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Abstract

Pressurization of thin elastomeric membranes has been exploited as a key actuation mechanism in
soft robotics, leading to soft pneumatic actuators that can deform reversibly upon inflation and
deflation. The contact mechanics of an inflated membrane with another object underlies several
important functionalities of soft pneumatic actuators such as gripping, haptic feedback and
locomotion. Motivated by the technological relevance, we study the contact between an inflated
circular membrane consisting of incompressible neo-Hookean solid and a substrate that is: 1) flat
and rigid, ii) spherically curved and rigid, iii) flat and elastic, or iv) spherically curved and elastic.
By assuming that the contact interface is adhesionless and frictionless and that the membrane is
subjected to very large stretch ratios, we obtained approximate analytical solutions for the
membrane’s deformation profile as well as the relationship between the applied force,
displacement and contact radius. These solutions agree well with results of numerical simulations.
In particular, when the substrate is elastic, we obtained a dimensionless parameter ythat captures
the transition between two limiting cases, i.e., either the substrate or the inflated membrane is
effectively rigid relative to the other component and thus experiences negligible deformation upon
contact. The analytical solutions provided in this work can offer insights towards designing soft

pneumatic actuators with desired contact compliance.
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1. Introduction

Soft pneumatic actuators, consisting of highly stretchable elastomeric membranes with internal
fluidic channels, are capable of reversible large deformation upon inflation and deflation (Rus and
Tolley, 2015; Walker et al., 2020). Because of their compliance and deformation capability, soft
pneumatic actuators have been widely exploited in soft robotics to enable shape morphing (Rus
and Tolley, 2015; Sun et al., 2017), gripping (Guo et al., 2018; Shintake et al., 2018), haptic
feedback (Sonar et al., 2020; K. Song et al., 2019) and locomotion (Florez et al., 2014; Shepherd
et al., 2011). Many of these functionalities rely on the contact behaviors between soft pneumatic
actuators and other objects or surfaces. For example, contact compliance has been recognized as
an important property for robotic grippers. The contact between a hard gripper and a soft object
(e.g., biomedical implants) may lead to excessive deformation or even damage of the object, while
a soft gripper made of inflated elastomeric membrane can provide more conformal contact and
less concentrated contact pressure, and thus is more desirable in this scenario (Shintake et al., 2018;
Song and Sitti, 2014). Moreover, circular elastomeric membrane, when brought into contact with
the human skin upon inflation, can provide haptic feedback that is useful for wearable devices
(Sonar et al., 2020; K. Song et al., 2019) and rehabilitation (Shepherd et al., 2011; Yun et al., 2017).
Design for these applications requires an in-depth understanding on the contact mechanics of an
inflated membrane and another solid, either rigid or elastic. Although simulations based on the
Finite Element Method (FEM) have been widely applied to model the contact mechanics of
inflated pneumatic actuators (Drotman et al., 2017; Juhari et al., 2005; Li et al., 2014; Zhong et al.,
2021), such simulations may be computationally expensive due to the severe nonlinearity
associated with large deformation and contact. Analytical solutions, even if approximate, can be

useful by allowing quick estimates and efficient exploration of the parametric design space.

Motivated by the discussion above, we study the contact mechanics between an inflated
membrane and a substrate. To accommodate various application scenarios, we consider four types
of substrates: flat and rigid, spherically curved and rigid, flat and elastic, or spherically curved and
elastic. Specifically, we aim to obtain approximate, closed-form analytical solutions revealing
deformation profiles of the membrane upon contact, the relationship between the applied force,
displacement and contact radius, and how these results depend on system parameters such as the
internal pressure. This understanding can lead to guidelines on how to control the contact

compliance of inflated membranes. Because the membrane is typically thin and undergoes large
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stretch upon inflation, we adopt the nonlinear theory of hyperelastic membrane where bending is
neglected (Green and Adkins, 1960; Libai and Simmonds, 1998). The nonlinear membrane theory
has been extensively applied in the literature to solve problems involving free inflation of
membranes (Hassager et al., 1999; Yang and Feng, 1970; Patil and Dasgupta, 2013) and contact
of inflated membranes (Xu and Liechti, 2010; Liu et al., 2018; Liu et al., 2021). To put our work
into perspective, we highlight a number of references on the contact mechanics of inflated
membranes rather than presenting an exhaustive review. Feng and Yang (1973) studied the
frictionless contact of an inflated spherical membrane with two parallel rigid plates, which was
revisited by Liu et al. (2018) with more sophisticated friction conditions and experimental
characterization. In comparison to the spherical membrane, a more practically relevant loading
mode for soft gripper (Carlson et al., 2012; Song and Sitti, 2014) or haptic devices (Sonar et al.,
2020) is to pressurize an initially flat circular membrane fixed at its edge. The contact of such
inflated circular membrane with a rigid substrate was analyzed by Long et al. (2010) and
experimentally studied by Laprade et al. (2013). Patil et al. (2015) analyzed the contact between
an inflated circular membrane and a deformable substrate where they simplified the substrate to
be an elastic foundation (i.e., a layer of distributed linear springs). The approach of elastic
foundation has been applied to the contact problems involving inflated membrane and deformable
substrates in various geometries (Patil et al., 2014; Patil and DasGupta, 2015). All of these works
accounted for large deformation of the membrane, but had to resort to numerical solutions of the
nonlinear governing equations. Existing closed-form analytical solutions for the contact mechanics
of inflated circular membranes either required the assumption of small deflection and linear
membrane theory (Xu and Liechti, 2010) or relied on simplifications of the deformed geometry (S.
Song et al., 2017, 2019; Williams, 1997). Srivastava and Hui (2013) obtained an exact closed-form
solution for the frictionless contact between an inflated membrane with large deformation and a
rigid substrate, but this solution is for plane strain condition and does not apply to the circular
membrane. To the best of our knowledge, thus far there have not been analytical solutions for the
axisymmetric contact mechanics of inflated circular membranes, which is the central topic of this

work.

The paper is organized as follows. In Section 2, we first describe the geometry, material model
and parameters involved in the problem, and follow the approach of Foster (1967a) to obtain

general analytical solutions of the membrane under very large stretch. Section 3 presents the
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analytical solutions for the inflated membrane in contact with a rigid substrate, which can be either
flat or spherically curved. In Section 4, we extend the analytical solutions to consider the contact
between an inflated membrane and an elastic substrate, either flat or spherically curved.
Comparisons between the approximate analytical solutions and corresponding numerical

simulations are also presented. Conclusions are given in Section 5.

2. Analytical Model

2.1 Problem definition
b
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Figure 1 Geometry of the membrane contact problem. (a) Three-dimensional schematic of the
pressurized membrane in contact with a substrate. (b-d) The membrane in its (b) undeformed, (c)
pre-stretched, and (d) inflated configurations. £ is the arc length along the cross-sectional curve of
the deformed membrane (¢ = 0 at » = 0). The inset in (d) shows the top view of a membrane
element before and after the deformation.

We consider the contact between a probe of inflated circular membrane and a substrate, as
schematically illustrated in Fig.1a. The probe consists of a circular thin membrane with its edge
fixed to the end of a pressurization tube. The membrane has a thickness of 4 in the undeformed
configuration (Fig.1b). Axisymmetry allows us to focus on the 7-z plane of a cylindrical coordinate

system (r, ¢, z) with the origin located at the center of the circular membrane. The membrane is



first subjected to a uniform biaxial pre-stretch 4, and then fixed at its edge at » = b (Fig.1¢c). The
undeformed membrane radius is therefore b/Ao. A uniform pressure P is applied on the upper
surface of the membrane, and the inflated membrane is brought into contact with the substrate by
decreasing the vertical gap, d, between the pressurization tube and the substrate surface. Initially
when the inflated membrane and the substrate are in point contact, the gap is equal to the deflection
of the membrane’s apex under free inflation, denoted as do (> d). The contact displacement ¢ is
defined as the difference do — d, and the corresponding compressive force is denoted as F.
Motivated by the applications in haptic sensing, our goal is to obtain analytical solutions relating
F and J under a prescribed internal pressure P. In case the membrane contact is controlled by
varying the internal pressure P (Laprade et al., 2013; S. Song et al., 2017, 2019), one can readily

apply the solutions by treating the internal pressure P as the loading parameter.

To facilitate analysis, we make the following assumptions regarding the material and interface

models for the membrane and the substrate.

e The contact interface is assumed to be adhesionless and frictionless, i.e., we consider Hertzian
contact between the inflated membrane and the substrate.

e The membrane is so thin that its bending rigidity is negligible. Only stretching deformation
within the membrane is considered. The membrane material is assumed to follow the

incompressible neo-Hookean model with the following strain energy density function:
W:%(ﬁmjmﬁz—s), (1)

where i is the shear modulus of the membrane and A1, A2 and A3 are the principal stretches. Note
that incompressibility implies that the out-of-plane stretch A3 is related to the two in-plane principal

stretches A1 and A2 by A3 = 1/(A4i142).

