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Abstract 

Pressurization of thin elastomeric membranes has been exploited as a key actuation mechanism in 

soft robotics, leading to soft pneumatic actuators that can deform reversibly upon inflation and 

deflation. The contact mechanics of an inflated membrane with another object underlies several 

important functionalities of soft pneumatic actuators such as gripping, haptic feedback and 

locomotion. Motivated by the technological relevance, we study the contact between an inflated 

circular membrane consisting of incompressible neo-Hookean solid and a substrate that is: i) flat 

and rigid, ii) spherically curved and rigid, iii) flat and elastic, or iv) spherically curved and elastic. 

By assuming that the contact interface is adhesionless and frictionless and that the membrane is 

subjected to very large stretch ratios, we obtained approximate analytical solutions for the 

membrane’s deformation profile as well as the relationship between the applied force, 

displacement and contact radius. These solutions agree well with results of numerical simulations. 

In particular, when the substrate is elastic, we obtained a dimensionless parameter that captures 

the transition between two limiting cases, i.e., either the substrate or the inflated membrane is 

effectively rigid relative to the other component and thus experiences negligible deformation upon 

contact. The analytical solutions provided in this work can offer insights towards designing soft 

pneumatic actuators with desired contact compliance.  
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 1. Introduction 

 Soft pneumatic actuators, consisting of highly stretchable elastomeric membranes with internal 

fluidic channels, are capable of reversible large deformation upon inflation and deflation (Rus and 

Tolley, 2015; Walker et al., 2020). Because of their compliance and deformation capability, soft 

pneumatic actuators have been widely exploited in soft robotics to enable shape morphing (Rus 

and Tolley, 2015; Sun et al., 2017), gripping (Guo et al., 2018; Shintake et al., 2018), haptic 

feedback (Sonar et al., 2020; K. Song et al., 2019) and locomotion (Florez et al., 2014; Shepherd 

et al., 2011). Many of these functionalities rely on the contact behaviors between soft pneumatic 

actuators and other objects or surfaces. For example, contact compliance has been recognized as 

an important property for robotic grippers. The contact between a hard gripper and a soft object 

(e.g., biomedical implants) may lead to excessive deformation or even damage of the object, while 

a soft gripper made of inflated elastomeric membrane can provide more conformal contact and 

less concentrated contact pressure, and thus is more desirable in this scenario (Shintake et al., 2018; 

Song and Sitti, 2014). Moreover, circular elastomeric membrane, when brought into contact with 

the human skin upon inflation, can provide haptic feedback that is useful for wearable devices 

(Sonar et al., 2020; K. Song et al., 2019) and rehabilitation (Shepherd et al., 2011; Yun et al., 2017). 

Design for these applications requires an in-depth understanding on the contact mechanics of an 

inflated membrane and another solid, either rigid or elastic. Although simulations based on the 

Finite Element Method (FEM) have been widely applied to model the contact mechanics of 

inflated pneumatic actuators (Drotman et al., 2017; Juhari et al., 2005; Li et al., 2014; Zhong et al., 

2021), such simulations may be computationally expensive due to the severe nonlinearity 

associated with large deformation and contact. Analytical solutions, even if approximate, can be 

useful by allowing quick estimates and efficient exploration of the parametric design space. 

 Motivated by the discussion above, we study the contact mechanics between an inflated 

membrane and a substrate. To accommodate various application scenarios, we consider four types 

of substrates: flat and rigid, spherically curved and rigid, flat and elastic, or spherically curved and 

elastic. Specifically, we aim to obtain approximate, closed-form analytical solutions revealing 

deformation profiles of the membrane upon contact, the relationship between the applied force, 

displacement and contact radius, and how these results depend on system parameters such as the 

internal pressure. This understanding can lead to guidelines on how to control the contact 

compliance of inflated membranes. Because the membrane is typically thin and undergoes large 
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stretch upon inflation, we adopt the nonlinear theory of hyperelastic membrane where bending is 

neglected (Green and Adkins, 1960; Libai and Simmonds, 1998). The nonlinear membrane theory 

has been extensively applied in the literature to solve problems involving free inflation of 

membranes (Hassager et al., 1999; Yang and Feng, 1970; Patil and Dasgupta, 2013) and contact 

of inflated membranes (Xu and Liechti, 2010; Liu et al., 2018; Liu et al., 2021). To put our work 

into perspective, we highlight a number of references on the contact mechanics of inflated 

membranes rather than presenting an exhaustive review. Feng and Yang (1973) studied the 

frictionless contact of an inflated spherical membrane with two parallel rigid plates, which was 

revisited by Liu et al. (2018) with more sophisticated friction conditions and experimental 

characterization. In comparison to the spherical membrane, a more practically relevant loading 

mode for soft gripper (Carlson et al., 2012; Song and Sitti, 2014) or haptic devices (Sonar et al., 

2020) is to pressurize an initially flat circular membrane fixed at its edge. The contact of such 

inflated circular membrane with a rigid substrate was analyzed by Long et al. (2010) and 

experimentally studied by Laprade et al. (2013). Patil et al. (2015) analyzed the contact between 

an inflated circular membrane and a deformable substrate where they simplified the substrate to 

be an elastic foundation (i.e., a layer of distributed linear springs). The approach of elastic 

foundation has been applied to the contact problems involving inflated membrane and deformable 

substrates in various geometries (Patil et al., 2014; Patil and DasGupta, 2015). All of these works 

accounted for large deformation of the membrane, but had to resort to numerical solutions of the 

nonlinear governing equations. Existing closed-form analytical solutions for the contact mechanics 

of inflated circular membranes either required the assumption of small deflection and linear 

membrane theory (Xu and Liechti, 2010) or relied on simplifications of the deformed geometry (S. 

Song et al., 2017, 2019; Williams, 1997). Srivastava and Hui (2013) obtained an exact closed-form 

solution for the frictionless contact between an inflated membrane with large deformation and a 

rigid substrate, but this solution is for plane strain condition and does not apply to the circular 

membrane. To the best of our knowledge, thus far there have not been analytical solutions for the 

axisymmetric contact mechanics of inflated circular membranes, which is the central topic of this 

work.  

 The paper is organized as follows. In Section 2, we first describe the geometry, material model 

and parameters involved in the problem, and follow the approach of Foster (1967a) to obtain 

general analytical solutions of the membrane under very large stretch. Section 3 presents the 
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analytical solutions for the inflated membrane in contact with a rigid substrate, which can be either 

flat or spherically curved. In Section 4, we extend the analytical solutions to consider the contact 

between an inflated membrane and an elastic substrate, either flat or spherically curved. 

Comparisons between the approximate analytical solutions and corresponding numerical 

simulations are also presented. Conclusions are given in Section 5. 

 

2.  Analytical Model 

2.1 Problem definition 

 

Figure 1 Geometry of the membrane contact problem. (a) Three-dimensional schematic of the 
pressurized membrane in contact with a substrate. (b-d) The membrane in its (b) undeformed, (c) 
pre-stretched, and (d) inflated configurations. 𝜉 is the arc length along the cross-sectional curve of 
the deformed membrane (𝜉 ൌ 0 at r = 0). The inset in (d) shows the top view of a membrane 
element before and after the deformation. 

 

 We consider the contact between a probe of inflated circular membrane and a substrate, as 

schematically illustrated in Fig.1a. The probe consists of a circular thin membrane with its edge 

fixed to the end of a pressurization tube. The membrane has a thickness of h in the undeformed 

configuration (Fig.1b). Axisymmetry allows us to focus on the r-z plane of a cylindrical coordinate 

system (r, , z) with the origin located at the center of the circular membrane. The membrane is 
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first subjected to a uniform biaxial pre-stretch 𝜆଴ and then fixed at its edge at r = b (Fig.1c). The 

undeformed membrane radius is therefore b/0. A uniform pressure P is applied on the upper 

surface of the membrane, and the inflated membrane is brought into contact with the substrate by 

decreasing the vertical gap, d, between the pressurization tube and the substrate surface. Initially 

when the inflated membrane and the substrate are in point contact, the gap is equal to the deflection 

of the membrane’s apex under free inflation, denoted as d0 (≥ d). The contact displacement  is 

defined as the difference d0 − d, and the corresponding compressive force is denoted as F. 

Motivated by the applications in haptic sensing, our goal is to obtain analytical solutions relating 

F and  under a prescribed internal pressure P. In case the membrane contact is controlled by 

varying the internal pressure P (Laprade et al., 2013; S. Song et al., 2017, 2019), one can readily 

apply the solutions by treating the internal pressure P as the loading parameter. 

 To facilitate analysis, we make the following assumptions regarding the material and interface 

models for the membrane and the substrate.  

 The contact interface is assumed to be adhesionless and frictionless, i.e., we consider Hertzian 

contact between the inflated membrane and the substrate.  

 The membrane is so thin that its bending rigidity is negligible. Only stretching deformation 

within the membrane is considered. The membrane material is assumed to follow the 

incompressible neo-Hookean model with the following strain energy density function: 

                   2 2 2
1 2 3 3

2
mW

        ,            (1) 

where m is the shear modulus of the membrane and 1, 2 and 3 are the principal stretches. Note 

that incompressibility implies that the out-of-plane stretch 3 is related to the two in-plane principal 

stretches 1 and 2 by 3 = 1/(12).  

