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Abstract

Given a subset A of the n-dimensional Boolean hypercube Fn
2 , the sumset A+A is the set {a+a′ : a, a′ ∈ A}

where addition is in Fn
2 . Sumsets play an important role in additive combinatorics, where they feature in many

central results of the field.
The main result of this paper is a sublinear-time algorithm for the problem of sumset size estimation.

In more detail, our algorithm is given oracle access to (the indicator function of) an arbitrary A ⊆ Fn
2 and

an accuracy parameter ε > 0, and with high probability it outputs a value 0 ≤ v ≤ 1 that is ±ε-close to
Vol(A′ + A′) for some perturbation A′ ⊆ A of A satisfying Vol(A \ A′) ≤ ε. It is easy to see that without
the relaxation of dealing with A′ rather than A, any algorithm for estimating Vol(A + A) to any nontrivial
accuracy must make 2Ω(n) queries. In contrast, we give an algorithm whose query complexity depends only
on ε and is completely independent of the ambient dimension n.

1 Introduction
Recent decades have witnessed a paradigm shift in the notion of what constitutes an “efficient algorithm” in
algorithms and complexity theory. Motivated both by practical applications and theoretical considerations, the
traditional gold standard of linear time as the ultimate benchmark for algorithmic efficiency has given way to
the notion of sublinear-time and sublinear-query algorithms, as introduced by Blum and Kannan [BK89] and
Blum, Luby and Rubinfeld [BLR93]. The study of sublinear algorithms is flourishing, with deep connections
to many other areas including PCPs, hardness of approximation, and streaming algorithms (see e.g. the
surveys [Rub06, Gol17, Fis01, Ron01]).

The current paper is at the confluence of two different lines of research in the area of sublinear algorithms:

1. The first strand of work deals with sublinear algorithms to approximately compute (numerical-valued)
functions on various combinatorial objects. Example problems of this sort include (i) estimating the weight
of a minimum spanning tree [CRT05]; (ii) approximating the minimum vertex cover size in a graph [PR07];
and (iii) approximating the number of k-cliques in an undirected graph [ERS18]. We note that for the
first two of these results, the number of local queries that are made to the input combinatorial object is
completely independent of its size.

2. The second strand of work is on property testing of Boolean-valued functions. Given a class of Boolean-valued
functions C, a testing algorithm for C is a query-efficient procedure which, given oracle access to an arbitrary
Boolean-valued function f , distinguishes between the two cases that (i) f belongs to class C, versus (ii) f is
ε-far from every function in C. Flagship results in this area include algorithms for linearity testing [BLR93],
testing of low-degree polynomials [RS96, JPRZ04], junta testing [FKR+04, Bla09], and monotonicity
testing [GGL+00, KMS18]. Here too, for the first three of these properties, the query complexity of the
testing algorithms depend only on the accuracy parameter ε and are completely independent of the ambient
dimension n of the function f .

In recent years, a nascent line of work has emerged at the intersection of these two strands, where the
high-level goal is to approximately compute various numerical parameters of Boolean-valued functions. As an
example, building on the work of Kothari et al. [KNOW14], Neeman [Nee14] gave an algorithm to approximate
the “surface area” of a Boolean-valued function on Rn, which is a fundamental measure of its complexity [KOS08].
The [Nee14] algorithm has a query complexity of poly(S) if the target surface area is S, which is completely
independent of the ambient dimension n. Fitting the same motif is the work of Ron et al. [RRS+12] who studied
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the problem of approximating the “total influence” (or equivalently, “average sensitivity”) of a Boolean function.
They showed that the optimal query complexity to approximate the influence Inf [f ] of an arbitrary n-variable
Boolean function f to constant relative error is Θ(n/Inf [f ]), and that this can be strengthened to essentially√
n/Inf [f ] for monotone functions. More recently, in closely related work Rubinfeld and Vasiliyan [RV19] have

given a constant-query algorithm to approximate the “noise sensitivity” of a Boolean function.
We note that each of the above three numerical parameters — surface area, total influence, and noise sensitivity

— is essentially a measure of the “smoothness” of the Boolean function in question. In contrast, in this work
we are interested in the sumset size, which has a rather different flavor and, as discussed below, is intimately
connected to the subspace structure of the function.

Sumsets. Let A ⊆ Fn2 be an arbitrary subset (which may of course be viewed as a Boolean function by
considering its {0, 1}-valued characteristic function). One of the most fundamental operations on such a set A is
to consider the sumset A+A, defined as

A+A := {x+ y : x, y ∈ A}.

Here ‘+’ is the group operation in Fn2 . Note that for A an affine subspace we have that |A + A| = |A|, and
the converse (the only sets A for which |A + A| = |A| are affine subspaces) is also easily seen to hold. In fact,
something significantly stronger is true: The celebrated Freiman–Ruzsa theorem [Fre73, Ruz99, San12] states
that if |A+A| ≤ K · |A|, then A is contained inside an affine subspace H such that |H| ≤ OK(1) · |A|. Thus, the
value of |A+A| vis-a-vis |A| can be seen as a measure the “subspace structure” of A.

1.1 The Question We Consider For A ⊆ Fn2 , we define Vol(A) := |A|/2n ∈ [0, 1] to be the normalized size
or volume of A. This paper is motivated by the following basic algorithmic problem about sumsets:

Sumset size estimation (naive formulation): Given black-box oracle access to a set A ⊆ Fn2 (via
its characteristic function A : Fn2 → {0, 1}), can we estimate the Vol(A+ A) while making only “few”
oracle calls to A?

At first glance this seems to be a difficult problem, since to confirm that a given point z does not belong to
A+A we must verify that at least one of x, y /∈ A for each of the 2n pairs (x, y) satisfying x+ y = z. Indeed, for
the above naive problem formulation, any algorithm must make 2Ω(n) queries even to distinguish between the two
extreme cases that Vol(A+A) = 0 (i.e. A = ∅) versus Vol(A+A) = 1− exp(−Θ(n)). To see this, suppose that A
is a uniform random subset of 20.51n many elements from Fn2 . It is clear that any algorithm will need Ω(20.49n)
queries to distinguish such an A from the empty set, and an easy calculation shows that such a random A will
with extremely high probability have Vol(A+A) = 1− exp(−Θ(n)).

