2021 IEEE 62nd Annual Symposium on Foundations of Computer Science (FOCS) | 978-1-6654-2055-6/22/$31.00 ©2022 IEEE | DOI: 10.1109/F0CS52979.2021.00051

2021 IEEE 62nd Annual Symposium on Foundations of Computer Science (FOCS)

The Hardest Explicit Construction

Oliver Korten
Department of Computer Science
Columbia University
New York, NY
oliver.korten@ columbia.edu

Abstract—We investigate the complexity of explicit construc-
tion problems, where the goal is to produce a particular object
possessing some pseudorandom property in time polynomial
in the size of that object. We give overwhelming evidence that
APEPP, defined originally by Kleinberg et al. [12], is the nat-
ural complexity class associated with explicit constructions of
objects whose existence follows from the probabilistic method,
by placing a variety of such construction problems in this
class. We then demonstrate that a result of Jerabek [10] on
provability in Bounded Arithmetic, when reinterpreted as a
reduction between search problems, shows that constructing a
truth table of high circuit complexity is complete for APEPP
under NP-oracle reductions. This illustrates that Shannon’s
classical proof of the existence of hard boolean functions is
in fact a wuniversal probabilistic existence argument: deran-
domizing his proof implies a generic derandomization of the
probabilistic method. As a corollary, we prove that EXPNP
contains a language of mildly-exponential circuit complexity if
and only if it contains a language of nearly maximum circuit
complexity. Finally, for several of the problems shown to lie in
APEPP, we demonstrate direct polynomial time reductions to
the explicit construction of hard truth tables.

Keywords-circuit complexity; psuedorandomness; total func-
tion complexity;
Note: Various proofs are either abridged or omitted in
this extended abstract; proofs of all stated results can be
found in the full version: https://arxiv.org/abs/2106.00875

I. INTRODUCTION

Explicit construction — the task of replacing a noncon-
structive argument for the existence of a certain type of
object with a deterministic algorithm that outputs one — is
an important genre of computational problems, one whose
history is intertwined with the most fundamental questions
in complexity and derandomization. The primary method
of non-constructive argument for these sorts of problems
is to show that a random object has the desired property
with high probability. This technique, initiated by Erdos [5]
and since dubbed the “probabilistic method,” has proven
immensely useful across disparate subfields of combinatorics
and computer science. Indeed, the probabilistic method is
currently our sole source of certainty that there exist hard
Boolean functions, pseudorandom generators, rigid matrices,
and optimal randomness extractors, among a variety of other
combinatorial objects.

Explicit construction problems can be phrased, in com-
plexity terms, as sparse search problems: given the input 17,
output some object of size n satisfying a certain property. In
the interesting case, such problems are also fotal: we have a
reason to believe that for all n, at least one object with this
property exists. In contrast to the fundamental importance
of explicit constructions, there has been surprisingly little
work attempting to systematically study their complexity.
This gap was pointed out previously by Santhanam [19], who
investigated the complexity of explicit construction problems
from the following perspective: say we have some property
II which is promised to hold for almost all strings of length
n. Based on the complexity of testing the property II, what
can be said about the complexity of producing an n-bit
string with property 1I? Though some interesting reductions
can be shown in this framework, Santhanam notes that this
approach does not seem to yield robust complexity classes
with complete explicit construction problems.

This issue is familiar in the study of the class TFNP:
when we have only a promise that a search problem is
total, it is seemingly impossible to reduce it to a problem
of similar complexity which has a syntactic guarantee of
totality. This led to the study, initiated by Papadimitriou
[16], of characterizing total search problems based on the
combinatorial lemma which guarantees the existence of a
solution.

So what is the basic combinatorial lemma guaranteeing
the soundness of the probabilistic method of construction?
Generally speaking, most constructions using the probabilis-
tic method can be rephrased as encoding arguments: they
demonstrate that whenever an object x of size n fails to
possess a desired property (i.e. x is “bad”), this implies
a succinct encoding of = using fewer than n bits, from
which we can then recover z. The existence of a “good”
x thus follows from the fact that there is no encoding
scheme for arbitrary n-bit strings using fewer than n bits
— phrased differently, there is no surjective function from
{0,1}"7! to {0,1}™. In recent work of Kleinberg et al.
[12], a natural class capturing the complexity of this sort
of encoding argument was presented. In particular they
define the class APEPP, which consists of the 25 total
search problems whose totality follows from the “Abundant
Empty Pigeonhole Principle,” which tells us that for any

2575-8454/21/$31.00 ©2021 IEEE 433
DOI 10.1109/FOCS52979.2021.00051

Authorized licensed use limited to: Columbia University Libraries. Downloaded on May 12,2022 at 20:19:01 UTC from IEEE Xplore. Restrictions apply.

f:{0,1}"=t — {0,1}", there must exist some y € {0, 1}"
such that for all z € {0,1}"~!, f(x) # y. In this paper, we
show that APEPP is the natural syntactic class into which
we can place a vast range of explicit construction problems
where a solution is guaranteed by the probabilistic method.

Given that APEPP is a syntactic class, it is natural to
ask whether some explicit construction problem is complete
for it. As it turns out, the answer is positive: constructing
a truth table of length 2" with circuit complexity 2¢" is in
fact complete for APEPP under PNP reductions. Perhaps
surprisingly, this important fact had been known for many
years in the universe of Bounded Arithmetic, essentially
proved in Emil Jefdbek’s PhD thesis in 2004. Here Jefdbek
shows that the theorem asserting the empty pigeonhole
principle is equivalent, in a particular theory of Bounded
Arithmetic, to the theorem asserting the existence of hard
boolean functions. Although his result is phrased in terms
of logical expressibility, we show that when translated to
language of search problems his techniques give a PNP
reduction from any problem in APEPP to the problem of
constructing a hard truth table. In Section IV we give a
self-contained proof of this, and generalize the reduction to
hold for arbitrary classes of circuits equipped with oracle
gates. Combined with our results placing a wide range of
explicit construction problems in APEPP, this shows that
in a concrete sense, constructing a hard truth table is a
universal explicit construction problem. We give further cre-
dence to this claim by showing in addition that several well
known explicit construction problems in APEPP, including
the explicit construction of rigid matrices, can be directly
reduced to the problem of constructing a hard truth table via
polynomial time reductions (as opposed to PP reductions).

A. Contributions

We investigate the complexity class APEPP introduced in
[12], defined by the following complete problem EMPTY:
given a circuit C : {0,1}™ — {0,1}™ with m > n, find
an m-bit string outside the range of C. In Section III we
give overwhelming evidence that APEPP is the natural class
associated with explicit constructions from the probabilistic
method, by placing a wide range of well-studied problems
in this class. In particular, we show that the explicit con-
struction problems associated with the following objects lie
in APEPP:

o Truth tables of length 2™ with circuit complexity %
(Theorem 1)

Pseudorandom generators (Theorem 2)

Strongly explicit two-source randomness extractors
with 1 bit output for min-entropy log n + O(log(1/€)),
and thus strongly explicit O(logn)-Ramsey graphs in
both the bipartite and non-bipartite case (Theorem 3)
Matrices with high rigidity over any finite field (Theo-
rem 4)

434

« Strings of time-bounded Kolmogorov complexity n — 1
relative to any fixed polynomial time bound and any
fixed Turing machine (Theorem 7)

« Communication problems outside of PSPACECC

o Hard data structure problems in the-bit probe model

Since the work of Impagliazzo and Wigderson [9] im-
plies that constructing pseudorandom generators reduces
to constructing hard truth tables, APEPP constructions of
PRGs follow immediately from APEPP constructions of
hard truth tables. However, we provide a self-contained
and simple proof that PRG construction can be reduced to
EMPTY, without requiring the more involved techniques of
Nisan, Wigderson, and Impagliazzo [15][9]. Together with
the result in the following section that constructing hard truth
tables is complete for APEPP under PNP reductions, this
gives an alternative and significantly simplified proof that
worst-case-hard truth tables can be used to derandomize
algorithms (although it proves a weaker result, that this
derandomization can be accomplished with an NP oracle).

