
The Hardest Explicit Construction

Oliver Korten

Department of Computer Science
Columbia University

New York, NY
oliver.korten@columbia.edu

Abstract—We investigate the complexity of explicit construc-
tion problems, where the goal is to produce a particular object
possessing some pseudorandom property in time polynomial
in the size of that object. We give overwhelming evidence that
APEPP, defined originally by Kleinberg et al. [12], is the nat-
ural complexity class associated with explicit constructions of
objects whose existence follows from the probabilistic method,
by placing a variety of such construction problems in this
class. We then demonstrate that a result of Jeřábek [10] on
provability in Bounded Arithmetic, when reinterpreted as a
reduction between search problems, shows that constructing a
truth table of high circuit complexity is complete for APEPP
under NP-oracle reductions. This illustrates that Shannon’s
classical proof of the existence of hard boolean functions is
in fact a universal probabilistic existence argument: deran-
domizing his proof implies a generic derandomization of the
probabilistic method. As a corollary, we prove that EXPNP

contains a language of mildly-exponential circuit complexity if
and only if it contains a language of nearly maximum circuit
complexity. Finally, for several of the problems shown to lie in
APEPP, we demonstrate direct polynomial time reductions to
the explicit construction of hard truth tables.

Keywords-circuit complexity; psuedorandomness; total func-
tion complexity;

Note: Various proofs are either abridged or omitted in

this extended abstract; proofs of all stated results can be

found in the full version: https://arxiv.org/abs/2106.00875

I. INTRODUCTION

Explicit construction — the task of replacing a noncon-

structive argument for the existence of a certain type of

object with a deterministic algorithm that outputs one — is

an important genre of computational problems, one whose

history is intertwined with the most fundamental questions

in complexity and derandomization. The primary method

of non-constructive argument for these sorts of problems

is to show that a random object has the desired property

with high probability. This technique, initiated by Erdös [5]

and since dubbed the “probabilistic method,” has proven

immensely useful across disparate subfields of combinatorics

and computer science. Indeed, the probabilistic method is

currently our sole source of certainty that there exist hard

Boolean functions, pseudorandom generators, rigid matrices,

and optimal randomness extractors, among a variety of other

combinatorial objects.

Explicit construction problems can be phrased, in com-

plexity terms, as sparse search problems: given the input 1n,

output some object of size n satisfying a certain property. In

the interesting case, such problems are also total: we have a

reason to believe that for all n, at least one object with this

property exists. In contrast to the fundamental importance

of explicit constructions, there has been surprisingly little

work attempting to systematically study their complexity.

This gap was pointed out previously by Santhanam [19], who

investigated the complexity of explicit construction problems

from the following perspective: say we have some property

Π which is promised to hold for almost all strings of length

n. Based on the complexity of testing the property Π, what

can be said about the complexity of producing an n-bit

string with property Π? Though some interesting reductions

can be shown in this framework, Santhanam notes that this

approach does not seem to yield robust complexity classes

with complete explicit construction problems.

This issue is familiar in the study of the class TFNP:

when we have only a promise that a search problem is

total, it is seemingly impossible to reduce it to a problem

of similar complexity which has a syntactic guarantee of

totality. This led to the study, initiated by Papadimitriou

[16], of characterizing total search problems based on the

combinatorial lemma which guarantees the existence of a

solution.

So what is the basic combinatorial lemma guaranteeing

the soundness of the probabilistic method of construction?

Generally speaking, most constructions using the probabilis-

tic method can be rephrased as encoding arguments: they

demonstrate that whenever an object x of size n fails to

possess a desired property (i.e. x is “bad”), this implies

a succinct encoding of x using fewer than n bits, from

which we can then recover x. The existence of a “good”

x thus follows from the fact that there is no encoding

scheme for arbitrary n-bit strings using fewer than n bits

– phrased differently, there is no surjective function from

{0, 1}n−1 to {0, 1}n. In recent work of Kleinberg et al.

[12], a natural class capturing the complexity of this sort

of encoding argument was presented. In particular they

define the class APEPP, which consists of the ΣP
2 total

search problems whose totality follows from the “Abundant

Empty Pigeonhole Principle,” which tells us that for any

433

2021 IEEE 62nd Annual Symposium on Foundations of Computer Science (FOCS)

2575-8454/21/$31.00 ©2021 IEEE
DOI 10.1109/FOCS52979.2021.00051

20
21

 IE
EE

 6
2n

d
An

nu
al

 S
ym

po
siu

m
 o

n
Fo

un
da

tio
ns

 o
f C

om
pu

te
r S

ci
en

ce
 (F

O
CS

) |
 9

78
-1

-6
65

4-
20

55
-6

/2
2/

$3
1.

00
 ©

20
22

 IE
EE

 |
 D

O
I:

10
.1

10
9/

FO
CS

52
97

9.
20

21
.0

00
51

Authorized licensed use limited to: Columbia University Libraries. Downloaded on May 12,2022 at 20:19:01 UTC from IEEE Xplore. Restrictions apply.

f : {0, 1}n−1 → {0, 1}n, there must exist some y ∈ {0, 1}n
such that for all x ∈ {0, 1}n−1, f(x) �= y. In this paper, we

show that APEPP is the natural syntactic class into which

we can place a vast range of explicit construction problems

where a solution is guaranteed by the probabilistic method.

Given that APEPP is a syntactic class, it is natural to

ask whether some explicit construction problem is complete

for it. As it turns out, the answer is positive: constructing

a truth table of length 2n with circuit complexity 2εn is in

fact complete for APEPP under PNP reductions. Perhaps

surprisingly, this important fact had been known for many

years in the universe of Bounded Arithmetic, essentially

proved in Emil Jeřábek’s PhD thesis in 2004. Here Jeřábek

shows that the theorem asserting the empty pigeonhole

principle is equivalent, in a particular theory of Bounded

Arithmetic, to the theorem asserting the existence of hard

boolean functions. Although his result is phrased in terms

of logical expressibility, we show that when translated to

language of search problems his techniques give a PNP

reduction from any problem in APEPP to the problem of

constructing a hard truth table. In Section IV we give a

self-contained proof of this, and generalize the reduction to

hold for arbitrary classes of circuits equipped with oracle

gates. Combined with our results placing a wide range of

explicit construction problems in APEPP, this shows that

in a concrete sense, constructing a hard truth table is a

universal explicit construction problem. We give further cre-

dence to this claim by showing in addition that several well

known explicit construction problems in APEPP, including

the explicit construction of rigid matrices, can be directly

reduced to the problem of constructing a hard truth table via

polynomial time reductions (as opposed to PNP reductions).

A. Contributions

We investigate the complexity class APEPP introduced in

[12], defined by the following complete problem EMPTY:

given a circuit C : {0, 1}n → {0, 1}m with m > n, find

an m-bit string outside the range of C. In Section III we

give overwhelming evidence that APEPP is the natural class

associated with explicit constructions from the probabilistic

method, by placing a wide range of well-studied problems

in this class. In particular, we show that the explicit con-

struction problems associated with the following objects lie

in APEPP:

• Truth tables of length 2n with circuit complexity 2n

2n
(Theorem 1)

• Pseudorandom generators (Theorem 2)

• Strongly explicit two-source randomness extractors

with 1 bit output for min-entropy log n+O(log(1/ε)),
and thus strongly explicit O(log n)-Ramsey graphs in

both the bipartite and non-bipartite case (Theorem 3)

• Matrices with high rigidity over any finite field (Theo-

rem 4)

• Strings of time-bounded Kolmogorov complexity n−1
relative to any fixed polynomial time bound and any

fixed Turing machine (Theorem 7)

• Communication problems outside of PSPACECC

• Hard data structure problems in the-bit probe model

Since the work of Impagliazzo and Wigderson [9] im-

plies that constructing pseudorandom generators reduces

to constructing hard truth tables, APEPP constructions of

PRGs follow immediately from APEPP constructions of

hard truth tables. However, we provide a self-contained

and simple proof that PRG construction can be reduced to

EMPTY, without requiring the more involved techniques of

Nisan, Wigderson, and Impagliazzo [15][9]. Together with

the result in the following section that constructing hard truth

tables is complete for APEPP under PNP reductions, this

gives an alternative and significantly simplified proof that

worst-case-hard truth tables can be used to derandomize

algorithms (although it proves a weaker result, that this

derandomization can be accomplished with an NP oracle).