This simple example already shows that some care must be taken to formulate the “right” version of the
sumset size estimation problem. This situation is analogous to the surface area testing problem that was studied
in [KNOW14, Nee14]: In that setting, given oracle access to any set A, by adding a measure zero set R to A (which
is undetectable by an algorithm with oracle access to A) it is possible to “blow up” the surface area of A∪R to an
arbitrarily large value. Thus the goal in [KNOW14, Nee14] is to find a value S such that surf(A) ≤ S ≤ surf(B)
for a set B that is “close to A.” Note that for surface area, it may be possible to dramatically increase the surface
area of a set A either by adding a small subset of new points or removing a small subset of existing points from A.
In contrast, for sumset size it is clear that removing points from A can never cause the sumset size to increase, and
moreover adding a small (random) collection R ⊆ Fn2 of 20.51n points to A can always cause Vol((A∪R)+(A∪R))
to become extremely close to 1. Hence for our sumset size estimation problem we only allow subsets of A as the
permissible “close to A” sets.

We thus arrive at the following formulation of our problem:

Sumset size estimation: Given black-box oracle access to a set A ⊆ Fn2 and an accuracy parameter
ε > 0, compute Vol(A′+A′) to additive accuracy ±ε for some subset A′ ⊆ A which has Vol(A\A′) ≤ ε.

1.2 Motivation Given the importance of sumsets in additive combinatorics, we feel that it is natural to
investigate algorithmic questions dealing with basic properties of sumsets; estimating the size of a sumset is a
natural algorithmic question of this sort. We further remark that while there is no direct technical connection
to the present work, the path which led us to the sumset size estimation problem originated in an effort to
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develop a query-efficient algorithm for convexity testing (i.e. testing whether a subset S ⊆ Rn is convex versus far
from convex, where the standard Normal distribution N (0, 1)n provides the underlying distance measure on Rn).
In particular, the recent characterization by Shenfeld and van Handel of equality cases for the Ehrhard–Borell
inequality (see Theorem 1.2 of [SvH18]) implies that a closed symmetric set S ⊆ Rn is convex if and only if the
Gaussian volume of S equals the Gaussian volume of S+S

2 . We believe that a robust version of this theorem might
be useful for convexity testing; this naturally motivates a Gaussian space version of the sumset size estimation
question, where now the Minskowski sum of sets in Rn plays the role of sumsets over Fn2 . We hope that the
ideas and ingredients in the current work may eventually be of use for the Gaussian space Minkowski sum size
estimation problem, and perhaps ultimately for convexity testing.

1.3 Our Main Result Our main result is an algorithm for the subset size estimation problem which makes
only constantly many queries, independent of the ambient dimension n. We state our main result informally
below:

Informal Theorem 1. Given oracle access to any set A ⊆ Fn2 and an error parameter ε > 0, there is an
algorithm making Oε(1) queries to A with the following guarantee: with high probability, the algorithm outputs a
value 0 ≤ v ≤ 1 such that Vol(A′+A′)− ε ≤ v ≤ Vol(A′+A′) + ε for some set A′ ⊆ A such that Vol(A \A′) ≤ ε.

In fact, as we describe in more detail later, our algorithm does more than just approximate the volume of
A′ + A′: it outputs a high-accuracy approximate oracle for the set A′ + A′, given which it is trivially easy to
approximate Vol(A′ + A′) by random sampling. (As we will see, our algorithm also outputs an exact oracle for
the set A′.) Later we will give a formal definition of what it means to “output an oracle” for a set B; informally,
it means we give a description of an oracle algorithm (which uses a black-box oracle to A) which, on any input
x, (i) determines whether x ∈ B, and (ii) makes few invocations to the oracle for A. We further note that the
running time of our algorithm is linear in n (note that even writing down an n-bit string as a query input to A
takes linear time).

1.4 Technical Overview

1.4.1 A Conceptual Overview of the Algorithm In this subsection we give a technical overview of our
algorithm. At a high level, our approach is based on the structure versus randomness paradigm that has proven
to be very influential in additive combinatorics [TV06] and property testing. Our algorithm relies on two main
ingredients, which we describe below.

To explain the key ingredients we need the notion of quasirandomness from additive combinatorics. For a set
A ⊆ Fn2 , we say A is ε-quasirandom if each non-empty Fourier coefficient Â(α), 0n 6= α ∈ Fn2 , satisfies |Â(α)| ≤ ε,
where we are viewing A as a characteristic function over the domain Fn2 . The definition of the Fourier transform
extends to the more general setting in which A is a characteristic function whose domain is some coset x+H (of
size 2n−k) of Fn2 . This is done by identifying H with Fk2 via a homomorphism; we give details later in Definition 2.

The first ingredient is the following: Let H be a linear subspace of Fn2 , and let Bx ⊆ x+H, By ⊆ y +H be
subsets of cosets x + H and y + H respectively. Suppose that both |Bx|/|x + H| and |By|/|y + H| are at least
τ , and that both Bx and By are ε-quasirandom (viewed as characteristic functions whose domains are the cosets
x+H and y+H respectively). Our first ingredient is the simple but useful observation that if τ �

√
ε, then the

set Bx +By (which is easily seen to be a subset of the coset x+ y+H) must be almost the entire coset x+ y+H
(see Lemma 3.1).

The second ingredient is Green’s well-known “regularity lemma” for Boolean functions [Gre05]. To explain
this, for any set A ⊆ Fn2 , subspace H of Fn2 , and coset H ′, let AH′ := A ∩ H ′ be the intersection of A with
the coset H ′. Roughly speaking, Green’s regularity lemma shows that for any A ⊆ Fn2 , there is a subspace H
of codimension at most Oγ,ε(1) such that the following holds: With probability 1 − γ over a uniform random
choice of cosets {Hi}, the set AHi is ε-quasirandom (viewed as a subset of the coset Hi). Moreover, the proof
of the regularity lemma gives an iterative procedure to identify H; very roughly speaking, until the procedure
terminates, at each stage it identifies a vector α ∈ Fn2 such that |Â(α)| is large, and sets H to be the span of the
vectors identified so far.