Four cases of substrates are considered. In the first two cases (Section 3), the substrate is rigid,
but can be flat or spherically curved. In the other two cases (Section 4), the substrate is a linear
elastic solid with Young’s modulus Es and Poisson’s ratio v, and the substrate can still be flat or
spherically curved. Although we account for nonlinearity due to large stretch and deflection of the

membrane, we still assume linear elasticity for the substrate to apply the Hertz contact theory.

2.2 Large deformation of membrane



Large deformation of hyperelastic membrane has been extensively studied in the literature
(Libai and Simmonds, 1998). The equations for kinematics and equilibrium of the hyperelastic
membrane adopted in this work closely follow those in Long and Hui (2012). Here we briefly
summarize these equations. Deformation of the membrane brings a material point originally
located at (p, 0) to a new location at (r, z). Let £ be the longitudinal arc length of the deformed
membrane (see Fig.1d). Due to axisymmetry, the two principal stretches, denoted as A1 and A2, are

given by (see the inset of Fig.1d) (Long and Hui, 2012):

_4ds
A= @)
22:%, 3)

The principal stretch A1 is along the arc length & direction within the -z plane (i.e., the longitudinal
direction). The other principal stretch A2 is along the normal direction of the -z plane (i.e., the
latitudinal direction). The corresponding line tension (force/length) along the longitudinal and
latitudinal directions are defined as 71 and 72, respectively. Force balance of an arbitrary area

element in the membrane results in the following equilibrium equations (Long and Hui, 2012):

120, 3l _p 4
dé r

d(T,
( lr)ZY*Z’ (5)
dr

where @ is the angle between the longitudinal tangent of the deformed membrane and the r-axis

(see Fig.1d) and is determined by the following identity:

cos@zﬂ, siné?:f. (6)
dg

Note that eq. (4) is due to equilibrium along the normal direction of the membrane, where df /d¢
and sinf /r are the two principal curvatures associated with 77 and 72, respectively. Equation (5)
enforces the equilibrium along the longitudinal direction of the membrane. Using the
incompressible neo-Hookean model, we obtain the following relationship between the true line

tensions (i.e., 71, 72) and the principal stretches (41, A2) (Long and Hui, 2012):
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We adopt the approximation made by Foster (1967a) that under very large stretch, the term 173153

is negligible in comparison to A4, /A, or 1, /44, i.e.,
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Based on the kinematic, equilibrium and constitutive equations summarized above, one can

derive the following result (see Appendix A for details):

P’ (r2 +C )2

o
sin 0_4(,uj1h2r2+C2)’
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where C2 is an additional integration constant. The constants C1 and C2 need to be solved using
boundary conditions. Once these two constants are determined, the deformed profile of the

membrane, as manifested in the function z(), can be obtained by integrating dz/dr = tan®.

2.3 Free inflation

To demonstrate the utility of eq. (9), we first consider free inflation of the membrane (Fig. 1d).
This problem has been solved by Foster (1967b). For completeness, here we rewrite the solution
by Foster (1967b) in terms of our notations. The detailed derivation can be found in Appendix B.

The deformation profile of the membrane is a spherical cap given by

2

2 2
Z4 (Zlumhj _b2 +r2:(_2'umh_j , 0<r<b (10)
P P
The radius of the sphere is
2u h
R=—"—. 11
» (11)

The “£” sign in eq. (10) implies that there are two possible spherical cap solutions that share the
same radius R but are centered at different locations on the z-axis. The deflection at the apex of

the membrane due to free inflation, do, is given by
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As discussed in Appendix B, the membrane is subjected to equibaxial tension (i.e., 4; = A,) with
T, =T, = u h throughout the entire spherical portion of the inflated membrane. This conclusion

will be useful for the contact solutions in Sections 3 and 4.

2.4 Validation using numerical solutions

In a previous work, Long et al. (2010) presented numerical solutions for the large deformation
of an inflated circular membrane under free inflation or in contact with a flat and rigid substrate.
They cast eq. (2)-(6) into a system of ordinary differential equations using the undeformed radial
coordinate p (see Fig.1b) as the independent variable. We apply the method of Long et al. (2010)
to the neo-Hookean membrane and use the resulting numerical solution to validate the analytical
solutions. Since the numerical solution is obtained by solving a Boundary Value Problem (BVP),

it will be referred to as the BVP solution hereafter.

Figure 2 shows the comparison between the analytical and BVP solutions for free inflation.
First, we consider the relation between the pressure P and the deflection do as shown in Fig.2a.
The analytical solution in eq. (12) gives a single curve, while the BVP solutions vary with the
biaxial pre-stretch Ao. When A, =1, the analytical solution first deviates from the BVP solution at
small deflection do, but converges to it as do increases. This is expected since large do implies large
stretch in the membrane, which is the basis for the approximation in eq. (8). The large stretch
condition can also be achieved by increasing the pre-stretch Ao. As shown in Fig.2a, when Ao = 2,
the agreement between the analytical and BVP solutions becomes excellent even for small do. We
note that both the analytical and BVP solutions feature a non-monotonic relation between P and
do. The existence of a maximum in P implies an instability during pressure-controlled inflation,
which is well-known in the literature (Hassager et al., 1999; Osborne and Sutherland, 1909; Patil
and Dasgupta, 2013). This pressure maximum, denoted as P = P. at do = doc, divides the pressure
versus deflection curve into a stable (do < doc) and an unstable branch (do > doc), as reflected by the
two possible cases in eq. (10). In both cases the membrane deforms to a spherical cap. We will

refer to the case with smaller deflection (stable branch) as Case I, and the case with larger



deflection (unstable branch) as Case II, as illustrated in Fig.2b. According to eq. (12), the

maximum pressure is

2
p =2l

c

and d,. =D, (13)

indicating that the pressure maximum is achieved when the membrane is inflated into a hemisphere,
since b is the radius of the pre-stretched membrane. It should be noted that eq. (13) may slightly

overestimate P and underestimate doc for low pre-stretch (Ao <~ 1.5) due to the approximation in

eq. (8).
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Figure 2 Free inflation of the membrane (a) Analytical and BVP solutions of the normalized
pressure versus the normalized deflection for different pre-stretch ratios. (b) Case I and II of
membrane deformation profile under Pb/2u,,h = 0.6 and 1, = 1. (c-d) Analytical and BVP
solutions of the membrane deformation profiles for (c) 1, = 1 and (d) 4, = 2.



Figures 2c and 2d compare the membrane deformation profiles without pre-stretch (1o = 1) or
with pre-stretch (Ao = 2), respectively. The curves with the same color represent the two possible
cases under the same pressure. The significant difference between analytical and BVP solutions
for Case I in Fig.2c confirms the discrepancy observed for do < do. and Ao = 1. For Case II, the
membrane stretch is sufficiently large to ensure accuracy of the analytical solution even without
pre-stretch. In Fig.2d, the introduction of pre-stretch substantially improves the accuracy of
analytical solutions and we observe excellent agreement between analytical and BVP solutions for

both Case I and II.

3. Contact with a rigid substrate

In this section, we consider the contact of an inflated membrane with a rigid substrate which
can be flat (Section 3.1) or spherically curved (Section 3.2). Our approach is to divide the
membrane into two parts: the contacting part which conforms to the substrate and the free standing
part which follows eq. (9). These two parts are jointed at the perimeter of the contact region, where

appropriate boundary conditions are prescribed to ensure continuity and equilibrium.

3.1 Contact with a flat rigid substrate

a b

s substrate 2 s substrate 2

Figure 3 Schematics of the inflated membrane in contact with a flat rigid substrate: (a) Case I and
(b) Case II.

