main result (Theorem 3) is that, for the two stage case, it is strongly NP-complete, given a prior 
with finite support, to find the optimum such mechanism. However, as we discuss below, we do show that we can compute 
the optimal randomized mechanism in polynomial time.1

We first characterize the mechanisms of interest (Section 2). It turns out that there is always an optimum deterministic 
mechanism that is semi-adaptive (Lemma 2). A non-adaptive mechanism is one that makes two independent offers, one now 
and one in the future, without eliciting any input from the buyer. In contrast, a semi-adaptive mechanism starts by eliciting 
the buyer’s type (and takes care that she is truthful), and then makes two offers simultaneously, one for now and one for 
the future. The buyer can take or leave the first offer now, and come back in the second stage to take or leave the second 
offer (which she knows now). So, our task is reduced to designing a function, informed by the whole joint distribution, that 
maps the support of the buyer’s first stage type distribution to two prices. One of the reasons this task is daunting is that 
truthfulness is quite subtle in this context, and incentive compatibility constraints are a big part of the problem’s difficulty. 
We must give the buyer the right incentives (both right now and in future expectation) so she will not misrepresent her 
type. This is done by choosing price pairs such that, for any other current valuation, the buyer is best off, in expectation, 
telling the truth. Low prices now must be counterbalanced carefully with higher prices in the future, and the inequalities 
involve integrals of the cumulative conditional distributions of the future valuation.

In Section 3 we describe our NP-completeness proof, from Independent Set. It is quite elaborate. The first stage types 
(values in the support of the first stage distribution) are the nodes. For each type, two of the possible current prices 
stand out as potentially optimal, and choosing between them is tantamount to deciding whether a node will be in the 
maximum independent set. The optimum revenue achieved is a strictly increasing function of the independent set size. The 
truthfulness constraints enforce that no two adjacent nodes are included, and this necessitates an elaborate design of the 
conditional distributions associated with the nodes.

Before we proceed to our next set of results, it is worth pointing out that the source of the complexity of the two-stage 
mechanism is not the multi-dimensionality of the buyer’s private information. Finding the optimal deterministic one-shot 
mechanism for selling two (possibly correlated) items to a single buyer is computationally tractable (Chen et al. (2018)).2

The key fact that allows for good algorithms is that for a constant number k of items, the optimal mechanism for any 
number N of types (where a type here is a vector of k values) has at most d = 2k possible prices, one for each bundle 
of items, which is again a constant. This allows to partition the d-dimensional space of price vectors into cells, such that 

1 A similar contrast was noted in the case of Myerson’s mechanism with correlated buyers, see Dobzinski et al. (2011), Papadimitriou and Pierrakos 
(2011).

2 And in fact, it remains tractable for any constant number of items.
2
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for each cell the buyer has the same behavior. In contrast, in the dynamic problem the optimal deterministic mechanism 
for 2 items and N types (where a type is a vector of two values) might have N different price pairs (one price for each 
item), which is not a constant. In fact, in our construction we have two candidate price pairs for each type, leading to an 
exponential number of candidate solutions. Thus, the dynamic problem is computationally much harder than the static one. 
Furthermore, as we prove later, the dynamic problem is tractable (at least for two items) when stages are independent, as 
well as when randomization is allowed. Therefore, correlation and determinism are both necessary for our hardness result. 
Finally, even though we do not know whether computing the optimal deterministic ex-ante IR mechanism is tractable for 
correlated stages, notice that this task is trivial for independent stages, even for D > 2 items: the optimal mechanism offers 
a take-it-or-leave-it price for the first item (recall that the buyer knows her value for this one) and all the remaining items 
for a take-it-or-leave-it price equal to their expected value (which will be always accepted by a risk-neutral buyer).

In Section 4 we present positive results for deterministic mechanisms. First, if the support of the distribution of the 
first stage valuation is a constant, then the problem becomes easy: once we have fixed the second stage prices (there 
is only a constant number of them), we can easily optimize the first stage prices, by writing a simple linear program. 
A similar simple linear program suffices even when the second stage prices are not fixed, but we have decided between 
which second stage types each price should be in. The overall number of linear programs we need to solve is the number 
of second stage types raised to the power of first stage types, which is polynomial. Second, if we are given the first stage 
prices and we want to optimize the second stage prices, we can find a (1 − ε) approximately optimal mechanism in time 
polynomial in 1/ε and the size of the input, for all ε > 0 (that is, there exists an FPTAS), based on an integer program 
that happens to be totally unimodular. These two positive results point to the source of one major difficulty in proving
NP-completeness of the problem: in our construction the prices of both items must vary over types. Our last positive result 
for deterministic mechanisms is a polynomial time algorithm for computing the optimal deterministic mechanism when the 
stages are independent. The two driving factors of this result are (1) the allocation of the first stage item is a monotone 
function, and, (2) the first stage price of a type ti is either zero, or her valuation for the first item. Since all first stage types 
have the same second stage distribution (since the stages are independent), the IC constraints severely limit the amount 
that we can price discriminate between different first stage types. Combining this observation with the two aforementioned 
facts we can show that the number of optimal mechanisms is a small polynomial: a simple enumeration is computationally 
tractable.

We proceed to study randomized mechanisms. A deterministic and optimal mechanism can often be expressed as the 
solution to an integer program (but finding an optimal solution to an integer program is an NP-complete problem). The re-
laxed program,3 which can be solved in polynomial time, typically encodes the optimal randomized mechanism. In Section 5
we show that the problem of finding the optimum randomized mechanism can be solved in time polynomial in the number 
of types (where a type here specifies the buyer’s values for all items, across stages), and in fact for any finite number of 
stages of sale and for any constant number of buyers. We show how to optimize over mechanisms that satisfy a number 
of different notions of incentive compatibility (some of which are with loss of generality, but, as we argue, might be worth 
optimizing over). Several reasons why this LP should be have an exponential number of variables and constraints must be 
overcome. For example, our mechanisms elicit from each buyer and each stage only the value of the buyer for the item in 
that stage. Thus, for our choice of incentive compatibility, naively there are exponentially many ways a buyer can misreport: 
when strategizing about what to report on the current stage, our buyers consider all (exponentially many) functions from 
future realizations of her value to future reports. Carefully defining the IC constraints by backward induction resolves this 
issue. A second issue is that one seems to need to “remember” in each stage the utility accumulated so far for each buyer 
in order to achieve ex-post individual rationality, which requires that the total utility of a buyer is non-negative at the end, 
once all uncertainty has been resolved. We overcome this obstacle by reducing ex-post IR mechanisms to stage-wise ex-post 
IR mechanisms (the utility in each stage is non-negative).

See Table 1 for a summary of our results.

1.1. Related and subsequent work

We briefly discuss research in dynamic mechanism design that is most related to the current work. For an extensive 
review of the literature see Bergemann and Said (2011) and Bergemann and Välimäki (2019). The study of revenue maxi-
mization in an environment where the agent’s private information changes over time was initiated by Baron and Besanko 
(1984). Revenue optimal dynamic auctions are studied more recently by Courty and Li (2000), Eső and Szentes (2007) and 
Pavan et al. (2009, 2010, 2014). A common constraint in these works is that the principal has to satisfy all of the sequential 
incentive constraints, but only a single ex-ante participation constraint.

Subsequent work in computer science Subsequent to the preliminary version of this paper, Ashlagi et al. (2016) provide 
characterizations of the optimal ex-post IR, periodic incentive compatible dynamic mechanism, with m independent stages 
and n buyers. Ashlagi et al. (2016) show that there exists an optimal mechanism that has stage utility equal to zero for 

3 The relaxation of an integer program arises by replacing integrality constraints, e.g. a constraint of the form xi ∈ {0, 1}, with linear constraints, e.g. 
xi ∈ [0, 1].
3
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Table 1
Summary of main results.

Setting Result

2 correlated stages, 1 buyer Theorem 3: Finding the optimum deterministic 
mechanism is NP-hard.

2 correlated stages, 1 buyer Theorem 4: If the prices in the first stage are fixed, 
then the optimum deterministic mechanism can be 
approximated by an FPTAS.

2 correlated stages, 1 buyer Theorem 5: If the support of first stage valuations is 
constant, then the optimum deterministic mechanism 
can be computed in polynomial time.

2 independent stages, 1 buyer Theorem 6: The optimum deterministic mechanism can 
be computed in polynomial time.

D correlated stages, k buyers (constant) Theorem 7: The optimum randomized mechanism can 
be computed in polynomial time in the number of 
types and in the number of stages.

2 correlated stages, 1 buyer Theorem 10: Separations between social welfare and 
optimal non-adaptive, adaptive deterministic and 
adaptive randomized mechanisms.

all stages, except maybe the last, where the seller might have to pay the buyers. Surprisingly, their mechanism can be 
described via updates, at every stage, to a scalar variable that guides the future allocation and payments. The authors use 
this characterization to give a mechanism that obtains a 1

2 approximation to the optimal revenue for the single buyer 
problem.

Mirrokni et al. (2016a) study dynamic mechanisms with an interim IR constraint. They define a class of mechanisms 
called bank account mechanisms. Bank account mechanisms maintain a state variable, the balance, that is updated through-
out the execution of the mechanism depending on a “spending” and “depositing” policy. The allocation and payment at each 
stage depend on the report and the balance. Mirrokni et al. (2016b) study revenue maximization for bank account mech-
anisms subject to an ex-post IR constraint. In Section 5 we use their reduction from ex-post IR mechanisms to stage-wise 
ex-post IR mechanisms in order to simplify our linear program.

Mirrokni et al. (2020) study the design of non-clairvoyant dynamic mechanisms. An oblivious dynamic mechanism de-
cides on the allocation and payment for stage k using information only about the current and past stages, i.e. it is oblivious 
about the buyers’ value distributions Dk+1, . . . , Dm . Their mechanism ObliviousBalance runs at each stage a combination of 
Myerson’s optimal auction, a second price auction, and the money burning mechanism of Hartline and Roughgarden (2008). 
Their mechanism obtains a 1

5 approximation to the optimal revenue.
Mirrokni et al. (2019) show that optimal dynamic auctions are virtual welfare maximizers, under some definition of 

virtual welfare. Specifically, in each stage d the optimal dynamic auction is a second price auction on an appropriately 
defined virtual value space. In order for the virtual welfare maximizing allocation rule to be monotone, ironing is necessary, 
but unlike ironing in Myerson’s optimal auction, the ironing step is interdependent across the values of different buyers.

Liu and Psomas (2018) study prior-independent dynamic mechanisms, and more specifically, they show an analogue of 
the classic Bulow-Klemperer result in auction theory. m items are auctioned off in m consecutive stages to n independent 
and identical buyers. They show that recruiting 3n more buyers and executing a simple second price auction at each stage 
yields more revenue than the optimal dynamic auction, even when the buyers’ values are correlated across stages, under a 
monotone hazard rate assumption on the stage (marginal) distributions. This result can be turned into a 4-approximation 
algorithm by simulating the 3n additional buyers. For the general case, beyond marginals that have monotone hazard rate, 
we are not aware of any algorithms that give a constant approximation, even for a single buyer and two correlated stages.

Agrawal et al. (2018) study revenue maximization for a buyer who is not fully rational, but instead uses some specific 
form of learning behavior. They give a simple state-based mechanism that gives simultaneously a constant approximation to 
revenue extracted by the optimal auction for a k-lookahead buyer for all k, a buyer who is a no-regret learner, and a buyer 
who is a policy-regret learner.

2. The mechanism

The Two-stage Mechanism problem involves a seller with 2 items to sell to a single buyer. The items are sold in two 
consecutive stages, one item per stage. The buyer privately learns her types over time. In the beginning of stage i she learns 
her type for that stage. The buyer can have one of |V (1)| types in the first stage. The i-th first stage type ti occurs with 
probability Pr[ti]. A buyer with first stage type ti has valuation v(1)

i for the first item, and a probability distribution f i over 
valuations/second stage types for the second item. We assume that each type ti has a different first stage valuation v(1)

i , 
and therefore we use type and valuation interchangeably.4 The joint distribution is known to the seller and the buyer. We 

4 We note that this restriction makes the problem computationally easier.
4
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write v(2) for the valuation of the second stage item, and V (2) for the support of the distribution in stage 2. We assume 
that 0 is always in the support of f i , for all i.

The order of events is as follows: (1) The buyer privately learns her type ti ∈ V (1) for stage 1, and sends a message 
to the mechanism, (2) the seller implements an allocation x1 ∈ {0, 1} for item 1 and charges a payment p, (3) the buyer 
obtains stage utility u1 = v(1)

i · x1 − p, (4) the buyer privately learns her value (second stage type) v(2) for the second stage 
item, and sends a message to the mechanism, (5) the seller implements an allocation x2 ∈ {0, 1} for item 2 and charges 
a payment q, (6) the buyer obtains stage utility u2 = v(2) · x2 − q. The buyer’s overall utility is u1 + u2, i.e. the buyer is 
additive without discount. Motivated by practical considerations (e.g. in advertising auctions bidders must submit a bid, not 
an abstract signal/message) we restrict the set of messages the buyer can send to the mechanism to be types, i.e. the buyer 
sends a type b(1) ∈ V (1) and a value b(2) ∈ V (2) in the first and second stage, respectively.

We focus on dynamic, direct and deterministic mechanisms. A deterministic mechanism for this problems consists of an 
allocation, payment rule pair (x1, p) for stage 1, and an allocation, payment rule pair (x2, q) for stage 2. x1 and p map V (1)

to {0, 1} and R, respectively. x2 and q map V (1) × V (2) to {0, 1} and R, respectively. That is, the allocation and payment in 
the second stage can depend on the report in the first stage. Note, however, that the buyer does not report all the values 
she has observed so far in each stage 2, but only her value in stage 2. Our goal is to design a mechanism that maximizes 
the seller’s expected revenue, subject to dynamic incentive compatibility and ex post individual rationality.