In Section IV we show that constructing a truth table

of length 2n with circuit complexity 2εn is complete for

APEPP under PNP reductions (for any fixed 0 < ε < 1).
As discussed earlier, the core argument behind this result

was proven by Jeřábek in [10], where he shows that the

theorem asserting the existence of hard boolean functions is

equivalent to the theorem asserting the empty pigeonhole

principle in a certain fragment of Bounded Arithmetic.

We show that, when viewed through the lens of explicit

construction problems, this technique yields a reduction

from EMPTY to the explicit construction of hard truth

tables. We also generalize this reduction to arbitrary oracle

circuits, which allows us to prove the following more general

statement: constructing a truth table which requires large

ΣP
i -oracle circuits is complete for APEPPΣP

i
under ΔP

i+2

reductions (the complete problem for APEPPΣP
i

is the

variant of EMPTY where the input circuit can have ΣP
i -

oracle gates).

By recasting and generalizing Jeřábek’s theorem in the

context of explicit construction problems, we are able to

derive several novel results. First and foremost, we conclude

that there is a PNP construction of hard truth tables if
and only if there is a PNP algorithm for every problem

in APEPP, and so in particular such a construction of hard

truth tables would automatically imply PNP constructions

for each of the well-studied problems discussed in Sec-

tion III. This tells us that constructing hard truth tables

is, in a definite sense, a universal explicit construction
problem. Since the existence of a PNP construction of hard

truth tables is equivalent to the existence of a language

in ENP with circuit complexity 2Ω(n), this completeness

result actually gives an exact algorithmic characterization
of proving 2Ω(n) circuit lower bounds for ENP:

Theorem (Theorem 11). There is a PNP algorithm for

434

Authorized licensed use limited to: Columbia University Libraries. Downloaded on May 12,2022 at 20:19:01 UTC from IEEE Xplore. Restrictions apply.

EMPTY if and only if ENP contains a language of circuit
complexity 2Ω(n).

As a corollary we are able to derive the following:

Theorem (Corollaries 2 and 3). ENP (resp. EXPNP) con-
tains a language of circuit complexity 2Ω(n) (resp. 2n

Ω(1)

)
if and only if ENP (resp. EXPNP) contains a language of
circuit complexity 2n

2n .

Unpacking the proof of the above corollaries reveals an

efficient algorithm to “extract hardness” from truth tables us-

ing an oracle for circuit minimization, a prospect previously

considered in [3]:

Theorem (Theorem 12). There is a polynomial time algo-
rithm using a circuit minimization oracle (or more generally
an NP oracle) which, given a truth table x of length M
and circuit complexity s, outputs a truth table y of length
N = Ω(

√
s

logM) and circuit complexity Ω(N
logN).

Finally, in Section V we consider P (as opposed to PNP)

reductions from particular explicit construction problems to

the problem of constructing hard truth tables. We show that

in the case of rigidity, bit probe lower bounds, and certain

communication complexity lower bounds, such reductions

exist. These reductions take the following form: we show

that the failure of an n-bit string x to satisfy certain pseudo-

random properties implies a smaller than worst case circuit

computing x. This then implies that any n-bit string of

sufficiently high circuit complexity will necessarily possess a

variety of pseudorandom properties, including high rigidity,

high space-bounded communication complexity, and high

bit-probe complexity.

Another concrete takeaway from this work is that we

demonstrate, for several well-studied problems, the weakest

known assumptions necessary to obtain explicit construc-

tions of a certain type (polynomial time constructions in

some cases and PNP constructions in others). Perhaps

the most interesting application of this is rigidity, as the

complexity of rigid matrix construction has been studied

extensively in both the P and PNP regimes [1]. We obtain

the following conditional constructions of rigid matrices:

Theorem (Theorems 4 and 11). If ENP contains a language
of circuit complexity 2Ω(n), then for any prime power q ≤
2poly(n) and any ε ≤ 1

16 , there is a PNP construction of an
n×n matrix over Fq which is εn2-far (in hamming distance)
from any rank-εn matrix.

Theorem (Theorem 13). If E contains a language of circuit
complexity Ω(2

n

n), then for some ε > 0 there is a polynomial
time construction of an n×n matrix over F2 which is εn2-far
from any rank-εn matrix.

In both cases, the rigidity parameters in the conclusion

would be sufficient to carry out Valiant’s lower bound

program [23]. The weakest hardness assumptions previously

known to yield constructions with even remotely similar

parameters (in either the PNP or P regimes) require a lower

bound against nondeterministic circuits [14].

B. Related Work

A large body of work on the hardness/randomness con-

nection, starting with that of Nisan and Wigderson [15], has

exhibited the usefulness of explicit constructions of hard

truth tables. The results of Impagliazzo and Wigderson [9]

give, in particular, a reduction from explicit constructions of

hard truth tables to explicit constructions of pseudorandom

generators that fool polynomial size circuits. As noted

by Santhanam [19], this immediately implies that for any

“dense” property Π recognizable in P (dense meaning the

fraction of n-bit strings holding this property is at least

1/poly(n)), an efficient construction of a hard truth table

immediately implies an efficient construction of an n-bit

string with property Π. But many properties of interest such

as Rigidity (or any of the other properties studied in this

work) are only known to be recognizable in the larger class

NP. Under the stronger assumption that we can construct

truth tables hard for certain classes of nondeterministic
circuits, constructions for all dense NP properties are known

to follow as well [13] [14], so in particular PNP construc-

tions for every problem in APEPP would follow. However,

constructing truth tables that are hard for nondeterministic

circuits appears strictly harder than constructing truth tables

hard for standard circuits, and in particular does not seem to

be contained in APEPP, so although this yields an explicit

construction problem which is hard for APEPP, it does

not appear to be complete. In contrast, we show here that

constructing a truth table which is hard for standard circuits

is both contained in and hard for APEPP, thus showing that

a PNP construction of a hard truth table is possible if and
only if such a construction is possible for every problem in

APEPP.

For several of the explicit construction problems we study,

a long line of work has gone into improving state-of-the-

art constructions. A more detailed overview of this work

in the important cases of rigidity and two-source extractors

can be found in the full version of this paper. The crucial

takeaway is that for each of the problems shown reducible

to EMPTY in Section III, obtaining constructions with the

same parameters by explicit means is an open problem.

C. Proof Sketch of Main Theorem

We give here an informal overview of the proof that

EMPTY can be solved in polynomial time given access to

a hard truth table and an NP oracle. At the core of this

proof is a familiar construction in the theory of computing

which dates back to the 1980’s, namely the pseudorandom

function generator of Goldreich, Goldwasser, and Micali [6].