 Four cases of substrates are considered. In the first two cases (Section 3), the substrate is rigid, 

but can be flat or spherically curved. In the other two cases (Section 4), the substrate is a linear 

elastic solid with Young’s modulus Es and Poisson’s ratio s, and the substrate can still be flat or 

spherically curved. Although we account for nonlinearity due to large stretch and deflection of the 

membrane, we still assume linear elasticity for the substrate to apply the Hertz contact theory. 

 

2.2 Large deformation of membrane 
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 Large deformation of hyperelastic membrane has been extensively studied in the literature 

(Libai and Simmonds, 1998). The equations for kinematics and equilibrium of the hyperelastic 

membrane adopted in this work closely follow those in Long and Hui (2012). Here we briefly 

summarize these equations. Deformation of the membrane brings a material point originally 

located at ሺ𝜌, 0ሻ to a new location at ሺ𝑟, 𝑧ሻ. Let  be the longitudinal arc length of the deformed 

membrane (see Fig.1d). Due to axisymmetry, the two principal stretches, denoted as 1 and 2, are 

given by (see the inset of Fig.1d) (Long and Hui, 2012):  

      1

d

d




  ,                  (2) 

      2

r


 .               (3) 

The principal stretch 1 is along the arc length  direction within the r-z plane (i.e., the longitudinal 

direction). The other principal stretch 2 is along the normal direction of the r-z plane (i.e., the 

latitudinal direction). The corresponding line tension (force/length) along the longitudinal and 

latitudinal directions are defined as T1 and T2, respectively. Force balance of an arbitrary area 

element in the membrane results in the following equilibrium equations (Long and Hui, 2012):  

      1 2

sind
T T P

d r

 

   ,             (4) 

      
 1

2

d T r
T

dr
 ,             (5) 

where  is the angle between the longitudinal tangent of the deformed membrane and the r-axis 

(see Fig.1d) and is determined by the following identity: 

      cos
dr

d



 , sin

dz

d



 .             (6) 

Note that eq. (4) is due to equilibrium along the normal direction of the membrane, where 𝑑𝜃/𝑑𝜉 

and 𝑠𝑖𝑛𝜃/𝑟 are the two principal curvatures associated with T1 and T2, respectively. Equation (5) 

enforces the equilibrium along the longitudinal direction of the membrane. Using the 

incompressible neo-Hookean model, we obtain the following relationship between the true line 

tensions (i.e., T1, T2) and the principal stretches (1, 2) (Long and Hui, 2012): 
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     1
1 3 3

2 1 2

1
mT h


  

 
  

 
, 2

2 3 3
1 1 2

1
mT h


  

 
  

 
.           (7) 

We adopt the approximation made by Foster (1967a) that under very large stretch, the term 𝜆ଵ
ିଷ𝜆ଶ

ିଷ 

is negligible in comparison to 𝜆ଵ/𝜆ଶ or 𝜆ଶ/𝜆ଵ, i.e., 

      2 21
1

2 2

1
m mT h h

T

 


  .            (8) 

 Based on the kinematic, equilibrium and constitutive equations summarized above, one can 

derive the following result (see Appendix A for details): 

     
 

 

22 2
12

2 2 2
2

sin
4 m

P r C

h r C








,              (9) 

where C2 is an additional integration constant.  The constants C1 and C2 need to be solved using 

boundary conditions. Once these two constants are determined, the deformed profile of the 

membrane, as manifested in the function z(r), can be obtained by integrating dz/dr = tan.  

 

2.3 Free inflation 

 To demonstrate the utility of eq. (9), we first consider free inflation of the membrane (Fig. 1d). 

This problem has been solved by Foster (1967b). For completeness, here we rewrite the solution 

by Foster (1967b) in terms of our notations. The detailed derivation can be found in Appendix B. 

The deformation profile of the membrane is a spherical cap given by 

     

2
2 2

2 22 2m mh h
z b r

P P

                 
,   0 r b           (10) 

The radius of the sphere is  

      
2 mh

R
P


 .             (11) 

The “±” sign in eq. (10) implies that there are two possible spherical cap solutions that share the 

same radius R but are centered at different locations on the z-axis. The deflection at the apex of 

the membrane due to free inflation, d0, is given by 
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      
2

2
0

2 2
0 m mh h

d z r b
P P

       
 

 .        (12)  

As discussed in Appendix B, the membrane is subjected to equibaxial tension (i.e., 𝜆ଵ ൌ  𝜆ଶ) with 

1 2 mT T h   throughout the entire spherical portion of the inflated membrane. This conclusion 

will be useful for the contact solutions in Sections 3 and 4.  

 

2.4 Validation using numerical solutions 

 In a previous work, Long et al. (2010) presented numerical solutions for the large deformation 

of an inflated circular membrane under free inflation or in contact with a flat and rigid substrate. 

They cast eq. (2)-(6) into a system of ordinary differential equations using the undeformed radial 

coordinate (see Fig.1b) as the independent variable. We apply the method of Long et al. (2010) 

to the neo-Hookean membrane and use the resulting numerical solution to validate the analytical 

solutions. Since the numerical solution is obtained by solving a Boundary Value Problem (BVP), 

it will be referred to as the BVP solution hereafter.  

 Figure 2 shows the comparison between the analytical and BVP solutions for free inflation. 

First, we consider the relation between the pressure P and the deflection d0 as shown in Fig.2a. 

The analytical solution in eq. (12) gives a single curve, while the BVP solutions vary with the 

biaxial pre-stretch 0. When 𝜆଴ ൌ1, the analytical solution first deviates from the BVP solution at 

small deflection d0, but converges to it as d0 increases. This is expected since large d0 implies large 

stretch in the membrane, which is the basis for the approximation in eq. (8). The large stretch 

condition can also be achieved by increasing the pre-stretch 0. As shown in Fig.2a, when 0 = 2, 

the agreement between the analytical and BVP solutions becomes excellent even for small d0. We 

note that both the analytical and BVP solutions feature a non-monotonic relation between P and 

d0. The existence of a maximum in P implies an instability during pressure-controlled inflation, 

which is well-known in the literature (Hassager et al., 1999; Osborne and Sutherland, 1909; Patil 

and Dasgupta, 2013). This pressure maximum, denoted as P = Pc at d0 = d0c, divides the pressure 

versus deflection curve into a stable (d0 < d0c) and an unstable branch (d0 > d0c), as reflected by the 

two possible cases in eq. (10). In both cases the membrane deforms to a spherical cap. We will 

refer to the case with smaller deflection (stable branch) as Case I, and the case with larger 
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deflection (unstable branch) as Case II, as illustrated in Fig.2b. According to eq. (12), the 

maximum pressure is  

     
2 m

c

h
P

b


    and 0cd b ,          (13) 

indicating that the pressure maximum is achieved when the membrane is inflated into a hemisphere, 

since b is the radius of the pre-stretched membrane. It should be noted that eq. (13) may slightly 

overestimate Pc and underestimate d0c for low pre-stretch (0 < ~ 1.5) due to the approximation in 

eq. (8). 

 
Figure 2 Free inflation of the membrane (a) Analytical and BVP solutions of the normalized 
pressure versus the normalized deflection for different pre-stretch ratios. (b) Case I and II of 
membrane deformation profile under 𝑃𝑏/2𝜇௠ℎ ൌ 0.6  and 𝜆଴ ൌ 1 . (c-d) Analytical and BVP 
solutions of the membrane deformation profiles for (c) 𝜆଴ ൌ 1 and (d)  𝜆଴ ൌ 2.  
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 Figures 2c and 2d compare the membrane deformation profiles without pre-stretch (0 = 1) or 

with pre-stretch (0 = 2), respectively. The curves with the same color represent the two possible 

cases under the same pressure. The significant difference between analytical and BVP solutions 

for Case I in Fig.2c confirms the discrepancy observed for d0 < d0c and 0 = 1. For Case II, the 

membrane stretch is sufficiently large to ensure accuracy of the analytical solution even without 

pre-stretch. In Fig.2d, the introduction of pre-stretch substantially improves the accuracy of 

analytical solutions and we observe excellent agreement between analytical and BVP solutions for 

both Case I and II.  

 

3. Contact with a rigid substrate 

 In this section, we consider the contact of an inflated membrane with a rigid substrate which 

can be flat (Section 3.1) or spherically curved (Section 3.2). Our approach is to divide the 

membrane into two parts: the contacting part which conforms to the substrate and the free standing 

part which follows eq. (9). These two parts are jointed at the perimeter of the contact region, where 

appropriate boundary conditions are prescribed to ensure continuity and equilibrium.   

 

3.1 Contact with a flat rigid substrate 

 

Figure 3 Schematics of the inflated membrane in contact with a flat rigid substrate: (a) Case I and 
(b) Case II. 