With these two ingredients in place, we are ready to explain (at least at a qualitative level; we defer discussion
of how to achieve the desired O(1) query complexity to the next subsection) the algorithm for simulating an oracle
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to A′+A′. First, we run the algorithmic version of Green’s regularity lemma; having done so, we have a subspace
H and we know that for most cosets H ′, the set AH′ is ε-quasirandom. Let k be the codimension of H and let B′
be a set of 2k many coset representatives for the 2k cosets of H. Let B ⊆ B′ be the subset consisting of those coset
representatives y ∈ B′ for which the set Ay+H (i) is ε-quasirandom and (ii) has density at least τ when viewed
as a subset of y + H (where τ is some carefully chosen parameter that we do not specify here). We note that
given any coset y + H, condition (ii) can be checked using simple random sampling. Condition (i) is equivalent
to checking that the set Ay+H has no Fourier coefficient larger than ε. This can be done using the celebrated
Goldreich-Levin algorithm [GL89].1 Thus, at this point our algorithm has determined the set B ⊆ B′.

The set A′ ⊂ A is defined to be
A′ :=

⋃
y∈B

Ay+H ,

i.e. A′ is obtained from A by removing Ay+H for each y ∈ B′ \ B, or equivalently, “zeroing out” A on every coset
y+H where Ay+H either is not ε-quasirandom or has density smaller than τ . (Since the algorithm knows H and
B, it is clear from this definition of A′ that, as mentioned after the informal theorem statement given earlier, the
algorithm can simulate an exact oracle for the set A′.) Turning to A′ +A′, we have that

A′ +A′ =
⋃
y,z∈B

(
A ∩ (y +H)

)
+
(
A ∩ (z +H)

)
,

≈
⋃
y,z∈B

A ∩ (y + z +H),(1.1)

where the last line follows from Lemma 3.1 (that we informally stated as the first ingredient mentioned above).
As above, since the algorithm knows H and B, it is clear from that the algorithm can simulate an approximate
oracle for A′ +A′.

1.4.2 Achieving Constant Query Complexity The above description essentially gives the high level
description of our algorithm, at least at a conceptual level. However, there is a significant caveat, which arises
when we consider the query complexity of the algorithm. Our goal is to achieve query complexity Oε(1), but
explicitly obtaining a description of the subspace H necessarily requires a number of queries that scales at least
linearly in n; indeed, even explicitly describing a single vector in H requires Θ(n) bits of information (and thus this
many queries). Similarly, obtaining an explicit description of even a single vector y ∈ B′ would be prohibitively
expensive using only constantly many queries. To circumvent these obstacles and achieve constant (rather than
linear or worse) query complexity, we need to develop “implicit” versions of the procedures described above.

As an example, we recall that the standard Goldreich-Levin algorithm, given oracle access to any set A ⊆ Fn2 ,
outputs a list of parity functions χα(1) , χα(2) , . . . such that the Fourier coefficient |Â(α(i))| is “large” (roughly,
at least ε) for each i. However, explicitly outputting the label α(i) of even a single parity would require n bits
of information. To avoid this, we slightly modify the standard Goldreich-Levin procedure to show that with
poly(1/ε) queries, we can output oracles to the parity functions χα(1) , χα(2) , . . . . In turn, each such oracle can be
computed on any point x ∈ Fn2 with just poly(1/ε) many queries to the set A; thus, we have implicit access to
the parity functions {χα} rather than explicit descriptions of the parities. In the language of coding theory, this
amounts to an analysis showing that the Goldreich-Levin algorithm can be used to achieve constant-query “local
list correction” of the Hadamard code. We view this as essentially folklore [Sud21]; it is implicit in a number
of previous works [STV01, KS13], but the closest explicit statements we have been able to find in the literature
essentially say that Goldreich-Levin is a constant-query local list decoder (rather than local list corrector) for the
Hadamard code.

With an “implicit” version of the Goldreich-Levin algorithm in hand, we show how to carefully use this implicit
Goldreich-Levin to obtain an “implicit” algorithmic version of Green’s regularity lemma. This implicit version
is sufficient to carry out the steps mentioned above with overall constant query complexity. We hope that the
implicit (query-efficient) versions of these algorithms may be useful in other settings beyond the current work.

1To be more accurate, this requires a slight adaptation of the Goldreich-Levin algorithm because the domain here is a coset rather
than the more familiar domain Fn

2 for Goldreich-Levin.
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1.5 Related Work As noted earlier, our sumset size estimation problem has a similar flavor to the work of
[KNOW14, Nee14] on testing surface area, but the technical details are entirely different.

We note that for any invertible affine transformation Φ : Fn2 → Fn2 , we have that Vol(A+A) = Vol(ΦA+ ΦA)
(but clearly this need not hold for noninvertible affine transformations). Starting with the influential paper of
Kaufman and Sudan [KS08], a number of works have studied the testability of affine-invariant properties, see
e.g. [BGS15, BFL13, HL13, Yos14, HHL16, Bha13] These works consider properties that are invariant under all
affine transformations (not just invertible ones), which makes them inapplicable to our setting. However, we note
that there are thematic similarities between the approaches in those works and our approach (in particular, the
use of the “structure versus randomness” paradigm).

2 Preliminaries
In this section, we set notation and briefly recall preliminaries from additive combinatorics and Fourier analysis
of Boolean functions. Given arbitrary A,B ⊆ Fn2 , we define

Vol(A) :=
|A|
2n

and VolB(A) :=
|A ∩B|
|B|

.