Note that in the following, we will refer to the “circuit

435

Authorized licensed use limited to: Columbia University Libraries. Downloaded on May 12,2022 at 20:19:01 UTC from IEEE Xplore. Restrictions apply.

complexity of an n-bit string x” to mean the size of the

smallest circuit computing xi given i in binary; this is well-

defined even when n is not a power of 2, as we shall

formalize Section III1.
Consider the special case of EMPTY where our input is

a circuit C : {0, 1}n → {0, 1}2n which exactly doubles

its input size. For a moment let us forget our primary goal

of finding a 2n-bit string outside C’s range, and instead

consider C as a cryptographic pseudorandom generator

which we are attempting to break. Since C is a function

which extends its input size by a positive number of bits,

it is indeed of the same syntactic form as a cryptographic

PRG, so this viewpoint is well-defined.
In [6], Goldreich, Goldwasser and Micali give a proce-

dure2 which, for any fixed 0 < ε < 1, takes C and produces

in polynomial time a new circuit C∗ : {0, 1}n → {0, 1}m
for some m = poly(n), which satisfies the following two

properties:

1) Every string in the range of C∗ has circuit complexity

at most mε.

2) Given a statistical test breaking C∗, we can construct

a statistical test of similar complexity breaking C.

The construction of C∗ is in fact quite simple: for an

appropriate choice of k, we recursively apply C to an n-

bit input for k iterations as follows: first apply C to an n-bit

string to get 2 n-bit strings, then apply it again to each of

those to get 4, and continue k times until we obtain 2k n-bit

strings.
A key observation made by Razborov and Rudich [18]

is that condition (1) automatically implies a particular
statistical test which breaks C∗, namely the test which

accepts precisely those m-bit strings with circuit complexity

exceeding mε. But by property (2), C∗ inherets the security

of C, which is an arbitrary candidate PRG. This means

that determining if an m-bit string has circuits of size

mε is in fact a universal test for randomness, capable of

simultaneously breaking all pseudorandom generators.
Recall now our original goal for C, which was solve the

associated instance of EMPTY by finding a 2n-bit string

outside its range. Property (1) of C∗ implies that an explicit

construction of a length-m truth table of circuit complexity

mε would immediately yield an explicit m-bit string outside

the range of C∗. In Section IV, we show that C∗ obeys the

following third property:

3) Given a string outside the range of C∗, we can find

a string outside the range of C using a polynomial

number of calls to an NP oracle.

The analogue of statement (3) in the context of Bounded

Arithmetic was first shown by Jeřábek [10], and a quite

1See Definition 4
2[6] and [18] apply the construction described here in a different param-

eter regime, so our statement of the result differs slightly from its original
presentation. The version described here has been noted subsequently in
the literature on MCSP, see for example [20].

similar argument appears even earlier in the work of Paris,

Wilkie, and Woods [17]. Combining properties (1) and (3),

we get the desired result: any m-bit string of complexity

mε must lie outside the range of C∗, so using such a

string together with an NP oracle we can solve our original

instance of EMPTY.

To summarize, the construction C∗ of Goldreich,

Goldwasser and Micali shows that the property of requiring

large circuits is a universal pseudorandom property of
strings in two concrete senses:

• (Original analysis of [6] and [18]) A test determining

whether a string requires large circuits can be efficiently

boostrapped into a test distinguishing any pseudoran-

dom distribution from the uniform distribution.

• (This work together with Jeřábek [10]) An explicit

example of a string requiring large circuits can be used

to generate an explicit example of a string outside the

range of any efficiently computable map C : {0, 1}n →
{0, 1}2n (in fact any C : {0, 1}n → {0, 1}n+1 as

shown in Section IV), and in particular can be used to

construct explicit examples of strings posessing each of

the fundamental pseudorandom properties examined in

Section III.

II. DEFINITIONS

Following [12], we define the set of total functions in ΣP
2 ,

denoted TFΣP
2 , as follows:

Definition 1. A relation R(x, y) is in TFΣP
2 if there exists

a polynomial p(n) such that the following conditions hold:

1) For every x, there exists a y such that |y| ≤ p(|x|)
and R(x, y) holds

2) There is a polynomial time Turing machine M such
that
R(x, y)⇐⇒ ∀z ∈ {0, 1}p(|x|)M(x, y, z) accepts

The search problem associated with such a relation is:

“given x, find some y such that R(x, y) holds.” For the

majority of this paper, we will be concerned primarily with

sparse TFΣP
2 search problems, where the only relevant part

of the input is its length. We can thus define the following

“sparse” subclass of TFΣP
2 :

Definition 2. A relation R(x, y) is in STFΣP
2 if R ∈

TFΣP
2 and for any x1, x2 such that |x1| = |x2|, we have

that for all y, R(x1, y)⇔ R(x2, y).

Since the length of x fully determines the set of solutions,

the relevant search problem here is: “given 1n, find some y
such that R(1n, y) holds.” All explicit construction problems

considered in Section III will be in STFΣP
2 .

We now define the search problem EMPTY, which will be

the primary subject of this work:

436

Authorized licensed use limited to: Columbia University Libraries. Downloaded on May 12,2022 at 20:19:01 UTC from IEEE Xplore. Restrictions apply.

Definition 3. EMPTY is the following search problem: given
a boolean circuit C with n input wires and m output wires
where m > n, find an m-bit string outside the range of C.

This problem is total due to the basic lemma, referred to

in [12] as the “Empty Pigeonhole Principle” and in the field

of Bounded Arithmetic as the “Dual Pigeonhole Principle

[10],” which tells us that a map from a smaller set onto a

larger one cannot be surjective. Since verifying a solution y
consists of determining that for all x, C(x) �= y, we have:

Observation 1. EMPTY ∈ TFΣP
2

Note that for any instance of EMPTY the number of output

bits m is at least n + 1, so a random m-bit string will

be a solution with probability at least 1
2 . Since verifying a

solution can be accomplished with one call to an NP oracle,

this implies the following inclusion:

Observation 2. EMPTY ∈ FZPPNP

As mentioned in the introduction, this fact tells us that

sufficiently strong pseudorandom generators capable of fool-

ing nondeterministic circuits such as those in [13] would

suffice to derandomize the above inclusion and yield a PNP

algorithm for EMPTY. In Section IV, we will show that this

derandomization can be accomplished under a significantly

weaker assumption, using a reduction of a very different

form then the hardness-based pseudorandom generators of

[15], [9], and [13].

We can now define the class APEPP, which is simply

the class of search problems polynomial-time reducible to

EMPTY. This class was originally defined in [12], and is an

abbreviation for “Abundant Polynomial Empty Pigeonhole

Principle.” The term “Abundant” was used to distinguish

this from the larger class PEPP also studied in [12]. The

complete problem for PEPP is to find a string outside the

range of a map C : {0, 1}n \ {0n} → {0, 1}n, which

appears significantly more difficult (it is at least as hard

as NP [12]). The distinction between APEPP and PEPP
also appears in the Bounded Arithmetic literature, where

the principle corresponding to APEPP is referred to as

the “Dual weak Pigeonhole Principle,” while the principle

corresponding to PEPP is referred to simply as the “Dual

Pigeonhole Principle.” We will be concerned only with the

abundant/weak principle in this work. It should be noted that

we employ a slight change of notation from [12] for the sake

of simplicity: we use EMPTY to refer to the search problem

associated with the weak pigeonhole principle, while in [12]

EMPTY refers to the search problem associated with the full

pigeonhole principle.

Infinitely-often vs. almost-everywhere circuit lower
bounds: As a final point of clarification, whenever we make

the statement “L requires circuits of size s(n)” for some

language L and size bound s, we mean that circuits of size

s(n) are required to compute L on length n inputs for all

but finitely many n. This is in contrast to the statement

“L /∈ SIZE(s(n)),” which means the circuit size lower

bound holds for infinitely many input lengths. All circuit

lower bounds referred to in this work will be of the first

kind.

III. EXPLICIT CONSTRUCTIONS IN APEPP
In this section, we show that a variety of well-studied

explicit construction problems can be reduced in polynomial

time to EMPTY. Each proof follows roughly the following

format: there is some property of interest Π, and our goal

is to construct an n-bit string which holds this property.