 

 As illustrated in Fig.3, the contacting membrane on the flat rigid substrate occupies a circular 

region of radius a and is under uniform biaxial stretch due to the frictionless condition on the 

interface (Long et al., 2010). The adhesionless condition implies that both the tangent angle  and 
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the stretch ratios (1 and 2) should be continuous at the contact edge, otherwise force balance 

across the contact edge cannot be satisfied (Long et al., 2010). Therefore, we obtain the following 

boundary conditions for the free standing membrane: 

     0   and 1 2   at r a .           (14) 

These boundary conditions allow us to determine the constants C1 and C2 in eq. (9). Specifically, 

substituting 0   at r = a into eq. (9) yields C1 = − a2. The biaxial stretch condition 1 = 2 implies 

that T1 = T2 ≈ mh at r a , based on which we obtain C2 = 0 by comparing eq. (A2) in Appendix 

A and eq. (9). Consequently, eq. (9) becomes 

     
 
 

2 22 2 2 2 2
2

2sin
2 m

P r a r a

Rrhr




  
   

 
.             (15) 

Recall that R is the radius of the membrane under free inflation in eq. (11). Substituting eq. (15) 

into eq. (6) gives 

       
 

 

2 22

2 22 2 2 2

sin
tan

1 sin

r adz

dr R r r a





    

  
.        (16) 

Integrating eq. (16) yields 

      
 

 

2 2

422 2 2 2

r a
z dr C

R r r a


  

 
 ,            (17) 

where C4 is a constant to be determined by boundary conditions. To simplify notation, we 

normalize all lengths by the radius of the pre-stretched membrane before inflation, b, and define a 

new integral function:        

              
 

 
 

2 2 2 2/

2 22 2 2 2 2 2 2 2

1
; ,

r r b

a a

s a s a
r a R ds ds

b R s s a R s s a

 
  

   
  ,          (18) 

where /s s b , /a a b  and /R R b . This function is in closed-form and can be related to 

elliptic integrals (see Appendix C). The “±” sign in eq. (16) and (17) implies there are two possible 

contact solutions, which correspond to the two cases for free inflation as elaborated below.  
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 Case I: the membrane deforms into a small spherical cap (i.e., maximum deflection d0 < b) 

before contacting the substrate. In the free standing membrane, z increases monotonically with r 

from the contact edge (𝑟 ൌ 𝑎) to the fixed end (𝑟 ൌ 𝑏) (see Fig.3a). As a result, we set 0 ≤  < /2 

and take the “+” sign in eq. (17) and obtain the following solution by enforcing z = 0 at r = b:  

        / ; , ; ,z b r a R b a R  ,        a r b  .                      (19) 

The contact displacement  can be calculated by subtracting the vertical gap, i.e., d = − z (r = a), 

from the initial value d0 in eq. (12), which gives   

      2 2
0 ; ,d d R R b b b a R        .                          (20) 

It is worth pointing out that the Case I solution is in agreement with the linear analysis by Xu and 

Lietchi (2011) provided that the membrane is under sufficiently large pre-stretch and is limited to 

small deflection. Details of the comparison are given in Appendix D.  

 Case II: the membrane deforms into a large spherical cap (i.e., maximum deflection d0 > b) 

before contacting the substrate. The free standing membrane consists of two segments: r first 

increases (0 ≤  < /2) and then decreases (/2 ≤  <) as z increases (see Fig.3b). The critical 

point at which r starts to decrease, denoted as r = , is determined by seeking where  = /2. Based 

on eq. (16), the following equation needs to be satisfied for  = /2 at r = : 

             22 2 2 2 0R a    .           (21) 

There are two positive roots of eq. (21): one larger than and the other smaller than the contact 

radius a, i.e., 

       
2 24

2

R R a
a  

  ,                                        (22) 

      
2 24

2

R R a
a      .                                       (23) 

For the flat rigid substrate considered here, we exclude   because geometry of the deformed 

membrane (see Fig.3b) prevents the possibility that  = /2 at r < a. Therefore, the two segments 

of the free standing membrane are jointed at r =  as shown in Fig.3b. The upper segment features 
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dz/dr < 0 and thus we adopt the negative sign in eq. (16). Using the boundary condition that z = 0 

at r = b, we obtain the following equation for the upper segment: 

     / ; , ; ,z b b a R r a R  ,      b r    and ( )z z r   .      (24) 

On the lower segment, dz/dr ≥ 0 and we adopt the positive sign in eq. (16). By enforcing the 

continuity condition at r = we find the following profile for the lower segment: 

             / ; , ; , 2 ; ,z b b a R r a R a R    ,   a r    and ( )z z r   .        (25) 

Similar to Case I, the contact displacement  is calculated using d0 in eq. (12) and d = −z(r = a): 

       2 2
0 2 ; , ; ,d d R R b b a R b b a R          .        (26) 

 For both Case I and II, we determine the compressive contact force F by integrating the contact 

pressure between the membrane and the substrate. Since the contacting membrane is flat, the 

contact pressure P* must be uniform and equal to the internal pressure P. Therefore, F is given by  

       2F a P .              (27) 

To summarize, eq. (19) and eq. (24)-(25), when jointed by the flat contacting membrane (0 ≤ r < 

a), provide the deformation profile of the membrane in Case I and II, respectively. The relation 

between the compressive contact force F and the contact displacement  can be determined by 

combining eq. (20) and (27) for Case I and eq. (26) and (27) for Case II. These analytical solutions 

do not explicitly depend on the pre-stretch 0, but depend on two parameters: /a a b  and 

/R R b . The former measures the size of the contact region, while the latter reflects the internal 

pressure P through R = 2mh/P. 

 

3.2 Contact with a spherically curved rigid substrate 

 Here we consider the scenario where the rigid substrate is spherically curved with a radius Rs. 

We assume the center of the substrate is located on the z-axis (i.e., vertically aligned with the center 

of the membrane) to maintain axisymmetric contact. The contacting membrane conforms to the 

curved substrate and has a spherical profile. Because of the frictionless condition, the contacting 

membrane is only subjected to the internal pressure P and the normal contact pressure Pe from the 
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interface. Effectively, the contacting membrane is inflated by the pressure differential Pe − P. 

Based on the results in Section 2.3, we conclude that Pe − P is uniform due to the spherical profile 

of the contacting membrane. The radius of the contacting membrane is the same as that of the 

substrate, Rs. According to eq. (11), we have 

      
2 m

e
s

h
P P

R


  ,                      (28) 

where we have adopted the sign convention that Rs < 0 (Pe < P) if the substrate is concave and Rs > 

0 (Pe > P) if the substrate is convex (see Fig.4). 

 

Figure 4 Schematics of the inflated membrane in contact with a spherically curved rigid substrate. 
(a) Concave substrate: P > Pe. (b) Convex substrate: P < Pe. For simplicity, only Case I membrane 
deformation is shown. 

 

 For the free standing membrane, we first determine the boundary conditions at the contact edge. 

Similar to the flat rigid substrate, the adhesionless contact condition implies that the tangent angle 

 and the stretch ratios (1 and 2) are continuous at the contact edge. Since the contacting 

membrane is subjected to equibiaxial stretch due to its spherical profile, we enforce 1 = 2 at r = 

a. The tangent angle  at the contact edge is no longer 0, but is equal to  such that 

      0sin
s

a

R
   .                     (29) 

Note that > 0 for concave substrate and < 0 for convex substrate. Plugging the boundary 

conditions, i.e., 0   and 1 2   at r a , into eq. (9) and eq. (A2) in Appendix A, we have 

     20
1

2 sinmha
C a

P

 
  , 2 0C  .             (30) 

Note that C2 = 0 is due to the equibiaxial stretch condition at the contact edge. Combining eq. (9), 

(11), (29) and (30), we arrive at the following equation for the free standing membrane: 
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2

2 2

2
2 2

1

sin s

R
r a

R

R r


  
   
   .          (31) 

To simplify notation, we define  

        0sin

s

R R

a R

    .           (32) 

Similar to Section 3.1, we first use eq. (31) to calculate dz/dr, i.e.,  

     
  

  

2 2

22 2 2 2

1
tan

1

r adz

dr R r r a






 
  

  
.         (33) 

Integrating eq. (33) yields 

     
  

  

2 2

522 2 2 2

1

1

r a
z dr C

R r r a





 
  

  
 ,                    (34) 

where the “±” indicates that the free standing membrane may contain segments with dz/dr > 0 or 

dz/dr < 0. The integration constant C5 can be determined using the boundary condition z = 0 at r = 

b, which depends on the detailed contact conditions as discussed in the following three subsections. 

To facilitate discussion, we introduce a new integral function:  

       
  

  
  

2 2 2 2/

2 22 2 2 2 2 2 2 2

1 11
; , ,

1 1

r x b

a a

s a s a
r a R ds ds

b R s s a R s s a

 


 

   
  

     
  ,   (35) 

where /s s b , /a a b  and /R R b . This function is similar to that in eq. (18) but is enriched 

by the additional parameter  = − R/Rs due to the spherically curved substrate. 

