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Abstract

We describe a parser of English effectuated
by biologically plausible neurons and syn-
apses, and implemented through the Assembly
Calculus, a recently proposed computational
framework for cognitive function. We demon-
strate that this device is capable of correctly
parsing reasonably nontrivial sentences.! While
our experiments entail rather simple sentences
in English, our results suggest that the parser
can be extended beyond what we have imple-
mented, to several directions encompassing
much of language. For example, we present
a simple Russian version of the parser, and
discuss how to handle recursion, embedding,
and polysemy.

1 Introduction

Language is a distinguishing human function in-
volving the creation, articulation, comprehension,
and maintenance of hierarchically structured in-
formation about the world. It is beyond doubt
that language is achieved through the activity of
neurons and synapses—but how? There has been
extensive previous work in cognitive experiments
—psycholinguistics, computational psycholin-
guistics, and brain imaging—that has led to many
insights into how the brain processes language (see
Section 2 for an overview). However, no concrete
narrative emerges yet from these advances about
the precise way in which the activity of individual
neurons can result in language. In particular, we
are not aware of an experiment in which a rea-
sonably complex linguistic phenomenon is repro-
duced through simulated neurons and synapses.
This is the direction pursued here.

Developing an overarching computational un-
derstanding of the way neurons in the human
brain can make language is hindered by the
state of neuroscience, which (a) predominantly
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studies sensory and motor brain functions of an-
imals other than humans; and (b) with respect to
computational modeling, focuses on the level of
neurons and neuronal circuits, and lacks the kind
of high-level computational model that seems to be
needed for understanding how high-level cogni-
tive functions can emerge from neuronal activity.

Very recently, a computational model of brain
function, the Assembly Calculus (AC), has been
proposed (Papadimitriou et al., 2020). The AC
describes a dynamical system involving the fol-
lowing parts and properties, well attested in the
neuroscience literature: (a) brain areas with ran-
dom connections between neurons; (b) a simple
linear model of neuronal inputs; (c) inhibition
within each area such that the top & most activated
neurons fire; (d) a simple model of Hebbian plas-
ticity, whereby the strength of synapses increase
as neurons fire. An important object emerges from
these properties: the assembly, a large set of highly
interconnected excitatory neurons, all residing in
the same brain area.

Assemblies were hypothesized by Hebb seven
decades ago (Hebb, 1949), and were identified in
the brain of experimental animals two decades ago
(Harris, 2005). There is a growing consensus that
assemblies play a central role in the way brains
work (Eichenbaum, 2018), and were recently
called ‘‘the alphabet of the brain’’ (Buzsaki, 2019).
Assemblies can, through their near-simultaneous
excitation, represent an object, episode, word, or
idea. It is shown in Papadimitriou et al. (2020)
that assemblies are an emergent property of the
dynamical system under conditions (a)—(d) above,
both in theory and in simulations.

In the AC (reviewed in more detail in Section 3),
the dynamical system also makes it possible to cre-
ate and manipulate assemblies through operations
like projection, reciprocal projection, association,
pattern completion, and merge. These operations
are realistic in two orthogonal senses: First, they
correspond to behaviors of assemblies that were
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either observed in experiments, or are helpful in
explaining other experiments. Second, they prov-
ably correspond (they ‘‘compile down’’) to the
activity of individual neurons and synapses; in
Papadimitriou et al. (2020), this correspondence
is proven both mathematically and through simu-
lations. It is hypothesized in Papadimitriou et al.
(2020) that the AC may underlie high-level cog-
nitive functions. In particular, in the Discussion
section it is proposed that one particular operation
of the AC called merge may play a role in the

generation of sentences.
Note that, regarding the soundness of the AC,

what has been established through mathematical
proof is that AC operations work correctly with
high probability, where the underlying probabilis-
tic event is the creation of the random connectome.
So far, the simulation experiments conducted with
the AC have demonstrated that individual com-
mands of the AC, or short sequences thereof,
can be successfully and reliably implemented in
a simulator (Papadimitriou et al., 2020). Do such
simulations scale? For example, can one imple-
ment in the AC a computationally demanding
cognitive function, such as the parsing of sen-
tences, and will the resulting dynamical system
be stable and reliable? This is nature of the
experiment we describe below.

In this paper we present a Parser powered by
the AC. In other words, we design and simulate a
biologically realistic dynamical system involving
stylized neurons, synapses, and brain areas. We
start by encoding each word in the language as a
different assembly of neurons in the brain area we
call Lex. Next, we feed this dynamical system with
a sequence of words (signals that excite the corre-
sponding sequence of word-coding assemblies in
LEX).

The important questions are: Will the dynamical
system parse sentences correctly? And how will
we know?

To answer the last question first, our dynamical
system has a Readout procedure which, after the
processing of the sequence, revisits all areas of
the system and recovers a linked structure. We
require that this structure be a parse of the input
sentence. Our experiments show that our Parser
can indeed parse correctly, in the above sense,
reasonably nontrivial sentences, and in fact does
so at a speed (i.e., number of cycles of neuron
firings) commensurate with that of the language
organ.

Our design of this device engages several brain
areas, as well as fibers of synapses connecting
these areas, and uses the operations of the AC,
enhanced in small ways explained in Section 3.
It would in principle be possible to use the orig-
inal set of AC operations in Papadimitriou et al.
(2020), but this would complicate its operation
and entail the introduction of more brain areas.’
The resulting device relies on powerful word rep-
resentations, and is essentially a lexicalized parser,
producing something akin to a dependency graph.

While our experiments entail the parsing of
rather simple sentences in English, in Section 6 we
argue that our Parser can potentially be extended
in many diverse directions such as error detection
and recovery, polysemy and ambiguity, recursion,
and languages beyond English. We also build a
toy Russian parser, as well as a universal device
that takes as its input a description of the language
in the form of word representations, syntactic
actions, and connected brain areas.

Goals. This research seeks to explore the two
questions already highlighted above:

1. Can a reasonably complex linguistic phe-
nomenon, such as the parsing of sentences,
be implemented through simulated neurons
and synapses?