For each such Π we consider, whenever an n-bit string x
fails to have this property, it indicates that x is somehow

more “structured” than a random n-bit string, and this

structure allows us to specify x using fewer then n bits. We

then actualize this argument in the form of an efficiently

computable map C : {0, 1}k → {0, 1}n with k < n, such

that any string not having property Π is in the range of C.

This immediately implies that any n-bit string outside the

range of C must hold property Π, and thus any solution to

the instance of EMPTY defined by C will be a solution to our

explicit construction problem. For many of the proofs, we

will only show that the reduction is valid for n sufficiently

large; clearly this is sufficient, since explicit constructions

can be done by brute force for fixed input lengths.
A useful coding lemma: In the proofs to come, it will

be helpful to utilize succinct and efficiently computable

encodings of low-weight strings (the “weight” of binary

string is the number of 1 bits it contains). In particular we

rely on the following result in [7]:

Lemma 1. [7] For any k ≤ n, there exists a map Φ :

{0, 1}log (nk) → {0, 1}n computable in poly(n) time such
that any n-bit string of weight k is in the range of Φ.

and a useful corollary:

Lemma 2. For any 0 < ε < 1
2 , there exists a map Φ :

{0, 1}n−ε2n+logn → {0, 1}n computable in poly(n) time
such that any n-bit string of weight at most n

2 − εn is in the
range of Φ.

A. Hard Truth Tables

Definition 4. Given a string x of length N , we say that x is
computed by a circuit of size s if there is a boolean circuit
C of fan-in 2 over the basis 〈∧,∨,¬〉 with �logN� inputs
and s gates, such that C(i) = xi for all 1 ≤ i ≤ |x|. If N
is not a power of 2, we put no restriction on the value of
C(i) for i > |x|.
Definition 5. HARD TRUTH TABLE is the following search
problem: given 1N , output a string x of length N such that
x is not computed by any circuit of size at most N

2 logN .

In the typical case where N = 2n for some n, this is

equivalent to finding a truth table for an n-input boolean

437

Authorized licensed use limited to: Columbia University Libraries. Downloaded on May 12,2022 at 20:19:01 UTC from IEEE Xplore. Restrictions apply.

function requiring circuits of size 2n

2n , which is within a 2+
o(1) factor of the worst case circuit complexity for any n-

input boolean function.

Theorem 1. HARD TRUTH TABLE reduces in polynomial
time to EMPTY.

Proof: This proof follows Shannon’s classical argument

for the existence of functions of high circuit complexity [21].

We construct an instance of EMPTY in the form of a circuit

Φ which maps an encoding of a circuit to its corresponding

truth table. Φ interprets its input as a circuit on �logN� bits

(using an encoding of circuits to be described below), tests

its value on every possible input to generate a 2�logN� bit

truth table, and then truncates this truth table to be of length

exactly N .

Given a circuit of size s ≥ n, we can encode it in a

straightforward way using 2s log s+O(s) bits by specifying

explicitly the two inputs of each gate, a list of the logical

types of each gate, and an indication of which gate is the

output. It is also clear that from such an encoding we

can efficiently decode the represented circuit and test it

on all possible input values. In this way we can construct

our circuit Φ to interpret its 2s log s + O(s)-bit input as

a circuit encoding of this form, and then print the truth

table corresponding to that encoded circuit. If we chose

s = N
2 logN , we have 2s log s+O(s) < N (for N sufficiently

large). So Φ is a valid instance of EMPTY, and any string

outside its range is a solution to HARD TRUTH TABLE.

It is also clear from the above description that Φ can be

constructed in poly(N) time.

B. Pseudorandom Generators

Definition 6. We will say that a sequence R = (x1, . . . , xm)
of n-bit strings is a pseudorandom generator if, for all n-
input circuits of size n:

|Prx∼R[C(x) = 1]− Pry∼{0,1}n [C(y) = 1]| ≤ 1/n

Standard applications of the probabilistic method show

that such pseudorandom generators exist of size polynomial

in n. Thus we can define the following total search problem:

Definition 7. PRG is the following search problem: given
1n, output a pseudorandom generator R = (x1, . . . , xm),
xi ∈ {0, 1}n.

A polynomial time algorithm for PRG would suffice to

derandomize BPP [15]. We now show how to formalize the

argument for the totality of PRG using the empty pigeonhole

principle. In particular, we show that a PRG of size n6 can

be constructed in APEPP.

As noted in the introduction, the results of Impagliazzo

and Wigderson [9] imply that PRG reduces directly to

HARD TRUTH TABLE, so a reduction of PRG to EMPTY

follows from Theorem 1. However, we provide here a much

simpler direct proof that PRG reduces to EMPTY, relying

only on Yao’s next bit predictor lemma, and neither the

nearly disjoint subsets construction of Nisan and Wigderson

[15] nor the rather involved worst-case to average-case

reductions of Impagliazzo and Wigderson [9]. Together

with our completeness result in Section IV, this gives an

alternative, self-contained proof that worst-case-hard truth

tables can be used to construct pseudorandom generators

(although it yields a weaker result, as our derandomization

will require an NP oracle).

Theorem 2. PRG reduces in polynomial time to EMPTY

Proof Sketch: Let R be a sequence (x1, . . . , xn6) of

n6 n-bit strings which fails to be a pseudorandom generator.

By Yao’s next bit predictor lemma [24][22], this implies the

existence of a circuit D of size O(n), such that:

Prx∼R[D(x−i) = xi] >
1

2
+

1

n2

where xi denotes the ith bit of x, and x−i is the n − 1-

bit string obtained by deleting xi. In other words, from the

description of D, the index i, and the sequence R−i =
(x−1

1 , . . . , x−i
n6), we can efficiently reconstruct the ith bit

of xj for at least n6

2 + n4 indices j ∈ [n6]. Thus, if we

let S be the n6-bit string denoting the indices where this

guess is wrong, we have that from i, R−i, D, S we can

efficiently recover R exactly. Since S has at most n6

2 − n4

non-zero entries, we can apply Lemma 2 to encode S using

n6 − n2 +O(log n) bits. Clearly R−i can be encoded with

n6(n−1) = n7−n6 bits, D can be encoded with O(n log n)
bits, and i with log n bits, so overall this encoding has length

n7 −Ω(n2) +O(n log n), which is strictly less than the n7

bits needed to encode an arbitrary set R, for n sufficiently

large.

Thus, we can construct an instance of EMPTY in the form

of a circuit Φ with ≤ n7−1 input wires and n7 output wires,

which takes as input an encoding of the above form, and uses

the above reconstruction procedure to produce R. By the

arguments above, any R which fails to be a pseudorandom

generator lies in the range of Φ, so any string outside its

range is a solution to PRG.

C. Strongly Explicit Randomness Extractors and Ramsey
Graphs

A (k, ε) two-source extractor with one bit of output is a

function f : {0, 1}n × {0, 1}n → {0, 1} such that for any

pair of distributions X,Y on {0, 1}n of min-entropy at least

k, the value of f(xy) for a random (x, y) ∼ X×Y is ε-close

to an unbiased coin flip. By a well-known simplification [4],

the following definition is in fact equivalent:

Definition 8. We say that a function f : {0, 1}n×{0, 1}n →
{0, 1} is a (k, ε) extractor if the following holds: for any
two sets X,Y ⊆ {0, 1}n of size 2k, |Prx∼X,y∼Y [f(xy) =
1]− 1

2 | ≤ ε.

438

Authorized licensed use limited to: Columbia University Libraries. Downloaded on May 12,2022 at 20:19:01 UTC from IEEE Xplore. Restrictions apply.

Definition 9. For any pair of functions k, ε : N → N,
(k, ε)-EXTRACTOR is the following search problem: given
1n, output a circuit C with 2n inputs such that the function
fC : {0, 1}n × {0, 1}n → {0, 1} defined by C is a
(k(n), ε(n)) extractor.