In Section IV we show that constructing a truth table
of length 2™ with circuit complexity 2" is complete for
APEPP under PNP reductions (for any fixed 0 < € < 1).
As discussed earlier, the core argument behind this result
was proven by Jefdbek in [10], where he shows that the
theorem asserting the existence of hard boolean functions is
equivalent to the theorem asserting the empty pigeonhole
principle in a certain fragment of Bounded Arithmetic.
We show that, when viewed through the lens of explicit
construction problems, this technique yields a reduction
from EMPTY to the explicit construction of hard truth
tables. We also generalize this reduction to arbitrary oracle
circuits, which allows us to prove the following more general
statement: constructing a truth table which requires large
S} -oracle circuits is complete for APEPPye under AP,
reductions (the complete problem for APEPPE? is the
variant of EMPTY where the input circuit can have TP
oracle gates).

By recasting and generalizing Jefdbek’s theorem in the
context of explicit construction problems, we are able to
derive several novel results. First and foremost, we conclude
that there is a PNP construction of hard truth tables if
and only if there is a PN algorithm for every problem
in APEPP, and so in particular such a construction of hard
truth tables would automatically imply PN® constructions
for each of the well-studied problems discussed in Sec-
tion III. This tells us that constructing hard truth tables
is, in a definite sense, a universal explicit construction
problem. Since the existence of a PN construction of hard
truth tables is equivalent to the existence of a language
in ENP with circuit complexity 22", this completeness
result actually gives an exact algorithmic characterization
of proving 2°2(") circuit lower bounds for ENF:

PNP

Theorem (Theorem 11). There is a algorithm for

Authorized licensed use limited to: Columbia University Libraries. Downloaded on May 12,2022 at 20:19:01 UTC from IEEE Xplore. Restrictions apply.

EMPTY if and only if ENY contains a language of circuit
complexity 2",

As a corollary we are able to derive the following:

Theorem (Corollaries 2 and 3). ENP (resp. EXPNY) con-
tains a language of circuit complexity 2(™) (resp. gnt)
if and only if ENP (resp. EXPNY) contains a language of
circuit complexity g—z

Unpacking the proof of the above corollaries reveals an
efficient algorithm to “extract hardness” from truth tables us-
ing an oracle for circuit minimization, a prospect previously
considered in [3]:

Theorem (Theorem 12). There is a polynomial time algo-
rithm using a circuit minimization oracle (or more generally
an NP oracle) which, given a truth table x of length M
and circuit complexity s, outputs a truth table y of length
N =9) and circuit complexity Q(%)

S

Tog M

Finally, in Section V we consider P (as opposed to PNP)
reductions from particular explicit construction problems to
the problem of constructing hard truth tables. We show that
in the case of rigidity, bit probe lower bounds, and certain
communication complexity lower bounds, such reductions
exist. These reductions take the following form: we show
that the failure of an n-bit string x to satisfy certain pseudo-
random properties implies a smaller than worst case circuit
computing z. This then implies that any n-bit string of
sufficiently high circuit complexity will necessarily possess a
variety of pseudorandom properties, including high rigidity,
high space-bounded communication complexity, and high
bit-probe complexity.

Another concrete takeaway from this work is that we
demonstrate, for several well-studied problems, the weakest
known assumptions necessary to obtain explicit construc-
tions of a certain type (polynomial time constructions in
some cases and PNP constructions in others). Perhaps
the most interesting application of this is rigidity, as the
complexity of rigid matrix construction has been studied
extensively in both the P and PNP regimes [1]. We obtain
the following conditional constructions of rigid matrices:

Theorem (Theorems 4 and 11). If EN® contains a language
of circuit complexity 2", then for any prime power q <
2Pol(") gnd any € < %6, there is a PN® construction of an
nxn matrix over Fy which is en®-far (in hamming distance)
from any rank-en matrix.

Theorem (Theorem 13). If E contains a language of circuit
complexity Q(%) then for some € > 0 there is a polynomial
time construction of an nxn matrix over Fo which is en?-far
from any rank-en matrix.

In both cases, the rigidity parameters in the conclusion
would be sufficient to carry out Valiant’s lower bound

435

program [23]. The weakest hardness assumptions previously
known to yield constructions with even remotely similar
parameters (in either the PNP or P regimes) require a lower
bound against nondeterministic circuits [14].

B. Related Work

A large body of work on the hardness/randomness con-
nection, starting with that of Nisan and Wigderson [15], has
exhibited the usefulness of explicit constructions of hard
truth tables. The results of Impagliazzo and Wigderson [9]
give, in particular, a reduction from explicit constructions of
hard truth tables to explicit constructions of pseudorandom
generators that fool polynomial size circuits. As noted
by Santhanam [19], this immediately implies that for any
“dense” property II recognizable in P (dense meaning the
fraction of n-bit strings holding this property is at least
1/poly(n)), an efficient construction of a hard truth table
immediately implies an efficient construction of an n-bit
string with property 1I. But many properties of interest such
as Rigidity (or any of the other properties studied in this
work) are only known to be recognizable in the larger class
NP. Under the stronger assumption that we can construct
truth tables hard for certain classes of nondeterministic
circuits, constructions for all dense NP properties are known
to follow as well [13] [14], so in particular PN® construc-
tions for every problem in APEPP would follow. However,
constructing truth tables that are hard for nondeterministic
circuits appears strictly harder than constructing truth tables
hard for standard circuits, and in particular does not seem to
be contained in APEPP, so although this yields an explicit
construction problem which is hard for APEPP, it does
not appear to be complete. In contrast, we show here that
constructing a truth table which is hard for standard circuits
is both contained in and hard for APEPP, thus showing that
a PNP construction of a hard truth table is possible if and
only if such a construction is possible for every problem in
APEPP.

For several of the explicit construction problems we study,
a long line of work has gone into improving state-of-the-
art constructions. A more detailed overview of this work
in the important cases of rigidity and two-source extractors
can be found in the full version of this paper. The crucial
takeaway is that for each of the problems shown reducible
to EMPTY in Section III, obtaining constructions with the
same parameters by explicit means is an open problem.

C. Proof Sketch of Main Theorem

We give here an informal overview of the proof that
EMPTY can be solved in polynomial time given access to
a hard truth table and an NP oracle. At the core of this
proof is a familiar construction in the theory of computing
which dates back to the 1980’s, namely the pseudorandom
function generator of Goldreich, Goldwasser, and Micali [6].
Note that in the following, we will refer to the “circuit

Authorized licensed use limited to: Columbia University Libraries. Downloaded on May 12,2022 at 20:19:01 UTC from IEEE Xplore. Restrictions apply.

complexity of an n-bit string z” to mean the size of the
smallest circuit computing x; given ¢ in binary; this is well-
defined even when n is not a power of 2, as we shall
formalize Section IIT'.

Consider the special case of EMPTY where our input is
a circuit C' : {0,1}" — {0,1}?" which exactly doubles
its input size. For a moment let us forget our primary goal
of finding a 2n-bit string outside C’s range, and instead
consider C' as a cryptographic pseudorandom generator
which we are attempting to break. Since C' is a function
which extends its input size by a positive number of bits,
it is indeed of the same syntactic form as a cryptographic
PRG, so this viewpoint is well-defined.