2. Can a computationally demanding cognitive
function be implemented by the AC, and will
the resulting dynamical system be stable and
reliable?

In particular, we are not claiming that our im-
plementation of the Parser necessarily resembles
the way in which the brain actually implements
language, or that it can predict experimental data.
Rather, we see the parser as an existence proof of
a nontrivial linguistic device built entirely out of
simulated neuron dynamics.

2 Related Work

Computational Psycholinguistics. There is a
rich line of work in computational psycholinguis-
tics on cognitively plausible models of human
language processing. Such work focuses chiefly
on (a) understanding whether high-level parsing

2<Brain areas’ is used here in the sense of the AC
explained in Section 3, and does not necessarily correspond to
significant accepted parts of the brain, such as the Brodmann
areas.
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methods can be used to predict psycholinguis-
tic data (such as reading-time or eye-tracking
data) and neural data (e.g., fMRI and ECoG data
from linguistic experiments); and (b) developing
parsing methods that have specific, hallmark, ex-
perimentally established cognitive properties of
human syntactic processing (most importantly
incrementality of parsing, limited memory con-
straints, and connectedness of the syntactic struc-
tures maintained by the parser). See Keller (2010)
for a summary of the psycholinguistic desiderata
of (b), as well as a discussion of evaluation stan-
dards for (a). Exemplars of this line of work are
Jurafsky’s use of probabilistic parsing to predict
reading difficulty (Jurafsky, 1996), the surprisal-
based models of Hale, Levy, Demberg, and Keller
(Hale, 2001; Levy, 2008; Demberg and Keller,
2008a), and the strictly incremental predictive mo-
dels of Demberg and Keller (Demberg and Keller,
2008b, 2009). Much work attempts to achieve
the properties in (b) while maintaining (a), that
is, neural and psycholinguistic predictiveness, for
example, the PLTAG parser of Demberg et al.
(2013), or the parser of Lewis and Vasishth (2005),
which is constructed in ACT-R, a high-level meta-
model of cognitive processing.

A related line of work takes modern neural
(ANN) parsing methods, and examines whether
the internal states of these models at parse time
can be used to model psycholinguistic and neuro-
logical data observed for the same sentences—see
the work of Hale et al. (2018), which uses an neu-
ral action-based parser, Merkx and Frank (2020),
and Frank and Hoeks (2019), which examine var-
ious RNN architectures and transformers; and
Schrimpf et al. (2020), which compares a wide
range of ANN methods. A related direction is
that of Hinaut and Dominey (2013) who build a
reservoir network (a recurrent network that builds
a representation of a sentence using fixed, ran-
dom sparse matrices for weights) and build a
classifier on top that predicts grammatical roles
and that has also has some psycholinguistic pre-
dictivity (this has some similarities to aspects in
Assembly Calculus, namely, the sparse, random
connections).

The present paper differs from these works
in key ways. In all previous work, parsers are
written in a high-level programming language,
whereas we focus on whether a simple parser can
be implemented by millions of individual neurons
and synapses through the simulation of a realistic

mathematical model of neuronal processing. In
this framework, it is nontrivial to implement a sin-
gle elementary step of syntactic processing, such
as recording the fact that a particular input word is
the sentence’s subject, whereas in previous work
such actions are built into the framework’s prim-
itives. In a survey paper of cognitive models of
language that use ANNSs, Frank summarizes that
“‘In spite of the superficial similarities between
artificial and biological neural networks . . . these
cognitive models are not usually claimed to simu-
late processing at the level of biological neurons.
Rather . . . neural network models form a descrip-
tion at Marr’s algorithmic level’’ (Frank et al.,
2019). Our work can be seen as largely orthog-
onal to the related work described above, as we
attempt to bridge granular neuronal mechanics
with the study of complex cognitive processes
such as syntax. See Section 6 for discussions of
potential future work that connects the two areas.

Neuroscience. In building a neural parser, we
begin with basic, established tenets of neuron bi-
ology: Individual neurons fire when they receive
sufficient excitatory input from other neurons; fir-
ing is an atomic operation; and some synapses can
be inhibitory (firing one neuron decreases the total
synaptic input of another neuron). We also assume
a simplified narrative of synaptic plasticity: Con-
nections between neurons become stronger with
repeated co-firing (Hebbian plasticity); this is a
well-known abstraction of the many kinds of plas-
ticity in the brain. These tenets are covered in
a number of textbooks (see for instance Kandel
et al. [1991], Chapters 7, 8, and 67). Our parser
is built on a mathematical formalization of these
principles.

How are higher-level cognitive processes com-
puted by networks of individual neurons? Highly
interconnected sets of neurons, called assemblies,
are an increasingly popular hypothesis for the
main unit of higher-level cognition in modern
neuroscience. First hypothesized decades ago by
Hebb, assemblies have been identified experimen-
tally (Harris, 2005) and their dynamics have been
studied in animal brains (see, e.g., Miller et al.,
2014), displacing previously dominant theories
of information encoding in the brain (see, e.g.,
Eichenbaum, 2018).

In a recent paper (Papadimitriou et al., 2020), a
concrete mathematical formalization of assem-
blies is proposed. They demonstrate that this
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simplified model is capable of simulating assem-
bly dynamics that are known experimentally. This
model of neurons, assemblies, and their dynamics
can be viewed as a computational system, called
the Assembly Calculus (AC), bridging neuronal
dynamics with cognition; this is the computa-
tional system in which we implement our parser.
The AC is summarized in Section 3. Note that
it has been long debated whether language is a
highly specialized system or is based in general
cognitive faculties (see, e.g., the summary of the
debate in Lewis and Vasishth [2005]). We are
agnostic in this debate, because assemblies are the
proposed unit of neural computation both special-
ized and generic, having been studied across a
variety of systems and species (Miller et al., 2014;
Carrillo-Reid et al., 2018).

Language in the Brain. The AC model makes
use of abstracted brain areas (defined in Sec-
tion 3); therefore the design of our parser starts
with the identification of a set of such areas. Here
we discuss how our choices relate to what is known
about language in the brain—a field in which, as
of now, much is yet unknown or debated.