The dynamic revelation principle (Myerson, 1986; Sugaya and Wolitzky, 2021) states that there is no loss of generality in 
restricting attention to dynamic direct mechanisms where buyers report their information truthfully (the buyer’s reported 
type coincides with her true type). However, the dynamic revelation principle does not require that a buyer reports their 
information truthfully in the second stage after a lie in the first stage (see Pavan et al. (2014) for an application of the 
dynamic revelation principle in a similar context). As we see later in this section, our mechanisms will satisfy a stronger 
notion of incentive compatibility, where a buyer reports her true value in the second stage, no matter what the report in 
the first stage was. This should be intuitively obvious since the second stage utility v(2)x2(ti, v(2)) − q(ti, v(2)) is unaffected 
by the first stage type ti (beyond its effects on the mechanism itself). Dynamic incentive compatibility (DIC) can be defined 
by backward induction. In the last stage, assuming honest reports so far, it should be incentive compatible for the buyer to 
report her true type (using the standard notion of incentive compatibility in static mechanism design). That is, assuming an 
honest first stage report ti ∈ V (1) , and all v(2) ∈ V (2) (such that v(2) is drawn from f i with positive probability), and for all 
b(2) ∈ V (2) we have

v(2)x2(ti, v(2)) − q(ti, v(2)) ≥ v(2)x2(ti,b(2)) − q(ti,b(2)). (1)

Then, in the first stage, it should be incentive compatible for the buyer to report her true type. Since the second stage 
mechanism satisfies Equation (1), when calculating her expected future utility after being honest in stage one, she should 
assume that she will report her true second stage type honestly as well. Let u2(t′; v(2), b(2)) = v(2)x2(t′, b(2)) − q(t′, b(2)) be 
the second stage utility when the buyer with second stage value v(2) reports b(2) , and her first stage report was t′ . For all 
ti, t′ ∈ V (1) we have that

v(1)
i x1(ti) − p(ti) +Ev(2)∼ f i

[
u2(ti; v(2), v(2))

]
≥ v(1)

i x1(t
′) − p(t′) +Ev(2)∼ f i

[
max
b(2)

u2(t
′; v(2),b(2))

]
.

A mechanism is ex-post individual rational (ex-post IR) if it guarantees non-negative utility for the buyer. That is, the 
buyer’s utility should be non-negative in all outcomes output by the mechanism, assuming she reports truthfully. For stage 
2 this implies that for all ti ∈ V (1) and all v(2) ∈ V (2) the mechanism satisfies

v(1)
i x1(ti) − p(ti) + v(2)x2(ti, v(2)) − q(ti, v(2)) ≥ 0.

Since v(2) occurs with non-zero probability for all ti , it must be that in the first stage allocation and payments satisfy 
v(1)

i x1(ti) − p(ti) − q(ti, 0) ≥ 0. Without loss of generality we therefore have that v(1)
i x1(ti) − p(ti) ≥ 0 (since, if q(ti, 0) is 

negative, we can always increase it to zero, and decrease p(ti) appropriately, without affecting incentives). As we will see 
in Section 5, and as already shown by Mirrokni et al. (2016b), an ex-post IR mechanism can be turned into a stage-wise 
ex-post IR mechanism (non-negative utility in each stage) with at least as much expected revenue.

2.1. Semi-adaptive mechanisms

What can we say about the structure of deterministic revenue-optimal dynamic mechanisms? The point of this paper is 
that they are quite complex. Nonetheless, we can significantly restrict our search space. So far we have allowed mechanisms 
to be adaptive: the allocation and payment in the second stage depend on both the first stage and second stage reports. 
Call a mechanism semi-adaptive if it depends only on the buyer’s declared type. Slightly overloading notation, in such a 
mechanism the buyer reports a type t′ for the first stage, and the seller, based on it, produces a price p(t′) for the first 
stage and a price q(t′) for the second (a price can be infinity, in which case the seller does not offer this item). Notice that 
these mechanisms satisfy a much stronger notion of truthfulness: the buyer is honest in stage two even after a lie in stage 
one. This seemingly weaker protocol is optimal.
5
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Lemma 2. There is a revenue-optimal deterministic mechanism that is semi-adaptive.

Similar results are known for deterministic contracts in sequential screening models. For example, Courty and Li (2000), 
Krähmer and Strausz (2011) show that optimal deterministic contracts can be implemented as a menu of option contracts. 
The proof Lemma 2 is similar to the proof of these results; we provide it here for completeness.

Proof of Lemma 2. Suppose that in a deterministic revenue-optimal mechanism satisfying dynamic incentive compatibility 
and ex-post individual rationality, the price on the second stage q(ti, v(2)) depends on the buyer’s types on both stages, ti =
(v(1)

i , f i) and v(2) . Fix any first-stage type ti = (v(1)
i , f i), and let u∗ = arg minu≥q(ti ,u) q(ti, u) be the second stage valuation 

which minimizes that second stage price, among all second-stage valuations for which the item is allocated.

• v(2) > q(ti, u∗): the buyer could declare type u∗ in order to buy the item for the minimum price. Therefore, since the 
mechanism is incentive compatible, it must charge q(ti, v(2)) = q(ti, u∗).

• v(2) < q(ti, u∗): we can assume without loss of generality that the price is again q(ti , u∗), since the buyer would anyway 
not buy the item for the current price q(ti, v(2))(≥ q(ti, u∗)).

• v(2) = q(ti, u∗): the buyer’s utility remains zero for any price q(ti, v(2)) ≥ q(ti, u∗); however, the seller’s revenue is 
maximized when selling the item for price q(ti, v(2)) = q(ti, u∗).

Finally, any buyer with a different first-stage type t j = (v(1)
j , f j) that attempts to deviate and declare type ti on the first 

stage, would also, with loss of generality, deviate her second-stage valuation to u∗ . �
Note that it is not clear whether the same is true for randomized mechanisms. Our proof crucially used the fact that, 

no matter what my true valuation is, the buyer prefers a smaller posted-price. But, in the case of randomized mechanisms, 
we do not have an order over distributions of prices: one distribution may be more attractive to one type, while another 
distribution is more attractive for another type. For example, consider a lottery that offers the item for a price of 8 with 
probability 1/2, and with probability 1/2 doesn’t offer the item. This lottery looks more attractive than a posted price of 
12 to a buyer whose value is in the interval [8, 16). If the buyer’s value is larger than 16, then the posted price looks more 
attractive.

2.2. Simplifying incentive compatibility constraints

Once we restrict ourselves to semi-adaptive mechanisms, the mechanism becomes two functions p, q mapping the sup-
port of the prior to the reals. Let p(t) be the price charged for the first stage item, and q(t) the price charged for the second 
stage item, when the buyer reports a type t . Let u(t, t′) be the expected utility of the buyer when her true type in the first 
stage is t and she declares t′ . This utility is the utility of the first stage plus the expected utility for the second stage, when 
offered a take-it-or-leave-it price q(t′). We want u(t, t) ≥ u(t, t′) for all t, t′ ∈ V (1) .

A nice, compact form to express our DIC constraints is using the reverse cumulative distribution of the second stage: 
F̄t(x) = Pr[v(2) ≥ x|t]. The observation here is that the buyer’s second stage utility for a type t , when charged price q in 
stage 2, is 

∫ ∞
q F̄t(x)dx. So, for any two possible first-stage types t = (v(1), F̄t) and report t′ = (b(1), F̄t′ ), the IC constraints 

are:

• If both t and t′ receive the item on the first stage:

q(t)∫
q(t′)

F̄t′(x)dx ≥ p(t′) − p(t) ≥
q(t)∫

q(t′)

F̄t(x)dx.

• If neither receives the item on the first stage: q(t) = q(t′).
• If t′ receives the item on the first stage, but t does not:

q(t′)∫
q(t)

F̄t(x)dx ≥ v(1) − p(t′), b(1) − p(t′) ≥
q(t′)∫

q(t)

F̄t′(x)dx.

We write Rev(ti, pi, qi) to denote the seller’s revenue, when charging the (i-th) type ti the first stage price pi and second 
stage price qi . We will write Rev(1) or Rev(2) when we want to refer only to the revenue from the first or second stage, 
respectively.
6
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Fig. 1. F̄ i when there is (dotted) an (i, j) edge for j > i, and when there isn’t (dashed). (For interpretation of the colors in the figure(s), the reader is 
referred to the web version of this article.)

3. Deterministic mechanisms are NP-hard

In this section we briefly describe the construction of our main result.

Theorem 3. Finding the optimal deterministic two-stage mechanism is strongly NP-hard.

3.1. Outline

Given a graph G = (V , E), we construct a joint distribution of valuations such that the optimal feasible revenue (for 
deterministic DIC and ex-post IR mechanisms) is a strictly increasing function of the maximum independent set in G .

More specifically, with each vertex i ∈ G we associate a type ti with valuation v(1) = Bi for the first stage. For each type 
ti , we want to have two candidate price pairs: (Bi, Ci) or (Ai, Di). The former will give more revenue, but for every edge 
(i, j) ∈ E , it will be a violation of the DIC constraints to offer to type ti the pair (Bi, Ci) and to type t j the pair (B j, C j). 
Thus, if the difference r in expected revenue between (Bi, Ci) and (Ai, Di) is the same for all i, charging the former for 
all the vertices of an independent set S and the latter for the rest of the vertices will be a valid pricing, with revenue ∑

i∈V Rev(ti, Ai, Di) + r|S|.
In order to impose the desired structure between (Bi, Ci) and (Ai, Di), we have an extra type t∗, with valuation v(1) = P∗

on the first stage. t∗ appears with very high probability. This way we make most of our revenue from this type, and thus 
force every revenue-optimal mechanism to charge this type the optimal prices, (P∗, Q ∗). The IC constraints for type t∗
introduce strong restrictions on the prices for other types.

The restriction on each edge (i, j) is forced by the IC constraints for ti and t j , via a careful construction of the dis-
tributions over their second-stage valuations. The second stage distribution of ti is F̄ti and is carefully tuned in the range 
[D j−1, D j] (note that C j is in this interval) depending on whether or not (i, j) ∈ E . For ease of notation we write Fi instead 
of Fti . See Fig. 1.

3.2. Construction

The distribution of valuations on the first stage is rather simple. Let n = |V | denote the number of vertices in G . With 
probability 1 − p, the buyer is of type t∗ and has first-stage valuation v(1) = P∗ = n; with probability p · wi , the buyer is 
of type ti and has first-stage valuation v(1) = Bi = n2 + 2n + 1 − i, for i ∈ [n]. The parameters p and wi are defined later. 
Notice that the first stage has support of size n + 1.

We will show that it is always possible to charge type ti either her full value Bi on the first stage, or slightly less: 
Ai = Bi − ε , for ε = 1/n2. For type t∗ , we always want to charge the full price, P∗ . Observe that

P∗ < An < Bn < · · · < A1 < B1.

For the second stage we are interested in prices Ci or Di for ti , and Q ∗ for t∗ . Although we only have n types, it will 
be convenient to think about two more special prices, which we denote Cn+1 and Dn+1. We define Ci , Di and Q ∗ later; for 
now let us mention that

C1 < D1 < · · · < Cn < Dn < Cn+1 < Dn+1 < Q ∗.

3.2.1. Second stage valuations
The crux of the reduction lies in describing the distributions of the second-stage valuations for each type. It will be 

convenient to describe the cumulative distributions F̄ i(z) = Pr[v(1) ≥ z|ti] and F̄∗(z) = [v(1) ≥ z|t∗].
7
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The choices of the cumulative distributions in our construction are summarized in Table A.2, in Appendix A. Type ti
never has nonzero second-stage valuation less than Ci , thus the cumulative distribution F̄ i(x) for x ∈ (0, Ci) is hi = γ −4i , for 
γ = 1 + 1/n. Intuitively, this will make Ci an attractive price for the seller. Notice that γ n ≈ e is a constant.

At each special price thereafter, F̄ i decreases by some multiplicative factor that is related to γ . The exact value of F̄ i(x)
for x ∈ (D j−1, D j) depends on whether there is an edge (i, j) in G .5 After Dn+1, the distribution for all types ti is the same. 
F̄ i halves at each 2k Dn+1, and it is 0 after Q ∗ = 28γ 4(n+1)

Dn+1.
The distribution F̄∗ is simpler to describe. F̄∗(x) is equal to h1 for x ∈ (0, C1), and decreases by a multiplicative factor of 

γ 2 at each special price thereafter. Type t∗ never has valuations between Dn+1 and Q ∗ = 28γ 4(n+1)
Dn+1. F̄∗ is constant in 

this domain; in particular F̄∗(x) = h∗ = An+1−P∗
Q ∗−Dn+1

. Intuitively, this will make Q ∗ an attractive price for the seller. Notice also 
the contrast between this and the gradual decrease of F̄ i ’s.

We describe how to fix the last parameters in Appendix A. We prove the soundness of our construction in Appendix B; 
the proof of completeness is postponed to Appendix C.

4. Deterministic cases solvable in polynomial time

We have three positive results for deterministic mechanisms. We give here a brief sketch of the proofs and postpone 
further details to the appendix.

Our first result shows that given first stage prices, optimizing over second stage prices (in a way that the joint mechanism 
is DIC) can be approximated by a fully polynomial-time approximation scheme (FPTAS), that is, an algorithm that for all 
ε > 0 runs in time polynomial in the size of the input and 1

ε , and returns a mechanism whose revenue is (at least) a (1 − ε)

factor of the optimal revenue. For this result, we subdivide the range of second-stage prices into a grid of accuracy 1/K
(by taking K large enough we obtain an FPTAS), and consider 0 − 1 variables who act like indicators for the event “the 
price qi is not larger than the jth grid point.” It turns out that the DIC constraints become totally unimodular. Therefore, 
the corresponding linear program (which can be solved in polynomial time) has an integral optimum. For more details see 
Appendix D.

Theorem 4. If the prices in the first stage are fixed, then the optimum deterministic mechanism can be approximated by an FPTAS.

Our second result says that if the number of first stage types |V (1)| is a constant, the NP-hardness result no longer holds, 
and the optimum deterministic mechanism can be computed in polynomial time (polynomial in the support of the second 
stage distribution, |V (2)|). For this result, we notice that once we have fixed, for each type, the interval between second-
stage valuations in which the second-stage price for this type lies (larger than all if the item is not allocated to this type), 
then the DIC constraints become linear inequalities. This is because the cumulative distributions are piecewise constant, and 
thus the integrals in the DIC constraints become linear functions once we know the interval in which the bounds of each 
integral lie. Since there are |V (2)||V (1)| ways to map the |V (1)| second-stage prices to the |V (2)| second-stage intervals, and 
we assume that |V (1)| is constant, we only need to solve a polynomial number of LPs.