 

3.2.1 Concave substrate 

 For concave substrate, Rs is negative and we assume |Rs| is larger than the radius of the freely 

inflated membrane R, otherwise an annular contact region would be established before the apex of 

the membrane reaches the substrate. Effectively we limit our solution to the regime 0 < 
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Following the same procedures in Section 3.1, we obtain solutions for Case I and Case II 

using the ranges of r illustrated in Fig.5. 

 

 

Figure 5 Schematics of the inflated membrane in contact with a concave rigid substrate: (a) Case 
I and (b) Case II. 

 

 Case I: we require 0 ≤  ≤  < /2 and dz/dr > 0 throughout the free standing membrane (see 

Fig.5a) and enforce the boundary condition z = 0 at r = b, which yields 

        / ; , , ; , ,z b r a R b a R   ,        a r b  .                   (36) 

Unlike the flat rigid substrate, the contacting membrane also contributes to the vertical gap d ≡ − 

z(r = 0): d is equal to the deflection of the free standing membrane plus the height of the contacting 

membrane: 

       2 2
s sd z r a R R a      .                          (37) 

Recall that Rs < 0. The contact displacement  is given by 

      2 2 2 2
0 ; , , s sd d R R b b b a R R R a           .                   (38) 

 Case II: similar to Section 3.1, we first determine the critical points at which the tangent angle 

 = /2 by setting the denominator within the integral of eq. (34) to zero and solve for r. There are 

two positive solutions r =  and   

      
 2 24 1

2

R R a


  
 ,          (39) 
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 2 24 1

2

R R a


   
  .          (40) 

Since 0 < it is clear that  a and thus we exclude this solution. On the other hand, 

geometrical consideration dictates that the contact radius a cannot exceed the substrate radius, i.e.,   

a ≤ |Rs|. Using this constraint, one can show that  ≥a. Therefore, we divide the free standing 

membrane into two segments at r = . Deformation profiles for these two segments are given by 

 Upper:      / ; , , ; , ,z b b a R r a R   ,          b r    and ( )z z r   ,              (41) 

  Lower:      / ; , , ; , , 2 ; , ,z b b a R r a R a R       , a r    and ( )z z r   . (42) 

To determine the contact displacement , we substitute z(r = a) from eq. (42) into eq. (37) to 

calculate the vertical gap d and obtain 

     2 2 2 2
0 2 ; , , ; , , s sd d R R b a R b a R R R a              .      (43)  

 For both Case I and Case II, the compressive contact force F can be calculated by integrating 

the contact pressure Pe projected along the z-direction, i.e., 

      2 2 1eF a P a P     ,                                                          (44) 

where we have used eq. (28) to determine Pe and eq. (11) and (32) to simplify the expression.  

 

3.2.2 Convex substrate: contact with upper hemisphere 

 For convex substrate, Rs is positive and hence = − R/Rs Solution of the membrane 

deformation depends on whether the contact region remains on the upper hemisphere of the 

substrate or extends to the lower hemisphere. We first consider membrane contact with the upper 

hemisphere of the substrate. As illustrated in Fig.6, the contact radius a must be smaller than Rs. 

Within the contact region, the membrane has the same convex curvature as the substrate. As a 

result, the tangent angle at the contact edge, 0, falls into the range of –/2 ≤ 0 ≤ 0 as given by eq. 

(29). The negative 0 implies that in the free standing membrane z must decrease first as one moves 

away from the contact edge (r = a). As r is increased, the free standing membrane may reach a 
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point where the tangent angle  = 0. We denote this point as r =  and calculate it by setting tan 

= 0 in eq. (33), which yields 

      1a   .           (45) 

It is clear that > a because  Next, we discuss solutions for Case I and Case II shown in 

Fig.6.  

 

 

Figure 6 Schematics of the inflated membrane in contact with the upper hemisphere of the convex 
substrate. (a) Case I with  ≥ b. (b) Case I with  < b. (c) Case II. 

 

 Case I: two possibilities exist depending on whether  is larger or smaller than b. If  ≥ b, z 

would decrease monotonically with r for a ≤ r ≤ b, i.e., −/2 ≤  ≤  ≤ 0 throughout the free 

standing membrane (see Fig.6a). If  < b, z would first decrease with increasing r in the interval a 

≤ r ≤  and then increase with increasing r in the interval  < r ≤ b (see Fig.6b). The range of 

tangent angle  in the free standing membrane is expanded to −/2 ≤  ≤  < /2. Interestingly, 

both possibilities can be accounted for by taking the “+” sign in eq. (33). Specifically, the possible 

change in sign of dz/dr (or tan) at r =  is accommodated by the numerator (r2 – (1 − )a2) which 

changes from negative to positive as r increases beyond Therefore, whether  ≥ b or  < b, 

deformation profile of the free standing membrane is still given by eq. (36). Because the point at 

r =  does not involve a change of sign in eq. (33), we will not divide the free standing membrane 

at this point in the subsequent discussions. The vertical gap d, defined as −z(r = 0), is now equal 
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to the deflection of the free standing membrane subtracted by the height of the contacting 

membrane due to the convex curvature of the substrate: 

       2 2( )s sd z r a R R a      .                                            (46) 

Accordingly, the contact displacement  is given by 

      2 2 2 2
0 ; , , s sd d R R b b b a R R R a           .                       (47) 

 Case II: by comparing eq. (39) and (45), we conclude that  >  (see Fig.6c). As discussed 

above, we can treat the free standing membrane within a ≤ r ≤  as a single segment by taking the 

“+” sign in eq. (33). The other segment with b ≤ r <  can be accounted for by taking the “−” sign 

in eq. (33). Therefore, deformation profile of the free standing membrane is still given by eq. (41) 

and (42). Similar to Case I, we use eq. (46) to calculate the vertical gap d. The corresponding 

contact displacement  is      

         2 2 2 2
0 2 ; , , ; , , s sd d R R b b a R b b a R R R a               .       (48) 

 For both Case I and Case II, the contact force F can still be calculated using eq. (44). 

 

3.2.3 Convex substrate: contact with lower hemisphere 

 When the contacting membrane extends to the lower hemisphere of the substrate (see Fig.7), 

the tangent angle at the contact edge, 0, falls into the range of – ≤ 0 < –/2 as given by eq. (29). 

The main difference between this scenario and that considered in Section 3.2.2 is that r first 

decreases immediately outside the contact region. Consequently, both solutions for the critical 

points, i.e.,  and  in eq. (39) and (40), are permitted. Since  and a ≤ Rsone can show 

that  aand  aThe point at r =  features  = /2, while the point at r =  features  = –

/2. The existence of r =  introduces a new segment to the free standing membrane as compared 

to the upper hemisphere contact considered in Section 3.2.2 (Fig.7). Following procedures similar 

to those in Section 3.2.2, we find the solutions for two cases of lower hemisphere contact as 

summarized below.  
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Figure 7 Schematics of the inflated membrane in contact with the lower hemisphere of the convex 
substrate. (a) Case I with  ≥ b. (b) Case I with  < b. (c) Case II. 

 

 Case I: the free standing membrane starts at the contact edge (r = a) with − ≤  ≤  < −/2 

for r in the interval r a   , where we adopt “−” sign in eq. (33). After that, whether  ≥ b or  

< b (see Fig.7a and 7b), we can treat the free standing membrane as one segment with r b    

and − ≤  < where we adopt the “+” sign in eq. (33). Enforcing the boundary condition and 

continuity condition, we obtain the following solutions for the deformation profile of the free 

standing membrane: 

       / ; , , ; , ,z b r a R b a R   ,          r b   ,       (49) 

and 

        / 2 ; , , ; , , ; , ,z b a R r a R b a R       ,        r a   .        (50) 

The vertical gap d ≡ −z(r = 0) is given by  

        2 2( )s sd z r a R R a      .                (51) 

Note that the height of the contacting membrane is different from that in eq. (46) because of the 

contact region extends to the lower hemisphere of the substrate. The contact displacement  is 

     2 2 2 2
0 2 '; , , ; , , s sd d R R b b a R b b a R R R a               .            (52) 

 Case II: the free standing membrane consists of three segments: i) − ≤  ≤  < −/2 in 

r a   , ii) − ≤  ≤  for r    , and iii)  <   ≤  for b r   . Among these three 
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segments, i) and iii) require the “−” sign in eq. (33), while ii) requires the “+” sign in eq. (33). 

Again, by enforcing boundary condition and continuity conditions, we obtain the following 

solutions for the deformation profile of the free standing membrane  

       / ; , , ; , ,z b b a R r a R   ,                  b r   ,      (53) 

         / ; , , ; , , 2 ; , ,z b b a R r a R a R       ,      r    ,      (54) 

and 

         / ; , , 2 ; , , 2 ; , , ; , ,z b r a R a R a R b a R            ,  r a   .      (55) 

Using eq. (51), we can calculate the vertical gap d and the resulting contact displacement  is  

      2 2 2 22 ; , , 2 ; , , ; , , s sR R b b a R b a R b b a R R R a                 .    (56) 

 Similar to Section 3.2.2, the contact force F for both Case I and Case II can be calculated using 

eq. (44). 