It has been known for 150 years that Wer-
nicke’s area in the superior temporal gyrus (STG)
and Broca’s area in the frontal lobe are involved in
language; it is now generally—but not universally,
see the discussion below—accepted that Broca’s
area is implicated in the processing of syntactic
structures, while Wernicke’s area is involved in
word use. Language processing appears to start
with access to a lexicon, a look-up table of word
representations thought to reside in the left medial
temporal lobe (MTL) opposite Wernicke’s area.
Major anatomical and cytological differences are
known between humans and chimps at and near
those areas of the left hemisphere, with evolution-
ary novel powerful fibers of synapses connecting
these areas in humans (Schomers et al., 2017).
Based on this, we believe the inclusion of a
lexicon brain area (LEX), containing assemblies
representing words, is largely uncontroversial, as
are its strong synaptic connections into other brain
areas used by the parser.

The book by Friederici (2017) provides an ex-
cellent overview of a major direction in the theory
of the language organ. After word look-up, activity
in the STG is thought to signify the identification
of syntactic roles; for example, it is known that
the same noun is represented at different points in

STG when it is the subject vs. the object of a
sentence (Frankland and Greene, 2015), sug-
gesting that there are specialized areas repre-
senting subject, object, presumably verb, and
perhaps other syntactic categories. However, there
is active discussion in the literature on whether
brain areas are dedicated to specific linguistic
functions such as syntactic and semantic process-
ing, see, for example, (Blank and Fedorenko,
2020; Fedorenko and Thompson-Schill, 2014;
Pylkkinen, 2020). In our parser, we do make use
of areas for different syntactic roles, but in doing
so, we are not taking sides in the debate over the
syntactic specialization of brain areas; we are not
claiming that syntactic analysis is the exclusive
function of these areas—even the LEX area con-
taining representations of words could be part of
a larger memory area in the medial temporal lobe
partaking in several aspects of language.

At the highest level, the parser is generating a
hierarchical dependency-based structure of a sen-
tence that is processed incrementally. In the brain,
creation of phrases or sentences seems to activate
Broca’s area—what in Zaccarella and Friederici
(2015) is called ‘‘merge in the brain.”” Long se-
quences of rhythmic sentences each consisting of
4 monosyllabic words of the same syntactic struc-
ture as in ‘‘bad cats eat fish,”” dictated at 4 Hz,
result in brain signals from the subject’s brain with
Fourier peaks at 1, 2, and 4 Hz, suggesting that
the brain is indeed forming hierarchical structures
(Ding et al., 2016). Our parser represents a plau-
sible hypothesis for the mechanism behind this
process, in that it implements it within a realistic
model of neural computation.

3 The Assembly Calculus

This section describes the version of the AC used
in our simulator and experiments. This version of
the AC is almost the same as that of the previous
work of Papadimitriou et al. (2020), but includes
minor modifications described here.

The AC is a computational system intended to
model cognitive function in a stylized yet biolog-
ically plausible manner, by providing a high-level
description and control of a dynamical system of
firing neurons. There is a finite number a of brain
areas A, B, ... each containing n excitatory neu-
rons. The n neurons in each area are connected by
a random weighted directed G, ;, graph, meaning
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that every ordered pair of neurons has, indepen-
dently, the same probability p of being connected.
Each synapse (i, j) has a synaptic weight w;; > 0,
initialized to 1, which changes dynamically. For
certain unordered pairs of areas (A, B), A # B,
there is a random directed bipartite graph con-
necting neurons in A to neurons in B and back,
again with probability p for each possible synapse.
These connections between areas are called fibers.
All said, the dynamical system is a large dynam-
ically weighted directed graph G = (N, E) with
an nodes and random directed weighted edges.

Events happen in discrete time steps (think of
each step as 20 ms). The state of the dynamical
system at each time step ¢ consists of (a) for each
neuron 7 a bit f{ € {0, 1} denoting whether or not
1 fires at time ¢, and (b) the synaptic weights wfj
of all synapses in E. Given this state at time ¢, the
state at time ¢ 4 1 is computed as follows:

1. For each neuron i compute its synaptic input
t_ t :
SI; = Z(j,i)eE,ﬁ:l w;, thatis, the sum total
of all weights from pre-synaptic neurons that
fired at time ¢.

2. For each neuron ff“ = 1—that is, ¢ fires at
time ¢ + 1—if ¢ is among the k neurons in its
area with the highest SI! (breaking any ties
arbitrarily).

3. For each synapse (i,j) € E,

wal = wi; (14 fff;“ﬁ); that is, a synaptic
weight increases by a factor of 1 + 3 if and
only if the post-synaptic neuron fires at time
t + 1 and the pre-synaptic neuron had fired

at time ¢.

We call the set of k£ neurons in an area firing at
time ¢ the cap of that area.

These are the equations of the dynamical
system. The AC also provides commands for
high-level control of this system. An area can
be inhibited (that is, the neurons in it prevented
from firing, respectively), and disinhibited (cancel
the inhibition, if it is currently in effect). We also
assume that fibers can be inhibited (be prevented
from carrying synaptic input to other areas). In the
brain, inhibition is accomplished through popula-
tions of inhibitory neurons, whose firing prevents
other neurons from firing. In fact, there may be
multiple populations that inhibit an area or a fiber.
We denote this command by inhibit(A, ), which
inhibits A through the excitation of a population

named ¢. Similarly, disinhibition inhibits a pop-
ulation of inhibitory neurons (such as i above),
which currently inhibit A, an operation denoted
disinhibit( A, 7). If, for instance, we inhibit(A, 7)
and also inhibit(A, j), and then disinhibit(A4, j),
A is still inhibited (because of 7). Finally, we
assume that a fiber (A, B) can be similarly inhib-
ited or disinhibited, denoted inhibit((A, B), ) and
disinhibit((A, B), ).