We will sometimes identify a set A ⊆ Fn2 with its indicator function A : Fn2 → {0, 1}, defined as

A(x) =

{
1 x ∈ A
0 x /∈ A

for x ∈ Fn2 . When A ⊆ x + H for some coset x + H, we similarly identify A with its indicator function
A : x + H → {0, 1}. We write ei ∈ Fn2 to denote the vector with a 1 in the ith position and 0 everywhere else.
The function 2 ↑↑ m denotes an exponential tower of 2’s of height m and the function log∗ denotes its inverse.

2.1 Analysis of Boolean Functions Our notation and terminology follow [O’D14]. We will view the vector
space of functions f : Fn2 → R as a real inner product space, with inner product 〈f, g〉 := Ex∼Fn

2

[
f(x)g(x)

]
. It is

easy to see that the collection of parity functions {χα}α∈Fn
2
where χα(x) := (−1)〈α,x〉 = (−1)

∑n
i=1 αixi forms an

orthonormal basis for this vector space. In particular, every function f : Fn2 → R can be uniquely expressed by
its Fourier transform, given by

(2.2) f(x) =
∑
α∈Fn

2

f̂(α)χα(x).

The real number f̂(α) is called the Fourier coefficient of f on α, and the collection of all 2n Fourier coefficients
of f is called the Fourier spectrum of f . We recall Parseval’s and Plancherel’s formulas: for all f, g : Fn2 → R, we
have

(2.3) 〈f, f〉 =
∑
α∈Fn

2

f̂(α)2 and 〈f, g〉 =
∑
α∈Fn

2

f̂(α)ĝ(α).

It follows that E[f ] = f̂(0). Given f, g : Fn2 → R, their convolution is the function f ∗ g : Fn2 → R defined by

f ∗ g(x) := E
y∼Fn

2

[
f(y)g(x+ y)

]
,

which satisfies

(2.4) f̂ ∗ g(α) = f̂(α) · ĝ(α).

2.2 Subspaces and Functions on Subspaces Throughout this subsection, let f : Fn2 → R and let H ≤ Fn2
be a linear subspace of codimension k (so |H| = 2n−k). We can write

(2.5) H =
{
x : 〈x, αi〉 = 0 ∀ i ∈ {1, . . . , k}

}
Copyright c© 2022 by SIAM
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for some linearly independent collection of vectors {α1, . . . , αk}.
A coset H ′, which is an affine subspace or, equivalently, a “translate” y+H for some y ∈ Fn2 , can be expressed

as a set of the form
H ′ =

{
x : 〈x, αi〉 = bi ∀ i ∈ {1, . . . , k}

}
for some bi ∈ F2; we will often identify H ′ with the vector b := (b1, . . . , bk). Note that if H ′ = y + H, then
bi = 〈y, αi〉.

Any coset of H is affinely isomorphic to a copy of Fn−k2 , and this lets us define the Fourier transform of a
function f : Fn2 → R restricted to a coset H ′. More formally, consider the function fH′ : H ′ → R defined as
fH′(x) = f(x). Its Fourier spectrum is indexed by the 2n−k elements of H; in particular, for each β ∈ H we have

(2.6) f̂H′(β) =
1

2n−k

∑
x∈H′

f(x)χβ(x).

We can alternatively restrict a function f : Fn2 → R to a coset H ′, but treat it as a function on Fn2 that takes
value 0 on all points in Fn2 \ H ′; this viewpoint will be notationally cleaner to work with going forward so we
elaborate on it here. We define the function f�H′ : Fn2 → R as

(2.7) f�H′(x) =

{
f(x) x ∈ H ′

0 otherwise
.

The Fourier coefficients of fH′ and f�H′ are related by the following simple fact.

Fact 2.1. Let f : Fn2 → R, H be as in Equation (2.5), and let H ′ be a coset of H. Let B′ ⊆ Fn2 , |B′| = 2k be a
collection of 2k coset representatives for H (so every vector in Fn2 has a unique representation as γ + β for some
γ ∈ B′, β ∈ H). For any γ ∈ B′, β ∈ H, we have∣∣∣f̂�H′(γ + β)

∣∣∣ =
1

2k
·
∣∣∣f̂H′(β)

∣∣∣.
Proof. For ease of notation we first consider the case that αi = ei. Suppose that H ′ is given by

H ′ =
{
x : 〈x, ei〉 = bi ∀ i ∈ {1, . . . , k}

}
where we write b := (b1, . . . , bk). We may take B′ to be the set of all 2k vectors in Fn2 whose last n−k coordinates
are all 0, and we note that H = span{ek+1, . . . , en}.

For γ ∈ B′, β ∈ H, we have

f̂�H′(γ + β) =
1

2n

∑
x∈Fn

2

f�H′(x)χγ+β(x)

=
1

2n

∑
x1∈Fk

2

∑
x2∈Fn−k

2

f�H′(x1, x2)χγ(x1)χβ(x2)

where we have abused notation in the last line and viewed γ ∈ Fk2 , β ∈ Fn−k2 . In turn the above is equal to

=
1

2n

∑
x2∈Fn−k

2

f�H′(b, x2)χγ(b)χβ(x2)

as (x1, x2) /∈ H ′ (and hence f�H′(x1, x2) = 0) if x1 6= b, and so

=
χγ(b)

2n

∑
x2∈Fn−k

2

f�H′(b, x2)χβ(x2)

=
χγ(b)

2k
· 1

2n−k

∑
x2∈Fn−k

2

fH′(b, x2)χβ(x2)
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which by Equation (2.6) gives us

=
χγ(b)

2k
· f̂H′(β).

The result in the general case follows by applying an invertible linear transformation mapping αi 7→ ei (see
Exercise 3.1 of [O’D14]).

2.3 Parity Decision Trees We will only need the notion of a “nonadaptive” parity decision tree:

Definition 1. (nonadaptive parity decision tree) A nonadaptive parity decision tree Tf is a representa-
tion of a function f : Fn2 → R. It consists of a rooted binary tree of depth d with 2d leaves, so every root-to-leaf
path has length exactly d. Each internal node at depth i is is labeled by a vector αi ∈ Fn2 corresponding to the
parity function χαi

(·), and the vectors α1, . . . , αd ∈ Fn2 are linearly independent. (Having all nodes at level i
be labeled with the same vector αi is the sense in which the tree is “nonadaptive.”) The outgoing edges of each
internal node are labeled 0 and 1, and the leaves of Tf are labeled by functions (which are restrictions of f). The
size of Tf is the number of leaf nodes of Tf .