As illustrated in Fig.3, the contacting membrane on the flat rigid substrate occupies a circular
region of radius a and is under uniform biaxial stretch due to the frictionless condition on the

interface (Long et al., 2010). The adhesionless condition implies that both the tangent angle #and
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the stretch ratios (41 and A2) should be continuous at the contact edge, otherwise force balance
across the contact edge cannot be satisfied (Long et al., 2010). Therefore, we obtain the following

boundary conditions for the free standing membrane:
6=0and A4 =4, at r=a. (14)

These boundary conditions allow us to determine the constants C1 and Cz in eq. (9). Specifically,
substituting @ =0 at » = a into eq. (9) yields C1 = — a*. The biaxial stretch condition A1 = A2 implies
that 77 = T> = umh at ¥ =a , based on which we obtain C> = 0 by comparing eq. (A2) in Appendix
A and eq. (9). Consequently, eq. (9) becomes

P2 (12— g2 2 2 22
sin> @ = (- az) =(r a j . (15)
(2u,hr) Rr

Recall that R is the radius of the membrane under free inflation in eq. (11). Substituting eq. (15)

.2 rZ_aZ
& gy 900 _, (7o) . (16)
dr I1-sin" @ \/Rzrz_(rz_az)

into eq. (6) gives

Integrating eq. (16) yields
r —az)

z=% ( 2
J-\/R2r2 —(r2 —az)

where Cs is a constant to be determined by boundary conditions. To simplify notation, we

—dr+C,, (17)

normalize all lengths by the radius of the pre-stretched membrane before inflation, b, and define a

new integral function:

‘P(I’;a,ﬁ)zlj (S —-a ) dS:r/h (E -a ) 55 (18)

ba\/stz_(Sz_az)z !\/Ezgz_(gz_az)z

where S=s/b, a=a/b and R=R/b. This function is in closed-form and can be related to
elliptic integrals (see Appendix C). The “+” sign in eq. (16) and (17) implies there are two possible

contact solutions, which correspond to the two cases for free inflation as elaborated below.
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Case I: the membrane deforms into a small spherical cap (i.e., maximum deflection do < b)
before contacting the substrate. In the free standing membrane, z increases monotonically with »
from the contact edge (r = a) to the fixed end (r = b) (see Fig.3a). As a result, we set 0 < f< /2

and take the “+” sign in eq. (17) and obtain the following solution by enforcing z =0 at » = b:

z/b=¥(r;a,R)-¥(b;a,R), as<r<b. (19)
The contact displacement o can be calculated by subtracting the vertical gap, i.e., d=—z (r = a),

from the initial value do in eq. (12), which gives
S=d,~d=R—R -b" -b¥(b;a,R). (20)

It is worth pointing out that the Case I solution is in agreement with the linear analysis by Xu and
Lietchi (2011) provided that the membrane is under sufficiently large pre-stretch and is limited to

small deflection. Details of the comparison are given in Appendix D.

Case II: the membrane deforms into a large spherical cap (i.e., maximum deflection do> b)
before contacting the substrate. The free standing membrane consists of two segments: » first
increases (0 < 8 < n/2) and then decreases (/2 < <) as z increases (see Fig.3b). The critical
point at which 7 starts to decrease, denoted as » = 7, is determined by seeking where = /2. Based

on eq. (16), the following equation needs to be satisfied for 6= 7/2 at r = n:
Ry (> ~a*) =0. Q1)

There are two positive roots of eq. (21): one larger than and the other smaller than the contact

radius a, i.e.,

n= R+~\R +4ad°

5 >a, (22)
, —R+\R+4a’
n= <a (23)
2

For the flat rigid substrate considered here, we exclude 7/ because geometry of the deformed

membrane (see Fig.3b) prevents the possibility that = /2 at r < a. Therefore, the two segments

of the free standing membrane are jointed at » = 77 as shown in Fig.3b. The upper segment features
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dz/dr <0 and thus we adopt the negative sign in eq. (16). Using the boundary condition that z =0

at » = b, we obtain the following equation for the upper segment:
Z/b:‘P(b;c_z,R)—‘P(r;c_z,]_{), b<r<mand z>z(r=n). (24)

On the lower segment, dz/dr > 0 and we adopt the positive sign in eq. (16). By enforcing the

continuity condition at » = 7, we find the following profile for the lower segment:
z/b="(b;a,R)+¥(ra,R)-2¥(m;a,R), a<r<pand z<z(r=7). (25)
Similar to Case I, the contact displacement Jis calculated using do in eq. (12) and d = —z(r = a):
§=d,—d=R+R —b* -2b¥(;a,R)+b¥ (b;a,R). (26)

For both Case I and II, we determine the compressive contact force F' by integrating the contact
pressure between the membrane and the substrate. Since the contacting membrane is flat, the

contact pressure P* must be uniform and equal to the internal pressure P. Therefore, F is given by
F=ra’P. 27)

To summarize, eq. (19) and eq. (24)-(25), when jointed by the flat contacting membrane (0 < r <
a), provide the deformation profile of the membrane in Case I and II, respectively. The relation
between the compressive contact force F' and the contact displacement 6 can be determined by
combining eq. (20) and (27) for Case I and eq. (26) and (27) for Case II. These analytical solutions

do not explicitly depend on the pre-stretch Ao, but depend on two parameters: @ =a/b and

R =R/b. The former measures the size of the contact region, while the latter reflects the internal

pressure P through R = 2 umh/P.

3.2 Contact with a spherically curved rigid substrate

Here we consider the scenario where the rigid substrate is spherically curved with a radius Rs.
We assume the center of the substrate is located on the z-axis (i.e., vertically aligned with the center
of the membrane) to maintain axisymmetric contact. The contacting membrane conforms to the
curved substrate and has a spherical profile. Because of the frictionless condition, the contacting

membrane is only subjected to the internal pressure P and the normal contact pressure P. from the
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interface. Effectively, the contacting membrane is inflated by the pressure differential P — P.
Based on the results in Section 2.3, we conclude that P. — P is uniform due to the spherical profile
of the contacting membrane. The radius of the contacting membrane is the same as that of the

substrate, Rs. According to eq. (11), we have

(28)

where we have adopted the sign convention that Rs < 0 (Pe < P) if the substrate is concave and Rs >

0 (P> P) if the substrate is convex (see Fig.4).

Figure 4 Schematics of the inflated membrane in contact with a spherically curved rigid substrate.
(a) Concave substrate: P > Pe. (b) Convex substrate: P < Pe. For simplicity, only Case I membrane
deformation is shown.

For the free standing membrane, we first determine the boundary conditions at the contact edge.
Similar to the flat rigid substrate, the adhesionless contact condition implies that the tangent angle
0 and the stretch ratios (41 and A2) are continuous at the contact edge. Since the contacting
membrane is subjected to equibiaxial stretch due to its spherical profile, we enforce A1 = A2 at r =
a. The tangent angle 6 at the contact edge is no longer 0, but is equal to €y such that

: a
sinf, = R (29)

Note that & > 0 for concave substrate and & < 0 for convex substrate. Plugging the boundary

conditions, i.e., @=6, and 4, =4, at r=a, into eq. (9) and eq. (A2) in Appendix A, we have

_2u,hasing,

C, a’,C,=0. (30)

Note that C> = 0 is due to the equibiaxial stretch condition at the contact edge. Combining eq. (9),

(11), (29) and (30), we arrive at the following equation for the free standing membrane:
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sin” @ 7 31
To simplify notation, we define
é,:RSIHQOZ_ﬂ' (32)
a R,
Similar to Section 3.1, we first use eq. (31) to calculate dz/dr, i.e.,
r—(1-¢)a’
%ztanﬁzi ( (1=¢) ) = (33)
dr \/Rzrz_(rz_(l_é/)az)
Integrating eq. (33) yields
r - 1
{) ) dr+C;, (34)

S

where the “+” indicates that the free standing membrane may contain segments with dz/dr > 0 or
dz/dr < 0. The integration constant Cs can be determined using the boundary condition z=0 at » =
b, which depends on the detailed contact conditions as discussed in the following three subsections.

To facilitate discussion, we introduce a new integral function:

Re r (S—(l 4)) ””’ (5 (1 ¢)a)
b \/R22 - \/R ~(1-¢)@)

where s=5/b, a=a/b and R=R/b. This function is similar to that in eq. (18) but is enriched

ds, (3%)

by the additional parameter {'= — R/R;s due to the spherically curved substrate.

3.2.1 Concave substrate
For concave substrate, R is negative and we assume |Rs| is larger than the radius of the freely
inflated membrane R, otherwise an annular contact region would be established before the apex of

the membrane reaches the substrate. Effectively we limit our solution to the regime 0 <

15



¢'< 1. Following the same procedures in Section 3.1, we obtain solutions for Case I and Case 11

using the ranges of r illustrated in Fig.5.

Case | r=bz=0

Figure 5 Schematics of the inflated membrane in contact with a concave rigid substrate: (a) Case
I and (b) Case II.