We now define the state of this dynamical
system at time ¢. The state contains the firing state
of each neuron, edge weights w;;, and inhibition
information. If an area A is inhibited at time ¢,
and disinhibited at time ¢/, we assume that for all
i€ A je(t+1)...t,f] = fl. That is, the
firing state is maintained during the entire period
of inhibition.

A critical emergent property of the system is
that of assemblies. An assembly is a special set of
k neurons, all in the same area, that are densely
interconnected—that is, these k neurons have far
more synapses between them than random, and
these synapses have very high weights—and are
known to represent in the brain objects, words,
ideas, and so on.

Suppose that at time 0, when nothing else fires,
we execute fire(z) for a fixed subset of k neurons z
in area A (often these k neurons will correspond to
an assembly), and suppose that there is an adjacent
area B (connected to A through a fiber) where no
neurons currently fire. Since assembly z in area
A fires at times 0, 1, 2, ... (and ignoring all other
areas), it will effect at times 1,2, . .. the firing of
an evolving set of k£ neurons in B—a sequence
of caps—, call these sets y', 32, . ... At time 1, '
will be simply the k& neurons in B that happened
to receive the largest synaptic input from z. At
time 2, y? will be the set of neurons in B that
receive the highest synaptic input from x and y*
combined—and recall that the synaptic weights
from z to y' have increased. If this continues, it
is shown in Papadimitriou et al. (2020) that, with
high probability (where the probability space is the
random connectivity of the system), the sequence
{y'} eventually converges to a stable assembly
y in B, called the projection of x in B. There
are more high-level operations in AC' (reciprocal
projection, merge, association, etc.), comprising a
computational framework capable of carrying out
arbitrary space-bounded computations. Here we
shall only focus on projection, albeit enhanced as
described below.
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Algorithm 1: AC code for project*

foreach areca A do
if there is active assembly x in A then
foreach i € x do
f z'l =1;
fori=1,...,20do
all A, all 7 € A, initialize SIf =0;
foreach uninhibited areas A, B do
if fiber (A, B) inhibited then
skip ;
zr={i€A: fl =1},
foreach j € B do
SI; += ZiEx,(i,j)eE Wij 5

foreach uninhibited area A do
foreach i € A do
if ST} in top—kjca(ST}) then
fit=1,
else
fith=0;
foreach uninhibited arecas A, B do
if fiber (A, B) inhibited then
skip ;
foreach (i, j) € (A x B)N E do
if f{ = land f/*' = 1 then
wij = wij X (14 )

Suppose an assembly z in area A is projected
as above to area B to form a new assembly y, a
process during which neurons in B fire back into
A. Tt is quite intuitive that, after projection, y is
densely interconnected and it has dense synaptic
connections from the neurons in z, because of the
way in which it was constructed. Consequently, if
x ever fires again, y will follow suit. In this paper
we also assume (and our experiments validate
this assumption) that, since the fiber between A
and B is reciprocal, there are also strong synaptic
connections from y to x, so that, if y fires, x will
also fire next.

We next define an enhancement of the pro-
jection operation—tantamount to a sequence of
projection operations—which we call strong pro-
Jjection (see Algorithm 1). Consider all disinhibited
areas of the dynamical system, and all disinhibited
fibers containing them. This defines an undirected
graph (which in our usage will always be a tree).
Call a disinhibited area active if it contains an
assembly—the one most recently activated in it.

Now, suppose that all these assemblies fire simul-
taneously, into every other disinhibited adjacent
area through every disinhibited fiber, and these
areas fire in turn, possibly creating new assem-
blies and firing further down the tree, until the
process stabilizes (that is, the same neurons keep
firing from one step to the next). We denote this
system-wide operation strong project or project”.
Note that project® is almost syntactic sugar, as
it simply abbreviates a sequence of projections
(which can be done in the AC model); however,
the notion of an active area that we use is a small
addition to the AC. Though this modification is
minor, it simplifies the parser implementation, but
it could be removed at the expense of more AC
brain areas and perhaps time steps.

Our experiments with the Parser show that in-
deed the operation project* works as described—
that is, the process always stabilizes. We introduce
the term strong Assembly Calculus (sAC) to refer
to the computational system whose operations are:
inhibit and disinhibit, applied to any area or fiber,
and the strong projection operation project®. It is
not hard to see that sAC is Turing-complete in the
same sense as AC is shown in Papadimitriou et al.
(2020), but we shall not need this.

In the pseudocode above, the ‘‘active assembly
x in A’ means either the set of £ neurons most
recently fired in A (which, by the dynamics of the
system, happens to be an assembly), or a set of
k neurons that is activated (set to fire at ¢ = 1)
externally: We use this for activating the assembly
corresponding to a fixed word in Section 4.

4 The Parser

4.1 Parser Architecture

The Parser is a program in sAC whose data struc-
ture is an undirected graph G = (A, F). Ais a set
of brain areas and F is a set of fibers, that is, un-
ordered pairs of areas. One important area is LEX,
for lexicon, containing word representations. LEX,
which in the brain is believed to reside in the left
MTL, is connected through fibers with all other ar-
eas. The remaining areas of .4 perhaps correspond
to subareas of Wernicke’s area in the left STG,
to which words are projected from left MTL for
syntactic role assignment. In our experiments and
narrative below these areas include VERB, Susj,
OsJs, DeT, Aps, Apv, Prep, and PrepP. Besides
LEx, several of these areas are also connected with
each other via fibers (see Figure 2). Each of these
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Post-commands =
P're'—ca‘m.mands = © inhibit(SUBJ), 0)
104 = disinhibit((LEX, VERB), 0) disinhibit(OBJ), 0)

disinhibit((VERB, SUBJ), 0) inhibit((LEX, VERB), 0)

Figure 1: Action for transitive verb saw.

areas was postulated because it seemed necessary
for the Parser to work correctly on certain kinds of
simple sentences. As it turns out, they correspond,
roughly yet unmistakably, to dependency labels.
A can be extended with more areas, such as CoNJy
and CLAUSE; see Section 6 for a discussion of some
of these extensions.