Theorem 5. If the number of types (the support of first-stage valuations) is constant, then the optimum deterministic mechanism can 
be computed in polynomial time.

Our last result states that for independent stages, the optimum deterministic mechanism can be computed in polynomial 
time. We observe that once correlation is removed the IC constraints between different types are transitive: satisfied DIC 
constraints between types ti , t j and t j , tk imply satisfied constraints between ti and tk . Moreover, the allocation function 
(for the first stage item) is monotone, and the prices of the types that are allocated the first stage item have the following 
structure. Either the first stage price is equal to the valuation, or the second stage price is zero. Using these observations we 
can significantly reduce the search space and find the optimal mechanism in polynomial time, essentially by enumerating. 
For more details see Appendix E.

Theorem 6. If the stages are independent, the optimum deterministic mechanism can be computed in polynomial time.

5. Randomized adaptive mechanisms: multiple stages, multiple buyers

Can we do better by using randomization? In this section, we construct an LP for the optimum randomized adaptive 
mechanism for multiple buyers and multiple stages. Specifically, we study the case of k independent buyers and D stages. 
We show how to compute the optimal randomized mechanism under two definitions of dynamic incentive compatibility 
(DIC): DIC in dominant strategies (D-DIC) and DIC in Bayesian strategies (B-DIC). We also show that it’s possible to compute 

5 For the special prices, Cn+1 and Dn+1, assume that all F̄ i ’s behave as in the “no edge” case.
8
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the optimal mechanism when these notions are satisfied only under honest private histories (“on-path” truthful), as well as 
under all private histories (i.e. truthfulness even after a past lie).

The problem we consider here is the natural generalization of the problem in Section 2. There are k buyers and D items, 
sold in D consecutive stages, one item in each stage. Buyers have additive utility functions, without discounting across time, 
that is, the final utility of a buyer is the non-discounted sum of her stage utilities. In stage d buyer i has type/valuation 
v(d)

i ∈ V (d)
i that is drawn from a distribution f (d)

i (v(1)
i , . . . , v(d−1)

i ). In other words, the type in stage d for buyer i can 
depend on the realized types from previous stages for buyer i (but is independent of the types of other buyers in this 
stage or any other stage). The joint distribution is known to the seller, as well as all the buyers, but the realizations are 
private. That is, the input to the seller’s problem is for every buyer i ∈ [k], and every possible vector of valuations across 
stages 
vi = (v(1)

i , . . . , v(D)
i ) the probability Pr[
vi] that this vector of values is realized. We assume that the value zero is 

in the support of every stage distribution (no matter what the values were for the previous stages), for all buyers. Let 
|Ti | = ∏D

j=1 |V ( j)
i | be the number of types of buyer i. We note that typically, |Ti | grows exponentially with D (and in what 

follows we give algorithms that run in time polynomial in the |Ti |s). Also, let V [d] = ×k
i=1 V (d)

i be the set of possible type 
vectors in stage d.

A dynamic (direct) mechanism consists of, for each buyer i ∈ [k] and stage d ∈ [D], an allocation rule xd
i and a payment 

rule pd
i that maps reported values v[d] = (v(d)

1 , . . . , v(d)

k ) ∈ V [d] to an allocation in [0, 1] and a payment in R, respectively. 
Both of these functions can depend on the public history of reported valuations so far h[d−1] = (v[1], . . . , v[d−1]), as well as 
the outcomes of the mechanism (allocations and payments) ω[d−1] = (ω1, . . . , ωd−1), where ωt = (x, q1, . . . , qk) if in stage t
the item’s allocation was x ∈ {0, 1, . . . , k} and the payment of buyer i was qi . We therefore write xd

i (h
[d−1], ω[d−1]; v[d]) for 

the allocation and pd
i (h

[d−1], ω[d−1]; v[d]) for the payment. Note that the number of outcomes is exponential in the number 
of stages; as we will see later in this section, without loss of generality we can focus on mechanisms whose allocation and 
payment rules in stage d do not depend on ω[d−1] .

The order of events in stage d is as follows:

(i) Each buyer i privately learns her type v(d)
i (which is drawn from a distribution that is possibly correlated with her true 

past types).
(ii) Each buyer i reports a type v̂(d)

i to the mechanism.
(iii) The mechanism allocates the item to buyer i with probability xd

i (h
[d−1], ω[d−1]; ̂v[d]) and charges pd

i (h
[d−1], ω[d−1]; ̂v[d])

(and note that the allocation and payment could be correlated).
(iv) Each buyer i obtains (realized) stage utility u(d)

i = v(d)
i − pd

i if they were allocated the item (and u(d)
i = −pd

i (.) if they 
were not allocated but were charged a payment).

(v) The public history so-far is updated to include the reported types v̂[d] , and the outcome in stage d (which buyer got 
the item and payments).

We note that, importantly, when the buyer decides what to report in step (ii), they evaluate the stage utility from stage 
d in expectation over the realization of the stage d lottery, i.e. they calculate u(d)

i = v(d)
i · xd

i (.; ̂v[d]) − pd
i (.; ̂v[d]).

Feasibility A mechanism is feasible if it allocates the item in stage d to at most one buyer in expectation. That is, for all 
d ∈ [D], for all histories h[d−1] , ω[d−1] and possible reports v[d] , 

∑
i∈[k] xd

i (h
[d−1], ω[d−1]; v[d]) ≤ 1.

Incentive compatibility The dynamic revelation principle (Myerson, 1986; Sugaya and Wolitzky, 2021) states that there is 
no loss of generality in restricting attention to dynamic direct mechanisms where buyers report their information truthfully 
“on-path”, that is, the mechanism does not need to guarantee truth-telling after a lie in a previous stage. This distinction 
was not important for the deterministic two stage mechanism of Section 2, since optimal mechanisms for the weaker 
notion ended up being semi-adaptive (which satisfies the stronger notion). However, this might not be the case for the 
multi-agent, multi-stage problem we study here (since, e.g., the future utility of a buyer in stage 2 is calculated using both 
the public history and the private history, while her stage utility only depends on the public history and the current value). 
It is intuitively clear that asking for truth-telling even after lies is a strictly harder computational task, since it needs to 
take care of multi-stage deviations (and there are exponentially many of these, even for two stages). We show that, in 
our setting, optimizing with respect to mechanisms that satisfy either notion of incentive compatibility is computationally 
feasible. Roughly speaking, optimizing with respect to the stronger notion will boil down to writing a linear program with 
an IC constraint for each buyer and each public history and private history (which is a polynomial number of constraints 
with respect to the size of the input/the joint distribution over types). Optimizing with respect to the weaker notion boils 
down to writing an IC constraint for each buyer and each public history (since the assumption here is that a buyer has been 
honest so far, her private history matches the public history), which is a smaller number of constraints. For the remainder 
of this section we will focus on the computationally harder task of computing the optimal mechanism that satisfies the 
stronger notion of incentive compatibility; we explain how our solution can be adjusted to work for the weaker notion after 
we prove our main theorem.
9
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A mechanism is dynamic incentive compatible (DIC) if, informally, each buyer i is better off reporting her true value v(d)
i

in each stage d. We consider two variations of DIC. The first one, DIC in dominant strategies (D-DIC) requires that truthful 
reporting in stage d maximizes the utility of each buyer, regardless of the past (i.e. for all histories), and regardless other 
buyers’ reports. The second one, DIC in Bayesian strategies (B-DIC) requires that truthful reporting in stage d maximizes the 
utility of each buyer, regardless of the past, and in expectation over the other buyers’ truthful reports in this stage and the 
future. We note that often D-DIC is too strict of a requirement in general dynamic mechanism design settings and might 
come with loss of generality (see for example Bergemann and Välimäki (2010, 2019)). However, in our setting, natural 
mechanisms satisfy this seemingly strong requirement. For example, running a second-price auction in each stage, which is 
also welfare optimal, satisfies this notion. We therefore suggest that, even though this class might be with loss of generality, 
it is worth optimizing over.

We start by defining D-DIC. Naively, since re-reporting of past types is not allowed, the incentive constraints must 
account for multi-shot deviations. For example, lying only in stage one could decrease a buyer’s utility, and so does lying 
only in stage two; and yet lying on both stages increases her expected utility. Therefore, when deciding to lie, the buyer 
must choose in advance among all exponentially many different strategies that deviate from the truth now and in the 
future. Notice that the number is exponential even for two stages: the optimization is over functions from true pairs of 
types to declared pairs of types. This is the first obstacle in writing a polynomial size LP. However, similarly to Section 2, 
we can define both variations of DIC via backward induction. Specifically, for the last stage D , for all buyers i ∈ [k], for all 
histories of reported types h[D−1] = (b[1], . . . , b[D−1]), and past outcomes of the mechanism ω[D−1] = (ω1, . . . , ωD−1), and 
for all last stage reports v(D)

−i of the other buyers, a D-DIC mechanism guarantees that the (expected over the randomness 
of the mechanism) stage utility of i in stage D when reporting her true value v(D)

i is at least her utility from reporting a 
different value v̂:

v(D)
i · xD

i (h[D−1],ω[D−1]; v(D)
−i , v(D)

i ) − pD
i (h[D−1],ω[D−1]; v(D)

−i , v(D)
i ) ≥

v(D)
i · xD

i (h[D−1],ω[D−1]; v(D)
−i , v̂) − pD

i (h[D−1],ω[D−1]; v(D)
−i , v̂).

Let U D
i (h[D−1], ̄h[D−1]

i , ω[D−1], v(D)
−i ) be the expected utility of buyer i for participating in the last stage D , when the public 

history is h[D−1], ω[D−1] , the private history of buyer i is h̄[D−1]
i = (v(1)

i , . . . , v(D−1)
i ), and the reports of other players in 

stage D are v(D)
−i . By the previous argument, this utility is calculated assuming truthful reporting for buyer i in stage D:

U D
i (h[D−1], h̄[D−1]

i ,ω[D−1], v(D)
−i ) =E

v(D)
i |h̄[D−1]

i

[
v(D)

i · xD
i (h[D−1],ω[D−1]; v[D]) − pD

i (h[D−1],ω[D−1]; v[D])
]
.

We note that U D
i (h[D−1], ̄h[D−1]

i , ω[D−1], v(D)
−i ) (and generally U d

i (.)) for “on-path” truthfulness, i.e. when the mechanism 
doesn’t require truth after lies, is defined slightly differently, by taking an additional maximum over the report in stage D , 
i.e. it is equal to

E
v(D)

i |h̄[D−1]
i

[
max

v̂
v(D)

i · xD
i (h[D−1],ω[D−1]; v(D)

−i , v̂) − pD
i (h[D−1],ω[D−1]; v(D)

−i , v̂)

]
.

For the second to last stage, let uD−1
i (h[D−2], ω[D−2]; v(D−1)

−i , v(D−1)
i → v̂) be the stage utility of buyer i when the history 

is h[D−2], ω[D−2] , all other buyers report v(D−1)
−i , her true value in stage D − 1 is v(D−1)

i , but she reports v̂ . We note that 
the stage utility does not depend on the buyer’s private history h̄[D−2]

i . Let h[D−1] = [h[D−2], v(D−1)
−i , v(D−1)

i ] be the public 
history (in stage D) if i reports truthfully in stage D − 1, and ĥ[D−1] = [h[D−2], v(D−1)

−i , ̂v] be the public history (in stage D) 
if i reports v̂ in stage D − 1. The private history in stage D − 1 is h̄[D−1]

i = [h̄[D−2]
i , v(D−1)

i ] and is independent of the report.

Then, for D-DIC we have that for all h[D−2], ̄h[D−2]
i , ω[D−2], v(D−1)

−i , v(D)
−i , v(D−1)

i and v̂:

uD−1
i (h[D−2],ω[D−2]; v(D−1)

−i , v(D−1)
i → v(D−1)

i ) +EωD−1 [U D
i (h[D−1], h̄[D−1]

i , [ω[D−2],ωD−1], v(D)
−i )] ≥

uD−1
i (h[D−2],ω[D−2]; v(D−1)

−i , v(D−1)
i → v̂) +EωD−1 [U D

i (ĥ[D−1], h̄[D−1]
i , [ω[D−2],ωD−1], v(D)

−i )].
Note that the definition of U D

i includes the expectation over types in stage D , therefore in the second term (which captures 
the remaining utility from participating in the mechanism) we only need to take an expectation over the outcome of the 
mechanism in stage D − 1.

Proceeding backwards for all stages d, for D-DIC we have that for every buyer i, all histories so-far h[d−1], ̄h[d−1]
i , ω[d−1] , 

all reports for the other buyers in stage d (v(d)
−i ) and stage d + 1 onward (v[d+1]:[D]

−i ), all types of buyer i v(d)
i and all stage d

deviations v̂:

ud
i (h

[d−1],ω[d−1]; v(d)
−i , v(d)

i → v(d)
i ) +Eωd [U d+1

i (h[d], h̄[d]
i , [ω[d−1],ωd], v[d+1]:[D]

−i )] ≥
ud

i (h
[d−1],ω[d−1]; v(d)

−i , v(d)
i → v̂) +Eωd [U d+1

i (ĥ[d], h̄[d]
i , [ω[d−1],ωd], v[d+1]:[D]

−i )],
10



JID:YGAME AID:3381 /FLA [m3G; v1.314] P.11 (1-29)

C. Papadimitriou, G. Pierrakos, A. Psomas et al. Games and Economic Behavior ••• (••••) •••–•••
where (1) ud
i (h

[d−1], ω[d−1]; v(d)
−i , v

(d)
i → v̂) is the stage utility of buyer i when the history is h[d−1], ω[d−1] , all other buyers 

report v(d)
−i , her true value in stage d is v(d)

i , but she reports v̂ , (2) h[d] and ĥ[d] are the two public histories in stage d + 1

that correspond to truthful and non-truthful reporting of buyer i in stage d, and (3) U d+1
i (h[d], ̄h[d]

i , ω[d], v[d+1]:[D]
−i ) is the 

expected utility of buyer i for participating in the mechanism in stages d + 1 through D (which depends on the private 
history h̄[d−1]

i and the other buyers’ future reports v[d+1]:[D]
−i = (vd+1

−i , vd+2
−i , . . . )). The term U d+1

i (h[d], ̄h[d]
i , ω[d], v[d+1]:[D]

−i ) is 
typically referred to as the continuation utility, and is equal to:

E
v[d+1]:[D]

i ,ωd+1:D |h̄[d]
i

⎡
⎣ D∑

t=d+1

ut
i ([h[d], v[d+1]:[t−1]], [ω[d],ωd+1:t−1]; v(t)

−i, v(t)
i → v(t)

i )

⎤
⎦ ,

where v[z]:[�] = v[z], . . . , v[�] , and ωz:� = ωz, . . . , ω� . Equivalently, U d+1
i (h[d], ̄h[d]

i , ω[d], v[d+1]:[D]
−i ) can be written recursively 

as

E
v(d+1)

i ,ωd+1|h̄[d]
i

[
ut

i ([h[d], v[d+1]], [ω[d],ωd+1]; v(d+1)
−i , v(d+1)

i → v(d+1)
i )

+U d+2
i ([h[d], v[d+1]], [h̄[d]

i , v[d+1]], [ω[d],ωd+1], v[d+2]:[D]
−i )

]
.