In more detail, a root-to-leaf path can be written as {(αi → bi)} where we follow the outgoing edge bi from
the internal node αi, with bi ∈ F2. On an input x, the parity decision tree Tf follows the root-to-leaf path
{(αi → 〈αi, x〉)} and outputs the value of the function associated to the leaf at x.

Note that given f : Fn2 → R and a subspace H ≤ Fn2 of codimension k as in Equation (2.5), we can associate a
natural parity decision tree Tf in which each level-i internal node is labeled by αi and each leaf node (corresponding
to some coset H ′ of H) is labeled by f�H′ .

2.4 Quasirandomness and Green’s Regularity Lemma The following definition of quasirandomnesss has
been well-studied as a notion of pseudorandomness in additive combinatorics; we refer the interested reader to
[CG92] for more details.

Definition 2. (ε-quasirandomness) We say that f : Fn2 → R is ε-quasirandom if

sup
0n 6=α

∣∣∣f̂(α)
∣∣∣ ≤ ε.

Definition 3. (ε-quasirandom when restricted to coset) Let f : Fn2 → R, H ≤ Fn2 as in Equation (2.5),
and let H ′ be a coset of H. We say that fH′ : H ′ → R is ε-quasirandom if

sup
0n 6=β∈H

∣∣∣f̂H′(β)
∣∣∣ ≤ ε

where f̂H′(β) is as defined in Equation (2.6).

In Definitions 2 and 3, the function of interest will often be the indicator of a subset A ⊆ Fn2 . We next state
Green’s regularity lemma for Boolean functions, which is analogous to Szemerédi’s celebrated graph regularity
lemma [Sze78].

Proposition 2.1. (Green’s regularity lemma in Fn2 ) Let A ⊆ Fn2 and ε, γ > 0. There exists a subspace
H ≤ Fn2 with cosets {Hi} such that

1. the codimension of H is at most 2 ↑↑ 1
γε2 ; and

2. for all but γ-fraction of cosets of H, the function AHi
: Hi → {0, 1} is ε-quasirandom.

In Section 3, we will closely follow the proof of Green’s regularity lemma (in the course of providing a
constructive albeit highly query-inefficient version of the lemma).
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2.5 The Goldreich–Levin Theorem Given query access to a function f : Fn2 → {0, 1}, the Goldreich–Levin
algorithm [GL89] allows us to find all linear (parity) functions that are well-correlated with f (equivalently, it
allows us to find all the “significant” Fourier coefficients of f). More formally, we have the following result.

Proposition 2.2. (Goldreich–Levin algorithm) Let A ⊆ Fn2 be arbitrary and let θ, δ > 0 be fixed. There is
an algorithm Goldreich–Levin(A, θ, δ) that, given query access to A : Fn2 → {0, 1}, outputs a subset S ⊆ Fn2 of
size O

(
1/θ2

)
such that with probability at least 1− δ, we have

• if α ∈ S, then
∣∣∣Â(α)

∣∣∣ ≥ θ
2 ; and

• if
∣∣∣Â(α)

∣∣∣ ≥ θ, then α ∈ S.
Furthermore, Goldreich–Levin(A, θ, δ) runs in poly

(
n, 1

θ , log 1
δ

)
time and makes poly

(
n, 1

θ , log 1
δ

)
queries to A.

2.6 Oracles and Oracle Machines As stated in the introduction, the outputs of our algorithmic procedures—
Algorithms 3.1 and 3.2—will be oracles to the indicator functions of specific subsets of Fn2 . We first recall the
definition of a probabilistic oracle machine:

Definition 4. Let f : Fn2 → {0, 1}. A randomized algorithm O with black-box query access to f , denoted Of , is
said to be a probabilistic oracle machine for g : Fn2 → {0, 1} if for any input x ∈ Fn2 , the algorithm Of outputs a
bit Of (x) that satisfies

Pr[Of (x) = g(x)] ≥ 2/3,

where the probability is taken over the internal coin tosses of Of . The query complexity of the machine is the
number of oracle calls made by O to f and the running time of the machine is the number of time steps it takes
in the worst case (counting each oracle call as a single time step).

Of course, the 2/3 in the above definition can be upgraded to 1−τ at a cost of increasing the query complexity
by a factor of O(log(1/τ)). We next define what it means for an algorithm to “output an (approximate) oracle”
for a function.

Definition 5. Let f, g be two functions f, g : Fn2 → {0, 1}. An algorithm A with query access to f , denoted by
Af , is said to output a (δ, q, T )-oracle Ofg for the function g if it outputs a representation of a probabilistic oracle
machine Ofg for a function h : Fn2 → R for which the following hold:

1. We have dist(h, g) ≤ δ, i.e.
Pr

x∼Fn
2

[h(x) 6= g(x)] ≤ δ;

2. The query complexity of Ofg is at most q and the running time of Ofg is at most T .

If δ = 0, then we say that Ofg is an exact oracle for g.

3 A Query-Inefficient Version of the Main Result
In this section, we prove a query-inefficient “non-implicit” version of our main result, which has a polynomial
query complexity dependence on the ambient dimension n. In particular, we will prove the following theorem.

Theorem 3.1. (Main result, query-inefficient version) Let A ⊆ Fn2 be an arbitrary subset, and let
ε, τ > 0. Given query access to A, there exists an algorithm that makes poly

(
n, 2 ↑↑ 8

ε3 ,
1
τ

)
queries to A and

does a poly
(
n, 2 ↑↑ 8

ε3 ,
1
τ

)
time computation and outputs with probability at least 9/10:

1. A
(
0, 1, O(n)

)
-oracle OAA′ to the indicator function of A′ ⊆ A where Vol

(
A \A′

)
≤ ε+ τ ; and

2. A
(
O
(
ε2/τ4

)
, 0, O(n)

)
-oracle OAA′+A′ to the indicator function of the sumset A′ +A′.
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In Section 4, we will present an “implicit” version of Theorem 3.1 that makes only Oε(1) queries, independent
of the ambient dimension n, and thereby prove our main result.