In [6], Goldreich, Goldwasser and Micali give a proce-
dure? which, for any fixed 0 < € < 1, takes C' and produces
in polynomial time a new circuit C* : {0,1}" — {0,1}™
for some m = poly(n), which satisfies the following two
properties:

1) Every string in the range of C* has circuit complexity

at most m°.

2) Given a statistical test breaking C*, we can construct

a statistical test of similar complexity breaking C'
The construction of C* is in fact quite simple: for an
appropriate choice of k, we recursively apply C to an n-
bit input for k iterations as follows: first apply C' to an n-bit
string to get 2 n-bit strings, then apply it again to each of
those to get 4, and continue k times until we obtain 2k n-bit
strings.

A key observation made by Razborov and Rudich [18]
is that condition (1) automatically implies a particular
statistical test which breaks C*, namely the test which
accepts precisely those m-bit strings with circuit complexity
exceeding m*°. But by property (2), C* inherets the security
of C, which is an arbitrary candidate PRG. This means
that determining if an m-bit string has circuits of size
m*© is in fact a universal test for randomness, capable of
simultaneously breaking all pseudorandom generators.

Recall now our original goal for C, which was solve the
associated instance of EMPTY by finding a 2n-bit string
outside its range. Property (1) of C* implies that an explicit
construction of a length-m truth table of circuit complexity
m* would immediately yield an explicit m-bit string outside
the range of C*. In Section IV, we show that C* obeys the
following third property:

3) Given a string outside the range of C*, we can find

a string outside the range of C using a polynomial
number of calls to an NP oracle.
The analogue of statement (3) in the context of Bounded
Arithmetic was first shown by Jefdbek [10], and a quite

ISee Definition 4

2[6] and [18] apply the construction described here in a different param-
eter regime, so our statement of the result differs slightly from its original
presentation. The version described here has been noted subsequently in
the literature on MCSP, see for example [20].

436

similar argument appears even earlier in the work of Paris,
Wilkie, and Woods [17]. Combining properties (1) and (3),
we get the desired result: any m-bit string of complexity
m*c must lie outside the range of C*, so using such a
string together with an NP oracle we can solve our original
instance of EMPTY.

To summarize, the construction C* of Goldreich,
Goldwasser and Micali shows that the property of requiring
large circuits is a universal pseudorandom property of
strings in two concrete senses:

o (Original analysis of [6] and [18]) A test determining
whether a string requires large circuits can be efficiently
boostrapped into a test distinguishing any pseudoran-
dom distribution from the uniform distribution.

(This work together with Jefdbek [10]) An explicit
example of a string requiring large circuits can be used
to generate an explicit example of a string outside the
range of any efficiently computable map C : {0,1}" —
{0,1}?" (in fact any C : {0,1}" — {0,1}"*! as
shown in Section IV), and in particular can be used to
construct explicit examples of strings posessing each of
the fundamental pseudorandom properties examined in
Section III.

II. DEFINITIONS

Following [12], we define the set of total functions in >P
denoted TFEE, as follows:

Definition 1. A relation R(z,vy) is in TEXY if there exists
a polynomial p(n) such that the following conditions hold:

1) For every x, there exists a y such that ly| < p(|x|)
and R(z,y) holds

2) There is a polynomial time Turing machine M such
that
R(z,y) <= Vz € {0,1}?UzD M (2, y,) accepts

The search problem associated with such a relation is:
“given z, find some y such that R(x,y) holds.” For the
majority of this paper, we will be concerned primarily with
sparse TFXY search problems, where the only relevant part
of the input is its length. We can thus define the following
“sparse” subclass of TFXE:

Definition 2. A relation R(x,y) is in STFXY if R €
TFXEY and for any x1, x5 such that |x1| = |z2|, we have
that for all y, R(xz1,y) < R(z2,y).

Since the length of z fully determines the set of solutions,
the relevant search problem here is: “given 1", find some y
such that R(1™, y) holds.” All explicit construction problems
considered in Section III will be in STFXY.

We now define the search problem EMPTY, which will be
the primary subject of this work:

Authorized licensed use limited to: Columbia University Libraries. Downloaded on May 12,2022 at 20:19:01 UTC from IEEE Xplore. Restrictions apply.

Definition 3. EMPTY is the following search problem: given
a boolean circuit C with n input wires and m output wires
where m > n, find an m-bit string outside the range of C.

This problem is total due to the basic lemma, referred to
in [12] as the “Empty Pigeonhole Principle” and in the field
of Bounded Arithmetic as the “Dual Pigeonhole Principle
[10],” which tells us that a map from a smaller set onto a
larger one cannot be surjective. Since verifying a solution y
consists of determining that for all z, C(x) # y, we have:

Observation 1. EMPTY € TFXF

Note that for any instance of EMPTY the number of output
bits m is at least n + 1, so a random m-bit string will
be a solution with probability at least % Since verifying a
solution can be accomplished with one call to an NP oracle,
this implies the following inclusion:

Observation 2. EMPTY € FZPPNP

As mentioned in the introduction, this fact tells us that
sufficiently strong pseudorandom generators capable of fool-
ing nondeterministic circuits such as those in [13] would
suffice to derandomize the above inclusion and yield a PNP
algorithm for EMPTY. In Section IV, we will show that this
derandomization can be accomplished under a significantly
weaker assumption, using a reduction of a very different
form then the hardness-based pseudorandom generators of
[15], [9], and [13].

We can now define the class APEPP, which is simply
the class of search problems polynomial-time reducible to
EMPTY. This class was originally defined in [12], and is an
abbreviation for “Abundant Polynomial Empty Pigeonhole
Principle.” The term “Abundant” was used to distinguish
this from the larger class PEPP also studied in [12]. The
complete problem for PEPP is to find a string outside the
range of a map C : {0,1}" \ {0} — {0,1}", which
appears significantly more difficult (it is at least as hard
as NP [12]). The distinction between APEPP and PEPP
also appears in the Bounded Arithmetic literature, where
the principle corresponding to APEPP is referred to as
the “Dual weak Pigeonhole Principle,” while the principle
corresponding to PEPP is referred to simply as the “Dual
Pigeonhole Principle.” We will be concerned only with the
abundant/weak principle in this work. It should be noted that
we employ a slight change of notation from [12] for the sake
of simplicity: we use EMPTY to refer to the search problem
associated with the weak pigeonhole principle, while in [12]
EMPTY refers to the search problem associated with the full
pigeonhole principle.

Infinitely-often vs. almost-everywhere circuit lower
bounds: As a final point of clarification, whenever we make
the statement “L requires circuits of size s(n)” for some
language L and size bound s, we mean that circuits of size
s(n) are required to compute L on length n inputs for all

437

but finitely many n. This is in contrast to the statement
“L ¢ SIZE(s(n)),” which means the circuit size lower
bound holds for infinitely many input lengths. All circuit
lower bounds referred to in this work will be of the first
kind.