With the exception of LEX, all of these areas
are standard brain areas of the AC, containing n
randomly connected neurons of which at most &
fire at any point in time. In contrast, LEX contains a
fixed assembly z,, for every word in the language.
The x,, assemblies are special, in that the firing of
T, entails, besides the ordinary effects of firing
assemblies have on the system, the execution of a
short program «,, specific to word w, called the
action of w. Intuitively, the sum total of all actions
in assemblies of LEx constitute something akin to
the device’s grammar.

The action «,, of a word w is two sets® of
InniBIT and DisiNHIBIT commands, for specific ar-
eas or fibers. The first set is executed before a
project® operation of the system, and the second
afterwards.*

The action for the word chase is shown in
Figure 1 (more examples of actions and their
commands for other parts of speech are given in
Figure 2). In fact, every standard transitive verb
has the same action. The pre-commands disinhibit
the fibers from Lex and Suss to VERB, allowing
an assembly to be formed in VERB that is the
merge of the word assembly Zchase in LEX and
the assembly representing the subject noun phrase
in Sus), which because subjects precede verbs
in (our subset of) English, must have hitherto
been constructed. Since chase is a transitive verb,
the post-rules include the disinhibition of OBJ in
anticipation of an obligatory object. In terms of
neurons and synapses, we think that the £ firing

3We do not call them sequences, because we think of the
commands in each as executed in parallel.

4To simplify notation, we enumerate the inhibitory popu-
lations ¢ separately for each area and fiber, i.e., each area and
fiber can be inhibited by inhibitory populations {0,1,...}; in
most cases there is only one, rarely two.

Algorithm 2: Parser, main loop.

input : a sentence s
output: representation of dependency parse
of s, rooted in VERB

disinhibit(LEx, 0) ;

disinhibit(Suss, 0) ;

disinhibit(VERrs, 0) ;

foreach word w in s do
activate assembly x,, in LEX ;
foreach pre-rule (Dis)inhibit(L], 7) in

oy, — Pre-Commands do
(Dis)inhibit(L], 7) ;
project® ;
foreach post-rule (Dis)inhibit([], ¢) in
, — Post-Commands do

(Dis)inhibit((1, 7)

neurons comprising the assembly z,, contain cer-
tain neuron subpopulations whose firing excites
the appropriate inhibitory and disinhibitory neu-
ral populations (the ones in the post commands
through a delay operator). These subpopulations
may be shared between all transitive verbs.

4.2 Operation

As shown in Algorithm 2, the Parser processes
each word in a sentence sequentially. For each
word, we activate its assembly in LEx, apply-
ing the pre-commands of its lexical item. Then,
we project*, projecting between disinhibited ar-
eas along disinhibited fibers. Afterwards, any
post-commands are applied.

In the pseudocode above, 0 € A U F can
represent either an area or a fiber, depending on
the command.

4.3 Readout

After the completion of Algorithm 2, we will
argue that a dependency tree of the sentence is
represented implicitly in the synaptic connectivi-
ties w;; between and within brain areas of G. To
verify this, we have a readout algorithm which,
given the state of G' (in fact, only the w;; and the
k neurons last fired in VERB are needed), outputs a
list of dependencies. Our experiments verify that
when applied to the state of GG after parsing a
sentence with Algorithm 1, we get back the full
set of dependencies.

For notational convenience, we define an op-
eration try-project(z, B), in which an assembly
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VERB

VERB

SUBJ SUBJ

Pre-commands = Post-commands =

o =< disinhibit(DET, 0) inhibit((LEX, DET), 0) X nan
the disinhibit((LEX, DET), 0)
'VERB

Pre-commands =
disinhibit((LEX, SUBJ), 0)
disinhibit((LEX, OBJ), 0)
disinhibit((DET, SUBJ), 0)
disinhibit((DET, OBJ), 0)
disinhibit((OBJ, VERB), 0)

SUBIJ SUBJ

Post-commands =

inhibit(SUBJ), 0)

disinhibit(OBJ), 0) o =
inhibit((LEX, VERB), 0) a

Pre-commands =
o — disinhibit((LEX, VERB), 0)
saw disinhibit((VERB, SUBJ), 0)

a
woman

Figure 2: Trace of the Parser for the sentence ‘‘the man saw a woman". The action «; of each word is given
beneath a figure showing the state of the Parser after the Pre-commands and project* have occurred for that word.
Green areas and fiber arrows are disinhibited; red are inhibited. All assemblies active right after project™ are
shown (with the one in Lex labeled x,,). Purple dotted arrows indicate assemblies that have been connected; one
can fire to activate the other. Purple arrows to LEx are shown only in the stage in which they are created. Green

Pre-commands =
disinhibit(DET, 0)
disinhibit((LEX, DET), 0)

Pre-commands =
disinhibit((LEX, SUBJ), 0)
disinhibit((LEX, OBJ), 0)
disinhibit((SUBJ, DET), 0)
disinhibit((OBJ, DET), 0)
disinhibit((VERB, OBJ), 0)

Post-commands =
inhibit(DET, 0)
inhibit((LEX, SUBJ), 0)
inhibit((LEX, OBJ), 0)
inhibit((DET, SUBJ), 0)
inhibit((DET, OBJ), 0)
inhibit((OBJ, VERB), 0)

Post-commands =
inhibit((LEX, DET), 0)

Post-commands =
inhibit(DET, 0)
inhibit((LEX, SUBJ), 0)
inhibit((LEX, OBJ), 0)
inhibit((SUBJ, DET), 0)
inhibit((OBJ, DET), 0)
inhibit((VERB, OBJ), 0)

(O) and red (©) circles indicate areas or fibers that will be disinhibited/inhibited by the Post-commands.
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Algorithm 3: Read out of parse tree in G.

input : G after parsing, with active root
assembly v in VERB
output: the parse tree stored implicitly in G

initialize stack s as {(v, Verb)} ;
initialize dependencies D = {} ;
while s not empty do
(x, A) = s.pop() ;
project(x, LEX) ;
w4 = getWord() ;
foreach area B # A s.t. (A, B) € F do
y = try-project(x, B) ;
if y not None then
project(y, LEX) ;
wp = getWord() ;

add dependency w 4 5w ptoD;
s.insert((y, B)) ;
return D ;

x in some area A projects into area B, but only
if this results in a stable assembly in B. This is
tantamount to projecting only if x was projected
into B during the Parser’s execution (as part of a
project® in some step). Lastly, define getWord()
to be the function which, at any given time when
an assembly z,, is active in LEx, returns the cor-
responding word w. In the following pseudocode,
try-project(z, B) returns an assembly y in B if it
succeeds, and NoNE otherwise.