The above problem definition does not expressly constrain

the size of C, though for a construction to be “explicit” in

any useful sense (efficiently computable as a function of n),

C would have to have size polynomial in n. The following

reduction placing extractor construction in APEPP will

immediately imply that we can construct a (log n+O(1), ε)
extractor of circuit size approximately n3 in APEPP for any

fixed ε.

Theorem 3. For any efficiently computable ε(n) satisfying
1
nc < ε(n) < 1

2 for a constant c and sufficiently large n,
(log n + 2 log(1/ε(n)) + 3, ε(n))-EXTRACTOR reduces in
polynomial time to EMPTY.

Proof Sketch: Let ε = ε(n), let d = � 4
ε2 �, and let A

be any 2d2n3-bit string, viewed as an ordered list of d2n2

elements of F22n denoted α1, . . . αd2n2 . Now, consider the

function f : {0, 1}2n → {0, 1}2n defined by

f(x) =
d2n2∑
i=1

αix
i−1

and the function g : {0, 1}2n → {0, 1} defined by

g(x) = f(x) mod 2

We will show that if g fails to be a (log dn, ε) extractor, this

implies an encoding of A using strictly fewer then 2d2n3

bits, from which we can efficiently reconstruct A. As in the

proof of Theorem 2, this immediately implies a reduction

to EMPTY (since for our choice of d we have log dn ≤
log n+ 2 log(1/ε) + 3).

Say g is not a (log dn, ε) extractor. So there exist two sets

of n-bit strings X,Y , each of size 2log dn = dn, and some

b ∈ {0, 1} such that Prx∼X,y∼Y [f(xy) = b] > 1
2 + ε.

Let R = {xy | x ∈ X, y ∈ Y } ⊆ {0, 1}2n. We

have |R| = |X||Y | = d2n2. Let r1, . . . rd2n2 denote the

lexicographical enumeration of R. By assumption, we have

that g(ri) = b mod 2 for at least a 1
2 +ε fraction of indices

i. So then, if we let βi be the 2n − 1-bit prefix of f(ri),
we can deduce the value of f(ri) from βi and b for at least

d2n2(12 + ε) values of i. Thus, there is some d2n2(12 − ε)-
weight d2n2-bit string S, such that from b, S, and the βi’s,

we can deduce f(ri) for all i. Now, once we are able to

deduce f(x) for each of the d2n2 distinct values of x in R,

since f is a degree d2n2−1 polynomial, we can uniquely and

efficiently determine the coefficients αi of f using Gaussian

elimination on the corresponding d2n2×d2n2 Vandermonde

matrix, and thus recover A.

It is clear that we can encode X,Y using 2dn2 bits, b
using 1 bit, and the βi’s using d2n2(2n−1) = 2d2n3−d2n2

bits. Since S is a d2n2(12 − ε)-weight d2n2-bit string, by

Lemma 2, we can encode S using at most d2n2(1 − ε2) +
log(d2n2) = d2n2 − ε2d2n2 + log(d2n2) bits. So the total

bit length of this encoding is at most:

2dn2 + 1 + d2n2 − ε2d2n2 + log(d2n2) + 2d2n3 − d2n2 =

2d2n3 + (2d− ε2d2)n2 + 2 log(dn) + 1

Since we chose 4
ε2 +1 ≥ d ≥ 4

ε2 , this is at most 2d2n3−n2+
O(log dn), and by our assumption that 1

ε(n) = poly(n) this

is 2d2n3−n2+O(log n) overall, which is strictly less then

the number of bits required to encode an arbitrary string A
of length 2d2n3 for n sufficiently large.

For the typical parameter regime where ε is an arbitrarily

small constant, this gives a two source extractor for min-

entropy log n + O(1), which is the best possible up to the

O(1) term [4].

Corollary 1. Explicit construction of strongly explicit Ram-
sey graphs (n-vertex graphs containing no clique or inde-
pendent set of size c log n for some constant c), in both the
bipartite and non-bipartite case, reduces to EMPTY.

Proof: As noted in [2], any two-source extractor in the

above sense (with ε fixed to any constant less then one

half) is automatically a bipartite Ramsey graph, and from

a strongly explicit bipartite Ramsey graph we can construct

a strongly explicit non-bipartite Ramsey graph efficiently.

D. Rigid Matrices

Definition 10. [23] We say that n × n matrix M over Fq

is (r, s) rigid if for any matrix S ∈ F
n×n
q with at most s

non-zero entries, M + S has rank greater than r.

Definition 11. For any q : N→ N such that q(n) is a prime
power ∀n, (ε, q)-RIGID is the following search problem:
given 1n, output an n × n matrix M over Fq(n) which is
(εn, εn2) rigid.

Theorem 4. For any ε ≤ 1
16 , and any efficiently computable

q(n) satisfying the above, (ε, q)-RIGID reduces in polyno-
mial time to EMPTY.

Proof: Let M be any n × n matrix over Fq which is

not (r, s) rigid. So there exists an n× r matrix L, an r× n
matrix R, and an n × n matrix S with at most s non-zero

entries, such that M = LR + S. It is clear that from the

descriptions of L,R, S we can efficiently compute M .

L and R can each be described explicitly using nr log q
bits. For S, we encode it by specifying an n2-bit string T
of weight s denoting the entries of S which are nonzero,

together with an s log q-bit string giving the values of the

nonzero entries. Applying the encoding scheme in Lemma 1

for T , overall the number of bits in this encoding is at most

log
(
n2

s

)
+ (2nr + s) log q. Setting r = εn and s = εn2 this

439

Authorized licensed use limited to: Columbia University Libraries. Downloaded on May 12,2022 at 20:19:01 UTC from IEEE Xplore. Restrictions apply.

is at most:

log

(
n2

εn

)
+ (3εn2) log q ≤

(
3

4
+ ε− ε2)n2 + (3εn2) log q ≤

(
3

4
+ ε− ε2 + 3ε)n2 log q

Since we chose ε ≤ 1
16 , this is at most 997

1000n
2 log q, which

is strictly less then the n2 log q bits needed to specify an

arbitrary matrix in F
n×n
q .

E. Other Problems

In Section V, we introduce two more explicit construction

problems and show that each of these, in addition to a

variant of the rigidity problem, can be reduced directly

to HARD TRUTH TABLE in polynomial time. This also

implies that both problems are contained in APEPP. We will

postpone a formal definition of each of these new problems

until Section V, but give an informal statement here for

completeness:

Theorem 5 (Informal). Construction of a 2n × 2n commu-
nication matrix which cannot by solved by any o(n)-space
protocol reduces to EMPTY (such a matrix lies outside of
the communication class PSPACECC).

Theorem 6 (Informal). The construction of a data structure
problem of nearly maximum complexity in the bit-probe
model reduces to EMPTY.

We also demonstrate in the full version the following:

Theorem 7 (Informal). The construction of n-bit strings
of time-bounded Kolmogorov complexity n − 1 reduces to
EMPTY, for any fixed polynomial time bound.

IV. CONSTRUCTING HARD TRUTH TABLES IS

COMPLETE FOR APEPP
In this section we show that constructing a hard truth

table is complete for APEPP under PNP reductions. As

mentioned before, the core of this theorem was originally

proven by Jeřábek [10], and the main construction un-

derlying the reduction dates back further to the work of

Goldreich, Goldwasser, and Micali [6]. Jeřábek’s result is

phrased in the language of proof complexity, stating that the

theorem asserting the existence of hard boolean functions is

equivalent to the empty pigeonhole principle in a particular

theory of Bounded Arithmetic. We demonstrate below that

when translated to the language of search problems and

explicit constructions, his proof yields a PNP reduction

from EMPTY to the problem of constructing a hard truth

table. We in fact prove a more general statement here which

holds for arbitrary circuit classes equipped with oracle gates.