 

3.3 Validation using BVP and FEM results 

 In this section, we verify the accuracy of our analytical solutions for membrane contact using 

numerical results. Since our analytical solutions are based on the large-stretch approximation in 

eq. (8), their accuracy is improved under a larger pre-stretch 0. Therefore, for verification purpose, 

we set 0 = 2 for all results in this section. According to Section 2.4, this pre-stretch is sufficient 

for the analytical solution to accurately capture free inflation of the membrane. We first apply the 

numerical method in Long et al. (2010), which will be referred to as the BVP solution and is limited 

to the contact with flat rigid substrate. To enable comparison for membrane contact with 

spherically curved substrate, we build a FEM model using the commercial software ABAQUS 

(version 2020, Simulia, Providence, RI, USA). Details of the FEM model are provided in 

Appendix E. Since the Case II solution resides on the unstable branch of the P versus d0 curve in 

Fig2a, our FEM model in ABAQUS was unable to access the Case II solution due to the controlled 

internal pressure P. Therefore, only Case I results were obtained from FEM.  
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 We first validate the solutions for the contact with flat rigid substrate. Figures 8a and 8b show 

the analytical solutions for the membrane deformation profiles in Case I and Case II with 

corresponding BVP solutions. Agreement between the two sets of results is evident. In addition, 

we plot the contact force F as a function of the contact displacement  for Case I and Case II in 

Fig.8c and 8d, respectively, showing good agreement between the analytical, BVP and FEM 

results (Case I only). Interestingly, our analytical solutions reveal that the average contact stiffness, 

i.e., F/, decreases with the internal pressure P in Case I (Fig.8c), but increases with the internal 

pressure P in Case II (Fig.8d). This reverse of trend from Case I to Case II agrees well with the 

numerical solutions.  

 Next, we validate the solutions for the contact with spherically curved rigid substrate. Figures 

9a-9c show the excellent agreement between analytical and FEM results for the Case I membrane 

profiles with concave, convex (upper hemisphere), and convex (lower hemisphere) substrates, 

respectively. Even with very large contact area (e.g., Fig. 9c), our analytical solutions can still 

accurately capture the nonlinear deformation of the membrane. Figures 9d-9f show only the 

analytical solutions for the Case II membrane profiles due to the lack of FEM results. Analytical 

solutions for the contact force-displacement curves are also found to agree with FEM results in 

Case I, as shown in Fig. 9g-9h. 
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Figure 8 Inflated membrane in contact with flat rigid substrate with and 𝜆଴ ൌ 2. (a-b) Deformation 
profiles of the membrane with 𝑃𝑏/2𝜇௠ℎ ൌ  1/𝑅ത = 0.6 and different contact radius (analytical: 
solid lines; BVP: dashed lines). The bottom inset in (a) shows a zoomed-in view of the membrane. 
(c-d) Normalized contact force 𝐹/2𝜇௠ℎ𝑏 versus contact displacement /b under three different 
normalized pressure 𝑃𝑏/2𝜇௠ℎ = 0.4, 0.6 or 0.8. 
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Figure 9 Inflated membrane in contact with spherically curved substrate with 𝜆଴ ൌ 2  and 
𝑃𝑏/2𝜇௠ℎ ൌ  1/𝑅ത ൌ 0.6. (a-c) Deformation profiles of the membrane in Case I. (d-f) Deformation 
profiles of the membrane in Case II. (a) and (d): concave substrate with 𝑅𝑠/𝑏 ൌ െ5 and 𝑎/𝑏 ൌ
0.329. (b) and (e): convex substrate with contact on the upper hemisphere with 𝑅𝑠/𝑏 ൌ 0.5 and 
𝑎/𝑏 ൌ 0.25. (c) and (f): convex substrate with contact extended to the lower hemisphere with  
𝑅𝑠/𝑏 ൌ 0.5, 𝑎/𝑏 ൌ 0.437. (g-h) Normalized contact force 𝐹/2𝜇௠ℎ𝑏 versus contact displacement 
/b for concave and convex substrate, respectively. 

 
 

3.4 Discussion: contact with convex substrate 
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 The F versus  curves for convex substrate in Fig.9h deserve a separation discussion. Unlike 

the flat or concave substrate, the F- curve for convex substrate, either in Case I or Case II, is non-

monotonic and features a maximum in F and a maximum in . To understand this behavior, we 

first recall that F is directly proportional to the square of the contact radius a, as suggested by eq. 

(44). Normally a, defined as the radial coordinate at the contact edge (i.e., projection of the contact 

edge to the r-axis), increases as the contact area A expands, which is the case for the flat or concave 

substrate. For convex substrate, a cannot exceed the radius Rs of the convex substrate and starts to 

decrease once the contact area A extends to the lower hemisphere. This behavior indicates that A 

is a more suitable metric to evaluate the expansion of contact region for convex substrates. Since 

the contact region is a spherical cap, we can write 

      
2

2 24 s

A A
a

R 
   .         (57) 

Equations (44) and (57) suggest that F ~ a2 is a quadratic function of A that maximizes at A = 2Rs, 

i.e., when the contact region covers the entire upper hemisphere and is about to extend to the lower 

hemisphere, as shown in Fig.10a. This result explains the maximum F in Fig.9h.  

 On the other hand, the dependence of  on a or A is much more complicated (see eq. (47) and 

(52) for Case I and eq. (48) and (56) for Case II). We plot as a function of A in Fig.10a using an 

example where 𝑃𝑏/2𝜇௠ℎ = 0.6. It is interesting to see that  first increases with A and then 

maximizes at a point after the peak force Fm is achieved, which is consistent with the F-curves 

in Fig.9h. In a displacement-controlled contact process, the branch of solution after the peak 

displacement m is not accessible. For example, our FEM results, shown as triangular symbols in 

Fig.10a, match well with the analytical solution before the peak displacement m, but cannot 

provide any data after m. In contrast, our analytical solutions can still capture the solution when 

A exceeds the point of peak displacement (see dashed lines in Fig.10a). To further understand the 

peak displacement m, we plot the membrane profiles at three different contact area A for Case I 

(Fig.10c-10e) and Case II (Fig.10f-10h) of lower hemisphere contact. As A is increased, although 

the convex substrate indents more into the inflated membrane, the deflection of the free standing 

membrane given by −z(r = a) becomes larger, which effectively moves the convex substrate 

downwards and is attributed to the decreasing contact force F. Competition between these two 
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mechanisms results in a minimum in the total deflection d ≡ −z(r = 0) and hence a maximum in 

the contact displacement  = d0 – d. Although Fig.10a shows that the peak displacements m in 

Case I and Case II are close to each other, we emphasize that this result is not general. In Fig.10b, 

we plot  versus A using an internal pressure of 𝑃𝑏/2𝜇௠ℎ = 0.4, showing distinct results for Case 

I and Case II.  Moreover, the inset of Fig.10b shows that the peak displacement m varies with the 

internal pressure P in Case I and Case II. 

 

Figure 10 Contact with convex substrate. (a) Normalized contact force 𝐹/2𝜇௠ℎ𝑏 and contact 
displacement /b versus contact area A/b2 for 𝑃𝑏/2𝜇௠ℎ = 0.6 and Rs/b = 0.5. (b) Normalized 
contact displacement /b versus contact area A/b2 for 𝑃𝑏/2𝜇௠ℎ = 0.4 and Rs/b = 0.5.  The inset 
shows the normalized peak contact displacement 𝛿௠/𝑏 versus normalized pressure 𝑃𝑏/2𝜇௠ℎ. (c-
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e) Case I and (f-h) Case II membrane deformation profiles for lower hemipshere contact with i. 
a/b = 0.5, ii. a/b = 0.36, and iii. a/b = 0.125 for 𝑃𝑏/2𝜇௠ℎ = 0.6 and Rs/b = 0.5. 

 

 Figure 9h shows that the contact force F approaches 0 when the normalized contact 

displacement b approaches 1. Recall that the solutions in Fig.9h are for the convex substrate with 

a radius Rs/b = 0.5. The limit of /b = 1 corresponds to  = 2Rs, i.e., the contact displacement is 

equal to the diameter of the convex substrate. In this limit, the entire substrate sphere is wrapped 

by the membrane with a contact area of A = 4𝜋𝑅௦
ଶ  (i.e., 𝐴/𝑏ଶ ൌ 𝜋  since Rs/b = 0.5). The 

corresponding contact force F is zero, because the contact pressure Pe between the membrane and 

the substrate sphere is self-balanced and thus does not produce a net contact force. Figure 11a and 

11b show nearly complete wrap of the substrate by the membrane given by Case I and Case II 

solutions, respectively. Note that complete wrap of the substrate sphere by the membrane would 

result in an infinite bending curvature at the bottom of the sphere, as illustrated in Fig.11c-11f 

showing zoomed-in views at the bottom of the sphere. Mathematically such severe curvature is 

allowed by the hyperelastic membrane theory, since it neglects bending rigidity of the membrane. 