III. EXPLICIT CONSTRUCTIONS IN APEPP

In this section, we show that a variety of well-studied
explicit construction problems can be reduced in polynomial
time to EMPTY. Each proof follows roughly the following
format: there is some property of interest I, and our goal
is to construct an n-bit string which holds this property.
For each such II we consider, whenever an n-bit string x
fails to have this property, it indicates that z is somehow
more “structured” than a random n-bit string, and this
structure allows us to specify = using fewer then n bits. We
then actualize this argument in the form of an efficiently
computable map C : {0,1}* — {0,1}" with & < n, such
that any string not having property II is in the range of C'.
This immediately implies that any n-bit string outside the
range of C' must hold property II, and thus any solution to
the instance of EMPTY defined by C will be a solution to our
explicit construction problem. For many of the proofs, we
will only show that the reduction is valid for n sufficiently
large; clearly this is sufficient, since explicit constructions
can be done by brute force for fixed input lengths.

A useful coding lemma: In the proofs to come, it will
be helpful to utilize succinct and efficiently computable
encodings of low-weight strings (the “weight” of binary
string is the number of 1 bits it contains). In particular we
rely on the following result in [7]:

Lemma 1. [7] For any k < n, there exists a map P :
{0,1}10g(k) — {0,1}"™ computable in poly(n) time such
that any n-bit string of weight k is in the range of ®.

and a useful corollary:

Lemma 2. For any 0 < ¢ < % there exists a map ® :
{0,1}n=<"nHlosn 10 1} computable in poly(n) time
such that any n-bit string of weight at most 5 — en is in the

range of ®.
A. Hard Truth Tables

Definition 4. Given a string x of length N, we say that x is
computed by a circuit of size s if there is a boolean circuit
C of fan-in 2 over the basis (\,V,—) with [log N inputs
and s gates, such that C(i) = x; for all 1 <i < |z|. If N
is not a power of 2, we put no restriction on the value of

C(i) for i > |x|.

Definition 5. HARD TRUTH TABLE is the following search
problem: given 1V, output a string x of length N such that

.) i . . N
x is not computed by any circuit of size at most STog V-

In the typical case where N = 2" for some n, this is
equivalent to finding a truth table for an n-input boolean

Authorized licensed use limited to: Columbia University Libraries. Downloaded on May 12,2022 at 20:19:01 UTC from IEEE Xplore. Restrictions apply.

function requiring circuits of size ;—Z, which is within a 2 4
o(1) factor of the worst case circuit complexity for any n-
input boolean function.

Theorem 1. HARD TRUTH TABLE reduces in polynomial
time to EMPTY.

Proof: This proof follows Shannon’s classical argument
for the existence of functions of high circuit complexity [21].
We construct an instance of EMPTY in the form of a circuit
® which maps an encoding of a circuit to its corresponding
truth table. ® interprets its input as a circuit on [log N bits
(using an encoding of circuits to be described below), tests
its value on every possible input to generate a 218 N1 bit
truth table, and then truncates this truth table to be of length
exactly V.

Given a circuit of size s > n, we can encode it in a
straightforward way using 2s log s+ O(s) bits by specifying
explicitly the two inputs of each gate, a list of the logical
types of each gate, and an indication of which gate is the
output. It is also clear that from such an encoding we
can efficiently decode the represented circuit and test it
on all possible input values. In this way we can construct
our circuit ® to interpret its 2slogs + O(s)-bit input as
a circuit encoding of this form, and then print the truth
table corresponding to that encoded circuit. If we chose
5 = gg > We have 2slog s+0(s) < N (for N sufficiently
large). So @ is a valid instance of EMPTY, and any string
outside its range is a solution to HARD TRUTH TABLE.
It is also clear from the above description that ® can be

constructed in poly(N) time. [|
B. Pseudorandom Generators
Definition 6. We will say that a sequence R = (x1,...,Tm)

of n-bit strings is a pseudorandom generator if, for all n-
input circuits of size n:

|Prenr[C(z) = 1] = Prypo-[C(y) = 1]| < 1/n

Standard applications of the probabilistic method show
that such pseudorandom generators exist of size polynomial
in n. Thus we can define the following total search problem:

Definition 7. PRG is the following search problem: given
1™, output a pseudorandom generator R = (x1,...,Zm),
x; € {0, 1}”.

A polynomial time algorithm for PRG would suffice to
derandomize BPP [15]. We now show how to formalize the
argument for the totality of PRG using the empty pigeonhole
principle. In particular, we show that a PRG of size n® can
be constructed in APEPP.

As noted in the introduction, the results of Impagliazzo
and Wigderson [9] imply that PRG reduces directly to
HARD TRUTH TABLE, so a reduction of PRG to EMPTY
follows from Theorem 1. However, we provide here a much
simpler direct proof that PRG reduces to EMPTY, relying

438

only on Yao’s next bit predictor lemma, and neither the
nearly disjoint subsets construction of Nisan and Wigderson
[15] nor the rather involved worst-case to average-case
reductions of Impagliazzo and Wigderson [9]. Together
with our completeness result in Section IV, this gives an
alternative, self-contained proof that worst-case-hard truth
tables can be used to construct pseudorandom generators
(although it yields a weaker result, as our derandomization
will require an NP oracle).

Theorem 2. PRG reduces in polynomial time to EMPTY

Proof Sketch: Let R be a sequence (x1,...,%,s) of
nS n-bit strings which fails to be a pseudorandom generator.
By Yao’s next bit predictor lemma [24][22], this implies the
existence of a circuit D of size O(n), such that:

—i a1l 1
Pr.gr[D(z):m]>§+ﬁ
where 7' denotes the 7t bit of z, and z=% is the n — 1-

bit string obtained by deleting 2*. In other words, from the
description of D, the index ¢, and the sequence R =
(x 1, . ,x;é), we can efficiently reconstruct the i** bit
of z; for at least %6 + n* indices j € [n°]. Thus, if we
let S be the n-bit string denoting the indices where this
guess is wrong, we have that from i, R~*, D, S we can
efficiently recover R exactly. Since S has at most % — n*
non-zero entries, we can apply Lemma 2 to encode .S using
n% —n? 4+ O(logn) bits. Clearly R~ can be encoded with
n®(n—1) = n” —nb bits, D can be encoded with O(nlogn)
bits, and ¢ with log n bits, so overall this encoding has length
n’ — Q(n?) + O(nlogn), which is strictly less than the n”
bits needed to encode an arbitrary set R, for n sufficiently
large.

Thus, we can construct an instance of EMPTY in the form
of a circuit ® with < n” —1 input wires and n” output wires,
which takes as input an encoding of the above form, and uses
the above reconstruction procedure to produce R. By the
arguments above, any R which fails to be a pseudorandom
generator lies in the range of ¢, so any string outside its
range is a solution to PRG. |

C. Strongly Explicit Randomness Extractors and Ramsey
Graphs

A (k, €) two-source extractor with one bit of output is a
function f : {0,1}™ x {0,1}"™ — {0,1} such that for any
pair of distributions X, Y on {0, 1}"™ of min-entropy at least
k, the value of f(xy) for a random (z,y) ~ X XY is e-close
to an unbiased coin flip. By a well-known simplification [4],
the following definition is in fact equivalent:

Definition 8. We say that a function f : {0,1}"x{0,1}" —
{0,1} is a (k,e€) extractor if the following holds: for any
two sets X,Y C {0,1}" of size 2%, |Prox g~y [f(zy) =
1]-3l<e

Authorized licensed use limited to: Columbia University Libraries. Downloaded on May 12,2022 at 20:19:01 UTC from IEEE Xplore. Restrictions apply.

Definition 9. For any pair of functions k,e : N — N,
(k,€)-EXTRACTOR is the following search problem: given
1", output a circuit C' with 2n inputs such that the function
fo + {0,1}" x {0,1} — {0,1} defined by C is a
(k(n), e(n)) extractor.