Case I: we require 0 < 6p< < /2 and dz/dr > 0 throughout the free standing membrane (see

Fig.5a) and enforce the boundary condition z = 0 at » = b, which yields
z/b=®(r,a,R.{)-®(ba,RS),  asr<b. (36)

Unlike the flat rigid substrate, the contacting membrane also contributes to the vertical gap d = —
z(r=0): d is equal to the deflection of the free standing membrane plus the height of the contacting

membrane:

d=-z(r=a)-R —\R*-d" . (37)

Recall that Ry < 0. The contact displacement Jis given by
S=dy~d=R-~NR*-b" ~b®(b;a,R,{)+ R +yR’~a’ . (38)

Case II: similar to Section 3.1, we first determine the critical points at which the tangent angle
0= /2 by setting the denominator within the integral of eq. (34) to zero and solve for r. There are

two positive solutions »= 77 and 7" :

R+ R +4(1-2)d?
R +2< &)a* 39
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—R+R*+4(1-0)d?
2Ry +2( f)a o)

Since 0 < {'< 1,1t is clear that 7' <a and thus we exclude this solution. On the other hand,
geometrical consideration dictates that the contact radius a cannot exceed the substrate radius, i.e.,
a < |Rs. Using this constraint, one can show that 7 > a. Therefore, we divide the free standing

membrane into two segments at » = 7. Deformation profiles for these two segments are given by

Upper: Z/b:®(b;5,l_3,§)—®(r;ﬁ,l_3,§), b<r<mand z>z(r=n), (41)

Lower: Z/b:q)(b;c_z,1_2,4')+q)<r;5,1_€,§)—2@(77;6_1,1_3,{),aSr<77 and z<z(r=n).(42)

To determine the contact displacement o, we substitute z(» = a) from eq. (42) into eq. (37) to

calculate the vertical gap d and obtain

§=d,~d =R+VR ~b* ~20 (1@, R.{ )+ (53, R, )+ R +/R? -a* . (43)

For both Case I and Case II, the compressive contact force F' can be calculated by integrating

the contact pressure P. projected along the z-direction, i.e.,
F=rna’P, =na’P(1-¢), (44)

where we have used eq. (28) to determine P. and eq. (11) and (32) to simplify the expression.

3.2.2 Convex substrate: contact with upper hemisphere

For convex substrate, Ry is positive and hence {= — R/Rs < 0. Solution of the membrane
deformation depends on whether the contact region remains on the upper hemisphere of the
substrate or extends to the lower hemisphere. We first consider membrane contact with the upper
hemisphere of the substrate. As illustrated in Fig.6, the contact radius @ must be smaller than Rs.
Within the contact region, the membrane has the same convex curvature as the substrate. As a
result, the tangent angle at the contact edge, &, falls into the range of —/2 < & < 0 as given by eq.
(29). The negative €h implies that in the free standing membrane z must decrease first as one moves

away from the contact edge (» = a). As r is increased, the free standing membrane may reach a
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point where the tangent angle = 0. We denote this point as » = y and calculate it by setting tan&
=0 1in eq. (33), which yields

y=ayl-¢ . (45)

It is clear that y > a because ¢ < 0. Next, we discuss solutions for Case I and Case II shown in

Fig.o.

Case || . ssmnnnanasnanms

Case |

Figure 6 Schematics of the inflated membrane in contact with the upper hemisphere of the convex
substrate. (a) Case [ with y > b. (b) Case [ with y <b. (¢) Case II.

Case I: two possibilities exist depending on whether y is larger or smaller than 5. If y > b, z
would decrease monotonically with » for a <r < b, i.e., —/2 < 6 < 6 < 0 throughout the free
standing membrane (see Fig.6a). If y < b, z would first decrease with increasing r in the interval a
< r < y and then increase with increasing » in the interval y < r < b (see Fig.6b). The range of
tangent angle @ in the free standing membrane is expanded to —7/2 < €y < 6 < 7/2. Interestingly,
both possibilities can be accounted for by taking the “+” sign in eq. (33). Specifically, the possible
change in sign of dz/dr (or tan@) at » = y is accommodated by the numerator (7° — (1 — {)a’) which
changes from negative to positive as 7 increases beyond y. Therefore, whether y > b or y < b,
deformation profile of the free standing membrane is still given by eq. (36). Because the point at
r = y does not involve a change of sign in eq. (33), we will not divide the free standing membrane

at this point in the subsequent discussions. The vertical gap d, defined as —z(» = 0), is now equal
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to the deflection of the free standing membrane subtracted by the height of the contacting

membrane due to the convex curvature of the substrate:

d:—z(r:a)—(Rs—«/Rsz—az). (46)

Accordingly, the contact displacement ¢'is given by
S=d,—d=R—JR -b —b®(b;@,R,{)+R —\|R-a" . (47)

Case II: by comparing eq. (39) and (45), we conclude that 17> y (see Fig.6c). As discussed
above, we can treat the free standing membrane within a < r < 7 as a single segment by taking the
“+” sign in eq. (33). The other segment with » <r < 7 can be accounted for by taking the “—” sign
in eq. (33). Therefore, deformation profile of the free standing membrane is still given by eq. (41)
and (42). Similar to Case I, we use eq. (46) to calculate the vertical gap d. The corresponding

contact displacement J'is
S=dy—d=R+JR -b" —2b®(1;@,R.{)+b®(b;a,R,{)+R -y/R> —a’ . (48)

For both Case I and Case II, the contact force F can still be calculated using eq. (44).

3.2.3 Convex substrate: contact with lower hemisphere

When the contacting membrane extends to the lower hemisphere of the substrate (see Fig.7),
the tangent angle at the contact edge, 6, falls into the range of —7 < & <—7/2 as given by eq. (29).
The main difference between this scenario and that considered in Section 3.2.2 is that » first
decreases immediately outside the contact region. Consequently, both solutions for the critical

points, i.e., 77 and 7" in eq. (39) and (40), are permitted. Since £< 0 and a < R, one can show
that 77 >a and 77’ <a. The point at = 7] features 6= /2, while the point at »= 7' features 6= —
77/2. The existence of » = 1’ introduces a new segment to the free standing membrane as compared

to the upper hemisphere contact considered in Section 3.2.2 (Fig.7). Following procedures similar
to those in Section 3.2.2, we find the solutions for two cases of lower hemisphere contact as

summarized below.
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Caselll r=»h

r=x r=y

Figure 7 Schematics of the inflated membrane in contact with the lower hemisphere of the convex
substrate. (a) Case [ with y > b. (b) Case [ with y <b. (c) Case II.

Case I: the free standing membrane starts at the contact edge (r = a) with—7< & < 0<—m/2

w_

for r in the interval 7' <r <a, where we adopt sign in eq. (33). After that, whether y > b or y

< b (see Fig.7a and 7b), we can treat the free standing membrane as one segment with ' <r <b

and —7/2 < 6< /2, where we adopt the “+” sign in eq. (33). Enforcing the boundary condition and
continuity condition, we obtain the following solutions for the deformation profile of the free

standing membrane:
z/b=®(r;a,R,{)-®(b;a,R.{), n'<r<b, (49)
and
z/b=20(r;a,R.{)-®(r;a,R.{)-D(b;a,RS),  n'<r<a. (50)
The vertical gap d = —z(r = 0) is given by

d:—z(r:a)—(Rsh/Rsz—az). (51)

Note that the height of the contacting membrane is different from that in eq. (46) because of the

contact region extends to the lower hemisphere of the substrate. The contact displacement J'is
§=d,—d=R-NR-b +2b®(1a,R,{)-b®(b;a,R,{ )+ R, +\ R’ —a’ . (52)

Case II: the free standing membrane consists of three segments: 1) —7< Gp < 0 < —7/2 in

n'<r<a,ii)—m2<0< w2 for ' <r<n,andiii) 72 < § < rfor b <r<n.Among these three
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segments, 1) and iii) require the sign in eq. (33), while ii) requires the “+” sign in eq. (33).
Again, by enforcing boundary condition and continuity conditions, we obtain the following

solutions for the deformation profile of the free standing membrane

z/b=®(h;a,R,{)-®(r,a,R.{), b<r<n, (53)

z/b=®(b;a,R.{)+®(r;a,R.$)-20(ma,RS),  n'<r<n, (54)
and
z/b=-®(r;a,R.{)+20(n;a,R,{)-20(n;a,R,&)+®(ha,R,E), ' <r<a. (59)
Using eq. (51), we can calculate the vertical gap d and the resulting contact displacement J'is
5 =R+VR* —b* —26® (;a@, R, )+ 26D (3@, R, ) +b® (b3, R,{ )+ R +4JRZ —a> . (56)

Similar to Section 3.2.2, the contact force F' for both Case I and Case II can be calculated using

eq. (44).