For “on-path” truthfulness, we need to take an additional maximum over the report of stage d +1 inside this expectation, 
i.e. U d+1

i (h[d], ̄h[d]
i , ω[d], v[d+1]:[D]

−i ) is equal to

E
v(d+1)

i ,ωd+1|h̄[d]
i

[
max

v̂
ut

i ([h[d], v[d+1]], [ω[d],ωd+1]; v(d+1)
−i , v(d+1)

i → v̂)

+ U d+2
i ([h[d], [v[d+1]

−i , v̂]], [h̄[d]
i , v[d+1]], [ω[d],ωd+1], v[d+2]:[D]

−i )
]
.

For B-DIC we need to take an additional expectation over v[d+1]:[D]
−i , where each v(t)

j for buyer j is drawn from the 
marginal conditioned on h[t−1]

j , the history of reports of buyer j. Note that this argument assumes that all other buy-
ers have been truthful so far. Using identical arguments as above, we have that for every buyer i, all histories so-far 
h[d−1], ̄h[d]

i , ω[d−1] , all v(d)
i , and all stage d deviations v̂:

E
v(d)

−i

[
ud

i (h
[d−1],ω[d−1]; v(d)

−i , v(d)
i → v(d)

i ) +E
ωd|h̄[d−1]

i
[U d+1

i (h[d], h̄[d]
i , [ω[d−1],ωd])]

]
≥

E
v(d)

−i

[
ud

i (h
[d−1],ω[d−1]; v(d)

−i , v(d)
i → v̂) +E

ωd|h̄[d−1]
i

[U d+1
i (ĥ[d], h̄[d]

i [ω[d−1],ωd])]
]
.

Individual rationality A mechanism is ex-post individual rational (ex-post IR), if once all uncertainty is resolved, every buyer 
always has non-negative utility. Given a history of h[d−1], ̄h[d−1]

i , ω[d−1] in stage d, let ûd
i (h

[d−1], ̄h[d−1]
i , ω[d−1]) be the utility 

buyer i has accumulated so far, i.e. the sum of values for the items she received minus the payments, where the allocations 
and payments are according to ω[d−1] , and values are according to h[d−1] and h̄[d]

i . A dynamic mechanism outputs for 
every stage d ∈ [D], history h[d−1], ω[d−1] and stage d reports v[d] a distribution over stage d outcomes: an outcome ωd =
(x, q1, . . . , qk) occurs with probability Pr[ωd] (that depends on h[d−1], ω[d−1] and v[d]) specifies which buyer x ∈ {0, 1, . . . , k}
won the item (if any) and the payment qi for each buyer i. The exact distribution depends on the correlation between xd

i (.)

and pd
i (.). Formally, an ex-post individual rational mechanism satisfies, for all stages d ∈ [D], all public histories h[d−1], ω[d−1]

and private histories h̄[d−1]
i that match the public history (i.e. we only guarantee individual rationality if the reports so far 

have been honest), stage d reports v[d] and stage d outcomes ωd = (x, q1, . . . , qk) that occur with positive probability:

ûd
i (h

[d−1], h̄[d−1]
i ,ω[d−1]) − qi + v(d)

i · I(x = i) ≥ 0,

where I(e) is the standard indicator function for an event e (takes the value 1 if e occurs, and zero otherwise). Since we 
guarantee ex-post IR with respect to the public history (that is, we provide no guarantees for buyers that have lied), we will 
omit the private history of a buyer when talking about the IR constraints, and assume it matches the public history.

Before we give our main result we make a number of simplifications to the expression above for ex-post IR.

Stage-wise ex-post IR versus ex-post IR The reason an adaptive mechanism keeps track of the allocations and payments so far 
is so that is can ensure that the ex-post IR constraint is satisfied. Of course, having a variable for every possible past outcome 
is prohibitively costly: even when the number of types is small, the number of possible outcomes grows exponentially with 
the number of stages. Fortunately, one can show that without loss of generality, we can focus on stage-wise ex-post IR 
mechanisms, that is, non-negative stage utility. Formally, a mechanism is stage-wise ex-post IR if for all stages d ∈ [D], 
11
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public history h[d−1] and private history h̄[d−1]
i that matches the public history, stage d reports v[d] and stage d all outcomes 

ωd = (x, q1, . . . , qk) that occur with positive probability (which depends on the history and reports):

v(d)
i · I(x = i) − qi ≥ 0.

Equivalently, if buyer i does not receive the item she should not pay, and if she receives the item she should pay at most 
her (reported) value.

The equivalence between ex-post IR and stage-wise ex-post IR can be shown via an easy reduction (from ex-post IR to 
stage-wise ex-post IR), see for example Mirrokni et al. (2016b). For completeness we include this reduction in Appendix F. 
The main idea is that given an ex-post IR mechanism M , one can construct a stage-wise ex-post IR mechanism M ′ that 
charges each bidder exactly their bid for each of the first D − 1 stages, and in the last stage charges the difference between 
the total payments in M and the total payments so far in M ′ . Therefore, we can restrict ourselves to mechanisms that 
guarantee ex-post non-negative utility in each stage, and that only take as input, in each stage, the history of reported 
values so far.

Correlation between allocation and payment A final issue when writing a linear program is the choice of variables. The 
“standard” way, by which we mean the most common formulation for one-shot mechanisms, is to have, for each buyer 
and each vector of reports, a variable for the expected allocation and a variable for the expected payment. Taking this 
to the dynamic setting, we would have for each stage, history, buyer and reports a variable for the expected allocation 
and a variable for the expected payment. But, because of the ex-post IR constraint when implementing the corresponding 
mechanism, correlation is necessary. To see this most clearly, consider an example where the LP, in a certain situation 
(i.e. stage, history etc) allocated an item to buyer i with probability 1/2 and the expected payment was p. How would 
we implement this in an ex-post IR way, so that the buyer’s utility is always non-negative? For example, we would need 
to ensure that when the item is not allocated the payment is zero. Thus, correlation between payment and allocation is 
necessary, a feature that seems difficult to work if the goal is to write a poly-sized linear program.6 Fortunately, a simple 
correlation scheme will allow us to by-pass this issue.

Consider a feasible, stage-wise ex-post IR, and DIC (D-DIC or B-DIC) mechanism given via allocation probabilities and 
expected payments. That is, for every stage d, histories h[d], ω[d] , buyer i, and possible reports v[d] , xd

i (h
[d], ω[d]; v[d]) is 

the probability that this buyer is allocated item d, and pd
i (h

[d], ω[d]; v[d]) is the expected payment. Stage-wise ex-post 
individual rationality implies that vi · xd

i (h
[d], ω[d]; v[d]) − pd

i (h
[d], ω[d]; v[d]) ≥ 0. We can implement this mechanism in a 

way that the ex-post IR constraint is respected even after the random outcome for stage d is selected (feasibility and 
truthfulness will be immediately implied). With probability xd

i (h
[d], ω[d]; v[d]) we allocate the item to buyer i and charge 

her pd
i (h

[d], ω[d]; v[d])/xd
i (h

[d], ω[d]; v[d]). With probability 1 − xd
i (h

[d], ω[d]; v[d]) we do not allocate to i, and charge her 
nothing. The expected utility of the buyer remains vi · xd

i (h
[d], ω[d]; v[d]) − pd

i (h
[d], ω[d]; v[d]). Furthermore, when the item is 

allocated, her utility is vi − pd
i (h

[d], ω[d]; v[d])/xd
i (h

[d], ω[d]; v[d]) ≥ 0, and zero when not allocated, so the stage-wise ex-post 
IR constraint is satisfied.

The optimal randomized mechanism LP

Finally, we are ready to describe our LP for computing randomized adaptive mechanism for k > 1 buyers and D > 2
stages. Recall that the input to our problem is, for every buyer i ∈ [k], and every possible vector of valuations across stages 

vi = (v(1)

i , . . . , v(D)
i ) the probability Pr[
vi] that this vector of values is realized. Let |Ti | = ∏D

j=1 |V ( j)
i | be the number of 

types of buyer i. Note that typically, |Ti | grows exponentially with D . We use |T | = ∑k
i=1 |Ti | for the total number of types. 

We also use |V | = maxi,d|V (d)
i | for the support of the “largest” marginal distribution for any stage d and buyer i.

We prove the D-DIC case first and discuss how to alter the proof to take care of the B-DIC case, and “on-path” truthful-
ness, afterward.

Theorem 7. For any number of stages D, and a constant number of independent buyers k, the optimal, adaptive, randomized D-DIC 
mechanism can be found in time poly(D, |T |2k+3).

Proof. Our LP has a variable xd
i (h

[d−1]; v[d]) and pd
i (h

[d−1]; v[d]) for the probability of allocating item d and the payment, 
respectively, to buyer i when the reports on stage d are according to v[d] = (v(d)

1 , . . . , v(d)

k ) (where v(d)
j is the report of 

buyer j), and the history up until stage d is according to h[d−1] = (v(1)
1 , . . . , v(d−1)

k ). The number of variables is therefore 
O (k · D · |T |k · |V |k) = poly(D, |T |k+1).

6 For example, a natural way to encode this correlation is to have a variable for the probability of each possible (allocation,payment) outcome, which 
leads to exponentially many variables.
12
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• Objective: Our objective is to maximize expected revenue, which can be expressed in our variables as

R =
D∑

d=1

∑
h[d−1]

∑
v[d]

Pr[h[d−1], v[d]]
k∑

i=1

pd
i (h

[d−1]; v[d]).

Notice is that Pr[h[d−1], v[d]] can be easily computed from our input. It is the product over buyers i of Pr[v(1)
i , . . . , v(d)

i ]; 
the latter term can be calculated by summing up the probabilities of all possible (at most |T | of them) futures for buyer 
i.

• Feasibility: We need to ensure that we are not over-allocating any item, i.e. allocating an item with probability more 
than 1.

∀d ∈ [D],h[d−1], v[d] :
k∑

i=1

xd
i (h

[d−1]; v[d]) ≤ 1.

The number of constraints is O (D · |T |k · |V |k) = O (D|T |k+1).
• Stage-wise ex-post IR: The stage utility should be non-negative for any buyer i, all stages d, histories h[d−1] , valuations 

v[d]:

∀i ∈ [k],d ∈ [D],h[d−1], v[d] : v(d)
i xd

i (h
[d−1]; v[d]) − pd

i (h
[d−1]; v[d]) ≥ 0.

The number of constraints is O (k · D · |T |k · |V |k) = O (kD|T |k+1).
• Incentive compatibility: In order to express D-DIC compactly, we introduce the following intermediate variables. Let 

Ui(d + 1; h[d−1], ̄h[d−1]
i , v(d)

i , v[d]:[D]
−i , t) be the expected utility of buyer i from participating in the mechanisms in stages 

d + 1 through D , when the public history up until stage d is h[d−1] , buyer i’s private history is h̄[d−1]
i , the stage d report 

for buyer i is v(d)
i , the other agents’ stage d and future reports are according to v[d]:[D]

−i , and buyer i’s true stage d type 
is t . The number of these variables is O (k · D · |T |k · |T | · |V | · |T |k−1 · |V |), thus the total number of variables remains 
polynomial in the size of the input for a constant k. Furthermore, as we’ve already discussed, the future expected utility 
can be easily calculated. Thus, we can recursively define Ui(d +1; h[d−1], ̄h[d−1]

i , v(d)
i , v[d]:[D]

−i , t) as follows (and we define 
Ui(D + 1; .) = Ui(D + 2; .) = 0 for all i to make the recursion easier to write):

Ui(d + 1;h[d−1], h̄[d−1]
i , v(d)

i , v[d]:[D]
−i , t) =

∑
v(d+1)

i

P r[v(d+1)
i |h̄[d−1]

i , t]·

(
v(d+1)

i xd+1
i ([h[d−1], v(d)

i , v(d)
−i ]; [v(d+1)

i , v(d+1)
−i ]) − pd+1

i ([h[d−1], v(d)
i , v(d)

−i ]; [v(d+1)
i , v(d+1)

−i ])
+Ui(d + 2; [h[d−1], v(d)

i , v(d)
−i ], h̄[d]

i , v(d+1)
i , v[d+1]:[D]

−i , v(d+1)
i )

)
.

Writing our DIC constraints is now much simpler. Specifically, for the case of D-DIC, we have that for all stages d ∈ [D], 
buyers i ∈ [k], histories up until stage d h[d−1] and h̄[d−1]

i , possible true values v , misreports v̂ for buyer i, and all 
possible stage d and future valuations for the remaining buyers v[d]:[D]

−i :

v · xd
i (h

[d−1]; [v, v(d)
−i ]) − pd

i (h
[d−1]; [v, v(d)

−i ]) + Ui(d + 1;h[d−1], h̄[d−1]
i , v, v[d]:[D]

−i , v) ≥
v · xd

i (h
[d−1]; [v̂, v(d)

−i ]) − pd
i (h

[d−1]; [v̂, v(d)
−i ]) + Ui(d + 1;h[d−1], h̄[d−1]

i , v̂, v[d]:[D]
−i , v).

The number of constraints is O (D · k · |T |k+2 · |V |2 · |T |k−1) = O (Dk|T |2k+3).