We start by recording a corollary of Green’s regularity lemma in Section 3.1, which (informally), given an
arbitrary set A ⊆ Fn2 , establishes the existence of a “structured” set A′ ⊆ A capturing “almost all” of A. Section 3.2
then presents a procedure—ConstructDT—that constructs an exact oracle to this structured set A′, giving
item (1) of the above theorem. In Section 3.3, we present a procedure—Simulate-Sumset—that constructs an
approximate oracle to the sumset A′ +A′, giving item (2).

3.1 Partitioning Arbitrary Sets into Dense Quasirandom Cosets Green’s regularity lemma in Fn2 says
that given an arbitrary set A ⊆ Fn2 and an error parameter ε > 0, we can partition Fn2 into Oε(1) (independent of
n) many sets such that A is “random-like” on almost all of these sets. Moreover, all these sets have a convenient
structure: they are cosets of a common subspace of constant codimension.

We will use the following easy consequence of Green’s lemma:

Proposition 3.1. Given A ⊆ Fn2 and ε, τ > 0, there exists a subspace H ≤ Fn2 of codimension at most 2 ↑↑ 1
ε3

and a set A′ ⊆ A such that

1. Vol
(
A \A′

)
≤ ε+ τ ;

2. For any coset Hi, either VolHi(A
′) = 0 or VolHi(A

′) ≥ τ ; and

3. A′Hi
is ε-quasirandom for all cosets Hi.

Proof. Let H ≤ Fn2 be the subspace of of codimension at most 2 ↑↑ 1
ε3 guaranteed to exist by Proposition 2.1, and

let {H1, . . . ,HM} be an enumeration of the cosets of H where M = 2n · |H|−1. We know from Proposition 2.1
that for all but ε-fraction of {Hi}, the function AHi

: Hi → {0, 1} is ε-quasirandom.
Define disjoint subsets A′1, . . . , A′M , where each A′i ⊆ A ∩Hi, as follows:

1. If AHi is not ε-quasirandom, then A′i = ∅;

2. If VolHi
(A) ≤ τ , set A′i = ∅;

3. Otherwise, set A′i = A ∩Hi.

We now define A′ ⊆ Fn2 as

(3.8) A′ :=

M⊔
i=1

A′i.

We clearly have Vol(A \ A′) ≤ ε + τ and that AHi
is ε-quasirandom for all i ∈ [M ]. (Note that ∅ is trivially

ε-quasirandom.)

Informally, Proposition 3.1 modifies A to obtain a structured set A′ ⊆ A that contains “most” of A and
has either empty or “large” intersection with all of the cosets guaranteed to exists by Green’s regularity lemma.
Furthermore, A′ is “random-like” on all—as opposed to almost all—of these cosets.

3.2 A Constructive Regularity Lemma via the Goldreich–Levin Theorem In this section, we make
Proposition 3.1 constructive via the Goldreich–Levin algorithm. The procedure ConstructDT presented in
Algorithm 3.1 closely follows the structure of Green’s original proof of the regularity lemma itself [Gre05].
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Algorithm 3.1.

Input: Query access to A ⊆ Fn2 , quasirandomness parameter ε, density threshold τ

Output: An exact oracle OAA′ and a parity decision tree Tregular with A′ as in Proposition 3.1

ConstructDT(A, ε, τ):

1. Initialize the decision tree Tregular to contain no internal nodes and one leaf labelled
by A : Fn2 → {0, 1}. Define

δ :=

(
2 ↑↑ 8

ε3

)−1

· 1

30

2. At each stage of growing Tregular, do the following:

(a) Let {H1, . . . ,HM} denote the cosets corresponding to the leaves of the decision
tree at the current stage. The ith leaf node is labelled by the function AHi

.

(b) For each coset Hi, call

Si ← Goldreich–Levin
(
A�Hi

, ε/M, δ
)
.

(c) For each non-empty Si, for each α ∈ Si, estimate
∣∣∣ÂHi

(α)
∣∣∣ up to additive error

±ε/4 with confidence δ. If the estimate is less than 3ε/4, then remove α from
Si.

(d) If Si = ∅ for at least (1− ε)-fraction of the {S1, . . . ,SM}, go to Step 3.

(e) Let the collection of labels of all internal nodes be L. For each non-empty Si:

i. Choose α← Si. Check if the collection L ∪ {α} is linearly independent.
ii. If so, then add α to L and split all nodes at the current stage on α.†

(f) Repeat Step 2.

3. For each leaf node—say, corresponding to the coset Hi—estimate Θ̂i := VolHi(A)
up to an additive error of ±τ/4 with confidence δ.

(a) If Θ̂i ≥ 3τ/4, set the function associated to the leaf node to be the identically-1
function.

(b) Else set it to be the identically-0 function.

4. Define the oracle OAA′ to be the function

OAA′(x) = Tregular(x) ·A(x).

† By “splitting” a leaf node on a parity α ∈ Fn
2 , we mean replacing it with an internal node labeled by the

parity α with two natural leaf nodes as children.

Proposition 3.2. Let A ⊆ Fn2 be an arbitrary subset. Given query access to A and ε, τ > 0, the procedure
ConstructDT(A, ε, τ) described in Algorithm 3.1:

1. Makes poly
(
n, 2 ↑↑ 8

ε3 ,
1
τ

)
queries to A and does a poly

(
n, 2 ↑↑ 8

ε3 ,
1
τ

)
time computation; and
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2. With probability 9/10 outputs a deterministic
(
0, 1, O(n)

)
-oracle OAA′ for A′ where A′ ⊆ A is as in

Proposition 3.1.

We note that the procedure ConstructDT makes queries to the oracle A in the course of running the
Goldreich–Levin algorithm.