Definition 12. For any oracle A, the class of search prob-
lems APEPPA is defined by the following complete problem

EMPTYA: given an A-oracle circuit with more output wires
than input wires, find a boolean string whose length is equal
to the number of output wires but which is not in the range of
this circuit. For any strictly increasing function f : N→ N,
we define the problem EMPTYA

f(n), which is the special
case of EMPTYA where the circuit is required to have f(n)
output wires, where n is the number of input wires.

We now define the type of reduction used in this section:

Definition 13. For any oracle A, an “A-circuit inverter
oracle” (or simply A-inverter) is an oracle which, given an
A-oracle circuit C and a potential output y, determines if
there exists some x such that C(x) = y, and produces one if
so. An A-inverter reduction is a polynomial time reduction
that uses an A-inverter orace.

Note that in the absence of an oracle, an inverter reduction

is equivalent to a PNP reduction, since inverting a standard

boolean circuit is NP-complete.

We start with the following technical lemma, which allows

us to restrict our attention to circuits with exactly twice as

many outputs as inputs.

Lemma 3. For any oracle A, EMPTYA
2n is complete for

APEPPA under A-inverter reductions.

We omit the proof of Lemma 3 here, as it utilizes similar

techniques that appear in the following proof of Theorem 8.

We now define the hard truth table construction problem that

will be used in our reduction:

Definition 14. Let ε-HARDA denote the following search
problem: given 1N , output a string x of length N such that
x cannot be computed by A-oracle circuits of size N ε.

In the absence of an oracle, we drop the superscript and

refer to this problem simply as ε-HARD. For N = 2n, a

solution to ε-HARD on input 1N is a truth table of a function

on n variables requiring 2εn-sized circuits, the same object

used to build the Impagliazzo-Wigderson generator.

Theorem 8. Let A be an oracle and ε > 0 be a constant
such that ε-HARDA is total for sufficiently large input
lengths. Then EMPTYA reduces in polynomial time to ε-
HARDA under A-inverter reductions.

Proof Sketch: By Lemma 3 we know that EMPTYA

reduces to EMPTYA
2n under A-inverter reductions. Now, let

C be an instance of EMPTYA
2n and let k = 2�log |C|�� 1ε �.

Consider the following map C∗ : {0, 1}n → {0, 1}2kn,

defined informally as follows: given a string x ∈ {0, 1}n,

apply C once to get 2 n-bit strings, then apply C to both of

those n-bit strings to get four, and continue k times until we

have 2k n-bit strings, or equivalently a 2kn-bit string. This

process is illustrated in Figure 1. As mentioned previously,

this construction of C∗ from C is essentially identical to the

pseudorandom function generator of [6].

440

Authorized licensed use limited to: Columbia University Libraries. Downloaded on May 12,2022 at 20:19:01 UTC from IEEE Xplore. Restrictions apply.

Figure 1. Extending a map C : {0, 1}n → {0, 1}2n to a map C∗ :

{0, 1}n → {0, 1}2kn. Dotted boxes indicate the number of bits along a
wire.

The proof now proceeds by demonstrating two key prop-

erties of this construction C∗. First, we show that by setting

m = n2k = poly(|C|), any solution to ε-HARDA on input

1m will be a string that is not in the range of C∗. Second,

we will show that given a string outside the range of C∗,
we can find a string outside the range of C using only a

polynomial number of calls to an A-inverter.

To carry out the first of these steps, we will show that

any string in the range of C∗, when interpreted as a truth

table of length m = n2k on �log n� + k variables, can be

computed by an A-oracle circuit of size O(|C|k). Since, by

construction of k, we have that m ≥ |C| 2ε , a solution to

ε-HARDA on input 1m will be a truth table of length m not

computable by an A-oracle circuit of size mε ≥ |C|2, and

thus a circuit of size O(|C|k) = O(|C| log |C|) would be a

contradiction for all input lengths greater than some absolute

constant. We construct such a circuit for any string in the

range of C∗ as follows: let y be a 2kn-bit string such that

for some x ∈ {0, 1}n, C∗(x) = y. The circuit computing

y will have x written as advice/constants, and will feed x
through k copies of the circuit C in series. We will split the

�log n� + k input variables into a block of k variables we

call i, and a block of �log n� variables we call j. We then

use i to determine whether to take the first or last n bits of

output from one of the copies of C before feeding it into

the next, to get some resulting string xi, and then we use j
to index into the jth position of xi, to get yi,j . A diagram

of this circuit is shown in Figure 2.

Thus, we now know that any solution to ε-HARDA on

input 1m will not be in the range of C∗, and by assumption

ε-HARDC is total for sufficiently large input lengths so such

a solution exists. It remains only to show that we can use

a string outside the range of C∗, together with a C-inverter

oracle, to find a string outside the range of C.

Let y be any string outside the range of C∗. Refer to

Figure 2. A succinct circuit whose truth table is y, for any y in the range
of C∗. Dotted boxes indicate the number of bits along a wire. The circuit
“L or R?” takes 2n bits plus an additional control bit, and based on the
control bit either outputs the “leftmost” or “rightmost” block of n bits.
Note that although x is shown as an input in this diagram, for any given
y we fix a preimage x as constants/advice, and so the only true inputs to
this circuit are i, j.

Figure 1 which gives a diagram of a circuit computing C∗;
at a layer i ∈ [k] of this circuit, we have 2i blocks of n
bits feeding into 2i copies of C, and these copies of C then

output 2i+1 blocks of n bits at the next layer. So working

back from the output layer k, we can test if any consecutive

2n-bit block of y is outside of the range of C. If none of

them are, then we find a preimage for all blocks, interpret

this as the output of the previous layer, and continue our

search from there. We follow this process all the way back

to the input layer or until we find an empty pigeonhole of C.

If we never find an empty pigeonhole of C, then this process

will terminate at the input layer with a string x such that

C∗(x) = y, which is impossible by assumption, so at some

point we must indeed find a string outside the range of C.

Checking whether a particular string is an empty pigeonhole,

or finding a preimage if it’s not, can be accomplished with

one call to an A-inverter by definition. We perform this test

at most 2k = poly(|C|) times (once for every copy of C
in the diagram in Figure 1), so overall this process can be

accomplished in polynomial time using an A-inverter.

We now examine the implications of this theorem for

particular circuit classes of interest.

Theorem 9. For any 0 < ε < 1
2 , ε-HARDΣP

i is complete
for APEPPΣP

i under ΔP
i+2 reductions.

In the absence of any oracle gates, we have the following:

Theorem 10. For any 0 < ε < 1, ε-HARD is complete for
APEPP under PNP reductions.

A. Implications of Completeness

This result gives an exact algorithmic characterization of

the possibility of proving 2Ω(n) ΣP
i -circuit lower bounds for

EΣP
i+1 :

Theorem 11. There exists a language in EΣP
i+1 with ΣP

i -
circuit complexity 2Ω(n) if and only if there is a ΔP

i+2

algorithm for EMPTYΣP
i

.

In the most interesting case, we conclude that a 2Ω(n)

441

Authorized licensed use limited to: Columbia University Libraries. Downloaded on May 12,2022 at 20:19:01 UTC from IEEE Xplore. Restrictions apply.

circuit lower bound for ENP holds if and only if there is

a PNP algorithm for EMPTY. Together with the results in

Section III, this gives newfound insight into the difficulty of

proving exponential circuit lower bounds for the class ENP:

proving such a lower bound requires solving a universal
explicit construction problem, and would immediately imply

PNP constructions for a vast range of combinatorial objects

which we currently have no means of constructing without

a ΣP
2 oracle. Theorem 11 also allows us to derive the

following interesting fact about the circuit complexity of

ENP:

Corollary 2 (Worst-Case to Worst-Case Hardness Amplifi-

cation in ENP). If there is a language in ENP of circuit
complexity 2Ω(n), then there is a language in ENP requiring
circuits of size 2n

2n .