Given a solution to this LP, we can implement a mechanism as follows. On the first stage the mechanism elicits reports 
v[1] for the first stage item, and allocates the item to buyer i with probability x1

i (v[1]); if the item is allocated to i, her 
payment is p1

i (v[1])/x1
i (v[1]), which as we’ve already argued is non-negative, and if the item is not allocated, the payment 

is zero. In the second stage reports v[2] are submitted to the mechanism, and the mechanism allocates to buyer i with 
probability x2

i (v[1]; v[2]); if the item is allocated the payment is p2
i (v[1]; v[2])/x2

i (v[1]; v[2]), and so on. The probability of 
allocating an item is at most 1 by the feasibility constraints. Similarly, incentive compatibility is satisfied via a similar 
argument.

We note that we do not have variables for histories outside the support, but we can easily handle such deviations (while 
maintaining feasibility, truthfulness and ex-post IR) as follows. First solve the LP as is to get a mechanism M; then, at 
runtime, if the report of buyer i at some stage is outside the support, “pretend” that the buyer reported the lowest value in 
her support. Importantly, we now have a valid history as an input to the future allocation variables. Call this mechanism M ′; 
notice that M ′ remains truthful (deviating outside the support is the same as deviating to the lowest value in the support), 
13
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and ex-post IR (if the buyer does get the item, the payment is at most the lowest value, which is a lower bound on her real 
value).

Given a D-DIC and ex-post IR mechanism M we now show that there is a corresponding feasible solution to our LP. In full 
generality, in stage d elicits reports v[d] , and depending on the history and outcomes h[d], ω[d] so far draws an (allocation, 
payment) pair from some set �d,h[d],ω[d],v[d] , i.e. with some probability Pr[θ] outputs the outcome θ ∈ �d,h[d],ω[d],v[d] that 
allocated the item to buyer i and charges her p ≤ v(d)

i . We can then easily write variables that are a feasible solution to 
the above LP: xd

i (h
[d] : v[d]) = ∑

θ∈�d,h[d],ω[d],v[d] :θ=(i,.) Pr[θ], and pd
i (h

[d] : v[d]) = ∑
θ∈�d,h[d],ω[d],v[d] :θ=(i,p) p · Pr[θ]. It is easy to 

check that all the LP constraints are satisfied, and the revenue of M is exactly the value of R for the feasible solution we 
described. �

For B-DIC we have the exact same statement:

Theorem 8. For any number of stages D, and a constant number of independent buyers k, the optimal, adaptive, randomized B-DIC 
mechanism can be found in time poly(D, |T |2k+3).

The only difference in the LP itself is the incentive compatibility constraints. For D-DIC we had

vxd
i (h

[d−1]; [v, v(d)
−i ]) − pd

i (h
[d−1]; [v, v(d)

−i ]) + Ui(d + 1;h[d−1], h̄[d−1]
i , v, v[d]:[D]

−i , v) ≥
vxd

i (h
[d−1]; [v̂, v(d)

−i ]) − pd
i (h

[d−1]; [v̂, v(d)
−i ]) + Ui(d + 1;h[d−1], h̄[d−1]

i , v̂, v[d]:[D]
−i , v).

For B-DIC, we simply take an expectation over v[d]:[D]
−i , an operation that we can afford computationally (since it’s a sum 

of O (|T |k) terms). The proof of correctness remains virtually unchanged (noting that none of the arguments used D-DIC in 
a non-trivial way).

Finally, for on-path truthfulness, we only need to write incentive constraints whenever the public history matches the 
private history. However, we do also need to update the definition of the intermediate variable Ui(d + 1; h[d−1], ̄h[d−1]

i , v(d)
i ,

v[d]:[D]
−i , t) (the expected utility from stages d + 1 onward when the public history is h[d−1] , the private history is h̄[d−1]

i and 
the stage d report is v(d)

i for buyer i and the true stage d type is t , while other buyer’s reports are according to v[d]:[D]
−i ) to 

take into account the fact that an honest report in stage d + 1 might not maximize the stage utility after a lie in stage d. 
Instead, we should consider every possible misreport v̂(d+1)

i :

Ui(d + 1;h[d−1], h̄[d−1]
i , v(d)

i , v[d]:[D]
−i , t) ≥

∑
v(d+1)

i

P r[v(d+1)
i |h̄[d−1]

i , t]·

(
v(d+1)

i xd+1
i ([h[d−1], v(d)

i , v(d)
−i ]; [v̂(d+1)

i , v(d+1)
−i ]) − pd+1

i ([h[d−1], v(d)
i , v(d)

−i ]; [v̂(d+1)
i , v(d+1)

−i ])
+Ui(d + 2; [h[d−1], v(d)

i , v(d)
−i ], [h̄[d−1]

i , t], v̂(d+1)
i , v[d+1]:[D]

−i , v(d+1)
i )

)
.

The proof of correctness remains virtually unchanged.

6. Separations

In this section we focus again on the single buyer setting. So far, we have considered deterministic and randomized 
mechanisms. In this section we compare them in terms of the expected revenue generated, against each other and against 
two other benchmarks:

• the optimal non-adaptive mechanism — i.e. running an independent Myerson’s mechanism on each stage; and
• the optimal social welfare SW — the expected utility of the buyer from receiving both items for free.

The following is immediate:

Fact 9. For any distribution of valuations,

Rev (non-adaptive) ≤ Rev (deterministic) ≤ Rev (randomized) ≤ SW

But are these inequalities strict for some valuation distributions? And by how much?

Theorem 10. Let v∗ = maxv∈V (1)∪V (2) v be the maximal buyer’s valuation in any stage, and assume that all valuations are integral. 
Then in any two-stage mechanism, the maximum, over all mechanisms, ratio:
14
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• between SW and any of {Rev (non-adaptive) ,Rev (deterministic) ,Rev (randomized)} is exactly the harmonic number of v∗ , H v∗ =∑v∗
i=1 1/i;

• between either of {Rev (deterministic) ,Rev (randomized)} and Rev (non-adaptive) is at least � 
(

log1/2 v∗
)

(and at most 
O  (log v∗)); and

• between Rev (randomized) and Rev (deterministic) is at least � 
(

log1/3 v∗
)

(and at most O  (log v∗)).

Furthermore, even when the valuations on the different stages are independent, there exists a two-stage mechanism with ratio of 
� (log log v∗) between either of Rev (deterministic), Rev (randomized) and Rev (non-adaptive).

6.1. Warm up: revenue vs social welfare

To compare non-adaptive mechanisms to optimal social welfare, we can assume without loss of generality that the 
mechanism occurs in a single stage.

Lemma 11. Let v∗ be the maximal buyer’s valuation, and assume that all valuations are integral. For a single stage mechanism, the 
maximum ratio between SW and Rev (non-adaptive) is at least log

(
v∗)

2 .

Proof. Suppose that the buyer has valuation 2 with probability 1/2, 4 with probability 1/4, etc. until 2n with probability 
2−n (and 0 also with probability 2−n), i.e. a truncated equal revenue distribution. The expected social welfare is SW =∑n

i=1 2−i · 2i = n. For any choice of price 2k chosen by the non-adaptive mechanism, the expected revenue is

Rev (non-adaptive) = 2k ·
n∑

i=k

2−i < 2.

The lemma follows by noticing that v∗ = 2n . �
The construction above is extremely useful in proving such lower bounds. In fact it is also used in our NP-hardness 

result. The distribution used is approximately the well known equal-revenue distribution. To unify our notation we refer to 
it as pow2 [1,n]. In general:

Definition 12. We say that v ∼ c · pow2 [a,b] if v = c · 2a+i with probability 2−i−1 for all i ∈ [b − a], and v = 0 with proba-
bility 2a−b−1. Note in particular that the expectation is

E [pow2 [a,b]] = 2a−1 (b − a + 1) .

We conclude this introductory subsection by proving a tight version of the above proposition, namely

Lemma 13. Let v∗ be the maximal buyer’s valuation, and assume that all valuations are integral. The maximum, over all single stage 
mechanisms, ratio between SW and Rev (non-adaptive) is exactly the harmonic number of v∗.

Proof.

SW =
v∗∑

t=1

t Pr [v = t] =
v∗∑

t=1

t (Pr [v ≥ t] − Pr [v ≥ t + 1]) =
v∗∑

t=1

Pr [v ≥ t]

=
v∗∑

t=1

Rev (p = t)

t
≤

v∗∑
t=1

Rev (non-adaptive)

t
= Rev (non-adaptive) · H v∗

where Rev (p = t) denotes the expected revenue from charging t . Finally, note that the inequality can be made tight by 
setting Pr [v ≤ t] = 1

t for all 1 ≤ t ≤ v∗ . �
In a single stage setting, the optimal randomized mechanism does not achieve more revenue than a posted price; there-

fore the same bound immediately holds for adaptive deterministic and randomized mechanisms.

Corollary 14. Let v∗ be the maximal buyer’s valuation, and assume that valuations are integral. The maximum, over all single stage 
mechanisms, ratio between SW and any of {Rev (non-adaptive) ,Rev (deterministic) ,Rev (randomized)} is exactly the harmonic num-
ber of v∗ .
15
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6.2. Independent valuations

Surprisingly, as we saw in the introduction, adaptive mechanisms achieve a higher revenue even when the valuations on 
the different stages are independent. Here, we show that large gaps exist even between deterministic adaptive mechanisms 
and non-adaptive mechanisms.

Lemma 15. Let v∗ be the maximal buyer’s valuation and assume that valuations are integral. For a two-stage mechanism, the ratio 
between Rev (deterministic) and Rev (non-adaptive) can be as large as 

(
log log v∗)

4 , even when the valuations on each stage are 
independent.

Proof. Let N = 2n . Let the valuation the first stage be distributed as v(1) ∼ pow2 [1,n], and on the second stage v(2) ∼
pow2 [1, N]. As we have already seen in the introduction, the optimal revenue for running two separate fixed-price mecha-
nisms is a small constant. Specifically, Rev (non-adaptive) < 4.

What about deterministic adaptive mechanisms? The same idea works, except that in the deterministic case, the seller 
punishes the buyer for lower bids by charging higher prices on the second stage.

On the first stage, the deterministic adaptive mechanism will charge the buyer almost her full reported value v(1) −(
2 − 2−v(1)

)
. If the first stage report is v(1) , on the second stage, we offer the item for a price of p(2)

(
v(1)

) = 2N−v(1)
. The 

buyer’s expected utility from the second stage is now exactly

∑
i : 2i≥p(2)

(
v(1)

) 2−i
(

2i − p(2)
(

v(1)
))

= v(1) −
∑

i : 2i≥p(2)
(

v(1)
) 2−i p(2)

(
v(1)

)

= v(1) −
∑

0≤i≤v(1)−1

2−i

= v(1) −
(

2 − 2−v(1)
)

Once again, the buyer’s expected utility on the second stage exactly covers the price on the first stage, which guarantees 
that this mechanism satisfies IC.

Finally, note the expected revenue is almost as large as the expected valuation on the first stage Rev (deterministic) >

n − 2. �
6.3. Stronger adaptivity gaps for correlated valuations

When the valuations are correlated, we can show stronger adaptivity gaps.

Lemma 16. Let v∗ be the maximal buyer’s valuation and assume that valuations are integral. For a two-stage mechanism, the ratio 
between Rev (deterministic) and Rev (non-adaptive) can be as large as 

√
log v∗/4.

Proof. Again, let the first-stage valuation be distributed v(1) ∼ pow2 [1,n]. The second-stage valuation v(2) will be condi-
tioned on the first stage: v(2) | v(1) ∼ (

v(1)/n
) · pow2

[
1,n2

]
.

We already saw that the non-adaptive policy’s revenue on the first stage is less than 2. What is the optimal price for the 
second stage? To answer this question we must consider the marginal distribution of the second stage:

Pr
[

v(2) = 2l/n
]

=
∑
k∈[n]

Pr
[

v(1) = 2k/n
]

Pr
[

v(2) = 2l | v(1) = 2k
]

≤
∑
k∈[n]

2−k2k−l = n · 2−l

Therefore, Pr
[
v(2) ≥ 2l/n

] ≤ n · 21−l , which implies Rev (non-adaptive) < 4.
Now, consider the randomized mechanism that on the first stage charges the buyer v(1) = 2k (and allocates the item), 

and on the second stage allocates the item for free with probability k/n. When the buyer’s true valuation on the first stage 
is 2k , her the expected utility from reporting 2l is given by

U
(

2k,2l
)

= (l/n)E
[

v(2) | v(1) = 2k
]
− 2l = l · 2k − 2l ,

which is maximized by l ∈ {k,k + 1}. The expected revenue from this randomized mechanism is again n.
Similarly, a deterministic mechanism can charge v(1) = 2k on the first stage, and offer the item on the second stage for 

price p(2)
(
2k

) = 2n2−nk/n
16
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U
(

2k,2l
)

=
∑

i : 2k+i/n≥p(2)
(
2l

) 2−i
(

2k+i/n − p(2)
(

2l
))

− 2l

=
(

l − k

n

)
2k −

∑
i : 2k+i/n≥p(2)

(
2l

) 2−i · p(2)
(

2l
)

− 2l

=
(

l − k

n

)
2k −

∑
0≤i≤nl+k−1

2−i
(

2k/n
)

− 2l

=
(

l − k

n

)
2k −

(
2 − 2−(nl+k)

)(
2k/n

)
− 2l

=
(

l + 2−(nl+k)

n

)
2k − 2l −

(
k + 2

n
· 2k

)

The second line follows because there are nl − k i’s for which i : 2k+i/n ≥ p(2)
(
2l

)
. Notice that indeed, 

(
l + 2−(nl+k)

n

)
2k − 2l

is maximized at l = k. �
6.4. Deterministic vs randomized mechanisms

Naturally, one would expect that deterministic and randomized mechanisms yield different revenues because we can 
optimize the latter in polynomial time, while optimizing over deterministic mechanisms is NP-hard. In this subsection we 
show that randomized mechanisms can in fact yield much more revenue.

Lemma 17. Let v∗ be the maximal buyer’s valuation, and assume that all valuations are integral. For a two-stage mechanism, the ratio 

between Rev (randomized) and Rev (deterministic) can be as large as 
(
log v∗)1/3

7 .

Our proof builds on the constructions in the proof of Lemma 16. A key observation is that by modifying the parameters 
for the second stage distribution, we can shift the prices without changing the expected utility. Choosing those parameters 
based on the valuation in the first stage, will allow us to break the deterministic seller’s strategy, without changing the 
revenue of the randomized mechanism.