The above problem definition does not expressly constrain
the size of C, though for a construction to be “explicit” in
any useful sense (efficiently computable as a function of n),
C would have to have size polynomial in n. The following
reduction placing extractor construction in APEPP will
immediately imply that we can construct a (logn+ O(1),¢€)
extractor of circuit size approximately n® in APEPP for any
fixed e.

Theorem 3. For any efficiently computable €(n) satisfying
< €e(n) < %for a constant ¢ and sufficiently large n,
(logn + 2log(1/e(n)) + 3,¢(n))-EXTRACTOR reduces in

polynomial time to EMPTY.

Proof Sketch: Let e = €(n), let d = [5], and let A
be any 2d%n3-bit string, viewed as an ordered list of d?n?
elements of Fy2» denoted av,...ag2,2. Now, consider the
function f : {0,1}*" — {0,1}" defined by

d*n?

flz) = Z O
i=1

and the function g : {0,1}?" — {0, 1} defined by
g9(x) = f(z) mod 2

We will show that if ¢ fails to be a (log dn, €) extractor, this
implies an encoding of A using strictly fewer then 2d?n3
bits, from which we can efficiently reconstruct A. As in the
proof of Theorem 2, this immediately implies a reduction
to EMPTY (since for our choice of d we have logdn <
logn + 2log(1/€) + 3).

Say g is not a (log dn, €) extractor. So there exist two sets
of n-bit strings X, Y, each of size ologdn — gn and some
b € {0,1} such that Pryx y~v[f(zy) b > 5 +e
Let R {zy | = € X,y € Y} C {0,1}?". We
have |R| = |X||Y| = d®n?% Let r1,...742,2 denote the
lexicographical enumeration of R. By assumption, we have
that g(r;) = b mod 2 for at least a 1 + ¢ fraction of indices
i. So then, if we let §8; be the 2n — 1-bit prefix of f(r;),
we can deduce the value of f(r;) from f; and b for at least
d?n?(1 + €) values of 4. Thus, there is some d*n?(3 — ¢€)-
weight d?n2-bit string S, such that from b, S, and the 3;’s,
we can deduce f(r;) for all 5. Now, once we are able to
deduce f(z) for each of the d>n? distinct values of = in R,
since f is a degree d?n®—1 polynomial, we can uniquely and
efficiently determine the coefficients «; of f using Gaussian
elimination on the corresponding d?n? x d?>n? Vandermonde
matrix, and thus recover A.

It is clear that we can encode X,Y using 2dn? bits, b
using 1 bit, and the 3;’s using d?n?(2n—1) = 2d*n3 —d?n?

439

bits. Since S is a d*n*(3 — €)-weight d?n?-bit string, by
Lemma 2, we can encode S using at most d’n?(1 — €2) +
log(d?n?) = d?n? — €2d*n? + log(d?n?) bits. So the total
bit length of this encoding is at most:

2dn? + 1+ d*n? — €d*n? + log(d*n?) + 2d°n® — d*n® =
2d*n3 + (2d — 2d*)n? + 2log(dn) + 1

Since we chose 5 +1 > d > %, this is at most 2d*n® —n’+
O(logdn), and by our assumption that ﬁ = poly(n) this
is 2d?n3 —n? + O(logn) overall, which is strictly less then
the number of bits required to encode an arbitrary string A
of length 2d?n? for n sufficiently large. [

For the typical parameter regime where ¢ is an arbitrarily
small constant, this gives a two source extractor for min-
entropy logn 4+ O(1), which is the best possible up to the
O(1) term [4].

Corollary 1. Explicit construction of strongly explicit Ram-
sey graphs (n-vertex graphs containing no clique or inde-
pendent set of size clogn for some constant c), in both the
bipartite and non-bipartite case, reduces to EMPTY.

Proof: As noted in [2], any two-source extractor in the
above sense (with € fixed to any constant less then one
half) is automatically a bipartite Ramsey graph, and from
a strongly explicit bipartite Ramsey graph we can construct
a strongly explicit non-bipartite Ramsey graph efficiently. H

D. Rigid Matrices

Definition 10. /23] We say that n X n matrix M over F,
is (r,s) rigid if for any matrix S € Fp*" with at most s
non-zero entries, M + S has rank greater than r.

Definition 11. For any q : N — N such that q(n) is a prime
power ¥n, (€,q)-RIGID is the following search problem:
given 17", output an n X n matrix M over W,y which is
(en, en?) rigid.

Theorem 4. For any ¢ < 1—16, and any efficiently computable

q(n) satisfying the above, (€, q)-RIGID reduces in polyno-
mial time to EMPTY.

Proof: Let M be any n x m matrix over IF, which is
not (r, s) rigid. So there exists an n x r matrix L, an r X n
matrix R, and an n X n matrix S with at most s non-zero
entries, such that M = LR + S. It is clear that from the
descriptions of L, R, S we can efficiently compute M.

L and R can each be described explicitly using nrloggq
bits. For S, we encode it by specifying an n2-bit string T
of weight s denoting the entries of S which are nonzero,
together with an slogg-bit string giving the values of the
nonzero entries. Applying the encoding scheme in Lemma 1
for T, overall the number of bits in this encoding is at most

2

log (") + (27 + s) log g. Setting 7 = en and s = en? this

Authorized licensed use limited to: Columbia University Libraries. Downloaded on May 12,2022 at 20:19:01 UTC from IEEE Xplore. Restrictions apply.

is at most:
n2
log () + (3en?) logq <
en

3
Ste—eHn? + (3en?)logg <

G

3
(1 +e— € +3e)n?logq
. 1 Lo 997 . 2 :
Since we chose € < 16° this is at most 000" log g, which

is strictly less then the n?logq bits needed to specify an
arbitrary matrix in Fg ™.]

E. Other Problems

In Section V, we introduce two more explicit construction
problems and show that each of these, in addition to a
variant of the rigidity problem, can be reduced directly
to HARD TRUTH TABLE in polynomial time. This also
implies that both problems are contained in APEPP. We will
postpone a formal definition of each of these new problems
until Section V, but give an informal statement here for
completeness:

Theorem 5 (Informal). Construction of a 2" x 2" commu-
nication matrix which cannot by solved by any o(n)-space
protocol reduces to EMPTY (such a matrix lies outside of
the communication class PSPACECC),

Theorem 6 (Informal). The construction of a data structure
problem of nearly maximum complexity in the bit-probe
model reduces to EMPTY.

We also demonstrate in the full version the following:

Theorem 7 (Informal). The construction of n-bit strings
of time-bounded Kolmogorov complexity n — 1 reduces to
EMPTY, for any fixed polynomial time bound.

IV. CONSTRUCTING HARD TRUTH TABLES IS
COMPLETE FOR APEPP

In this section we show that constructing a hard truth
table is complete for APEPP under PNP reductions. As
mentioned before, the core of this theorem was originally
proven by Jefdbek [10], and the main construction un-
derlying the reduction dates back further to the work of
Goldreich, Goldwasser, and Micali [6]. Jefabek’s result is
phrased in the language of proof complexity, stating that the
theorem asserting the existence of hard boolean functions is
equivalent to the empty pigeonhole principle in a particular
theory of Bounded Arithmetic. We demonstrate below that
when translated to the language of search problems and
explicit constructions, his proof yields a PNF reduction
from EMPTY to the problem of constructing a hard truth
table. We in fact prove a more general statement here which
holds for arbitrary circuit classes equipped with oracle gates.