However, resistance to bending would always emerge, even for thin membranes, when the 

curvature is sufficiently large. Therefore, complete wrap of the substrate sphere by the membrane 

is unlikely to occur in practice. As the configuration of complete wrapping is approached, we 

expect that the transition from stretching to bending should occur locally near the contact edge and 

such transition depends on the thickness of the membrane (Long et al., 2010). The competition 

between bending and stretching for nearly complete wrapping is beyond the scope of this work 

and is not pursued here.   
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Figure 11 Deformed membrane profiles for contact with convex substrate. (a) Case I and (b) Case 
II solutions for lower hemisphere contact with a/b = 0.0005, 𝑃𝑏/2𝜇௠ℎ = 0.6 and Rs/b = 0.5. (c-f) 
Zoomed-in view of the membrane deformation near the bottom of the substrate for 𝑃𝑏/2𝜇௠ℎ = 
0.6 and Rs/b = 0.5: (c-d) Case I with a/b = 0.0005 or 0.05, respectively; (e-f): Case II with a/b = 
0.0005 or 0.05, respectively. 

 

4. Contact with an elastic substrate 

 In this section, we present analytical solutions for the inflated membrane in contact with an 

elastic substrate. Similar to Section 3, we will first consider flat elastic substrates (Section 4.1) and 

then extend the solutions to spherically curved elastic substrates (Section 4.2). Validation of the 

analytical solutions using FEM results will be shown in Section 4.3. 
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Figure 12 Schematics of the inflated membrane in contact with a flat elastic substrate. (a) Case I. 
(b) Case II. (c) A zoomed-in view of the contact region showing the pressure on the membrane 
and the substrate, where 𝑃 is the internal pressure within the membrane, 𝑃௘

∗ is the distributed Hertz 
contact pressure on the substrate, and 𝑃௘  is the approximated uniform contact pressure on the 
membrane. 

 

4.1 Contact with a flat elastic substrate 

 The substrate is assumed to be an elastic half-space with Young’s modulus 𝐸௦ and Poisson’s 

ratio 𝜈௦. Upon contact with the inflated membrane, both the membrane and substrate deform as 

shown in Fig.12a and 12b. If exact solutions are sought, one would need to solve the unknown 

distribution of contact pressure by writing the surface displacement profile of the substrate through 

the Green’s function approach and setting it equal to the membrane profile due to conformal 

contact. However, this would result in an integral equation that is unsolvable analytically. To 

obtain analytical solutions, we simplify the problem by approximating the contacting membrane 

as a spherical cap with radius R*.  To be consistent with the sign convention of free inflation radius 

R, we let R* be positive if the contacting membrane is convex and negative if otherwise. For the 

flat elastic substrate, we expect R* to be positive (see Fig.12c) because the substrate cannot bulge 

up under adhesionless contact. Similar to Section 3.2, the spherical cap profile of the contacting 

membrane implies that it is subjected to a uniform internal pressure P and a uniform contact 

pressure Pe (see Fig.12c). The radius R* satisfies the following equation: 

            *

2 m
e

h
P P

R


  .                  (58) 
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Because P − Pe < P, we expect R* to be larger than the free inflation radius R = 2mh/P. Given that 

both R* and Pe are unknown, we need to consider deformation in the elastic substrate. The substrate 

is effectively indented by a rigid sphere with radius R* with no adhesion and friction. Therefore, 

we utilize the Hertz contact theory which gives the following distribution of contact pressure in 

the contact region 

       
1/22

*
2 2

3
1

2e

F r
P r

a a
 

  
 

,         (59) 

where a is the contact radius and F is the compressive contact force. The contact force F is given 

by  

           

* 3

*

4

3
sE a

F
R

 ,                  (60) 

where * 2/ (1 )s s sE E    is the plane strain modulus of the substrate. Apparently, the contact 

pressure 𝑃௘
∗ on the substrate is not uniform, which contradicts the uniform contact pressure Pe on 

the membrane. This discrepancy implies that the contacting membrane should not exactly have a 

spherical shape. As an approximation, we set Pe to be the average value of the Hertzian contact 

pressure 𝑃௘
∗: 

      
*

2 *

4

3
s

e

E aF
P

a R 
  .                (61) 

Effectively, we assume that deformation of the contacting membrane can be approximated to the 

first order by retaining the spherical shape but allowing its radius R* to change. Combining eq. (58) 

and (61), we obtain: 

            **

1

2
1

3
s

m

R

E aR
h




,           (62) 

where we have used the free inflation radius R = 2mh/P. Introducing a dimensionless parameter  

      
*

3

2
m

s

h

E a

  ,                     (63) 

we can rewrite eq. (62) as 
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      * 1

R

R







.                                    (64) 

Physically,  represents the competition between the stiffness of the inflated membrane and that of 

the substrate.  The limit of = 0 recovers the case of flat rigid substrate. In the limit of 

approaching +∞, the Hertz contact problem of a rigid sphere with radius R (i.e., the inflated 

membrane) on an elastic half space is recovered. 

 With the approximation described above, the membrane deformation can be calculated using 

the same solutions as those for the spherically curved rigid substrates (Section 3.2). Specifically, 

the contacting membrane is under biaxial stretch and its spherical profile implies that the tangent 

angle 0 at the contact edge is given by   

      0 *
sin

a

R
   at r = a.            (65) 

Following the definition of  in eq. (32), we have  

      0
*

sin

1

R R

a R

 


  


,               (66) 

where one can show that 0 <  < 1 because  > 0. It should be noted the definition of  here (i.e., 

= R/R*) is similar to that for the spherically curved rigid substrate (i.e.,  −R/Rs) where the extra 

“−” sign is due to the different sign convention for Rs and R*. By substituting  in eq. (66) into eq. 

(34) and (35), we can calculate the deformation profiles of the free standing membrane, as detailed 

below. 

 Case I: deformation profile of the free standing membrane is given by eq. (36). Unlike the 

rigid substrates, here the vertical gap d between the fixed edge of the membrane and the substrate 

is equal to the total deflection, −z(r = 0), subtracted by Hertzian indentation depth of the substrate 

which is equal to a2/R*, i.e.,  

       
2 2

* *2 2
* *

0 ; , ,
a a

d z r b b a R R R a
R R

          .        (67) 

Accordingly, the contact displacement  is 
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     
2

2 2 * *2 2
0 *

; , ,
a

d d R R b b b a R R R a
R

            .                   (68) 

  Case II: deformation profile of the free standing membrane is given by eq. (41) and (42) with 

the critical point  given by eq. (39). Similar to Case I, the vertical gap d is given by  

       
2 2

* *2 2
* *

0 2 ; , , ; , ,
a a

d z r b a R b b a R R R a
R R

              .       (69) 

The contact displacement  is therefore 

     
2

2 2 * *2 2
0 *

2 ; , , ; , ,
a

d d R R b b a R b b a R R R a
R

                .       (70) 

 For both cases, the contact force F is given by eq. (60). By combining eq. (58), (61) and (62), 

the contact force F can also be casted in the form of eq. (44) with  given by eq. (66). 

 

4.2 Contact with a spherically curved elastic substrate 

 We extend the solutions in Section 4.1 to account for scenarios where the substrate is elastic 

and spherically curved with radius Rs. The center of the spherical substrate is located on the z-axis 

(i.e., the axis of symmetry). The sign convention of Rs is the same as that in Section 3.2: Rs < 0 if 

the substrate is concave and Rs > 0 if the substrate is convex. We apply the same approximation as 

in Section 4.1 that the contacting membrane has a spherical profile with radius R*. To apply the 

Hertz theory, we introduce the combined radius R : 

           
*

1 1 1

sR R R
 


.                 (71) 

Using the combined radius, the contact force F given by the Hertz theory becomes: 

           

* 34

3
sE a

F
R




,             (72) 

By combining eq. (58) and (72) and using Pe ≈ F/a2, we obtain that       
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1 s

R R

R R
 


 

     
.                          (73) 
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Following the same reasoning in Section 4.1, we can calculate the deformation profiles of the free 

standing membrane using eq. (34) and (35) with  defined in eq. (73). For concave substrates, Rs 

< 0 and we require R < |Rs| to prevent the formation of annular contact region. Given that  > 0, 

one can show that 0 < For convex substrates, Rs > 0 and one can show that but  may 

become negative if  < R/Rs. Since eq. (73) is the most general definition of we can recover to 

the scenarios discussed in previous sections. If the substrate is rigid, we have  = 0 and  = −R/Rs, 

which recovers the scenarios with rigid substrates in Section 3. If the substrate is flat and elastic, 

we have Rs = ± ∞ and  = /(1+), which recovers eq. (66) in Section 4.1. 

 It should be emphasized that the Hertz contact theory assumes linear elasticity and infinitesimal 

deformation in the substrate and thus is limited to the regime with small contact radius (e.g., a << 

|Rs|). Consequently, we do not consider the membrane contact with the lower hemisphere of the 

elastic convex substrate as in Section 3.2.3. Next, we summarize the solutions for membrane 

deformation profiles for Case I and II.  

 Case I: deformation profile of the free standing membrane is given by eq. (36) using  in eq. 