Proof. Let v(1) ∼ pow2 [1,n]. For type i with value 2i on the first stage, the valuation on the second stage will be 0 with 

probability 1 −2−2n2 i . The remaining 2−2n2 i will be distributed according to 2

(
2n2+1

)
i

n pow2

[
1,n2

]
. For any i ∈ [n], let V (2)

i \{0}
be the set of nonzero feasible valuations on the second stage, conditioned on valuation 2i on the first stage. Notice that for 
any i < j, all the values in V (2)

i \ {0} are much smaller than all the values in V (2)
j \ {0}.

The randomized mechanism, again charges full price v(1) = 2k on the first stage, and gives the item for free on the 
second stage, with probability k/n. The buyer’s utility from reporting 2l is:

U
(

2k,2l
)

= (l/n)E
[

v(2) | 2k
]
− 2l = l · 2k − 2l ,

which is maximized by l ∈ {k,k + 1}. The expected revenue from this randomized mechanism is again n.
What about the deterministic seller? Given any deterministic mechanism, let k∗ be the minimal k for which a buyer with 

first-stage valuation 2k has a nonzero probability of affording both items. In other words, after declaring valuation 2k∗
for 

the first stage, her second-stage price is at most p(2)
(

2k∗) ≤ 2

(
2n2+1

)
k∗+1

n < 22n2(
k∗+1/2

)
.

Assume that the buyer has valuation v(1) = 2l > 2k∗
. If she deviates and declare type 2k∗

, she receives the first item, and 
she also receives the second time whenever she has nonzero valuation. On the second stage, she pays less than 22n2

(
k∗+1/2

)
with probability 2−2n2l ≤ 2−2n2

(
k∗+1

)
. Therefore her expected pay on the second stage has a negligible expected cost (less 

than 2−n2
). On the first stage, her price cannot be greater than 2k∗

. The total expected payment made by the buyer with 
v(1) = 2l > 2k∗

is bounded by 2k∗ + 2−n2
. Summing over the probabilities of having first-stage valuation v(1) = 2l > 2k∗

, this 
is still less than 1.

Consider all the types whose first-stage valuations are lower than 2k∗
, and yet they receive the first item. Since they can 

never afford the second item, on the first stage they must all be charged the same price, thus yielding a total revenue less 
than 2. Similarly, the types for which the first-stage item is not allocated, must all be charged the same price on the second 
stage. Finally, by IR constraints the expected revenue from v(1) = 2k∗

is at most 2. Therefore, the total expected revenue is 
less than 7. �
17
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Table A.2
Cumulative distributions.

Type 0 → Ci Ci → Di Di → Ci+1 D j−1 → C j C j → D j
2k Dn+1 →
2k+1 Dn+1

F̄ i hi
hi
γ

hi
γ 2

1−ε(2− 1
γ )

1−ε
h j−1

γ 2 (2 − 1
γ )h j hn+1

2k+1γ

edge

1− ε
γ

1−ε
hi
γ 2

h j−1

γ 2 h j no edge

F̄∗ hi
hi
γ 2

h j−1

γ 2 h j h∗

7. Discussion and future work

In this paper we studied dynamic mechanisms with full commitment and limited commitment. When the seller can 
commit to a contract, we showed that computing the optimal deterministic mechanism for the simple two-stage case is an 
NP-hard problem, and identified some tractable special cases: independent stages, fixed first stage prices and constant first 
stage support. The optimal randomized mechanism can be computed via a linear program whose size is polynomial in the 
support of the type distribution, even when we consider multiple stages and multiple buyers. We also proved that when the 
seller cannot commit to a future contract (but has limited commitment power) we have a very different kind of obstacle to 
overcome: multiple communication rounds.

There are still many interesting directions to pursue. In the two-stage deterministic case, constant approximations might 
still be achievable in the general, NP-hard case (our current proof does not even establish APX-completeness). Also, there 
may be other tractable special cases. Our reduction constructs complicated second-stage distributions. For example, what 
if the valuation distribution is “affiliated” (higher first stage valuation implies higher second stage valuation)? Is this case 
tractable? And if so, can these results be extended to multiple stages and multiple buyers?

Another open question, from an algorithmic point of view, is relaxing the ex-post IR constraint. In the economics liter-
ature we have seen something similar in the work of Courty and Li (2000) where airplane tickets refunds are sold before 
the agents see their valuation for them, and refunds are allowed. Is the two-stage mechanism equivalently tractable in this 
case?

Regarding the limited commitment case, an interesting open problem is whether there exists an examples with arbitrarily 
many rounds of communication. Finally, can we quantify the revenue loss one occurs by restricting to a single round of 
communication?

Acknowledgments

We thank the guest editor, Brendan Lucier, and three anonymous referees for many helpful comments. Christos Pa-
padimitriou’s research was partially supported by NSF awards CCF1763970 and CCF1910700, and by a research contract 
with Softbank. Alexandros Psomas is supported by a Google Research Scholar Award. Aviad Rubinstein is supported by NSF 
CCF-1954927 and CCF-2112824, and a David and Lucile Packard Fellowship.

Appendix A. NP-hardness: finalizing the construction

One of the most important parameters in our construction is ri : we later prove that ri is the difference in expected 
revenue, conditioned on type ti , between pricing at (Bi, Ci), and pricing at (Ai, Di).

We set rn+1 = (An+1−P∗)(γ −1)

2γ 4(n+1) = �(n); the rest of ri ’s are defined recursively:

ri = γ 4ri+1 − (γ − 1)[ε(γ 3 − γ ) + γ ]. (A.1)

Notice that r1
rn+1

≤ γ 4(n+1) = �(1).

Let Ci =
γ

γ −1 ri−ε

hi
and Di = γ ri

(γ −1)hi
. Observe that with the recursive definition of ri (A.1) we can get a nice expression for 

the following difference:

Ci+1 − Di = γ 2 1 − ε

hi
.

The differences between pairs of special prices are summarized in Table A.3.
Finally, we want the contribution towards the revenue from each vertex in the independent set to be the same. To 

that end, we set r = ∑
1/ri = �(1), and weight the probability of observing each type ti by wi = r/ri . We set the total 

probability of observing any of the ti ’s to be p = ε
16nr = �(n−3).

Recall that the IC constraints depend on the integrals of the cumulative distribution functions. The values of the F̄ i ’s and 
F̄∗ in our construction are tailored to make sure that their integrals have the values described in Table A.4.

Claim 18. The integrals of the F̄ i ’s and F̄∗ have values as stated in the Table A.4.
18
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Table A.3
Differences between prices.

Bi − Ai Ai − Bi+1 An+1 − P∗ Di − Ci Ci+1 − Di Q ∗ − Dn+1

ε 1 − ε n2 + n − ε ε
hi

γ 2 · 1−ε
hi

(
28γ 4(n+1) − 1

)
Dn+1

Table A.4
Integrals of cumulative distributions.

Type Ci → Di Di → Ci+1 D j−1 → C j C j → D j Dn+1 → Q ∗

∫
F̄ i

ε
γ

1 − ε 1 − (2 − 1
γ )ε (2 − 1

γ )ε
An+1 − P∗

edge

1 − ε
γ 1 − ε ε no edge∫ D j

Ci
F̄ i = Bi − A j∫

F̄∗
ε 1 − ε 1 − ε ε An+1 − P∗∫ Q ∗

Ci
F̄∗ = Bi − P∗

Proof. Follows from multiplying the correct combination of entries of Table A.2 and Table A.3. �
This completes the construction of the instance of Two-stage Mechanism, starting from the instance of Independent Set. 
Notice that the numbers used are polynomial in the size of the input graph.

Appendix B. NP-hardness: soundness

Lemma 19. Let S be a maximum independent set in G. Then any IC and IR mechanism has expected revenue at most

(1 − p) Rev
(
t∗, P∗, Q ∗) + p

∑
i∈V

wi Rev(ti, Bi, Di) + pr |S| . (B.1)

B.1. Proof outline

We first show that charging the pair (P∗, Q ∗) maximizes the revenue that can be obtained from type t∗ (Claim 20), and 
that (Bi, Ci) yields the optimal revenue from type ti (Claim 21). Observe that even if we could charge the optimal prices 
from every type, our expected revenue would be (1 − p)Rev(t∗, P∗, Q ∗) + p 

∑
wi Rev(ti, Bi, Ci), which improves over (B.1)

by less than prn = ε/16. Intuitively, this means that any deviation that results in a loss of prn in terms of revenue, cannot 
compete with (B.1).

Next, we show (Claim 22) that if (i, j) ∈ E , then we cannot charge both ti and t j the optimal prices (Bi, Ci) and 
(

B j, C j
)
. 

In fact, we need a robust version of this statement: Specifically, for some small parameters ζ (1), ζ (2)
i (to be defined later), 

we show that we cannot charge both ti and t j prices in 
[

Bi − ζ (1), Bi
]×

[
Ci − ζ

(2)
i , Ci

]
and 

[
B j − ζ (1), B j

]×
[

C j − ζ
(2)
j , C j

]
, 

respectively.
What can we charge type ti instead? In Claim 23 we show that charging less than Ci would require us to either not sell 

the item on the first stage, or charge type t∗ less than the optimal price. On the former case, we would lose pwi · Bi > ε/16
revenue, and would immediately imply smaller revenue than (B.1). On the latter case, we can use the robustness of Claim 22; 
namely, we use the fact that we cannot charge i prices that are 

(
ζ (1), ζ

(2)
i

)
-close to (Bi, Ci). This will imply that we must 

change the prices for type t∗ by some ζ (1)∗ on the first stage or ζ (2)∗ on the second stage. In either case the lost revenue 
is again greater than what we could potentially gain over (B.1). Therefore, we must charge ti more than Ci on the second 
stage. Claim 24 shows that charging Di is the best option in this case.

Therefore an upper bound to the revenue we can make is the following: charge (Bi, Ci) for all i belonging to some 
independent set S ′ , and 

(
B j, D j

)
for all other j /∈ S ′ . (It is easy to see than in our construction even these prices won’t 

satisfy the IC constraints.) Now, the revenue given by these prices is:

(1 − p) Rev
(
t∗, P∗, Q ∗) + p

∑
i∈S ′

wi Rev (ti, Bi, Ci) + p
∑
j /∈S ′

w j Rev
(
t j, B j, D j

)
.

Notice that∑
i∈S ′

wi Rev (ti, Bi, Ci) ≤
∑
i∈S ′

wi (Rev (ti, Bi, Ci) − Rev (ti, Ai, Di) + Rev (ti, Bi, Di))

=
∑
i∈S ′

wi (ri + Rev (ti, Bi, Di)) .
19
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Therefore, the total expected revenue is

(1 − p) Rev
(
t∗, P∗, Q ∗) + pr|S ′| + p

∑
i∈S ′

wi Rev (ti, Bi, Di) + p
∑
j /∈S ′

w j Rev
(
t j, B j, D j

)
,

which is at most the expression in (B.1).

B.2. Preliminaries

We begin by setting our padding parameters: let ζ (1) = ε
4 , and for each i let ζ (2)

i = ε
4γ 2hi

. In particular, this implies that 

for every i, ζ (2)
i hi + ζ (1) < ε

2 < ε − ε′ . Next, let ζ (1)∗ = ε
8 , and ζ (2)∗ = ε

8h∗ . We now have that ζ (2)
i hiγ

2 = ζ (1) = ζ
(2)∗ h∗ + ζ

(1)∗ , 
which we will use later in the proof. Most importantly, recall that losing ε

8 from the revenue from type t∗, is equivalent to 
a loss of (1 − p) ε

8 > ε
16 from the total expected revenue, which immediately implies that the expected revenue is less than 

(B.1).

B.3. Optimality of (P∗, Q ∗)

We now prove that prices (P∗, Q ∗) maximize the revenue from type t∗ , in a robust sense:

Claim 20. Charging type t∗ prices (P∗, Q ∗) maximizes the revenue from that type. Furthermore, if p∗ < P∗ − ζ
(1)∗ or q∗ < Q ∗ − ζ

(2)∗ , 
then the revenue from type t∗ is lower than the maximal revenue by at least ζ (1)∗ or ζ (2)∗ h∗ , respectively.

Proof. Clearly, P∗ is the most that we can charge type t∗ on the first stage. It is left to show that Q ∗ maximizes the 
revenue on the second stage.

On the second stage, we have:

Rev(2)
(
t∗, Q ∗) = Q ∗h∗ > An+1 − P∗.

Recall that F̄∗ changes on Ci ’s and Di ’s, so those are the only candidates we should compare with Q ∗ . For any Ci , we have

Rev(2)
(
t∗, Ci

) = Cihiγ
2 <

γ 3ri

γ − 1
≤ γ 3r1

γ − 1
≤ γ 4(n+1)rn+1

γ − 1
= An+1 − P∗

2
.

Similarly, for Di ,

Rev(2)
(
t∗, Di

) = Dihi <
γ ri

γ − 1
<

An+1 − P∗

2
. �

B.4. Optimality of (Bi, Ci)

Similarly, we show that (Bi, Ci) maximize the revenue from type ti .

Claim 21. ∀x �= Ci Rev(2) (ti, Ci) > Rev(2) (ti, x).

Proof. Since F̄ i is constant for all x ≤ Ci , the claim for this domain follows trivially. We will prove that Rev(2) (ti, Ci) >

Rev(2) (ti, Di) and deduce from Claim 24 that the claim continues to holds for any other x.

Rev(2) (ti, Ci) = Ci · Fi (Ci) = γ

γ − 1
ri − ε = ri

γ − 1
+ ri − ε >

ri

γ − 1
= Rev(2) (ti, Di) . �

B.5. Condition on edges

Below we show that if there is an edge (i, j), then we cannot charge both ti and t j close to their optimal prices:

Claim 22. If (i, j) ∈ E then it cannot be that (pi,qi) ∈ [
Bi − ζ (1), Bi

] ×
[

Ci − ζ
(2)
i , Ci

]
and 

(
p j,q j

) ∈ [
B j − ζ (1), B j

] ×[
C j − ζ

(2)
j , C j

]
.