We present the readout algorithm mostly as
a means of proving the Parser works, since it
demonstrates a mapping between the state of the
Parser graph G (namely, its synaptic weights) and
a list of dependencies. However, we remark that it
is not biologically implausible. try-project is not a
new primitive, and can be implemented in terms of
neurons, synapses, and firings. Most simply, x can
fire into B, and if the resulting k-cap in B is not
stable (changes with a repeated firing, say), it is
not an assembly. Alternatively (and in simulation),
one can project from B into LEx, and if the cap in
B is not a stable assembly formed during parsing,
the k-cap in LEx will also not be an assembly, that
is, not correspond to any valid x,, (this is related to
“‘nonsense assemblies’’ discussed in Section 6).
Further, the stack of Algorithm 3 is only used
for expository clarity; as the assemblies projected
are always the ones projected to in the previous

round, with some thought one could implement
the algorithm with project*.

5 Experiments

We provide an implementation of the Parser in
Python.> To achieve this, we have significantly
extended the existing AC simulation library of
(Papadimitriou et al., 2020) (for instance adding
inhibition mechanics, and making possible brain
areas like Lex with fixed, predefined assemblies).
Importantly, the entire algorithm, at its lowest
level, is running by simulating individual neurons
and synapses, and any higher-level concept or
structure (such as the parse tree itself) is an ab-
straction that is encoded entirely in the individual
firings and neuron-to-neuron synaptic weights of
a giant graph and dynamical system representing
the brain.

We provide a set of 200 varied sentences that are
parsed correctly by the Parser. For each sentence
we have a target correct dependency structure; we
verify that the Readout operation produces this
dependency structure for each sentence.

The sentences were designed by hand in order to
demonstrate a variety of syntactic phenomena that
our Parser (and the AC) can handle; this includes
prepositional phrases, transitivity, and intransitiv-
ity (including verbs that can be both transitive or
intransitive), optional adverb placement pre- or
post-verb, and several more. See Section 8 for
these example sentences and the syntactic pattern
they represent. We remind the reader that to our
knowledge, this is the first realistic parser imple-
mented on the level of individual neurons and
synapses.

The 200 sentences parsed were sampled from
10 syntactic patterns the Parser was designed to
handle, from a vocabulary of 100 words. Since
the underlying dynamical system can in principle
develop an instability with low probability, failure
is still possible, but it did not happen in our
experiments. There are syntactic structures that
the Parser does not currently handle, but which
we believe are possible in our model in two senses:
first, the grammar (word actions) can be expanded
to handle these structures, and more importantly,
the dynamical system will still correctly parse
them with high probability. A prime example of
such a structure is sentence embedding (‘‘the man

>The simulation code is available online; link not given
to preserve anonymity.
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said that. . . ’”). See Section 6 for more discussion
of such extensions.

The speed of parsing in our simulations is
commensurate with known bounds on neural lan-
guage processing. In each step, the participating
assemblies must fire enough times for the project”
operation to stabilize; we find through simulation
that for reasonable settings of the model’s hy-
perparameters, convergence occurs within 10-20
firing epochs, even when multiple brain areas are
involved. Assuming 50-60 neuron spikes (AC
time steps) per second, and allowing for the (par-
allel) execution of the inhibit/disinhibit operations
in the word’s action, which will take a small num-
ber of additional cycles, we arrive at a frequency
range of 0.2-0.5 seconds/word.

6 Extensions and Discussion

The UParser and a Parser for Russian. The
underlying meta-algorithm of the Parser, which
we call the UParser, takes as input a set of areas
A, a set of fibers F, a set of words W, and a
set of actions a,, for each w € W (whose com-
mands manipulate only areas in .4), and parses
with sAC using Algorithms 2 of Section 3. The
UParser is language-agnostic, and can be seen as
modeling a universal neural basis for language: A
specific language instantiates this basis by spec-
ifying A (roughly, its syntactic constituents), F,
W, and the «;. This is in no way constrained to
English; for instance, our model and algorithm are
equally well equipped to handle a highly inflec-
tional language with relatively free word order,
where syntactic function is indicated morphologi-
cally. We demonstrate this with a parser for a toy
subset of Russian, a language with free word order
in simple sentences. Particularly, our parser works
on a set of sentences that is closed under permuta-
tion; permutations of the same sentence are parsed
correctly, and produce the same dependency tree
(as verified with Algorithm 3). See Section 8 for
more details on the Russian Parser.

The Big Bad Problem and Recursion. The
Parser of Section 3 is rather skeletal and needs to
be extended to handle recursive constructions such
as compounding and embedded clauses. Consider
the sentence ‘‘The big bad problem is scary’’.
Following the Parser of Section 3, after the word
“‘big’’, an assembly a representing ‘‘big’’ has
been created in Aps which the system anticipates
projecting into SuBJ in a subsequent step (when a

noun is encountered) to form an assembly in Sus
representing the subject NP. However, the next
word is not a noun but ‘‘bad’’, part of a chain
of adjectives. Now, if we project from LEX into
Aps to form an assembly b representing ‘‘bad’’,
we lose all reference to a, and there is no way
to recover ‘‘big’’! There are several simple and
plausible solutions to the chaining problem, which
can also be used to parse adverb chains, compound

nouns, and other compound structures.
One solution is using two areas, Comp; and

Comp,, in A. When we encounter the second ad-
jective (or more generally a second word of the
same part of speech which otherwise would fire
into the same area, overwriting earlier assemblies),
we project from Lex into Comp; instead of Apy, but
simultaneously project from Apsinto Comp; to link
the first adjective with the second. For a third ad-
jective in the chain, we project LEx into Comps but
also Cowmp; into Compy unidirectionally; generally,
for adjective ¢ in addition to LEX we project unidi-
rectionally from CoMPp,y(;) (Which contains the
previous adjective assembly) into COMPqigy(i—1)-
We demonstrate parsing chains of varying lengths
with these two areas in our simulations. However,
one limitation of this solution is that it requires
unidirectional fibers; if the projection from Comp,
to Comps above is reciprocal, it won’t be possible
to link the assembly in Comp, to another assembly
in Comp;.