(73). The vertical gap d is given by 

       
2

* * *2 2; , ,
a

d b b a R sign R R R a
R

     

,                    (74) 

where the absolute value on R* is to accommodate the possibility that R* can be negative, and 

𝑎ଶ/𝑅ᇱ is the Hertz indentation depth of the curved substrate. The contact displacement  is 

      
2

2 2 * * *2 2
0 ; , ,

a
d d R R b b b a R sign R R R a

R
           


.                 (75) 

 Case II: deformation profile of the free standing membrane is given by eq. (41) and (42) with 

the critical point  given by eq. (39) and  in eq. (73). The vertical gap d is 

        
2

* * *2 22 ; , , ; , ,
a

d b a R b b a R sign R R R a
R

         


.             (76) 

The contact displacement  is: 

          
2

2 2 * * *2 22 ; , , ; , ,
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R R b b a R b b a R sign R R R a
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             


.   (77) 



34 
 

For both cases, the contact force is given by eq. (72) and can be casted in the form of eq. (44) with 

 given by eq. (73). 

 

4.3 Validation using FEM results 

 To validate the analytical solutions for elastic substrates, we use the FEM model described in 

Section 3.3 to perform simulations where the Young’s modulus Es of the substrate is varied to 

show the effect of 𝛾. Again, only Case I results are obtained from the FEM. 

 Figures 13, 14 and 15 show the membrane deformation profiles (Case I and II) as well as the 

corresponding contact force F versus displacement  curves for the flat, concave and convex elastic 

substrates, respectively. FEM results for Case I are also plotted in these figures for comparison. 

Because the dimensionless parameter  decreases as the contact radius a increases (see eq. (63)), 

it is not a constant during the contact process. Therefore, instead of prescribing , we vary 

𝜇௠ℎ/𝐸௦
∗𝑏 in Fig.13-15 which is related to  through 

      
*

2

3
m

s

h a

E b b

 


 .            (78) 

Since a/b < 1, 𝜇௠ℎ/𝐸௦
∗𝑏 can be interpreted as the lower bound of 2In all three figures, our 

analytical solutions for Case I of the membrane deformation profile agree well with the FEM 

results. For the F versus  curves, we use red lines to represent the limit of small 𝜇௠ℎ/𝐸௦
∗𝑏, i.e., 

very stiff substrate, and green lines to represent the limit of large 𝜇௠ℎ/𝐸௦
∗𝑏, i.e., very soft substrate. 

In the former limit (stiff substrate), we recover the scenario of rigid substrate contact, and our 

analytical solutions show good agreement with FEM results across a large range of displacement 

(see red solid lines and symbols in Fig.13c, 14c and 15c). This is expected because the large stretch 

approximation in eq. (8) is accurate when we included a pre-stretch (0 = 2). In the latter limit (soft 

substrate), we expect the inflated membrane does not further deform upon contact and acts as a 

rigid indenter on the substrate, i.e., the Hertz contact problem is recovered. Our analytical solutions 

for the F versus  curve agree well with the FEM results at relatively small  but exhibit larger 

discrepancy as  is increased (see green solid lines and symbols in Fig.13c, 14c and Fig. 15c). 

Relative to the flat substrate, such discrepancy is larger for the concave substrate (Rs/b = − 5) and 

significantly reduced for the convex substrate (Rs/b = 0.5). We attribute the discrepancy to the fact 
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the Hertz contact theory employed in our analytical solutions is valid for small contact radius. As 

the contact radius is increased, the Hertz theory becomes less accurate. The reduced discrepancy 

observed for the convex substrate (Rs/b = 0.5) is because under the same contact displacement , 

the convex substrate features a smaller contact radius as compared to the concave or the flat 

substrate, which improves the accuracy of the Hertz contact theory. 

 

Figure 13 Inflated membrane in contact with a flat elastic substrate with 𝑃𝑏/2𝜇௠ℎ = 0.6 and   
𝜆଴ ൌ 2. (a-b) Deformation profiles of the membrane for (a) Case I with 𝑎/𝑏 ൌ 0.25 and (b) Case 
II with 𝑎/𝑏 ൌ 1 . The bottom inset in (a) shows a zoomed-in view of the membrane. (c-d) 
Normalized contact force 𝐹/2𝜇௠ℎ𝑏 versus contact displacement /b for (c) Case I and (d) Case 
II. 
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Figure 14 Inflated membrane in contact with a concave elastic substrate with Rs/b = − 5, 𝑃𝑏/2𝜇௠ℎ 
= 0.6 and   𝜆଴ ൌ 2. (a-b) Deformation profiles of the membrane for (a) Case I with 𝑎/𝑏 ൌ 0.25 
and (b) Case II with 𝑎/𝑏 ൌ 1. The bottom inset in (a) shows a zoomed-in view of the membrane. 
(c-d) Normalized contact force 𝐹/2𝜇௠ℎ𝑏 versus contact displacement /b for (c) Case I and (d) 
Case II. 
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Figure 15 Inflated membrane in contact with a convex elastic substrate with Rs/b = 0.5, 𝑃𝑏/2𝜇௠ℎ 
= 0.6 and   𝜆଴ ൌ 2. (a-b) Deformation profiles of the membrane for (a) Case I with 𝑎/𝑏 ൌ 0.1 and 
(b) Case II with 𝑎/𝑏 ൌ 0.25. The bottom inset in (a) shows a zoomed-in view of the membrane. 
(c-d) Normalized contact force 𝐹/2𝜇௠ℎ𝑏 versus contact displacement /b for (c) Case I and (d) 
Case II.  

 

6. Conclusion 

 We present analytical solutions of an axisymmetric inflated neo-Hookean membrane in 

frictionless and adhesionless contact with various types of substrates. Following the approach of 

Foster (1967a, 1967b) we used the large stretch approximation for neo-Hookean membrane to 

obtain a general analytical solution for the axisymmetric membrane under uniform pressure. Using 

this solution, we first showed that under free inflation, the originally flat membrane deforms to a 

spherical cap with a radius R that is inversely proportional to the pressure P. There are two cases 

of solutions associated with the same pressure which are referred to as Case I and Case II. By 
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combining the analytical solution of free standing membrane and boundary conditions dictated by 

the geometry of the contacting membrane, we obtained analytical solutions for the membrane in 

contact with flat rigid and spherically curved rigid substrates. In case of elastic substrates, by 

introducing an approximation where the contact membrane is in the shape of a spherical cap and 

combining the membrane solution with the Hertz contact theory, we obtained analytical solutions 

for the membrane in contact with flat elastic and spherically curved elastic substrates. In particular, 

we found a dimensionless parameter that captures the transition between two limiting cases, i.e., 

either the substrate or the inflated membrane is effectively rigid relative to the other component 

and thus experiences negligible deformation upon contact. The analytical solutions were validated 

against numerical solutions of Long et al. (2010) for the free inflation and the contact with flat 

rigid substrate, where excellent agreement was found under sufficient pre-stretch. FEM 

simulations were used to validate the Case I analytical solutions for the contact with flat rigid, 

spherically curved rigid, flat elastic, and spherically curved elastic substrates, where good 

agreement was also found. While our solutions for the rigid substrate are valid for the entire range 

of contact radius, our solutions for the elastic substrate are valid for small contact radius due to 

limitation of the Hertz contact theory. 

 The closed-form but approximate analytical solutions for inflated membrane contact presented 

in this paper cover a large range of substrate geometry and stiffness. Although these analytical 

solutions are approximate in nature, they can be useful for efficiently exploring the parametric 

space of operation and design in applications such as soft pneumatic actuators and haptic 

transducers, especially for membranes undergoing large deformation with multiple solutions and 

bifurcation (Liu et al., 2021).  
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Appendix A: Derivation of eq. (9) 

 We first substitute eq. (5) into eq. (4) and utilize eq. (6) to obtain: 
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 .          (A1) 

If the applied pressure P is uniform, eq. (A1) can be integrated to give 
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where C1 is an integration constant that needs to be determined by boundary conditions.  

Substituting eq. (A2) and (8) into eq. (4) results in the following equation: 
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To further integrate eq. (A3), we cast it into the following form using eq. (6): 
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which can be further changed to 
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Next, we apply a change of variable that 2 21 cos sin     , which gives 
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To integrate eq. (A6), we first rearrange it to 
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which can be written as  
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Combining the two terms on the right hand side of eq. (A8), we obtain 
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Integration of eq. (A9) gives 
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where C2 is another integration constant. Substituting 2sin   in eq. (A7), we arrive at eq. (9) 

in the main text.  

 

Appendix B: Analytical solution for free inflation 

 At the apex of the membrane (r = 0), symmetry dictates that the membrane is flat and subjected 

to biaxial tension, i.e.,  

     0   and 1 2   at 0r  ,           (B1) 

The former condition ( = 0 at r = 0) and eq. (A2) imply that C1 = 0. The latter condition (1 = 2 

at r = 0) and eq. (8) result in that 

     1 2 mT T h   at 0r  .                 (B2) 

Using eq. (B2) and comparing eq. (A2) and (9), we conclude that C2 = 0. Therefore, we have 

     sin
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
 ,           (B3) 

where we have used the range 0 ≤  ≤ so that sin ≥. Using eq. (B3) and the identity that dz/dr 

= tan, we have 
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Integrating eq. (B4) and applying the boundary condition at the fixed edge that  
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we arrive at the following result:  
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Combining eq. (B3) and (B6), we find that the deformation profile of the membrane is a spherical 

cap given by eq. (10).  