Proof: By Theorem 11, if there is a language in ENP

of circuit complexity 2Ω(n), then there is a PNP algorithm

for EMPTY. By Theorem 1, this implies a PNP algorithm

for HARD TRUTH TABLE, and thus a PNP construction

of a truth table of length N with hardness N
2 logN . This in

turn implies the existence of a language in ENP of circuit

complexity 2n

2n .

Tweaking the proof of Theorem 8 slightly we also obtain

the following:

Corollary 3 (Worst-Case to Worst-Case Hardness Ampli-

fication in EXPNP). If there is a language in EXPNP

of circuit complexity 2n
Ω(1)

, then there is a language in
EXPNP requiring circuits of size 2n

2n .

Proof: The proof follows that of the previous corollary,

with the following modification to the reduction in Theo-

rem 8: we start with the assumption that for some ε > 0 we

are able to construct N -bit truth tables with hardness 2log
ε N

in time quasipolynomial in N using an NP oracle, and then

apply the same reduction setting k = log�
1
ε � |C|.

We thus obtain a rather unexpected “collapse” theorem for

the circuit complexity of EXPNP: if EXPNP has circuits

of size 2n

2n infinitely often, then this class in fact has circuits

of size 2n
ε

infinitely often for every ε > 0.

We can refine this slightly as follows.

Definition 15. MCSP, defined originally in [11], is the
following decision problem: given a truth table x and a
size parameter s, determine whether x has a circuit of size
at most s. Let SMCSP denote the search variant of this
problem, where we are given a truth table x and must output
a circuit computing x of minimum size.

For the hardness amplification procedures in Corollaries

2 and 3, we can in fact replace the NP oracle with an oracle

for SMCSP, which is non-trivial since SMCSP is not known

to be NP-hard.

Corollary 4. If there is a language in EsMCSP (resp.

EXPsMCSP) of circuit complexity 2Ω(n) (resp. 2n
Ω(1)

),
then there is a language in EsMCSP (resp. EXPsMCSP)
requiring circuits of size 2n

2n .

Proof: Recall the two reductions in Lemma 3 and

Theorem 8. In order to find an empty pigeonhole of the

input circuit C given a solution to ε-HARD, we only need

to use the C-inverter on C itself. In the case of a reduction

from HARD TRUTH TABLE to ε-HARD, the circuit of interest

C maps circuits of size at most N
2 logN to their N -bit truth

tables, and so an oracle for SMSCP would suffice to invert

C.

It should be noted that a related result was proven in [11],

showing that this type of hardness amplification is possible

in E assuming MCSP∈ P. However, their proof does not

translate directly to an unconditional result in the oracle

setting. Due to their use of the Impagliazzo-Wigderson

generator, directly applying their proof in the oracle set-

ting using the relativized generator of [13] would instead

show that if EMCSP requires 2Ω(n)-sized nondeterministic
circuits, then EMCSP requires 2n

2n -sized standard circuits,

which is a weaker statement then what is shown above

(modulo the search/decision distinction between SMCSP

and MCSP). Another result of a similar flavor was also

proven in [8], which establishes that, assuming the (un-

proven) NP-completeness of MCSP, 2n
Ω(1)

lower bounds

for NP∩ coNP imply 2Ω(n) lower bounds for ENP. This

type of amplification is incomparable to the amplification

demonstrated in Corollaries 2 and 3, although using Corol-

lary 2 we can strengthen the lower bound in their conclusion

to 2n

2n .

In [3], Buresh-Oppenheim and Santhanam define a no-

tion of “hardness extraction” that is highly relevant to the

results in this section. Informally, a hardness extractor is

a procedure which takes a truth table of length N and

circuit complexity s, and produces a truth table with nearly

maximum circuit complexity relative to its size, whose

length is as close to s as possible. The proof of Corollary

4 can in fact be viewed as a construction of a near-optimal

hardness extractor using an SMCSP oracle. In particular our

procedure is able to extract approximately the square root

of the input’s hardness:

Theorem 12. There is a polynomial time algorithm using
an SMCSP oracle which, given a truth table x of length M
and circuit complexity s, outputs a truth table y of length
N = Ω(

√
s

logM) and circuit complexity Ω(N
logN).

V. DIRECT P REDUCTIONS TO HARD TRUTH TABLE

Ideally we could extend the completeness result in Theo-

rem 10 to work with polynomial time reductions, as opposed

to PNP reductions. However, the NP oracle seems highly

necessary for the proof techniques used above. Despite this

obstacle, we show that there are several interesting problems

442

Authorized licensed use limited to: Columbia University Libraries. Downloaded on May 12,2022 at 20:19:01 UTC from IEEE Xplore. Restrictions apply.

in APEPP which can be reduced to the problem of finding

truth tables of hard functions via P reductions.

In the full version of this paper, three explicit construction

problems are shown reducible to hard truth table construc-

tion:

1) Construction of rigid matrices over F2.

2) Construction of communication matrices outside of

PSPACECC.

3) Construction of data structure problems of near-

maximal bit-probe complexity.

Each of these reductions follows essentially the same format.

Recall our common strategy for the reductions in Section III

– to demonstrate that a certain construction problem reduces

to EMPTY, it suffices to show that when a string fails to have

the desired property, this implies a succinct representation

from which we can efficiently recover that string. To reduce

to HARD TRUTH TABLE, we will use roughly the same

strategy, except we must prove in addition that we can use

this succinct representation to recover each bit of the original

string in sublinear time. Such a reconstruction procedure is,

in essence, a circuit. We give here a proof only for the case

of rigidity. To obtain the tightest reduction possible, we will

introduce one new parameterized version of the hard truth

table construction problem:

Definition 16. δ-QUITE HARD is the following problem:
given 1N , output an N -bit truth table with hardness δN

logN

This problem is total for sufficiently small δ. Recall also

the search problem (ε, q)-RIGID, where we are asked to

construct a (εn, εn2) rigid matrix over Fq .

Theorem 13. For any sufficiently small δ > 0, there exists
some ε > 0 such that (ε, 2)-RIGID reduces in polynomial
time to δ-QUITE HARD.

Proof: To prove this, it suffices to show that for any

matrix M ∈ F
N×N
2 which is not (εN, εN2)-rigid, we can

construct a boolean circuit with f(ε)O(N2

logN) gates which

decides the value of M [i, j] given the 2�logN�-bit input

(i, j), for some function f which approaches zero as ε
approaches zero. This then implies that for any fixed δ, an

N2-bit truth table requiring circuits of size δN2

logN must be

(εN, εN2)-rigid for some ε > 0 which is a function only of

δ (and otherwise determined by f and the constants hidden

in the O(·) term).

Say M is not (εN, εN2)-rigid. So there exists an N×εN
matrix L, an εN×N matrix R, and an N×N matrix S with

at most εN2 nonzero entries, such that LR ⊕ S = M . We

will construct a circuit allowing us to efficiently index M
which uses these matrices L,R, S as advice. To encode L
and R, we can utilize the well-known theorem of Shannon

that any truth table of length N can be computed by a

circuit of size O(N
logN) [21]. Thus, L can be specified as

a list of εN circuits, each of size O(N
logN), where the jth

circuit Cj represents the jth column, and Cj(i) computes

L[i, j]. Then if we let rowL : {0, 1}logN → {0, 1}εN =
C1(i)C2(i) . . . CεN (i), we see that rowL has circuit size

εO(N2

logN), and outputs the ith row of L given i. We then

analogously construct a circuit colR for R, interchanging

rows and columns in the above description. Finally, for S,

we employ a refinement of Shannon’s result due to Lupanov

[7], which tells us that for sufficiently large N , any truth

table of length N with at most εN nonzero entries can be

computed by circuit of size

log
(
N
εN

)
log log

(
N
εN

) + o

(
N

logN

)
≤ H(ε)O(

N

logN
)

Where H denotes the binary entropy function. Thus there

is a circuit entryS : {0, 1}2 logN → {0, 1} of size

H(ε)O(N2

logN) which computes S[i, j] given i, j in binary.