Another approach, which may be more realis-
tic and obviates the need for unidirectional fibers
(though it cannot handle arbitrary-length chains) is
to add more than 2 areas, Compy,. . . ,Comp,,, for
some small but reasonable m, perhaps 7. Parsing
proceeds as in the two-area solution but by chain-
ing Comp; to Comp; 1. The number of areas m
could model well-studied cognitive limits in pro-
cessing such complex structures (see Grodner and
Gibson, 2005; Karlsson, 2007). To model longer
chains, in high-demand situations or with practice,
the brain could recruit additional brain areas.

Such maneuvers can handle right recursion of
the form S — A*!A*. Center embedded recursion
is more complicated. To construct a parse tree for
a sentence with an embedded sentence or relative
clause, for an execution of the Parser’s inner loop,
the subjects and/or the verbs of the two sentences
may need to coexist in the corresponding areas.
This is not a problem, as brain areas can handle
tens of thousands of assemblies, but the linking
structure must be preserved. It must be possible to
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save the state of the embedding sentence while the
embedded one is serviced. One possibility is to in-
troduce CURRENTVERB areas, which can be chained
like the compounding areas above, and will act
as a stack of activation records for this more de-
manding form of recursion. The idea is that, by
recovering the verb of the embedding sentence,
we can also recover, through linking and after the
end of the embedded sentence, the full state of
the embedding sentence at the time the embedded
sentence had begun, and continue parsing. This
needs to be implemented and experimented with.

Disambiguation. In English, rock can be an
intransitive verb, a transitive verb, or a noun; so
far, we have ignored the difficult problems of
polysemy and ambiguity. To handle polysemy,
every word w may need to have many action sets
al a2, ..., and the parser must disambiguate
between these.

We believe that the Parser can be extended
to handle such ambiguity. The choice of the ac-
tion could be computed by a classifier, taking
as input a few words’ worth of look-ahead and
look-behind in the current sentence (or perhaps
just their parts of speech), and selecting one of
the action sets; the classifier can be trained on
the corpus of previously seen sentences. This also
needs implementation and experimentation.

Error Detection. Grammaticality judgment is
the intuitive and intrinsic ability of native speak-
ers of any language to judge well-formedness;
this includes the ability to detect syntactic errors.
Neurolinguists are increasingly interested in the
neural basis of this phenomenon; for instance, re-
cent experiments have detected consistent signals
when a sentence fragment is suddenly continued
in a way that is illegal syntactically (Wang et al.,
2012). Built into the Parser is the ability to detect
some malformed sentences.

There are at least two simple mechanisms for
this. One is when a fragment is continued by
a word that immediately makes it ungrammat-
ical, such as following ‘‘the dogs lived’’ with
““cats’’. The Parser, having processed the in-
transitive verb ‘‘lived’’, has not disinhibited area
OgJ, and all other noun-related areas are inhib-
ited. Upon encountering ‘‘cats’’, project™ will not
fire any assemblies; we call this an empty-project
error.

Other kinds of syntactic violations can be de-
tected by nonsense assembly errors. Such an error

occurs during readout when an area is projected
into LEx, but the resulting assembly in LEx does
not correspond to x,, for any w € W; in other
words, when the function getWord() of the read-
out algorithm of Section 3 fails, which indicates
that the state of G must have resulted from an
impossible sentence. We provide a list of illegal
sentences for which our Parser simulation de-
tects empty-project or nonsense-assembly errors,
indicating different kinds of syntactic violations.

One kind of syntactic error our Parser does
not detect currently is number agreement: Our
simulator would not complain on input ‘‘Cats
chases dogs;’’ this is not hard to fix by having
separate areas for the projection of singular and
plural forms. Other types of agreement, such as in
gender, can be treated similarly.

The Role of Broca’s Area. Language pro-
cessing, especially the formation of phrases and
sentences, has been observed to activate Broca’s
area in the left frontal lobe; so far, the parser only
models processes believed to be in the left STG
and MTL. We hypothesize that Broca’s area may
be involved in the building of a concise syntax
tree summarizing the sentence, consisting of only
the subject, the verb, and the object if there is one
(but with access to the rest of the parsed sentence
through the other areas). This would involve new
areas S (for sentence) and VP (for verb phrase),
with fibers from VErRB and Ogs to VP, and from
VP and Suss to S. Building the basic three-leaf
syntax tree can be carried out passively and in the
background while the rest of syntax processing is
happening in our current model.

Closed Classes and an Alternative Architec-
ture. Words such as the, of, my may reside in
areas dedicated to closed parts of speech in Wer-
nicke’s area, instead of being a part of LEX as we
assume, for simplicity, in our model and simu-
lations. In fact, before exploring the architecture
described here, we considered an alternative in
this direction, which has been suggested in the
neuroscience literature (Rolls and Deco, 2015).
Suppose that LEx in the left MTL only contains
the phonological and morphological information
necessary for recognizing words, and all gram-
matical information, such as the actions «,,,, reside
in Wernicke’s area, perhaps again in subareas not
unlike the ones we postulate here. For example,
SuBs could contain every noun (in Russian, in
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its nominative form), as assemblies which are
in permanent projection back and forth with the
corresponding assemblies in Lex; likewise for OBJ
(accusative in Russian). Verbs are all permanently
projected in VERB, and so on. In this model,
syntactic actions are specific to areas, not words.
We plan to further explore what new problems
such a parser would present—and which problems
it would solve—as well as what advantages and
disadvantages, in performance, complexity, and
biological plausibility, it may have.