Definition 12. For any oracle A, the class of search prob-
lems APEPP* is defined by the following complete problem

440

EMPTY*: given an A-oracle circuit with more output wires
than input wires, find a boolean string whose length is equal
to the number of output wires but which is not in the range of
this circuit. For any strictly increasing function f : N — N,
we define the problem EMPTY]‘?(n), which is the special
case of EMPTY# where the circuit is required to have f(n)
output wires, where n is the number of input wires.

We now define the type of reduction used in this section:

Definition 13. For any oracle A, an “A-circuit inverter
oracle” (or simply A-inverter) is an oracle which, given an
A-oracle circuit C and a potential output vy, determines if
there exists some x such that C(x) = y, and produces one if
so. An A-inverter reduction is a polynomial time reduction
that uses an A-inverter orace.

Note that in the absence of an oracle, an inverter reduction
is equivalent to a PNP reduction, since inverting a standard
boolean circuit is NP-complete.

We start with the following technical lemma, which allows
us to restrict our attention to circuits with exactly twice as
many outputs as inputs.

Lemma 3. For any oracle A, EMPTY3\ is complete for
APEPP? under A-inverter reductions.

We omit the proof of Lemma 3 here, as it utilizes similar
techniques that appear in the following proof of Theorem 8.
We now define the hard truth table construction problem that
will be used in our reduction:

Definition 14. Ler e-HARD? denote the following search
problem: given 1V, output a string x of length N such that
x cannot be computed by A-oracle circuits of size N°€.

In the absence of an oracle, we drop the superscript and
refer to this problem simply as e-HARD. For N = 27, a
solution to e-HARD on input 1% is a truth table of a function
on n variables requiring 2¢"-sized circuits, the same object
used to build the Impagliazzo-Wigderson generator.

Theorem 8. Let A be an oracle and € > 0 be a constant
such that e-HARD? is total for sufficiently large input
lengths. Then EMPTY? reduces in polynomial time to e-
HARD? under A-inverter reductions.

Proof Sketch: By Lemma 3 we know that EMPTY#
reduces to EMPTY?3! under A-inverter reductions. Now, let
C be an instance of EMPTY?,, and let k = 2[log|C|[][1].
Consider the following map C* : {0,1}" — {0,1}>",
defined informally as follows: given a string x € {0,1}",
apply C once to get 2 n-bit strings, then apply C' to both of
those n-bit strings to get four, and continue k times until we
have 2% n-bit strings, or equivalently a 2¥n-bit string. This
process is illustrated in Figure 1. As mentioned previously,
this construction of C* from C'is essentially identical to the
pseudorandom function generator of [6].

Authorized licensed use limited to: Columbia University Libraries. Downloaded on May 12,2022 at 20:19:01 UTC from IEEE Xplore. Restrictions apply.

Q
Q

=

n

C

n

Figure 1. Extending a map C : {0,1}" — {0,1}?" to a map C* :
{0,1}" — {0, 1}2k". Dotted boxes indicate the number of bits along a
wire.

The proof now proceeds by demonstrating two key prop-
erties of this construction C*. First, we show that by setting
m = n2* = poly(|C|), any solution to e-HARD* on input
1™ will be a string that is not in the range of C*. Second,
we will show that given a string outside the range of C*,
we can find a string outside the range of C using only a
polynomial number of calls to an A-inverter.

To carry out the first of these steps, we will show that
any string in the range of C'*, when interpreted as a truth
table of length m = n2* on [logn] + k variables, can be
computed by an A-oracle circuit of size O(|C|k). Since, by
construction of k, we have that m > |C %, a solution to
e-HARD# on input 1™ will be a truth table of length m not
computable by an A-oracle circuit of size m¢ > |C|?, and
thus a circuit of size O(|C|k) = O(|C|log |C|) would be a
contradiction for all input lengths greater than some absolute
constant. We construct such a circuit for any string in the
range of C* as follows: let y be a 2n-bit string such that
for some = € {0,1}", C*(x) = y. The circuit computing
y will have = written as advice/constants, and will feed =
through £ copies of the circuit C' in series. We will split the
[logn] + k input variables into a block of k variables we
call 4, and a block of [logn] variables we call j. We then
use ¢ to determine whether to take the first or last n bits of
output from one of the copies of C' before feeding it into
the next, to get some resulting string =%, and then we use j
to index into the j** position of 2%, to get ¥i,j. A diagram
of this circuit is shown in Figure 2.

Thus, we now know that any solution to e-HARD# on
input 1™ will not be in the range of C*, and by assumption
e-HARDc is total for sufficiently large input lengths so such
a solution exists. It remains only to show that we can use
a string outside the range of C*, together with a C-inverter
oracle, to find a string outside the range of C.

Let y be any string outside the range of C*. Refer to

Repeated k times

Figure 2. A succinct circuit whose truth table is y, for any y in the range
of C*. Dotted boxes indicate the number of bits along a wire. The circuit
“L or R?” takes 2n bits plus an additional control bit, and based on the
control bit either outputs the “leftmost” or “rightmost” block of n bits.
Note that although x is shown as an input in this diagram, for any given
y we fix a preimage x as constants/advice, and so the only true inputs to
this circuit are 7, j.

Figure 1 which gives a diagram of a circuit computing C*;
at a layer i € [k] of this circuit, we have 2¢ blocks of n
bits feeding into 2¢ copies of C, and these copies of C' then
output 2+ blocks of n bits at the next layer. So working
back from the output layer k, we can test if any consecutive
2n-bit block of y is outside of the range of C. If none of
them are, then we find a preimage for all blocks, interpret
this as the output of the previous layer, and continue our
search from there. We follow this process all the way back
to the input layer or until we find an empty pigeonhole of C.
If we never find an empty pigeonhole of C, then this process
will terminate at the input layer with a string = such that
C*(z) = y, which is impossible by assumption, so at some
point we must indeed find a string outside the range of C.
Checking whether a particular string is an empty pigeonhole,
or finding a preimage if it’s not, can be accomplished with
one call to an A-inverter by definition. We perform this test
at most 2¥ = poly(|C|) times (once for every copy of C
in the diagram in Figure 1), so overall this process can be
accomplished in polynomial time using an A-inverter. M

We now examine the implications of this theorem for
particular circuit classes of interest.

P
Theorem 9. For any 0 < ¢ < %, e-HARD™: is complete

for APEPPZ! under Aﬁz reductions.
In the absence of any oracle gates, we have the following:

Theorem 10. For any 0 < € < 1, e-HARD is complete for
APEPP under PN® reductions.

A. Implications of Completeness

This result gives an exact algorithmic characterization of
the possibility of proving 2°(") ¥ _circuit lower bounds for
P
Ei1:

Theorem 11. There exists a language in E>% 1 with rh.
circuit complexity 2™ if and only if there is a A}:LQ
algorithm for EMPTYyp.