Given these circuits rowL, colR, entryS , computing

M [i, j] is straightforward. By definition, we have that:

M [i, j] = 〈rowL(i), colR(j)〉 ⊕ entryS(i, j)

where the dot product is taken over F2. It is clear that the

dot product of two εN bit strings can be computed by a

circuit of size O(εN), and that the final ⊕ operation can

be implemented with a constant number of gates, so overall

there must exist a circuit entryM which computes M [i, j]
given i, j of size:

εO(
N2

logN
) +H(ε)O(

N2

logN
) +O(εN) +O(1) =

(ε+H(ε))O(
N2

logN
) + o(

N2

logN
)

Since ε +H(ε) aproaches zero as ε aproaches zero, this

gives the required result.

We thus conclude that if E contains a language of circuit

complexity Ω(2
n

n), then there is a polynomial time construc-

tion of (Ω(n),Ω(n2))-rigid matrices over F2.

ACKNOWLEDGMENT

The author would like to thank Christos Papadimitriou for

his guidance and for many inspiring discussions throughout

the completion of this work, and Mihalis Yannakakis for

his comments on an early draft of this manuscript. The

author would also like to thank the anonymous referees for

suggesting various improvements to this paper, in particular

the addition of Corollary 3, the connection to hardness

extractors and the GGM generator, and the simplification

of Lemma 2.

REFERENCES

[1] J. ALMAN AND L. CHEN, Efficient construction of rigid
matrices using an NP oracle, in 2019 IEEE 60th Annual
Symposium on Foundations of Computer Science (FOCS),
2019, pp. 1034–1055.

443

Authorized licensed use limited to: Columbia University Libraries. Downloaded on May 12,2022 at 20:19:01 UTC from IEEE Xplore. Restrictions apply.

[2] B. BARAK, A. RAO, R. SHALTIEL, AND A. WIGDERSON,
2-source dispersers for sub-polynomial entropy and ramsey
graphs beating the frankl-wilson construction, in Proceedings
of the Thirty-Eighth Annual ACM Symposium on Theory
of Computing, STOC ’06, New York, NY, USA, 2006,
Association for Computing Machinery, p. 671–680.

[3] J. BURESH-OPPENHEIM AND R. SANTHANAM, Making hard
problems harder, 21st Annual IEEE Conference on Compu-
tational Complexity (CCC’06), (2006), pp. 15 pp.–87.

[4] B. CHOR AND O. GOLDREICH, Unbiased bits from sources of
weak randomness and probabilistic communication complex-
ity, in 26th Annual Symposium on Foundations of Computer
Science (sfcs 1985), 1985, pp. 429–442.

[5] P. ERDÖS, Some remarks on the theory of graphs, Bulletin of
the American Mathematical Society, 53 (1947), pp. 292–294.

[6] O. GOLDREICH, S. GOLDWASSER, AND S. MICALI, How to
construct random functions, J. ACM, 33 (1986), p. 792–807.

[7] A. GOLOVNEV, R. ILANGO, R. IMPAGLIAZZO, V. KA-
BANETS, A. KOLOKOLOVA, AND A. TAL, Ac0[p] lower
bounds against mcsp via the coin problem, Electron. Col-
loquium Comput. Complex., 26 (2019), p. 18.

[8] J. M. HITCHCOCK AND A. PAVAN, On the np-completeness
of the minimum circuit size problem, in FSTTCS, 2015.

[9] R. IMPAGLIAZZO AND A. WIGDERSON, P = BPP if E
requires exponential circuits: Derandomizing the XOR lemma,
in Proceedings of the Twenty-Ninth Annual ACM Symposium
on Theory of Computing, STOC ’97, New York, NY, USA,
1997, Association for Computing Machinery, p. 220–229.

[10] E. JEŘÁBEK, Dual weak pigeonhole principle, boolean com-
plexity, and derandomization, Annals of Pure and Applied
Logic, 129 (2004), pp. 1–37.

[11] V. KABANETS AND J.-Y. CAI, Circuit minimization problem,
in Proceedings of the Thirty-Second Annual ACM Sympo-
sium on Theory of Computing, STOC ’00, New York, NY,
USA, 2000, Association for Computing Machinery, p. 73–79.

[12] R. KLEINBERG, O. KORTEN, D. MITROPOLSKY, AND

C. PAPADIMITRIOU, Total Functions in the Polynomial Hier-
archy, in 12th Innovations in Theoretical Computer Science
Conference (ITCS 2021), J. R. Lee, ed., vol. 185 of Leibniz
International Proceedings in Informatics (LIPIcs), Dagstuhl,
Germany, 2021, Schloss Dagstuhl–Leibniz-Zentrum für Infor-
matik, pp. 44:1–44:18.

[13] A. R. KLIVANS AND D. VAN MELKEBEEK, Graph non-
isomorphism has subexponential size proofs unless the
polynomial-time hierarchy collapses, SIAM Journal on Com-
puting, 31 (2002), pp. 1501–1526.

[14] P. MILTERSEN AND N. VINODCHANDRAN, Derandomiz-
ing arthur-merlin games using hitting sets, in 40th An-
nual Symposium on Foundations of Computer Science (Cat.
No.99CB37039), 1999, pp. 71–80.

[15] N. NISAN AND A. WIGDERSON, Hardness vs random-
ness, Journal of Computer and System Sciences, 49 (1994),
pp. 149–167.

[16] C. H. PAPADIMITRIOU, On the complexity of the parity
argument and other inefficient proofs of existence, Journal
of Computer and System Sciences, 48 (1994), pp. 498 – 532.

[17] J. PARIS, A. WILKIE, AND A. R. WOODS, Provability of
the pigeonhole principle and the existence of infinitely many
primes, J. Symb. Log., 53 (1988), pp. 1235–1244.

[18] A. A. RAZBOROV AND S. RUDICH, Natural proofs, Journal
of Computer and System Sciences, 55 (1997), pp. 24–35.

[19] R. SANTHANAM, The complexity of explicit constructions,
Theory of Computing Systems, 51 (2012), pp. 297–312.
Copyright - Springer Science+Business Media, LLC 2012;
Document feature - ; Equations; Last updated - 2020-11-18;
CODEN - TCSYFI.

[20] , Pseudorandomness and the minimum circuit size
problem, in 11th Innovations in Theoretical Computer Sci-
ence Conference, ITCS 2020, January 12-14, 2020, Seattle,
Washington, USA, T. Vidick, ed., vol. 151 of LIPIcs, Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, 2020, pp. 68:1–
68:26.

[21] C. E. SHANNON, The synthesis of two-terminal switching cir-
cuits, The Bell System Technical Journal, 28 (1949), pp. 59–
98.

[22] S. P. VADHAN, Pseudorandomness, vol. 7, Now Delft, 2012.

[23] L. G. VALIANT, Graph-theoretic arguments in low-level com-
plexity, in Mathematical Foundations of Computer Science
1977, J. Gruska, ed., Berlin, Heidelberg, 1977, Springer
Berlin Heidelberg, pp. 162–176.

[24] A. C. YAO, Theory and application of trapdoor functions,
in 23rd Annual Symposium on Foundations of Computer
Science (sfcs 1982), 1982, pp. 80–91.

444

Authorized licensed use limited to: Columbia University Libraries. Downloaded on May 12,2022 at 20:19:01 UTC from IEEE Xplore. Restrictions apply.