Proof. We first argue that Step 2 in the procedure ConstructDT terminates; this essentially follows from
Green’s original proof of the regularity lemma in Fn2 . In particular, suppose, at the current stage, the subspace
given by the internal nodes of the parity decision tree is H, and let {H1, . . . ,HM} denote the cosets corresponding
to the leaves. Consider the potential function

ExpImb[A,H] :=
1

M

M∑
i=1

|ÂHi
(0n)|2,

where we recall that ÂHi
(0n) = VolHi

(A). Note that ExpImb[A,H] ∈ [0, 1]. Informally, ExpImb captures the
“expected imbalance” of A restricted to the leaf nodes of the tree at the current stage.

Lemma 2.2 of [Gre05] (alternatively, see [O’D07]) states that if there exists a leaf node AHi
and a parity

α ∈ Fn2 such that
∣∣∣ÂHi

(α)
∣∣∣ ≥ ε/2, then upon splitting all nodes at the current level on the parity α—with H ′ ≤ H

being the subspace corresponding to the resulting tree—we have

ExpImb[A,H ′] ≥ ExpImb[A,H] +
ε3

4
.

It follows that if the condition in Line 2(d) of ConstructDTdoesn’t hold, then after Step 2(e), the value of
ExpImb increases by at least 4/ε3. It follows that Step 2 can be repeated at most 2 ↑↑ 4

ε3 times.
Next, note that the Goldreich–Levin call in Step 2(b) makes at most poly

(
n, 2 ↑↑ 8

ε3 ,
1
τ

)
queries to A over

the run of ConstructDT, and each call to Step 2(e) and Step 3 makes O
(

1
ε2

)
and O

(
1
τ2

)
many queries (via

a standard application of the Chernoff bound). The overall query complexity of ConstructDT follows. The
runtime is similarly clear.

Note that we run the Goldreich–Levin algorithm in Step 2(b) on the function A�Hi
as opposed to AHi

. It
follows from Fact 2.1 that A�Hi

is ε/M -quasirandom if and only if AHi
is ε-quasirandom (where M is the number

of cosets at a particular stage of the algorithm). We also note that given query access to AHi , we can simulate
query access to A�Hi

by checking whether an input x belongs to the coset Hi by querying it on the parity decision
tree Tregular.

In the pruning procedure in Step 2(e), the size of each Si is at most O(1/ε2). A union bound over the
Goldreich–Levin and estimation procedures implies that with probability 9/10, the function computed by Tregular

indicates whether a point x is in a coset H ′ for which AH′ is ε-quasirandom and also VolH′(A) ≥ τ . It follows
that OAA′ is an exact oracle for A′; it also clearly makes exactly 1 query to A on any input.

3.3 Approximately Simulating Sumsets Note that Proposition 3.1 asserts, for arbitrary A ⊆ Fn2 , the
existence of a structured subset A′ ⊆ A (which is “almost all of A”) and a subspace H ≤ Fn2 such that A′+yH is
ε-quasirandom for all y ∈ Fn2 . The following lemma indicates why such a decomposition is useful towards our goal
of (approximately) simulating sumsets.

Lemma 3.1. Let A ⊆ Fn2 be arbitrary and let H ≤ Fn2 be a subspace. Suppose, for x, y ∈ Fn2 ,

1. Ax+H , Ay+H are ε-quasirandom (in the sense of Definition 3); and

2. Volx+H(A),Voly+H(A) ≥ τ for some τ > 0.

Then we have

(3.9) Volx+y+H(A+A) ≥ 1−O

(
ε2

τ4

)
.
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Proof. For ease of notation, define the ε-quasirandom functions f : x+H → {0, 1} and g : y +H → {0, 1} as

f := Ax+H and g := Ay+H .

Consider h := f ∗ g and note that supp(h) = Ax+H +Ay+H . From Equation (2.4), we have that

(3.10) h =
∑
α∈H

f̂(α)ĝ(α)χα ≥ τ2 +
∑

0n 6=α∈H

f̂(α)ĝ(α)χα︸ ︷︷ ︸
=:Γ

.

Note that Ex∼H
[
Γ(x)

]
= 0 and

E
x∼H

[
Γ(x)2

]
=

∑
0n 6=α∈H

f̂(α)2ĝ(α)2 ≤ max
0n 6=α∈H

f̂(α)2

 ∑
0n 6=α∈H

ĝ(α)2

 ≤ ε2

as f is ε-quasirandom. It then follows from Chebyshev’s inequality that

Pr
x∼H

[∣∣Γ(x)
∣∣ ≥ τ2

2

]
= O

(
ε2

τ4

)
and so Pr

x∼H

[
h(x) > 0

]
≥ 1−O

(
ε2

τ4

)
,

completing the proof.

Remark 6. Note that the lower bound of 1− O(ε2/τ4) in Equation (3.9) cannot be improved to 1, as witnessed
by the following example: Let A ⊆ Fn2 be defined as

A(x) =

{
0
∑
xi ≥ n

2

1
∑
xi ≤ n

2 − 1

and let H = Fn2 . As A is a symmetric function, Â(α) only depends on
∑
i αi. It is easy to check using Parseval’s

identity that
∣∣∣Â(α)

∣∣∣ ≤ O( 1√
n

)
, and that A+A ( Fn2 (as we clearly have 1n /∈ A+A).

Lemma 3.1 suggests a natural approach towards our goal of approximately simulating sumsets: Given the
parity decision tree Tregular as in Algorithm 3.1, for every pair of leaves—say, corresponding to cosets x+H and
y + H—with non-trivial Volx+H(A′),Voly+H(A′), we set Volx+y+H

(
A′ +A′

)
= 1. This procedure is outlined in

Algorithm 3.2; more formally, we have Proposition 3.3.
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Algorithm 3.2.

Input: Query access to A ⊆ Fn2 , quasirandomness parameter ε, density threshold τ

Output: An approximate oracle OA′+A′ where A′ as in Proposition 3.1t

Simulate-Sumset(A, ε, τ):

1. Obtain
(
OAA′ , Tregular

)
via(
OAA′ , Tregular

)
← ConstructDT(A, ε, τ).