3.3 Validation using BVP and FEM results

In this section, we verify the accuracy of our analytical solutions for membrane contact using
numerical results. Since our analytical solutions are based on the large-stretch approximation in
eq. (8), their accuracy is improved under a larger pre-stretch Ao. Therefore, for verification purpose,
we set Ao = 2 for all results in this section. According to Section 2.4, this pre-stretch is sufficient
for the analytical solution to accurately capture free inflation of the membrane. We first apply the
numerical method in Long et al. (2010), which will be referred to as the BVP solution and is limited
to the contact with flat rigid substrate. To enable comparison for membrane contact with
spherically curved substrate, we build a FEM model using the commercial software ABAQUS
(version 2020, Simulia, Providence, RI, USA). Details of the FEM model are provided in
Appendix E. Since the Case II solution resides on the unstable branch of the P versus do curve in
Fig2a, our FEM model in ABAQUS was unable to access the Case II solution due to the controlled

internal pressure P. Therefore, only Case I results were obtained from FEM.
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We first validate the solutions for the contact with flat rigid substrate. Figures 8a and 8b show
the analytical solutions for the membrane deformation profiles in Case I and Case II with
corresponding BVP solutions. Agreement between the two sets of results is evident. In addition,
we plot the contact force F as a function of the contact displacement ¢ for Case I and Case II in
Fig.8c and 8d, respectively, showing good agreement between the analytical, BVP and FEM
results (Case I only). Interestingly, our analytical solutions reveal that the average contact stiffness,
i.e., F/0, decreases with the internal pressure P in Case I (Fig.8c), but increases with the internal
pressure P in Case II (Fig.8d). This reverse of trend from Case I to Case II agrees well with the

numerical solutions.

Next, we validate the solutions for the contact with spherically curved rigid substrate. Figures
9a-9c show the excellent agreement between analytical and FEM results for the Case | membrane
profiles with concave, convex (upper hemisphere), and convex (lower hemisphere) substrates,
respectively. Even with very large contact area (e.g., Fig. 9¢), our analytical solutions can still
accurately capture the nonlinear deformation of the membrane. Figures 9d-9f show only the
analytical solutions for the Case II membrane profiles due to the lack of FEM results. Analytical
solutions for the contact force-displacement curves are also found to agree with FEM results in

Case I, as shown in Fig. 9g-9h.
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Figure 8 Inflated membrane in contact with flat rigid substrate with and 1, = 2. (a-b) Deformation
profiles of the membrane with Pb/2u,,h = 1/R = 0.6 and different contact radius (analytical:
solid lines; BVP: dashed lines). The bottom inset in (a) shows a zoomed-in view of the membrane.
(c-d) Normalized contact force F /2u,,hb versus contact displacement &/b under three different

normalized pressure Pb/2u,,h = 0.4, 0.6 or 0.8.
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Figure 9 Inflated membrane in contact with spherically curved substrate with 4; = 2 and
Pb/2u,,h = 1/R = 0.6. (a-c) Deformation profiles of the membrane in Case 1. (d-f) Deformation
profiles of the membrane in Case II. (a) and (d): concave substrate with Rs/b = —5and a/b =
0.329. (b) and (e): convex substrate with contact on the upper hemisphere with Rs/b = 0.5 and
a/b = 0.25. (c) and (f): convex substrate with contact extended to the lower hemisphere with
Rs/b = 0.5, a/b = 0.437. (g-h) Normalized contact force F /2u,,hb versus contact displacement
d/b for concave and convex substrate, respectively.

3.4 Discussion: contact with convex substrate
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The F versus O curves for convex substrate in Fig.9h deserve a separation discussion. Unlike
the flat or concave substrate, the /-0 curve for convex substrate, either in Case I or Case II, is non-
monotonic and features a maximum in /' and a maximum in o. To understand this behavior, we
first recall that F is directly proportional to the square of the contact radius a, as suggested by eq.
(44). Normally a, defined as the radial coordinate at the contact edge (i.e., projection of the contact
edge to the r-axis), increases as the contact area 4 expands, which is the case for the flat or concave
substrate. For convex substrate, a cannot exceed the radius Rs of the convex substrate and starts to
decrease once the contact area 4 extends to the lower hemisphere. This behavior indicates that 4
is a more suitable metric to evaluate the expansion of contact region for convex substrates. Since

the contact region is a spherical cap, we can write

(57)

A A
a=, [—-
V4

A7°R’
Equations (44) and (57) suggest that F ~ a* is a quadratic function of 4 that maximizes at 4 = 2 zRs,

i.e., when the contact region covers the entire upper hemisphere and is about to extend to the lower

hemisphere, as shown in Fig.10a. This result explains the maximum F in Fig.9h.

On the other hand, the dependence of d on a or 4 is much more complicated (see eq. (47) and
(52) for Case I and eq. (48) and (56) for Case II). We plot das a function of 4 in Fig.10a using an
example where Pb/2u,,h = 0.6. It is interesting to see that ¢ first increases with 4 and then
maximizes at a point after the peak force Fi is achieved, which is consistent with the F-o curves
in Fig.9h. In a displacement-controlled contact process, the branch of solution after the peak
displacement on is not accessible. For example, our FEM results, shown as triangular symbols in
Fig.10a, match well with the analytical solution before the peak displacement n, but cannot
provide any data after d.. In contrast, our analytical solutions can still capture the solution when
A exceeds the point of peak displacement (see dashed lines in Fig.10a). To further understand the
peak displacement om, we plot the membrane profiles at three different contact area A for Case I
(Fig.10c-10e) and Case II (Fig.10f-10h) of lower hemisphere contact. As 4 is increased, although
the convex substrate indents more into the inflated membrane, the deflection of the free standing
membrane given by —z(r = a) becomes larger, which effectively moves the convex substrate

downwards and is attributed to the decreasing contact force . Competition between these two
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mechanisms results in a minimum in the total deflection d = —z(r = () and hence a maximum in
the contact displacement 0 = do — d. Although Fig.10a shows that the peak displacements o in
Case I and Case II are close to each other, we emphasize that this result is not general. In Fig.10b,
we plot o versus 4 using an internal pressure of Pb/2u,,h = 0.4, showing distinct results for Case
I and Case II. Moreover, the inset of Fig.10b shows that the peak displacement on varies with the

internal pressure P in Case I and Case II.
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Figure 10 Contact with convex substrate. (a) Normalized contact force F/2u,,hb and contact
displacement &/b versus contact area A/b> for Pb/2u,,h = 0.6 and Ry/b = 0.5. (b) Normalized
contact displacement &/b versus contact area 4/b?> for Pb/2u,,h = 0.4 and Ry/b = 0.5. The inset
shows the normalized peak contact displacement &,,, /b versus normalized pressure Pb/2u,,h. (c-
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e) Case I and (f-h) Case II membrane deformation profiles for lower hemipshere contact with 1.
a/b= 0.5, 1i. a/b = 0.36, and iii. a/b = 0.125 for Pb/2u,,h = 0.6 and Rs/b = 0.5.

Figure 9h shows that the contact force F approaches 0 when the normalized contact
displacement &/b approaches 1. Recall that the solutions in Fig.9h are for the convex substrate with
a radius Ry/b = 0.5. The limit of &/b = 1 corresponds to o = 2R, i.e., the contact displacement is
equal to the diameter of the convex substrate. In this limit, the entire substrate sphere is wrapped
by the membrane with a contact area of 4 = 4mwR? (i.e., A/b? = since Rs/b = 0.5). The
corresponding contact force F'is zero, because the contact pressure P. between the membrane and
the substrate sphere is self-balanced and thus does not produce a net contact force. Figure 11a and
11b show nearly complete wrap of the substrate by the membrane given by Case I and Case II
solutions, respectively. Note that complete wrap of the substrate sphere by the membrane would
result in an infinite bending curvature at the bottom of the sphere, as illustrated in Fig.11c-11f
showing zoomed-in views at the bottom of the sphere. Mathematically such severe curvature is
allowed by the hyperelastic membrane theory, since it neglects bending rigidity of the membrane.
However, resistance to bending would always emerge, even for thin membranes, when the
curvature is sufficiently large. Therefore, complete wrap of the substrate sphere by the membrane
is unlikely to occur in practice. As the configuration of complete wrapping is approached, we
expect that the transition from stretching to bending should occur locally near the contact edge and
such transition depends on the thickness of the membrane (Long et al., 2010). The competition
between bending and stretching for nearly complete wrapping is beyond the scope of this work

and 1s not pursued here.
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Figure 11 Deformed membrane profiles for contact with convex substrate. (a) Case I and (b) Case
IT solutions for lower hemisphere contact with a/b = 0.0005, Pb/2u,,h = 0.6 and Ry/b = 0.5. (c-f)
Zoomed-in view of the membrane deformation near the bottom of the substrate for Pb/2u,,h =
0.6 and Rs/b = 0.5: (c-d) Case I with a/b = 0.0005 or 0.05, respectively; (e-f): Case II with a/b =
0.0005 or 0.05, respectively.