Predictions of our Model. The Parser is essen-
tially a proof of concept, an *‘existence theorem’’
establishing that complex cognitive, and in partic-
ular linguistic, functions can be implemented in a
biologically realistic way through the AC. To this
end, we chose an architecture that is compatible
with what is known and believed about language
processing in large parts of the literature. Several
predictions can be made that can be verified
through EEG and fMRI experiments. One such
prediction is that the processing of sentences
of similar syntactic structure (e.g., ‘‘dogs chase
cats’” and ‘‘sheep like dogs’’) would result in
similar brain activity signatures, while sentences
with a different syntactic structure (‘‘give them
food’’) would generate different signatures. We
are currently working with City University of
New York cognitive neuroscientists Tony Ro and
Tatiana Emmanouil to design and conduct such
experiments.

If and when extensive recording from large
numbers of individual neurons in humans becomes
possible, the Parser model can be concretely
tested, as it predicts long-term assemblies cor-
responding to lexical items in an identifiable LEX
area. It should also be possible to observe the for-
mation, on-the-fly, of assemblies corresponding
to syntactic structures and parts of speech formed
during parsing; one could also identify the corre-
sponding areas (such as VERB, SusJ, etc.). When
it comes to identifying areas, the precise anatom-
ical location of these may vary per individual,
but be consistent in any individual. Our ultimate
prediction is that the long-sought neural basis of
language consists of—or rather, can be usefully
abstracted as—a collection of brain areas and neu-
ral fibers at the left MTL and STG and elsewhere in
the brain, powered by the project* operation, and
adapted during the critical period to an individual’s
maternal tongue and other circumstances.

Future Work. Future work will focus on ex-
tending the scope of the Parser. This includes
the extensions mentioned above (embedding and
recursion in particular).

Another focus will be integrating this work
with the existing directions in computational psy-
cholinguistics. This includes enhancing the parser
to exhibit the hallmark psycholinguistic desider-
ata described in Section 2. Our parser in fact has
incrementality in the same sense as this literature,
but it would be interesting to achieve connect-
edness of intermediate structures. Another future
direction would be to consider how a parser imple-
mented in AC could be used to predict or model
experimental data (such as processing time).

To conclude, we highlight one open problem for
future work, the contextual action problem. We
are given sentence s with labeled dependencies D,
and a Parser with an area for each label that occurs
in D, as well as Lex. Do there exist contextual
actions o, for each word w € s such that the
parsing algorithm, combined with readout, yields
D? Can we construct an oracle O(s, w) that returns
the contextual actions? If not, then what set of
labeled dependency trees can be recognized under
this formalism?

How are such actions represented neurally? Can
we plausibly implement contextual actions in AC,
based on a word and its immediate neighbors in
s? A step towards this may be to first implement
inhibition and disinhibition of areas and fibers,
treated as primitive operations in this paper, on
the level of neurons and synapses (by modeling the
inhibitory populations with negative edge weights,
and connecting them to assemblies in LEX).

7 Conclusion

Few students of the brain think seriously about
language, because (1) language is by far the
most advanced achievement of any brain, and (2)
despite torrential progress in experimental neuro-
science, an overarching understanding of how the
brain works is not emerging, and the study of lan-
guage will require that. This is most unfortunate,
because language has evolved rapidly over a few
thousand generations, presumably to adapt to the
capabilities of the human brain, and it therefore
presents a great opportunity for neuroscience. This
paper is a small first step towards establishing a
framework for studying, computationally, linguis-
tic phenomena from the neuroscience perspective,
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and we hope that it will be followed by bolder ex-
periments and far-reaching advancements in our
understanding of how our brain makes language
and the mind.

8 Details of the Experiment

English We generated 10 examples each from
the 20 templates shown below, a total of 200 sen-
tences. Our Parser simulator correctly parsed all
200 examples, in the sense that a correct depen-
dency graph was enerated by the readout. Each of
the 20 templates is a part-of-speech sequence. For
each template we show below an example sen-
tence, and in the code files we provide the correct
dependencies for each to compare to the Parser’s
output. In the templates below, V = V-TRANS.

1. N V-INTrRANS (people died)

[\

. N V N (dogs chase cats)

D N V-InTRANS (the boy cried)

DN V Nor NV D N (the kids love toys)
D N V D N (the man saw the woman)

A

ADJ N V N or N V ADJ N (cats hate loud
noises)

7. D Aps N D Aps N (the rich man bought a
fancy car)

8. Pro V Pro (I love you)
9. {D} N V-INTrRANS ADVERB (fish swim quickly)

10. {D} N ApverB V-INTRANs (the cat gently
meowed)

11. {D} N V-INnTRANS ADVERB (green ideas sleep
furiously)

12. {D} N Apvers V {D} N (the cat voraciously
ate the food)

13. {D} N V-inTrANS PP (the boy went to school)

14. {D} N V-inTrANS PP PP (he went to school
with the backpack)

15. {D} NV {D} N PP (cats love the taste of
tuna)

16. {D} N PP V N (the couple in the house saw
the thief)

17. {D} N copura {D} N (geese are birds)

18. {D} N copuLa Aps (geese are loud)

19. complex sentences with copula (big houses
are expensive)

20. chained adjectives, extended model (the big
bad problem is scary)

Russian To demonstrate parsing of a syn-
tactically very different language, we consider
Russian sentences with subject, object, and
indirect-object, like *‘?KCHIIMHA Jla/Ia My>KINHE
cymxy’’ (woman-nom give-past man-dat bag-acc,
‘“‘the woman gave the man a bag’’). All 4! = 24
permutations of this sentence are valid, for ex-
ample, °
them, the Parser produces the same dependencies

‘cymxy »kenmmua gaja’’. For each of

Nom DAT
D = {,ZL&.H&—DKGHL[LHH&, Jajia——My2K4InHE,

Acc
Jajia——>CyYMKY }
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