In the most interesting case, we conclude that a 29(n)

Authorized licensed use limited to: Columbia University Libraries. Downloaded on May 12,2022 at 20:19:01 UTC from IEEE Xplore. Restrictions apply.

circuit lower bound for ENP holds if and only if there is
a PNP algorithm for EMPTY. Together with the results in
Section III, this gives newfound insight into the difficulty of
proving exponential circuit lower bounds for the class ENF:
proving such a lower bound requires solving a universal
explicit construction problem, and would immediately imply
PNP constructions for a vast range of combinatorial objects
which we currently have no means of constructing without
a XF oracle. Theorem 11 also allows us to derive the

following interesting fact about the circuit complexity of
ENP:

Corollary 2 (Worst-Case to Worst-Case Hardness Amplifi-
cation in ENP), If there is a language in ENF of circuit
complexity 29(”) then there is a language in ENY requiring
circuits of size

2n

Proof: By Theorem 11, if there is a language in ENF
of circuit complexity 2°(") then there is a PNP algorithm
for EMPTY. By Theorem 1, this implies a PP algorithm
for HARD TRUTH TABLE, and thus a PNP construction
of a truth table of length N with hardness ﬂ This in
turn implies the existence of a language in E of circuit
complexity g—n [|

Tweaking the proof of Theorem 8 slightly we also obtain
the following:

Corollary 3 (Worst-Case to Worst-Case Hardness Ampli-
fication in EXPNF), If there is a language in EXPNP
of circuit complexity 2”9(1), then there is a language in
EXPNF requiring circuits of size 37
Proof: The proof follows that of the previous corollary,

with the following modification to the reduction in Theo-
rem 8: we start with the assumption that for some € > 0 we
are able to construct N-bit truth tables with hardness 2'°8° ¥
in time quasipolynomial in N using an NP oracle, and then
apply the same reduction setting k = logi%] |C|. [|

We thus obtain a rather unexpected “collapse” theorem for
the circuit complexity of EXPNP: if EXPNP has circuits
of size 2— infinitely often, then this class in fact has circuits
of size 2" infinitely often for every e > 0.

We can refine this slightly as follows.

Definition 15. MCSP, defined originally in [11], is the
following decision problem: given a truth table x and a
size parameter s, determine whether x has a circuit of size
at most s. Let SMCSP denote the search variant of this
problem, where we are given a truth table x and must output
a circuit computing x of minimum size.

For the hardness amplification procedures in Corollaries
2 and 3, we can in fact replace the NP oracle with an oracle
for SMCSP, which is non-trivial since SMCSP is not known
to be NP-hard.

Corollary 4. If there is a language in ESMCSP (resp.

442

EXPsMCSP)) of circuit complexity 2™ (resp. n™)
then there is a language m ESMCSP (reqp, EXPsMCSP)
requiring circuits of size

2 n’

Proof: Recall the two reductions in Lemma 3 and
Theorem 8. In order to find an empty pigeonhole of the
input circuit C' given a solution to e-HARD, we only need
to use the C-inverter on C itself. In the case of a reduction
from HARD TRUTH TABLE to €- HARD the circuit of interest
C maps circuits of size at most 21 ~ to their N-bit truth
tables, and so an oracle for SMSCP Would suffice to invert
C. [|

It should be noted that a related result was proven in [11],
showing that this type of hardness amplification is possible
in E assuming MCSPe P. However, their proof does not
translate directly to an unconditional result in the oracle
setting. Due to their use of the Impagliazzo-Wigderson
generator, directly applying their proof in the oracle set-
ting using the relativized generator of [13] would instead
show that if EMCSP requires 2(")-sized nondeterministic
circuits, then EMCSP requires g—z-sized standard circuits,
which is a weaker statement then what is shown above
(modulo the search/decision distinction between SMCSP
and MCSP). Another result of a similar flavor was also
proven in [8], which establishes that, assuming the (un-
proven) NP-completeness of MCSP, 27" Jower bounds
for NP N coNP imply 2°(™) lower bounds for ENP. This
type of amplification is incomparable to the amplification
demonstrated in Corollaries 2 and 3, although using Corol-
lary 2 we can strengthen the lower bound in their conclusion
to %

In [3], Buresh-Oppenheim and Santhanam define a no-
tion of “hardness extraction” that is highly relevant to the
results in this section. Informally, a hardness extractor is
a procedure which takes a truth table of length N and
circuit complexity s, and produces a truth table with nearly
maximum circuit complexity relative to its size, whose
length is as close to s as possible. The proof of Corollary
4 can in fact be viewed as a construction of a near-optimal
hardness extractor using an SMCSP oracle. In particular our
procedure is able to extract approximately the square root
of the input’s hardness:

Theorem 12. There is a polynomial time algorithm using
an SMCSP oracle which, given a truth table x of length M
and circuit complexity s, outputs a truth table y of length
N =9

and circuit complexity Q(

logM) logN)

V. DIRECT P REDUCTIONS TO HARD TRUTH TABLE

Ideally we could extend the completeness result in Theo-
rem 10 to work with polynomial time reductions, as opposed
to PNP reductions. However, the NP oracle seems highly
necessary for the proof techniques used above. Despite this
obstacle, we show that there are several interesting problems

Authorized licensed use limited to: Columbia University Libraries. Downloaded on May 12,2022 at 20:19:01 UTC from IEEE Xplore. Restrictions apply.

in APEPP which can be reduced to the problem of finding
truth tables of hard functions via P reductions.

In the full version of this paper, three explicit construction
problems are shown reducible to hard truth table construc-
tion:

1) Construction of rigid matrices over Fa.

2) Construction of communication matrices outside of

PSPACECC.

3) Construction of data structure problems of near-

maximal bit-probe complexity.

Each of these reductions follows essentially the same format.
Recall our common strategy for the reductions in Section III
— to demonstrate that a certain construction problem reduces
to EMPTY, it suffices to show that when a string fails to have
the desired property, this implies a succinct representation
from which we can efficiently recover that string. To reduce
to HARD TRUTH TABLE, we will use roughly the same
strategy, except we must prove in addition that we can use
this succinct representation to recover each bit of the original
string in sublinear time. Such a reconstruction procedure is,
in essence, a circuit. We give here a proof only for the case
of rigidity. To obtain the tightest reduction possible, we will
introduce one new parameterized version of the hard truth
table construction problem:

Definition 16. 6-QUITE HARD is the following problem:

given 1, output an N-bit truth table with hardness ljgNN

This problem is total for sufficiently small §. Recall also
the search problem (e, q)-RIGID, where we are asked to
construct a (en, en?) rigid matrix over F,.

Theorem 13. For any sufficiently small 6 > 0, there exists
some € > 0 such that (€,2)-RIGID reduces in polynomial
time to 6-QUITE HARD.

Proof: To prove this, it suffices to show that for any
matrix M € F5N which is not (eN,eN?)-rigid, we can
construct a boolean circuit with f(€)O(: QN) gates which
decides the value of M]|i, j] given the 2ﬁlog N-bit input
(i,7), for some function f which approaches zero as e
approaches zero. This then implies that for any fixed ¢, an
NZ-bit truth table requiring circuits of size lg]gvi, must be
(eN, eN?)-rigid for some ¢ > 0 which is a function only of
¢ (and otherwise determined by f and the constants hidden
in the O(+) term).

Say M is not (eN, eN?)-rigid. So there exists an N x e N
matrix L, an e N x N matrix R, and an N x N matrix S with
at most e N2 nonzero entries, such that LR ® S = M. We
will construct a circuit allowing us to efficiently index M
which uses these matrices L, R, S as advice. To encode L
and R, we can utilize the well-known theorem of Shannon
that any truth table of length N can be computed by a
circuit of size O(%) [21]. Thus, L can be specified as

a list of eN circuits, each of size O(IOgLN), where the jth

443

circuit C; represents the 4*" column, and C;(i) computes
L[i,7]. Then if we let rowy, : {0,1}1°8N — {0, 1}N =
C1(4)Co(i) ... Cen (i), we see that rowy has circuit size
60(%), and outputs the i** row of L given i. We then
analogously construct a circuit colp for R, interchanging
rows and columns in the above description. Finally, for S,
we employ a refinement of Shannon’s result due to Lupanov
[7], which tells us that for sufficiently large N, any truth
table of length NV with at most e/N nonzero entries can be
computed by circuit of size

log (]X,) (N > N
€ < H(e)O(——=
log log (2\,]) +o0 log V) = (€) (logN)

Where H denotes the binary entropy function. Thus there
is a circuit entryg {0,1}2le N {0,1} of size
2
H (e)O(lOJYW) which computes S[¢, j] given 4, j in binary.
Given these circuits rowy,colg,entryg, computing
M]i, §] is straightforward. By definition, we have that:

M[Za]] = <r0WL(i)a COIR(j)> D entryS(ivj)

where the dot product is taken over Fs. It is clear that the
dot product of two €N bit strings can be computed by a
circuit of size O(eN), and that the final & operation can
be implemented with a constant number of gates, so overall
there must exist a circuit entry,, which computes M]i, j]
given i, j of size:

N? N
e THEOOGLN

Since € + H(e) aproaches zero as e aproaches zero, this
gives the required result.