4. Contact with an elastic substrate

In this section, we present analytical solutions for the inflated membrane in contact with an
elastic substrate. Similar to Section 3, we will first consider flat elastic substrates (Section 4.1) and
then extend the solutions to spherically curved elastic substrates (Section 4.2). Validation of the

analytical solutions using FEM results will be shown in Section 4.3.
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Figure 12 Schematics of the inflated membrane in contact with a flat elastic substrate. (a) Case I.
(b) Case II. (c) A zoomed-in view of the contact region showing the pressure on the membrane
and the substrate, where P is the internal pressure within the membrane, P, is the distributed Hertz
contact pressure on the substrate, and P, is the approximated uniform contact pressure on the
membrane.

4.1 Contact with a flat elastic substrate

The substrate is assumed to be an elastic half-space with Young’s modulus E and Poisson’s
ratio vg. Upon contact with the inflated membrane, both the membrane and substrate deform as
shown in Fig.12a and 12b. If exact solutions are sought, one would need to solve the unknown
distribution of contact pressure by writing the surface displacement profile of the substrate through
the Green’s function approach and setting it equal to the membrane profile due to conformal
contact. However, this would result in an integral equation that is unsolvable analytically. To
obtain analytical solutions, we simplify the problem by approximating the contacting membrane
as a spherical cap with radius R*. To be consistent with the sign convention of free inflation radius
R, we let R” be positive if the contacting membrane is convex and negative if otherwise. For the
flat elastic substrate, we expect R” to be positive (see Fig.12¢) because the substrate cannot bulge
up under adhesionless contact. Similar to Section 3.2, the spherical cap profile of the contacting
membrane implies that it is subjected to a uniform internal pressure P and a uniform contact

pressure Pe (see Fig.12c¢). The radius R satisfies the following equation:

20 h
Pl _p_p. (58)
R
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Because P — P. < P, we expect R to be larger than the free inflation radius R = 2 unh/P. Given that
both R* and P. are unknown, we need to consider deformation in the elastic substrate. The substrate
is effectively indented by a rigid sphere with radius R* with no adhesion and friction. Therefore,
we utilize the Hertz contact theory which gives the following distribution of contact pressure in

the contact region

3F }/-2 172
P (r)= 1-—| 59
2 () 27[612[ azj (59)
where a is the contact radius and F is the compressive contact force. The contact force F is given
by
AE &
F="2 (60)
3R

where E. =E, /(1-v’) is the plane strain modulus of the substrate. Apparently, the contact

pressure P, on the substrate is not uniform, which contradicts the uniform contact pressure P. on
the membrane. This discrepancy implies that the contacting membrane should not exactly have a
spherical shape. As an approximation, we set P. to be the average value of the Hertzian contact
pressure P,':

F 4AE
L (61)

~

 na* 37R

Effectively, we assume that deformation of the contacting membrane can be approximated to the
first order by retaining the spherical shape but allowing its radius R" to change. Combining eq. (58)
and (61), we obtain:

R 1
s, (62)
R 2E a
1+
3mu, h

where we have used the free inflation radius R = 2mh/P. Introducing a dimensionless parameter

3, h
Y

(63)

we can rewrite eq. (62) as
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=L (64)

Physically, yrepresents the competition between the stiffness of the inflated membrane and that of
the substrate. The limit of y= 0 recovers the case of flat rigid substrate. In the limit of
yapproaching +oo, the Hertz contact problem of a rigid sphere with radius R (i.e., the inflated

membrane) on an elastic half space is recovered.

With the approximation described above, the membrane deformation can be calculated using
the same solutions as those for the spherically curved rigid substrates (Section 3.2). Specifically,
the contacting membrane is under biaxial stretch and its spherical profile implies that the tangent

angle & at the contact edge is given by

sing, = ;;* atr=a. (65)

Following the definition of {'in eq. (32), we have

_Rsinfg, R _ 7y

R (66)

where one can show that 0 < {'< 1 because y> 0. It should be noted the definition of ¢ here (i.e.,
= R/R") is similar to that for the spherically curved rigid substrate (i.e., £ = —R/Rs) where the extra
“— sign is due to the different sign convention for Rs and R”. By substituting £'in eq. (66) into eq.
(34) and (35), we can calculate the deformation profiles of the free standing membrane, as detailed

below.

Case I: deformation profile of the free standing membrane is given by eq. (36). Unlike the
rigid substrates, here the vertical gap d between the fixed edge of the membrane and the substrate
is equal to the total deflection, —z(» = 0), subtracted by Hertzian indentation depth of the substrate
which is equal to a*/R*, i.e.,

2 2
a

d=-2(r=0)-"7=b®(b:a.RL)+R VR -a’ —Z* . (67)

Accordingly, the contact displacement J'is
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2

§=d,~d=R-R - ~b®(b;a,R.{)-R +VR? ~d* +;* . (68)

Case II: deformation profile of the free standing membrane is given by eq. (41) and (42) with

the critical point 77 given by eq. (39). Similar to Case I, the vertical gap d is given by

2 2
a a

= =2b®(17;a, R, )-b®(b:a,R.{ )+ R —R* -a* o (69)

d=—z(r:O)—

The contact displacement o is therefore

2

§=d,~d=R+R 0> ~2b®(1;a,R,{ ) +bD(b;a,R,&) R +JR? ~d? +;* . (70

For both cases, the contact force F'is given by eq. (60). By combining eq. (58), (61) and (62),
the contact force F can also be casted in the form of eq. (44) with { given by eq. (66).

4.2 Contact with a spherically curved elastic substrate

We extend the solutions in Section 4.1 to account for scenarios where the substrate is elastic
and spherically curved with radius R;. The center of the spherical substrate is located on the z-axis
(i.e., the axis of symmetry). The sign convention of Ry is the same as that in Section 3.2: Rs <0 if
the substrate is concave and Rs > 0 if the substrate is convex. We apply the same approximation as
in Section 4.1 that the contacting membrane has a spherical profile with radius R”. To apply the

Hertz theory, we introduce the combined radius R':

= +—. (71)

Using the combined radius, the contact force F' given by the Hertz theory becomes:

AE &
F="22 (72)
3R
By combining eq. (58) and (72) and using P. = F/7a*, we obtain that
R 1 R
=—=—|y—-——1. 73
¢ R 1+y [7 R, ] (73)
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Following the same reasoning in Section 4.1, we can calculate the deformation profiles of the free
standing membrane using eq. (34) and (35) with ¢ defined in eq. (73). For concave substrates, Rs
< 0 and we require R < |Rs| to prevent the formation of annular contact region. Given that y> 0,
one can show that 0 < {'< 1. For convex substrates, Rs > 0 and one can show that {'< 1 but {'may
become negative if y < R/Rs. Since eq. (73) is the most general definition of £, we can recover to
the scenarios discussed in previous sections. If the substrate is rigid, we have y=0 and {=—R/R;,
which recovers the scenarios with rigid substrates in Section 3. If the substrate is flat and elastic,

we have Ry =+ o and {'= y/(1+y), which recovers eq. (66) in Section 4.1.

It should be emphasized that the Hertz contact theory assumes linear elasticity and infinitesimal
deformation in the substrate and thus is limited to the regime with small contact radius (e.g., a <<
|Rs|). Consequently, we do not consider the membrane contact with the lower hemisphere of the
elastic convex substrate as in Section 3.2.3. Next, we summarize the solutions for membrane

deformation profiles for Case I and II.

Case I: deformation profile of the free standing membrane is given by eq. (36) using {'in eq.
(73). The vertical gap d is given by
2
d= bcp(b;a—,R,g)+sign(R*)(\R*\ _JR? & )—%, (74)
where the absolute value on R* is to accommodate the possibility that R* can be negative, and

a?/R’ is the Hertz indentation depth of the curved substrate. The contact displacement Jis

*

R

ES

§:d0—d:R—\/R2—b2—bd)(b;c_z,l_e,é’)—sign(R*)( - Rz—a2)+%2,. (75)

Case II: deformation profile of the free standing membrane is given by eq. (41) and (42) with

the critical point 7 given by eq. (39) and {'in eq. (73). The vertical gap d is

*

d = 2bc1>(77;a—,z_e,g)—bqa(b;a—,ﬁ,;)ﬂign(ze*)( R

_ R*Z—az)——. 76
7 (76)

The contact displacement o 'is:

*

R

5:R+x/R2—b2—2b<D(77;E,1_€,§’)+bd>(b;c7,1_€,é’)—sign(R*)( - R*z—a2)+%2,. (77)
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For both cases, the contact force is given by eq. (72) and can be casted in the form of eq. (44) with
¢ given by eq. (73).