Proof. Without loss of generality, let i < j. Assume (towards contradiction) that the conclusion is false. Then we get 
∫ q j

qi
F̄ i <

pi − p j , which is a contradiction to the IC constraints for type ti :
20
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q j∫
qi

F̄ i =
Ci∫

qi

F̄ i +
C j∫

Ci

F̄ i +
q j∫

C j

F̄ i

≤
C j∫

Ci

F̄ i + ζ
(2)
i hi = j − i − ε + ε′ + ζ

(2)
i hi

< j − i − ζ (1)

= Bi − B j − ζ (1)

≤ pi − p j ,

where the third line follows by ζ (2)
i hi + ζ (1) < ε − ε′ . �

B.6. Restriction imposed by charging (P∗, Q ∗) for type t∗

The claim below essentially shows that we cannot go around the restriction on prices for neighbors by reducing the 
prices:

Claim 23. If p∗ > P∗ − ζ
(1)∗ and q∗ > Q ∗ − ζ

(2)∗ , then in any IC solution either:

• pi > Bi - note that this means that type ti cannot purchase the item on the first stage; or
• qi > Ci - note that this substantially decreases our revenue for type ti on the second stage; or
• pi ≥ Bi − ζ (1) and qi ≥ Ci − ζ

(2)
i .

Proof. The negation of the claim gives us two configurations: having pi ≤ Bi and qi < Ci − ζ
(2)
i , and having pi < Bi − ζ (1)

and qi ≤ Ci . We will show the claim is true by contradiction, i.e. both these configurations are violating.
Assume first that pi ≤ Bi and qi < Ci − ζ

(2)
i . Consider the IC constraint comparing t∗ ’s utility when telling the truth and 

when claiming that she is type ti :

q∗∫
qi

F̄∗ =
Ci∫

qi

F̄∗ +
Q ∗∫

Ci

F̄∗ +
q∗∫

Q ∗

F̄∗

>

Ci∫
Ci−ζ

(2)
i

F̄∗ +
Q ∗∫

Ci

F̄∗ +
Q ∗−ζ

(2)∗∫
Q ∗

F̄∗

=
Q ∗∫

Ci

F̄∗ + ζ
(2)
i

hi−1

γ 2
− ζ (2)∗ h∗

=
Q ∗∫

Ci

F̄∗ + ζ (1)∗ = Bi − P∗ + ζ (1)∗

≥ pi − p∗,

where the third line follows from ζ (2)
i

hi−1
γ 2 = ζ

(2)∗ h∗ + ζ
(1)∗ .

We now return to the other violating configuration, namely pi < Bi − ζ (1) and qi ≤ Ci . We now have

q∗∫
qi

F̄∗ =
Ci∫

qi

F̄∗ +
Q ∗∫

Ci

F̄∗ +
q∗∫

Q ∗

F̄∗

>

Ci∫
F̄∗ +

Q ∗∫
F̄∗ +

Q ∗−ζ
(2)∗∫

F̄∗

Ci Ci Q ∗

21
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=
Q ∗∫

Ci

F̄∗ − ζ (2)∗ h∗

=
Q ∗∫

Ci

F̄∗ − ζ (1) + ζ (1)∗ = Bi − ζ (1) − P∗ + ζ (1)∗

≥ pi − p∗,

where the third line follows from ζ (2)
i

hi−1
γ 2 = ζ

(2)∗ h∗ + ζ
(1)∗ . �

B.7. Optimality of (Bi, Di)

We now show that Di is the optimal price on the second stage for type ti , conditioned on charging more than Ci .

Claim 24. ∀y > Ci Rev(2) (ti, Di) ≥ Rev(2) (ti, y).

Proof. It is easy to see that the second stage revenue is maximal for one of the “special points” where Fi changes. At Di

we have:

Rev(2) (ti, Di) = Di · F̄ i (Di) = γ ri

(γ − 1)hi
· hi

γi
= ri

γ − 1
.

We now compare with each of type of special point:

• What happens if we set qi = Ci+1?

Rev(2) (ti, Ci+1) = Ci+1 · F̄ i (Ci+1)

≤
γ

γ −1 ri+1 − ε

hiγ −4
· hi

γ 2

(
1 − ε/γ

1 − ε

)

≤ γ 5ri+1

γ 2 (γ − 1)
(1 + 2ε)

= γ ri + (γ − 1)
[
ε

(
γ 4 − γ 2

) + γ 2
]

γ 2 (γ − 1)
(1 + 2ε)

≤ 1 + 2ε

γ (γ − 1)
ri +

[
ε

(
γ 2 − 1

)
+ 1

]
(1 + 2ε)

≤ γ

γ (γ − 1)
ri −

(
γ − (1 + 2ε)

γ (γ − 1)

)
ri +

[
ε

(
γ 2 − 1

)
+ 1

]
(1 + 2ε)

≤ ri

γ − 1
− ri

2γ
+

[
ε

(
γ 2 − 1

)
+ 1

]
(1 + 2ε) .

The equation in the second line follows from the recursive definition of ri ; the last inequality follows from γ > 1 + 4ε . 
Now, using that ri > 2γ

[
ε

(
γ 2 − 1

) + 1
]
(1 + 2ε) for all i, we have that Rev(2) (ti, Ci+1) < Rev(2) (ti, Di).

• What happens if we set qi = Di+1?

Rev(2) (ti, Di+1) = Di+1 · F̄ i (Di+1)

≤ γ ri+1

(γ − 1)hi+1
hi+1 (2 − 1/γ )

≤ ri+1

(γ − 1)
(2γ − 1)

= 2γ − 1

γ 3
· γ ri + (γ − 1)

[
ε

(
γ 4 − γ 2

) + γ 2
]

γ 2 (γ − 1)

≤ γ ri + (γ − 1)
[
ε

(
γ 4 − γ 2

) + γ 2
]

γ 2 (γ − 1)

≤ Rev(2) (ti, Di) ,
22
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where the last inequality follows from the analysis for Rev(2) (ti, Ci+1).
• What about the revenue when we charge Ci+2, Di+2? We reduce this case to what we already know about the revenue 

from type ti+1:
Observe that F̄ i (Ci+1) > F̄ i+1 (Ci+1), but F̄ i (Ci+2) < F̄ i+1 (Ci+2). Therefore,

Rev(2) (ti, Ci+2) < Rev(2) (ti+1, Ci+2) ≤ Rev(2) (ti+1, Ci+1) < Rev(2) (ti, Ci+1) .

A similar argument works for Di+2, and the claim follows by induction for all C j, D j .
• Finally, for points x > Dn+1, we will show that Rev(2) (tn, Dn+1) is greater than Rev(2) (tn, x), and the claim will follow 

for all i ≤ n by the previous argument (Recall that in the domain x > Dn+1, F̄ i is the same for all i.)
F̄n changes its values at points 2k Dn+1. We have:

Rev(2)
(

tn,2k Dn+1

)
= 2k Dn+1 · F̄n

(
2k Dn+1

)
= Dn+1hn+1

2γ
<

Dnhn

2γ
= Rev(2) (tn, Dn)

2
. �

B.8. Putting it all together

In Lemma 25 we saw that if there exists an independent set of size |S| there exists an IC and IR satisfying pricing which 
yields revenue

(1 − p)Rev(t∗, P∗, Q ∗) + p
∑
i∈V

wi Rev(ti, Ai, Di) + pr|S|.

In Lemma 19 we saw that any IC and IR satisfying pricing cannot yield more revenue than

(1 − p) Rev
(
t∗, P∗, Q ∗) + p

∑
i∈V

wi Rev(ti, Bi, Di) + pr |S| ,

where |S| is the size of the maximum independent set in G .
All that’s left is to show that a graph with maximum independent set of size |S| − 1 cannot yield revenue (1 −

p)Rev(t∗, P∗, Q ∗) + p 
∑

i∈V wi Rev(ti, Ai, Di) + pr|S|. To this end we need to show that,

(1 − p)Rev(t∗, P∗, Q ∗) + p
∑
i∈V

wi Rev(ti, Ai, Di) + pr|S| >

(1 − p)Rev(t∗, P∗, Q ∗) + p
∑
i∈V

wi Rev(ti, Bi, Di) + pr(|S| − 1),

or equivalently,

pr > p
∑
i∈V

wi(Rev(ti, Bi, Di) − Rev(ti, Ai, Di)) = p
∑
i∈V

wiε

⇐⇒ r >
∑
i∈V

rε

ri

⇐⇒ 1 >
∑
i∈V

ε

ri
,

which is true since ε = 1
n2 , and each ri = O (n). With this the reduction is complete.

Appendix C. NP-hardness: completeness

In this section we show that any independent set S in G corresponds to a feasible pricing in our mechanism: (Bi, Ci) for 
i ∈ S , (A j, D j) for j /∈ S , and (P∗, Q ∗) for type t∗ .

Lemma 25. Let S be an independent set of G. There exists a pricing for our mechanism that satisfies IC and IR and achieves revenue:

(1 − p)Rev(t∗, P∗, Q ∗) + p
∑
i∈V

wi Rev(ti, Ai, Di) + pr|S|

We first show that the IC constraints are satisfied between any pair of types ti and t j that are not both charged (Bi, Ci)

- edge or no edge in the graph (Claim 26). Then, we show that the IC constraints are satisfied between type t∗ and type ti , 
for any i ∈ [n] (Claim 27). Finally we prove that charging (Bi, Ci) and (B j, C j) does not violate the IC constraints if there is 
no (i, j) edge in the graph (Claim 28).
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Claim 26. Charging types ti and t j , for j > i, doesn’t violate the IC constraints between ti and t j for any of the pairs (Bi, Ci)/(A j, D j), 
(Ai, Di)/(B j, C j) or (Ai, Di)/(A j, D j).

Proof. We need to show that all the following are always true:

1.

D j∫
Ci

F̄ i(x)dx ≥ Bi − A j ≥
D j∫

Ci

F̄ j(x)dx

2.
D j∫

Di

F̄ i(x)dx ≥ Ai − A j ≥
D j∫

Di

F̄ j(x)dx

3.
C j∫

Di

F̄ i(x)dx ≥ Ai − B j ≥
C j∫

Di

F̄ j(x)dx

It follows from Table A.4 that the left hand sides hold. For the right hand sides, first notice that F̄ j is always lower than 
F̄ i in the intervals we’re interested in. The first inequality is tight for F̄ i , thus 

∫ D j
Ci

F̄ j(x) ≤ Bi − A j . For (Ai, Di)/(B j, C j) and 
(Ai, Di)/(A j, D j) we will use induction:

• Basis j = i + 1:

Ci+1∫
Di

F̄ i+1(x)dx = (Ci+1 − Di)hi+1 = (Ci+1 − Di)
hi

γ 4

= 1 − ε

γ 2
< 1 − ε = Ai − Bi+1

And:

Di+1∫
Di

F̄ i+1(x)dx = (Ci+1 − Di)hi+1 + (Di+1 − Ci+1)
hi+1

γ

= 1 − ε

γ 2
+ ε

γ
< 1 = Ai − Ai+1

• For j we have the following:

C j∫
Di

F̄ j(x)dx ≤
D j−1∫
Di

F̄ j−1(x)dx +
C j∫

D j−1

F̄ j(x)dx

≤ (Ai − A j−1) + (A j−1 − B j) = Ai − B j

and

D j∫
Di

F̄ j(x)dx ≤
D j−1∫
Di

F̄ j−1(x)dx +
D j∫

D j−1

F̄ j(x)dx

≤ Ai − A j−1 + A j−1 − A j = Ai − A j �
Claim 27. When type t∗ is charged (P∗, Q ∗), charging ti the pair (Bi, Ci) or the pair (Ai, Di) doesn’t violate the IC constraints between 
ti and t∗ .
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Proof. The IC constraints between ti and t∗ are either

Q ∗∫
Ci

F̄ i(x)dx ≥ Bi − P∗ ≥
Q ∗∫

Ci

F̄∗(x)dx

or

Q ∗∫
Di

F̄ i(x)dx ≥ Ai − P∗ ≥
Q ∗∫

Di

F̄∗(x)dx

In both cases, the inequalities can be verified easily using Table A.4. �
Claim 28. If (i, j) /∈ E the charging type ti the pair (Bi, Ci) and type t j the pair (B j, C j) doesn’t violate the IC constraints between ti
and t j .

Proof. The IC constraint between ti and t j for this pricing is:

C j∫
Ci

F̄ i(x)dx ≥ Bi − B j ≥
C j∫

Ci

F̄ j(x)dx

• j = i + 1: 
∫ Ci+1

Ci
F̄ i(x)dx = ∫ Di

Ci
F̄ i(x)dx + ∫ Ci+1

Di
F̄ i(x)dx. The first term is equal to ε

γ , and when there is no (i, i + 1) edge, 
the second term is equal to 1 − ε

γ , thus the left hand side is immediate. The right hand side is satisfied trivially, since 
F̄ i+1 is always below F̄ i between Ci and Ci+1 and F̄ i gives a tight constraint.

• j > i + 1: Again, 
∫ C j

Ci
F̄ i(x)dx = ∫ D j−1

Ci
F̄ i(x)dx + ∫ C j

D j−1
F̄ i(x)dx. From Table A.4 we can see that the first term is always 

j − 1 − i + ε , and the second term is 1 − ε when (i, j) /∈ E .

For the right hand side we have 
∫ C j

Di
F̄ j(x)dx ≤ Ai − B j from Claim 26. Since F̄ j is below F̄ i between Ci and Di , and ∫ Di

Ci
F̄ i(x)dx = ε

γ < ε we get that:

C j∫
Ci

F̄ j(x)dx =
Di∫

Ci

F̄ j(x)dx +
C j∫

Di

F̄ j(x)dx

<

Di∫
Ci

F̄ i(x)dx + Ai − B j

< ε + Ai − B j = Bi − B j �
Appendix D. Given first-stage prices, deterministic mechanisms are easy

Here we include a proof of Theorem 4.

Theorem 4. If the prices in the first stage are fixed, then the optimum deterministic mechanism can be approximated by an FPTAS.

This result shows us something very important about the structure of hard instances and what a possible reduction can 
look like: the mechanism gadgets cannot have fixed prices for one of the two stages; variation on both stages is required.

Proof. Our problem is to find optimal second stage prices, when we have committed to charging every first stage type ti , 
i ∈ [n], a payment of pi in the first stage. For now, assume that all types are allocated the item on the first stage (this fact 
will not be used in a crucial way, and an almost identical algorithm works). A first question is whether there even exist 
second stage prices that do not violate the IC constraints. Then, if there exist such prices, how would we optimize over 
them in order to maximize the seller’s revenue? As it turns out, these sub-problems are easy; we can construct an FPTAS 
using an integer program.