2

eO(

)+ O(eN) + O(1) =

) +of

|

We thus conclude that if E contains a language of circuit

complexity Q(%) then there is a polynomial time construc-
tion of (Q(n), 2(n?))-rigid matrices over F.

ACKNOWLEDGMENT

The author would like to thank Christos Papadimitriou for
his guidance and for many inspiring discussions throughout
the completion of this work, and Mihalis Yannakakis for
his comments on an early draft of this manuscript. The
author would also like to thank the anonymous referees for
suggesting various improvements to this paper, in particular
the addition of Corollary 3, the connection to hardness
extractors and the GGM generator, and the simplification
of Lemma 2.

REFERENCES

[1] J. ALMAN AND L. CHEN, Efficient construction of rigid
matrices using an NP oracle, in 2019 IEEE 60th Annual
Symposium on Foundations of Computer Science (FOCS),
2019, pp. 1034-1055.

Authorized licensed use limited to: Columbia University Libraries. Downloaded on May 12,2022 at 20:19:01 UTC from IEEE Xplore. Restrictions apply.

(2]

(3]

(4]

6

—_

(7]

(8]

(10]

(1]

[12]

[13]

[14]

[15]

B. BARAK, A. RAO, R. SHALTIEL, AND A. WIGDERSON,
2-source dispersers for sub-polynomial entropy and ramsey
graphs beating the frankl-wilson construction, in Proceedings
of the Thirty-Eighth Annual ACM Symposium on Theory
of Computing, STOC 06, New York, NY, USA, 2006,
Association for Computing Machinery, p. 671-680.

J. BURESH-OPPENHEIM AND R. SANTHANAM, Making hard
problems harder, 21st Annual IEEE Conference on Compu-
tational Complexity (CCC’06), (2006), pp. 15 pp.—87.

B. CHOR AND O. GOLDREICH, Unbiased bits from sources of
weak randomness and probabilistic communication complex-
ity, in 26th Annual Symposium on Foundations of Computer
Science (sfcs 1985), 1985, pp. 429-442.

P. ERDOS, Some remarks on the theory of graphs, Bulletin of
the American Mathematical Society, 53 (1947), pp. 292-294.

O. GOLDREICH, S. GOLDWASSER, AND S. MICALI, How fo
construct random functions, J. ACM, 33 (1986), p. 792-807.

A. GOLOVNEV, R. ILANGO, R. IMPAGLIAZZO, V. KA-
BANETS, A. KOLOKOLOVA, AND A. TAL, AcO[p] lower
bounds against mcsp via the coin problem, Electron. Col-
loquium Comput. Complex., 26 (2019), p. 18.

J. M. HITCHCOCK AND A. PAVAN, On the np-completeness
of the minimum circuit size problem, in FESTTCS, 2015.

R. IMPAGLIAZZO AND A. WIGDERSON, P = BPP if E
requires exponential circuits: Derandomizing the XOR lemma,
in Proceedings of the Twenty-Ninth Annual ACM Symposium
on Theory of Computing, STOC 97, New York, NY, USA,
1997, Association for Computing Machinery, p. 220-229.

E. JERABEK, Dual weak pigeonhole principle, boolean com-
plexity, and derandomization, Annals of Pure and Applied
Logic, 129 (2004), pp. 1-37.

V. KABANETS AND J.-Y. CAl, Circuit minimization problem,
in Proceedings of the Thirty-Second Annual ACM Sympo-
sium on Theory of Computing, STOC ’00, New York, NY,
USA, 2000, Association for Computing Machinery, p. 73-79.

R. KLEINBERG, O. KORTEN, D. MITROPOLSKY, AND
C. PAPADIMITRIOU, Total Functions in the Polynomial Hier-
archy, in 12th Innovations in Theoretical Computer Science
Conference (ITCS 2021), J. R. Lee, ed., vol. 185 of Leibniz
International Proceedings in Informatics (LIPIcs), Dagstuhl,
Germany, 2021, Schloss Dagstuhl-Leibniz-Zentrum fiir Infor-
matik, pp. 44:1-44:18.

A. R. KLIVANS AND D. VAN MELKEBEEK, Graph non-
isomorphism has subexponential size proofs unless the
polynomial-time hierarchy collapses, SIAM Journal on Com-
puting, 31 (2002), pp. 1501-1526.

P. MILTERSEN AND N. VINODCHANDRAN, Derandomiz-
ing arthur-merlin games using hitting sets, in 40th An-
nual Symposium on Foundations of Computer Science (Cat.
No.99CB37039), 1999, pp. 71-80.

N. NISAN AND A. WIGDERSON, Hardness vs random-
ness, Journal of Computer and System Sciences, 49 (1994),
pp. 149-167.

444

[16]

[17]

(18]

[19]

[20]

(21]

(22]

(23]

[24]

C. H. PAPADIMITRIOU, On the complexity of the parity
argument and other inefficient proofs of existence, Journal
of Computer and System Sciences, 48 (1994), pp. 498 — 532.

J. PARIS, A. WILKIE, AND A. R. WoODS, Provability of
the pigeonhole principle and the existence of infinitely many
primes, J. Symb. Log., 53 (1988), pp. 1235-1244.

A. A. RAZBOROV AND S. RUDICH, Natural proofs, Journal
of Computer and System Sciences, 55 (1997), pp. 24-35.

R. SANTHANAM, The complexity of explicit constructions,
Theory of Computing Systems, 51 (2012), pp. 297-312.
Copyright - Springer Science+Business Media, LLC 2012;
Document feature - ; Equations; Last updated - 2020-11-18;
CODEN - TCSYFIL

, Pseudorandomness and the minimum circuit size
problem, in 11th Innovations in Theoretical Computer Sci-
ence Conference, ITCS 2020, January 12-14, 2020, Seattle,
Washington, USA, T. Vidick, ed., vol. 151 of LIPIcs, Schloss
Dagstuhl - Leibniz-Zentrum fiir Informatik, 2020, pp. 68:1-
68:26.

C. E. SHANNON, The synthesis of two-terminal switching cir-
cuits, The Bell System Technical Journal, 28 (1949), pp. 59—
98.

S. P. VADHAN, Pseudorandomness, vol. 7, Now Delft, 2012.

L. G. VALIANT, Graph-theoretic arguments in low-level com-
plexity, in Mathematical Foundations of Computer Science
1977, J. Gruska, ed., Berlin, Heidelberg, 1977, Springer
Berlin Heidelberg, pp. 162-176.

A. C. YAO, Theory and application of trapdoor functions,
in 23rd Annual Symposium on Foundations of Computer
Science (sfcs 1982), 1982, pp. 80-91.

Authorized licensed use limited to: Columbia University Libraries. Downloaded on May 12,2022 at 20:19:01 UTC from IEEE Xplore. Restrictions apply.