4.3 Validation using FEM results
To validate the analytical solutions for elastic substrates, we use the FEM model described in
Section 3.3 to perform simulations where the Young’s modulus Es of the substrate is varied to

show the effect of y. Again, only Case I results are obtained from the FEM.

Figures 13, 14 and 15 show the membrane deformation profiles (Case I and II) as well as the
corresponding contact force F versus displacement o curves for the flat, concave and convex elastic
substrates, respectively. FEM results for Case I are also plotted in these figures for comparison.
Because the dimensionless parameter y decreases as the contact radius a increases (see eq. (63)),
it is not a constant during the contact process. Therefore, instead of prescribing y, we vary

Umh/E;b in Fig.13-15 which is related to y through

th 274 (78)

Eb 3zb
Since a/b < 1, u,h/E;b can be interpreted as the lower bound of 2/37. In all three figures, our
analytical solutions for Case I of the membrane deformation profile agree well with the FEM
results. For the F versus o curves, we use red lines to represent the limit of small u,,,h/ESb, i.e.,
very stiff substrate, and green lines to represent the limit of large u,, h/Esb, i.e., very soft substrate.
In the former limit (stiff substrate), we recover the scenario of rigid substrate contact, and our
analytical solutions show good agreement with FEM results across a large range of displacement
(see red solid lines and symbols in Fig.13c, 14c and 15c¢). This is expected because the large stretch
approximation in eq. (8) is accurate when we included a pre-stretch (Ao = 2). In the latter limit (soft
substrate), we expect the inflated membrane does not further deform upon contact and acts as a
rigid indenter on the substrate, i.e., the Hertz contact problem is recovered. Our analytical solutions
for the F' versus o curve agree well with the FEM results at relatively small ¢ but exhibit larger
discrepancy as ¢ is increased (see green solid lines and symbols in Fig.13c, 14c and Fig. 15c¢).
Relative to the flat substrate, such discrepancy is larger for the concave substrate (Rs/b = — 5) and

significantly reduced for the convex substrate (Rs/b = 0.5). We attribute the discrepancy to the fact

34



the Hertz contact theory employed in our analytical solutions is valid for small contact radius. As
the contact radius is increased, the Hertz theory becomes less accurate. The reduced discrepancy
observed for the convex substrate (Rs/b = 0.5) is because under the same contact displacement o,
the convex substrate features a smaller contact radius as compared to the concave or the flat

substrate, which improves the accuracy of the Hertz contact theory.
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Figure 13 Inflated membrane in contact with a flat elastic substrate with Pb/2u,,h = 0.6 and
Ay = 2. (a-b) Deformation profiles of the membrane for (a) Case [ with a/b = 0.25 and (b) Case
I with a/b = 1. The bottom inset in (a) shows a zoomed-in view of the membrane. (c-d)

Normalized contact force F /2u,, hb versus contact displacement &/b for (¢) Case I and (d) Case
11.
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Figure 14 Inflated membrane in contact with a concave elastic substrate with Ry/b=—135, Pb/2u,,h
=0.6 and A, = 2. (a-b) Deformation profiles of the membrane for (a) Case I with a/b = 0.25
and (b) Case Il with a/b = 1. The bottom inset in (a) shows a zoomed-in view of the membrane.

(c-d) Normalized contact force F /2u,, hb versus contact displacement /b for (c) Case I and (d)
Case II.
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Figure 15 Inflated membrane in contact with a convex elastic substrate with Rs/b = 0.5, Pb/2u,h
=0.6and A, = 2. (a-b) Deformation profiles of the membrane for (a) Case [ with a/b = 0.1 and
(b) Case II with a/b = 0.25. The bottom inset in (a) shows a zoomed-in view of the membrane.
(c-d) Normalized contact force F /2u,, hb versus contact displacement /b for (c) Case I and (d)
Case II.

6. Conclusion

We present analytical solutions of an axisymmetric inflated neo-Hookean membrane in
frictionless and adhesionless contact with various types of substrates. Following the approach of
Foster (1967a, 1967b) we used the large stretch approximation for neo-Hookean membrane to
obtain a general analytical solution for the axisymmetric membrane under uniform pressure. Using
this solution, we first showed that under free inflation, the originally flat membrane deforms to a
spherical cap with a radius R that is inversely proportional to the pressure P. There are two cases

of solutions associated with the same pressure which are referred to as Case I and Case II. By
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combining the analytical solution of free standing membrane and boundary conditions dictated by
the geometry of the contacting membrane, we obtained analytical solutions for the membrane in
contact with flat rigid and spherically curved rigid substrates. In case of elastic substrates, by
introducing an approximation where the contact membrane is in the shape of a spherical cap and
combining the membrane solution with the Hertz contact theory, we obtained analytical solutions
for the membrane in contact with flat elastic and spherically curved elastic substrates. In particular,
we found a dimensionless parameter ythat captures the transition between two limiting cases, i.e.,
either the substrate or the inflated membrane is effectively rigid relative to the other component
and thus experiences negligible deformation upon contact. The analytical solutions were validated
against numerical solutions of Long et al. (2010) for the free inflation and the contact with flat
rigid substrate, where excellent agreement was found under sufficient pre-stretch. FEM
simulations were used to validate the Case I analytical solutions for the contact with flat rigid,
spherically curved rigid, flat elastic, and spherically curved elastic substrates, where good
agreement was also found. While our solutions for the rigid substrate are valid for the entire range
of contact radius, our solutions for the elastic substrate are valid for small contact radius due to

limitation of the Hertz contact theory.

The closed-form but approximate analytical solutions for inflated membrane contact presented
in this paper cover a large range of substrate geometry and stiffness. Although these analytical
solutions are approximate in nature, they can be useful for efficiently exploring the parametric
space of operation and design in applications such as soft pneumatic actuators and haptic
transducers, especially for membranes undergoing large deformation with multiple solutions and

bifurcation (Liu et al., 2021).
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Appendix A: Derivation of eq. (9)

We first substitute eq. (5) into eq. (4) and utilize eq. (6) to obtain:
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d(Trsin)
dr

= Pr.

If the applied pressure P is uniform, eq. (A1) can be integrated to give

P(r2 +C1)
2

2

Tirsin@ =

where C is an integration constant that needs to be determined by boundary conditions.

Substituting eq. (A2) and (8) into eq. (4) results in the following equation:

P(r+C)do 220

- —+ sin@=P.
2rsin@ d& P(r2 +C1)

To further integrate eq. (A3), we cast it into the following form using eq. (6):

P(r’+C 22
uCl]—gcosﬁJrMsin2 =P,
2rsin@ dr P(r2 +C1)

which can be further changed to

P(r2+Cl)dcos29+ 240 h*

_ sin“@=P.
4rsin®6  dr  P(r’+C)

Next, we apply a change of variable that 8 =1—cos” @=sin @, which gives

P +C)ap ok
4rp  dr P(r+q)

B=P.

To integrate eq. (A6), we first rearrange it to

P(r2+C1)ﬂd(1/ﬂ)+ 2421

4r dr P(r2+C1)'B:P’

which can be written as

i sc) Ly D HG) a1 p)
2ru h” =P r(r +C1)E+ .

4 dr

(A1)

(A2)

(A3)

(A4)

(A5)

(A6)

(A7)

(A8)
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Combining the two terms on the right hand side of eq. (A8), we obtain

2
dl P (r+C) 1

Integration of eq. (A9) gives

P’ (rz +C, )2 1
fzz,ufnhzrz +C,, (A10)

where C: is another integration constant. Substituting £ = sin’ @ in eq. (A7), we arrive at eq. (9)

in the main text.

Appendix B: Analytical solution for free inflation

At the apex of the membrane (» = 0), symmetry dictates that the membrane is flat and subjected

to biaxial tension, i.e.,
6=0and 4 =4, at r=0, (B1)

The former condition (8= 0 at » = 0) and eq. (A2) imply that C1 = 0. The latter condition (41 = A2
at » =0) and eq. (8) result in that

I,=T,~uh at r=0. (B2)

Using eq. (B2) and comparing eq. (A2) and (9), we conclude that C> = 0. Therefore, we have

sin@ = r, (B3)

2u,h

where we have used the range 0 < < &t so that sin > 0. Using eq. (B3) and the identity that dz/dr

= tand, we have
dz = tan Odr =%sm 0do . (B4)

Integrating eq. (B4) and applying the boundary condition at the fixed edge that
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z=0at r=b (ic.at sing=—2_), (B5)

2u,h

we arrive at the following result:
2u,hY 24, h
PN | Ra T R o TP (B6)
P P

Combining eq. (B3) and (B6), we find that the deformation profile of the membrane is a spherical
cap given by eq. (10).