It will be useful to think about the incentive constraints as follows: given first stage prices pi , p j and a second stage 
price qi the incentive constraints between types ti and t j give a certain interval in which q j is allowed to be. Specifically, 
for pi > p j , we can define a lower bound lbi, j(pi, p j, qi) and an upper bound ubi, j(pi, p j, qi) for q j as follows:
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lbi, j(pi, p j,qi) = minq∈[qi ,qmax]{
q∫

qi

F̄ i(x)dx ≥ pi − p j},

ubi, j(pi, p j,qi) = maxq∈[qi ,qmax]{
q∫

qi

F̄ j(x)dx ≤ pi − p j},

where qmax is the maximum value in the support of V (2) . The integer program works as follows: first discretize the second 
stage, i.e. we only consider prices of the form kε for some ε > 0 and k ∈ [m], where m is an integer large enough so that 
ε · m is larger than the maximum value in the support of V (2) . We have a binary variable xk

i for each type ti and price kε , 
such that if xk

i = 1 the second stage price is greater than kε . Also, we have a constant ak
i for the revenue of charging type ti

price kε (ak
i is easily calculated from the input distribution). Since pi and p j are given, we simply write lbi, j(k) and ubi, j(k). 

The integer program is as follows:

max
∑

i∈[n]
∑

k∈[m] xk
i (a

k
i − ak−1

i )

subject to xk
i ≤ x

lbi j(k)

j ∀i, j ∈ [n],k ∈ [m]
x

ubij(k)+1
j ≤ xk+1

i ∀i, j ∈ [n],k ∈ [m − 1]
xk

i ≤ xk−1
i ∀i ∈ [n],k = 1, . . . ,m

xk
i ∈ {0,1} ∀i ∈ [n],k ∈ [m]

The first two constraints encode incentive compatibility, by guaranteeing that q j ∈ [lbi j(qi), ubij(qi)] for all i, j: (1) if i is 
charged at least kε , then j is charged at least lbi j(k), (2) if j is charged at least ubij(k), then i is charged at least kε (or, 
equivalently, if i is charged at most kε , then j is charged at most ubij(k)). The third constraint simply encodes that xk

i is 
non-increasing.

Observe that the constraints matrix is totally unimodular: every entry is 0, +1 or −1, and every row has at most two 
non-zero entries with different signs (Papadimitriou and Steiglitz, 1982). Thus the relaxation gives us an integer solution 
(Papadimitriou and Steiglitz, 1982). �
Appendix E. Deterministic mechanisms with independent stages

Theorem 6. If the stages are independent, the optimum deterministic mechanism can be computed in polynomial time.

As we observed in Section 6, the two-stage optimal deterministic mechanism can be rather bizarre, even when the distri-
butions are independent. Nonetheless, we show below that when the distributions are independent, the optimal mechanism 
satisfies some strong structural properties, which in turn significantly reduce our search space.

The curious reader might be wondering whether the promised utility framework, originally introduced by Green (1987), 
Spear and Srivastava (1987), Thomas and Worrall (1990), can help us resolve this question. This framework provides an 
approach for designing mechanisms that are dynamic incentive compatible when values are independent over time (this 
approach is complex in the presence of history dependence (Fernandes and Phelan, 2000)). The approach typically involves 
solving the problem recursively via a dynamic program, and typically the state space grows exponentially (in the input, e.g. 
number of stages and number of buyers). This so-called curse of dimensionality has no bite here, since we only consider a 
single buyer and two stages. Part of our analysis here is “forward-looking” (the optimal choice for period 1 is taken, given 
a choice for period 2), similar to the promised utility framework, therefore, even though we are not aware of a general way 
to use this framework to get optimal deterministic mechanisms, we cannot rule out the possibility that this approach can be 
used here as well.

Going back to the proof of Theorem 6, we should first decide who gets the item on the first stage.

Claim 29 (First-stage allocation monotonicity). There exist an optimum mechanism such that vi > v j =⇒ x1(ti) ≥ x1(t j).

Proof. Assume that is not the case, and there exist i and j, vi > v j , such that if the buyer reports t j on the first stage she 
is allocated the item for a payment of p j and a second stage promised price q j , but if she reports ti , she is not allocated the 
item in the first stage, and is promised a second stage price qi . A buyer with type t j doesn’t want to report ti , thus v j − p j +
E v2∼D2 [max{v2 −q j, 0}] ≥ E v2∼D2 [max{v2 −qi, 0}]. Similarly, type ti doesn’t want to report t j , thus E v2∼D2 [max{v2 −qi, 0}] ≥
vi − p j + E v2∼D2 [max{v2 − q j, 0}]. The two inequalities imply that v j ≥ vi , a contradiction. �

Henceforth we say that ti is a winning type if x1(ti) = 1 and losing otherwise. There are n + 1 possible first stage 
allocations: no one gets the item, only the highest type gets the item, the highest two types get the item, and so on. Our 
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algorithm tries all of them. Therefore, our problem is reduced to finding the optimal mechanism for a given subset of losing 
types.

Observe that our IC constraints between winning types ti, t j reduce to:

p(ti) − p(t j) =
q(t j)∫

q(ti)

F̄ (x)dx. (E.1)

Having a tight equality means that if we know three of 
{

p(ti), p(t j), q(ti), q(t j)
}

, we can immediately compute the 
fourth. The IC constraints between a winning ti and a losing t j are:

v j − p(ti) ≤
q(ti)∫

q(t j)

F̄ (x)dx ≤ ti − p(ti). (E.2)

The following observation is immediate from the IC constraints, and it will be useful in proving the rest of the structural 
claims:

Observation 30. Take any truthful mechanism, and change the prices only for type ti , such that the utility for type ti does not change. 
Then the mechanism remains truthful.

Now, finding two of the three unknown prices becomes much easier thanks to the following claim:

Claim 31. There exist an optimum mechanism that satisfies Claim 29, and such that for any winning type ti either: p(ti) = vi ; or 
q(ti) = 0.

Proof. Let qnext be the maximum point in the support of the second stage distribution such that qnext < q(ti), if such a point 
exists, and 0 otherwise. Suppose that for any ε > 0, p(ti) ≤ vi − ε and q(ti) ≥ qnext + ε/ F̄ (qnext). Then we can increase p(ti)

by ε , and decrease q(ti) by ε/ F̄ (qnext). First, prices remain non-negative. Second, the expected utility of type ti remains 
the same: the first stage utility decreases by ε , and the second stage expected utility increases by ε/ F̄ (qnext) · Pr[v(2) ≥
q(ti) − ε/ F̄ (qnext)] = ε (where we used the fact that F̄ (qnext) = Pr[v(2) ≥ qnext] = Pr[v(2) ≥ x], for all x ∈ [qnext, q(ti)], since 
q(ti) is not on the support of the second stage). Thus, truthfulness is preserved by Observation 30. Finally, the expected 
payment of type ti does not decrease, so expected revenue does not decrease. �

Essentially the same argument also proves monotonicity for the first-stage prices.

Claim 32 (First-stage price monotonicity). There exists an optimum mechanism that satisfies Claims 29-31, and such that if ti and t j
are both winning, then vi > v j =⇒ p(ti) ≥ p(t j).

Proof. Similar to Claim 31, if p(ti) < p(t j) we can increase p(ti) and decrease q(ti). The latter is nonzero by (E.1). �
Observe that Claim 32 implies that if q(ti) = 0 for some winning type, then for all (winning types) t j > ti , p(t j) = p(ti)

(since we cannot offer a lower price for the second stage). Building on the price monotonicity, we can therefore use another 
brute-force/enumeration step to further reduce our problem to the case where we know which winning types have p(ti) =
vi and which have q(ti) = 0. Thus, we can assume we know one of the prices for every winning type; we just need to find 
the other price for one of them. In the following claim we show how to solve the problem exactly using the fact that some 
of the second-stage prices actually lie on the support of the distribution.

Claim 33. In every optimum mechanism, at least two of the following three conditions are satisfied:

• there exists a winning type ti such that q(ti) is on the support of the second-stage distribution (and it is nonzero);
• the second-stage price for all the losing types (observe that it is always the same for all of them), q(0), is on the support of the 

second-stage distribution;
• one of the constraints between a loser and a winner (E.2) is tight.

Proof. Our proof uses another gradual price increase argument. As long as neither of the first two conditions is satisfied, we 
can gradually increase the second-stage prices for all types simultaneously. Doing this with the right proportions maintains 
the IC constraints. Furthermore the revenue strictly increases: the prices increase, but as long as we don’t cross any price in 
the support, the probabilities of selling the item to each type remain the same.
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Once the losing (resp. one of the winning) type’s price hits the support, we can continue to increase the price for 
the winning (resp. losing) types as long as the IC constraints between losing and winning types are loose. Then, either 
the second stage price will hit the support, or the IC constraint will become tight, satisfying the second of the three 
conditions. �

Now, given any two of the three conditions in Claim 33, we can find the all the optimum prices in polynomial time. If 
the third condition is false, then we can enumerate to find a winning type and a losing type with prices in the support (that 
is, guess a winning type, and losing type, and two supported values as prices); then we can compute the induced prices for 
all other winning types using the IC constraints (E.1). If either of the two first conditions is false, then we can find optimum 
prices for one type (winning or losing), and then compute the remaining prices through all the tight IC constraints. This 
completes the proof of Theorem 6. �
Appendix F. Ex-post IR implies stage-wise ex-post IR

In this section we show how, given a mechanism that is ex-post IR, we can get a mechanism that is stage-wise ex-post 
IR, that remains truthful, and guarantees at least as much expected revenue.

Let M be an ex-post IR mechanism, that in each stage d takes as input the history of reported valuations h[d−1] , mech-
anism outcomes ω[d−1] and current reports v[d] , and outputs a distribution over outcomes, where outcome θ occurs with 
probability Pr[θ], allocates the item to buyer i, which we indicate by writing xi(h[d−1]; ω[d−1]; v[d]; θ) = 1, and charges 
pi(h[d−1]; ω[d−1]; v[d]; θ) (the mechanism is allowed to charge buyers that didn’t receive the item).

Let M ′ be the mechanism the same exact mechanism, with the only difference that the payment p′
i (h

[d−1]; ω[d−1]; v[d]; θ)

is equal v(d)
i if buyer i got the item, and zero otherwise, for all stages d = 1, . . . , D − 1. In the last stage, the allocation 

of M ′ remains the same as M , but the payment is instead p′
i(h

[D−1]; ω[D−1]; v[D]; θ) = ∑D
d=1 pi(h[d]; ω[d−1]; v[d]; ωd) −∑D−1

d=1 p′
i(h

[d]; ω[d−1]; v[d]; ωd), where we overload notation, and use h[d] (resp. ω[d] , v[d]) for the restriction of h[D−1] to the 
first d stages, and ωd is the outcome (some θ ) in stage d according to ω[D−1] .

By definition, the expected revenue of M and M ′ is the same: (part of) the payments in M simply get “pushed” to the 
last stage in all possible outcomes. Also, M ′ is clearly stage-wise ex-post IR for the first D − 1 stages. For the last stage, 
consider an outcome where buyer i gets the item (the case that buyer i doesn’t get the item is identical): the buyer’s utility 
is

v(D)
i −

D∑
d=1

pi(h
[d];ω[d−1]; v[d];ωd) +

D−1∑
d=1

p′
i(h

[d];ω[d−1]; v[d];ωd)

=
D∑

d=1

v(d)
i · I{i got item d according to ω[D]} −

D∑
d=1

pi(h
[d];ω[d−1]; v[d];ωd),

where I{.} is the indicator function. Notice that the RHS is precisely the ex-post utility of i in the last stage in M , according 
to ω[D−1] , h[D−1] and the outcome in the last stage, and thus it is non-negative.

Finally, for incentive compatibility, we show the single buyer case, for multiple buyers and D-DIC or B-DIC, the proof is 
identical. Consider the expected utility of the buyer in stage d, when her true value is v , public and private histories are 
h[d] and h̄[d]

i and outcomes are ω[d] . Since each stage utility is zero, her expected utility is just the expected utility of the 
last stage

E
h[d+1:D],ω[d+1:D]|h̄[d]

i
[v D xD(.; v) −

D∑
t=1

pt(.; v) +
D−1∑
t=1

p′
t(.; v)], (F.1)

where (1) we have shortened notation to pt(.; v) (resp. xt(.; v), p′
t(.; v)) to focus on a stage t and how the deviation in 

stage d affects it, and (2) xt(.; v) is the expected allocation in stage t (we again overload notation). When misreporting to 
v ′ , her expected utility is v · xd(.; v ′) − p′

d(.; v ′) from this stage (where xd(.; v ′) is the expected allocation in stage d when 
the report is v ′ , and p′

d(.; v ′) is the expected payment), zero in all stages d + 1 through D − 1 (since the buyer behaves 
truthfully then), plus E

h[d+1:D],ω[d+1:D]|h̄[d]
i

[v D xD(.; v ′) − ∑D
t=1 pt(.; v ′) + ∑D−1

t=1 p′
t(.; v ′)] from the last stage. We would like 

for equation (F.1) to be at least this expression. Since the terms p′
t(.; v) and p′

t(.; v ′), as well as pt(.; v) and pt(.; v ′), are 
identical for t ≤ d − 1 these terms cancel out. Furthermore, p′

t(.; k) = k · xt(.; k). We thus want to show that

E[
D∑

t=d

v(t)xt(.; v) −
D∑

t=d

pt(.; v)] ≥ vxd(.; v ′) +E[
D∑

t=d+1

v(t)xt(.; v ′) −
D∑

t=d

pt(.; v ′)],

or equivalently
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vxd(.; v) − pd(.; v) +E[
D∑

t=d+1

v(t)xt(.; v) −
D∑

t=d+1

pt(.; v)]

≥ vxd(.; v ′) − pd(.; v ′) +E[
D∑

t=d+1

v(t)xt(.; v ′) −
D∑

t=d+1

pt(.; v ′)],

where the d-th terms can be taken out of the expectation since the expectation is with respect to the events after stage d. 
Notice that this is the IC constraint for M and is therefore satisfied.
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