 The spherical geometry of an inflated membrane has a general implication that warrants 

discussion. If the deformed membrane has a spherical shape with a radius of R and is under a 

uniform pressure P, both of the two principal curvatures are equal to 1/R. Therefore, the 

equilibrium equation in eq. (4) becomes: 

      1 2T T PR  .            (B7) 

Substituting eq. (B7) into eq. (5) and we obtain 

      1
12

dT
r T PR
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  .           (B8) 

The general solution of eq. (B8) is  

      3
1 22

CPR
T

r
  ,            (B9) 

where C3 is an integration constant. Since T1 must be finite at r = 0, we have to set C3 = 0, which 

means T1 = T2 = PR/2 = mh. In other words, the spherical portion of the membrane must be under 

uniform equibiaxial tension. Combining this result with eq. (8), we conclude that 𝜆ଵ ൌ  𝜆ଶ 

throughout the spherical portion of the inflated membrane. Note that although 𝜆ଵ ൌ  𝜆ଶ throughout 

the spherical membrane, the value of the biaxial stretch (i.e., 1 or 2) is not necessarily uniform 

in the membrane, as pointed out by Foster (1967b). Specifically, Long et al. (2010) showed that 

under free inflation, the areal strain at the apex of the membrane can be much larger than that the 

average areal strain of the entire membrane. This feature, although counter-intuitive, is attributed 

to the fact that 1 2 mT T h   for neo-Hookean membrane under large deformation as long as the 
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membrane is under equibiaxial stretch (i.e., 𝜆ଵ ൌ  𝜆ଶ), regardless of what values the stretch ratios 

are.  

 

Appendix C: Representing the integral function in eq. (18) using elliptic integrals 

  Based on (r; 𝑎ത, 𝑅ത ) in eq. (18), we implement a change of variable that t = s2 – a2 and obtain 

the following expression:  

      
 

2 22 2

2 2 2 2 2 22 2 2 2 0

1 1 1
; ,
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To proceed, we define the following parameters: 
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and  

      2
3 a   .           (C4) 

Using eq. (C2) - (C4), we can rewrite eq. (C1) as: 

      
2 2

0 1 2 3

1
; ,

2 ( )( )( )

r a t
r a R dt

b t t t  



 
    .                      (C5) 

The integral on the right hand side of eq. (C5) is the same as eq. (64) in Foster (1967a), except that 

Foster normalized the integral variable. Given that 1 > 1 > 1 and t = s2 – a2 < 2 – a2 = 1 

because the radial coordinate of the free standing membrane cannot exceed the critical point at r = 

, we can write the following indefinite integral in terms of the elliptic integral according to eq. 

(65) in Foster (1967a): 
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where C* is an integration constant, 𝐹ሺ𝜑, 𝑘ሻ and 𝐸ሺ𝜑, 𝑘ሻ are the incomplete elliptic integral of the 

first and second kind, respectively. The variables in the elliptic integral, k and 𝜑, are 
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We denote the function on the right hand side of eq. (C6) as f(t), i.e.,  
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Using eq. (C6) and (C9), we can write eq. (C5) as 

             2 21 1
; , 0r a R f r a f

b b
     .                  (C10) 

Therefore, the integral function (r; 𝑎ത, 𝑅ത ) in eq. (30) can be expressed in terms of incomplete 

elliptic integrals.  

 

Appendix D: Comparison with the linear analysis by Xu and Liechti (2011) 

 Xu and Liechti (2011) considered the adhesionless contact between an inflated membrane and 

a flat rigid substrate assuming linear elasticity and small membrane deflection. Here we compare 

our solutions for free inflation and contact with flat rigid substrate with the corresponding solutions 

by Xu and Liechti (2011). Specifically, for free inflation, we adapt equation (10) in Xu and Liechti 

(2011) that relates the internal pressure, P, to the deflection at the apex of the membrane, d0: 
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where 𝜎଴ is the equibiaxial tensile residual stress in the membrane. To connect eq. (D1) to our 

solutions, we note that in our problem the pre-stretched membrane is under an equibiaxial line 

tension of 𝑇ଵ ൌ 𝑇ଶ  ൌ 𝜇௠ℎ due to the large stretch approximation, which corresponds to a residual 

stress of  𝜎଴ ൌ 𝑇ଵ/ℎ ൌ  𝜇௠. Therefore, eq. (D1) becomes: 

3
0 0

4 2

6 2

2 m

d dP

h b b
  .             (D2) 

Since Xu and Liechti (2011) assumed small membrane deflection, eq. (D2) should be compared 

with the Case I solution of free inflation in eq. (12) which gives 

 0
2 2
0

2
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dP

h d b



.  (D3) 

In Fig.16a, we compare eq. (D2) and (D3) and find that the two solutions agree when 𝑑଴/𝑏 ≪ 1 

(i.e., small deflection) but diverge when the membrane deflection increases (i.e., 𝑑଴/𝑏 ൐ 0.1). 

This is expected since Xu and Liechti (2011) assumed linear elasticity and small deflection.   

 For contact with a flat rigid substrate, Xu and Liechti (2011) obtained the following relation 

between the internal pressure P and contact radius a under a fixed gap d0 between the membrane 

edge and the substrate: 

      
3
0 1 0

4 3 2
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6 2
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h b C b C
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where  

             2 2 2

0 1 / / ln /C a b a b a b   ,        (D5) 

                             2 4 4 4

1 1 4 / 3 / / ln /C a b a b a b a b    . (D6) 

Figure 16b and 16c show the comparison between eq. (D4) based on the solution of Xu and Liechti 

(2011) and our solution for two different gaps: d0/b = 0.01 or 0.1.  For d0/b = 0.01 (see Fig.16b), 

eq. (D4) is in good agreement with our solution. When the gap is increased to d0/b = 0.1 (see 

Fig.16c), our solution and eq. (D4) exhibit similar trends but a small deviation in the applied 

pressure P which originates from the diverging free inflation curves in Fig.16a under large 

deflection.  
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Figure 16 Comparison between the Case I solution for free inflation and contact with flat rigid 
substrate with the solution of Xu and Liechti (2011). The blue curves represent the solution from 
this work and the orange curves represent the solutions of Xu and Liechti (2011) with residual 
stress 𝜎଴ ൌ 𝜇௠ . (a) Applied pressure versus membrane deflection under free inflation. (b-c) 
Contact radius versus applied pressure under a prescribed vertical gap of d0/b = 0.01 and 0.1, 
respectively. 

 

Appendix E: FEM simulations 

 Axisymmetric finite element models were established using the commercial software 

ABAQUS (version 2020, Simulia, Providence, RI, USA) to simulate the contact between the 

inflated membrane and various substrates. As illustrated in Fig.17, the model included two parts: 

a thin circular membrane and a substrate underneath the membrane. The membrane, with a radius 

of b/0 = 1 mm and a thickness of h = 1 m in its undeformed state, was meshed with the 2-node 

linear axisymmetric shell elements (SAX1) with a uniform mesh size of 2 m. The material model 

adopted for the membrane was the incompressible neo-Hookean solid with shear modulus m = 2 

MPa. For the substrate, we considered 3 different geometries: a flat substrate (width = 2 mm and 

thickness = 1 mm; see Fig.17a), a spherically concave substrate (radius = 10 mm; see Fig.17b), 

and a spherically convex substrate (radius = 1 mm; see Fig.17c). All three substrates were meshed 

with axisymmetric continuum elements (CAX4H). The smallest elements, located at the top 

surface around the symmetry axis, were 1 m × 1 m in size, and the mesh size on the top surface 

of the substrate was no larger than 20 m × 10 m.  To enable the consideration of substrate 

deformation (i.e., for the elastic substrates considered in Section 4), the substrates were modeled 

as an incompressible neo-Hookean solid which reduces to a linear elastic solid with Young’s 

modulus Es and Poisson’s ratio s = 1/2 under infinitesimal deformation. For the rigid substrates 
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considered in Section 3, Es was set to be sufficient large (i.e., = 60 GPa) so that the substrate 

deformation was negligible.  

 Each simulation consisted of three steps. First, the membrane was pre-stretched equibiaxialy 

to reach the pre-stretch ratio 0. Second, a uniform pressure was applied to inflate the membrane. 

Third, the substrate underneath the inflated membrane was moved upwards to make contact with 

the membrane in a quasi-static manner with the internal pressure P in the membrane kept constant. 

The static solver of ABAQUS/Standard was used for the first two steps. To improve convergence 

and accommodate potential instabilities, the third step was completed using the quasi-static solver 

of ABAQUS/Standard through the implicit dynamic analysis. Frictionless and adhesionless 

contact was applied to the interface between the membrane and the substrate. 

 

Figure 17 FEM models for membrane with (a) flat, (b)spherically concave and (c) spherically 
convex substrate. 
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