The spherical geometry of an inflated membrane has a general implication that warrants
discussion. If the deformed membrane has a spherical shape with a radius of R and is under a
uniform pressure P, both of the two principal curvatures are equal to 1/R. Therefore, the

equilibrium equation in eq. (4) becomes:
T+T,=PR. (B7)

Substituting eq. (B7) into eq. (5) and we obtain

rﬂ+2TI:PR. (B8)
dr
The general solution of eq. (BS8) is
PR
T =—+ %3 , (B9)
2 r

where C3 is an integration constant. Since 71 must be finite at » = 0, we have to set C3 = 0, which
means 71 = T2 = PR/2 = umh. In other words, the spherical portion of the membrane must be under
uniform equibiaxial tension. Combining this result with eq. (8), we conclude that 4; = A4,
throughout the spherical portion of the inflated membrane. Note that although 4, = 4, throughout
the spherical membrane, the value of the biaxial stretch (i.e., 41 or A2) is not necessarily uniform
in the membrane, as pointed out by Foster (1967b). Specifically, Long et al. (2010) showed that
under free inflation, the areal strain at the apex of the membrane can be much larger than that the

average areal strain of the entire membrane. This feature, although counter-intuitive, is attributed

to the fact that 7, T, = i, h for neo-Hookean membrane under large deformation as long as the
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membrane is under equibiaxial stretch (i.e., .; = A,), regardless of what values the stretch ratios

arc.

Appendix C: Representing the integral function in eq. (18) using elliptic integrals
Based on W(r; @, R ) in eq. (18), we implement a change of variable that ¢ = s> — a* and obtain
the following expression:
2

_ (S —a2) 1"" 1
WV r;E,R =— dt. (CIl)
( b \/R 2 2 b ‘! 2\/a2R2+R t—t* \/t+a2

To proceed, we define the following parameters:

_R+RJR*+4d’

22 > ; (C2)
R*—RJR*+4a°
a, = ; (C3)
2
and
o, =-a’. (C4)
Using eq. (C2) - (C4), we can rewrite eq. (C1) as:
17 t
Y(ra,R)=— dt. (C5)
( b j 2\/ (t al)(t - )(t 053)

The integral on the right hand side of eq. (C5) is the same as eq. (64) in Foster (1967a), except that
Foster normalized the integral variable. Given that on > a1 > enand t = s> —a* < 17 —a* = a1
because the radial coordinate of the free standing membrane cannot exceed the critical point at » =

n, we can write the following indefinite integral in terms of the elliptic integral according to eq.

(65) in Foster (1967a):
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| d dt
2\/_(t - al)(t - )(t - 053)
(C6)

= ;{Q3F(¢,k)+(al _a3)E(¢7k)_

(a, —a,)sinpcosp C ’
a, —a,

1—-k*sin” @

where C” is an integration constant, F (¢, k) and E (¢, k) are the incomplete elliptic integral of the

first and second kind, respectively. The variables in the elliptic integral, k£ and ¢, are

5 :—Zl :22 : (C7)
1 3

N . s

sin” (@) —(a3 BpYE . (CY)

We denote the function on the right hand side of eq. (C6) as f(?), i.e.,

=L (o) + (@ - ) E(p k) - B ) 0c0se (C9)
p— (P, | — &) L(P, \/l—kz Sin2¢) )
Using eq. (C6) and (C9), we can write eq. (C5) as
I |
‘P(r;a,R):Zf(r —a )—Ef(o) . (C10)

Therefore, the integral function W(r; @, R ) in eq. (30) can be expressed in terms of incomplete

elliptic integrals.

Appendix D: Comparison with the linear analysis by Xu and Liechti (2011)

Xu and Liechti (2011) considered the adhesionless contact between an inflated membrane and
a flat rigid substrate assuming linear elasticity and small membrane deflection. Here we compare
our solutions for free inflation and contact with flat rigid substrate with the corresponding solutions
by Xu and Liechti (2011). Specifically, for free inflation, we adapt equation (10) in Xu and Liechti

(2011) that relates the internal pressure, P, to the deflection at the apex of the membrane, do:

P 6d, 20,d,
= + ,
211'lmh b4 IlebZ

(D1)
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where g, is the equibiaxial tensile residual stress in the membrane. To connect eq. (D1) to our
solutions, we note that in our problem the pre-stretched membrane is under an equibiaxial line
tension of Ty = T, = w,,h due to the large stretch approximation, which corresponds to a residual

stress of g, = T;/h = w,,. Therefore, eq. (D1) becomes:

P 6d; 2d
2 = b4° + b20 . (D2)

Since Xu and Liechti (2011) assumed small membrane deflection, eq. (D2) should be compared

with the Case I solution of free inflation in eq. (12) which gives

P 2d,

- , D3
2uh dl+b ®3)

In Fig.16a, we compare eq. (D2) and (D3) and find that the two solutions agree when dy/b < 1
(i.e., small deflection) but diverge when the membrane deflection increases (i.e., dy/b > 0.1).

This is expected since Xu and Liechti (2011) assumed linear elasticity and small deflection.

For contact with a flat rigid substrate, Xu and Liechti (2011) obtained the following relation
between the internal pressure P and contact radius a under a fixed gap do between the membrane

edge and the substrate:

P 6dC,  2d,

2uh  bC +b2C0 ' (4)

where
C,=1-(a/b) +(a/b) In(a/b), (D5)
C,=1-4(a/b) +3(a/b) —(a/b) In(a/b)". (D6)

Figure 16b and 16¢ show the comparison between eq. (D4) based on the solution of Xu and Liechti
(2011) and our solution for two different gaps: do/b = 0.01 or 0.1. For do/b = 0.01 (see Fig.16b),
eq. (D4) is in good agreement with our solution. When the gap is increased to do/b = 0.1 (see
Fig.16¢), our solution and eq. (D4) exhibit similar trends but a small deviation in the applied
pressure P which originates from the diverging free inflation curves in Fig.16a under large

deflection.
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Figure 16 Comparison between the Case I solution for free inflation and contact with flat rigid
substrate with the solution of Xu and Liechti (2011). The blue curves represent the solution from
this work and the orange curves represent the solutions of Xu and Liechti (2011) with residual
stress 0y = U,,. (a) Applied pressure versus membrane deflection under free inflation. (b-c)
Contact radius versus applied pressure under a prescribed vertical gap of do/b = 0.01 and 0.1,
respectively.

Appendix E: FEM simulations

Axisymmetric finite element models were established using the commercial software
ABAQUS (version 2020, Simulia, Providence, RI, USA) to simulate the contact between the
inflated membrane and various substrates. As illustrated in Fig.17, the model included two parts:
a thin circular membrane and a substrate underneath the membrane. The membrane, with a radius
of b/A0 =1 mm and a thickness of # = 1 um in its undeformed state, was meshed with the 2-node
linear axisymmetric shell elements (SAX1) with a uniform mesh size of 2 um. The material model
adopted for the membrane was the incompressible neo-Hookean solid with shear modulus zim = 2
MPa. For the substrate, we considered 3 different geometries: a flat substrate (width = 2 mm and
thickness = 1 mm; see Fig.17a), a spherically concave substrate (radius = 10 mm; see Fig.17b),
and a spherically convex substrate (radius = 1 mm; see Fig.17¢). All three substrates were meshed
with axisymmetric continuum elements (CAX4H). The smallest elements, located at the top
surface around the symmetry axis, were 1 um x 1 pum in size, and the mesh size on the top surface
of the substrate was no larger than 20 um x 10 um. To enable the consideration of substrate
deformation (i.e., for the elastic substrates considered in Section 4), the substrates were modeled
as an incompressible neo-Hookean solid which reduces to a linear elastic solid with Young’s

modulus Es and Poisson’s ratio v = 1/2 under infinitesimal deformation. For the rigid substrates
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considered in Section 3, Es was set to be sufficient large (i.e., = 60 GPa) so that the substrate

deformation was negligible.

Each simulation consisted of three steps. First, the membrane was pre-stretched equibiaxialy
to reach the pre-stretch ratio Ao. Second, a uniform pressure was applied to inflate the membrane.
Third, the substrate underneath the inflated membrane was moved upwards to make contact with
the membrane in a quasi-static manner with the internal pressure P in the membrane kept constant.
The static solver of ABAQUS/Standard was used for the first two steps. To improve convergence
and accommodate potential instabilities, the third step was completed using the quasi-static solver
of ABAQUS/Standard through the implicit dynamic analysis. Frictionless and adhesionless

contact was applied to the interface between the membrane and the substrate.

a b [

Membrane Membrane Membrane

Substrate
Substrate

Substrate

Figure 17 FEM models for membrane with (a) flat, (b)spherically concave and (c) spherically
convex substrate.
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