Let αi ∈ Fn2 denote the label associated to internal nodes at depth i.

2. We will write (b1, . . . , bk) with bi ∈ F2 to denote the root-to-leaf path obtained by
taking the outgoing edge labeled by bi from the internal node αi,and will identify
leaves of Tregular with these tuples.

3. Initialize Tsum as a copy of Tregular, and associate all leaves with the identically-0
function.

4. For all pairs of leaf nodes (b
(1)
1 , . . . , b

(1)
k ) and (b

(2)
1 , . . . , b

(2)
k ) in Tregular:

(a) If for both of the leaf nodes in the pair, the function associated with the leaf
node is not the identically-0, function, then set the function associated to the
leaf node (b

(1)
1 + b

(2)
1 , . . . , b

(1)
k + b

(2)
k ) in Tsum to be the identically-1 function.

5. Define the oracle OA′+A′ to be the function computed by Tsum.

Proposition 3.3. Let A ⊆ Fn2 be an arbitrary subset. Given query access to A, and ε, τ > 0, let A′ ⊆ A as in
Proposition 3.1. The procedure Simulate-Sumset(A, ε, τ) described in Algorithm 3.2:

1. Makes poly
(
n, 2 ↑↑ 8

ε3 ,
1
τ

)
queries to A and does a poly

(
n, 2 ↑↑ 8

ε3 ,
1
τ

)
time computation; and

2. With probability 9/10, outputs an
(
O
(
ε2/τ4

)
, 0, n

)
-oracle OAA′+A′ for A′ +A′.

Proof. Note that the number of queries made to A follows from Proposition 3.2, and the runtime is immediate
from Step 4. The second item above follows from Lemma 3.1.

Note that Theorem 3.1 follows immediately from Propositions 3.2 and 3.3. Furthermore, we can easily
estimate Vol

(
A′ +A′

)
(where A′ as in Theorem 3.1) via random sampling. A standard application of the Chernoff

bound shows that O
(
log(1/δ)/γ2

)
many samples suffice to get a ±γ additive approximation to Vol

(
A′ +A′

)
with

probability at least 1− δ.

4 An Implicit Regularity Lemma in Fn2
In this section, we present the following “implicit” version of Theorem 3.1 that makes only Oε(1) queries,
independent of the ambient dimension n.

Theorem 4.1. (Main theorem) Let A ⊆ Fn2 be an arbitrary subset, and let ε, τ > 0. Given query access to A,
there exists an algorithm that makes Oε,τ (1) queries to A and does an Oε,τ (1) · n time computation and outputs
with probability at least 9/10:

1. A
(
0, Oε,τ (1), Oε,τ (1) · n)

)
-oracle OAA′ to the indicator function of A′ ⊆ A where Vol

(
A \A′

)
≤ ε+ τ ; and
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2. A
(
O
(
ε2/τ4

)
, Oε,τ (1), Oε,τ (1) · n)

)
-oracle OAA′+A′ to the indicator function of the sumset A′ +A′.

In Section 4.1, we state an “implicit” version of the Goldreich–Levin algorithm (which appears to be a
folklore result in coding theory), which we then use to obtain query-efficient versions of Algorithms 3.1 and 3.2
in Sections 4.2 and 4.3 respectively.

4.1 Implicitly Finding Significant Fourier Coefficients To explain what we mean by the qualifier
“implicit”, recall the usual statement of the Goldreich-Levin algorithm (Theorem 2.2). Informally, the theorem
states that given oracle access to A ⊆ Fn2 , there exists an algorithm that outputs an explicit set S ⊆ Fn2 with the
elements of S corresponding to the “significant” Fourier coefficients of A. In the language of coding theory, this a
list decoding algorithm for the Hadamard code.

The theorem as stated, however, is not useful for us—in particular, as our target query complexity is
independent of n, we cannot hope to obtain S explicitly. We will instead obtain implicit access to the set S.
We next state the refined guarantee for the Goldreich-Levin algorithm that we require.

Theorem 4.2. (Implicit Goldreich–Levin theorem) Given oracle access to set A ⊆ Fn2 , significance
threshold θ and confidence parameter δ, the algorithm Implicit-GL(A, ε, τ, δ) makes poly(1/θ) · log(1/δ) queries
to A and with probability at least 1 − δ for some T ≤ 4/θ2, outputs T oracle machines OA1 , . . . ,OAT with the
following guarantee:

1. For each 1 ≤ i ≤ T , there is a distinct αi ∈ Fn2 such that OAi is a probabilistic oracle machine for the
function χαi

. The query complexity of each oracle OAi is poly(1/θ).

2. For each 1 ≤ i ≤ T , |Â(αi)| ≥ θ/2.

3. For any β ∈ Fn2 such that |Â(β)| ≥ θ, there is a 1 ≤ j ≤ T , such that αj = β.

The crucial feature of Theorem 4.2 is that the query complexity of both the routine Implicit-GL as well as
the probabilistic oracle machines is independent of n and is just dependent on the significance parameter θ and
confidence parameter δ. Further, note that the algorithm Implicit-GL does not just give an oracle for αi (which
would be a procedure which, on input j ∈ [n], outputs the value of the j-th coordinate of αi ∈ F2), but rather it
gives an oracle for χαi

(which of course, on input x ∈ Fn2 , outputs the value of χαi
(x) ∈ F2). In the parlance of

coding theory, Implicit-GL is a constant query algorithm for local list correction.
We note that in the usual formulation of Goldreich-Levin (see [GL89, AB09]), the algorithm outputs all

the parities, i.e., the entire set S. As the description size of S is Ω(n), the query complexity is necessarily
Ω(n). However, the formulation in Theorem 4.2 can easily be obtained by the obvious modification of Rackoff’s
analysis [Gol01] of the Goldreich-Levin algorithm and seems to be folklore in coding theory [Sud21]. In fact, a
weaker statement, namely that Goldreich-Levin is a constant query local list decoding algorithm has already been
explicitly noted in literature [Tre04, KS13].

We describe the routine Implicit-GL in detail in Algorithm 4.1. To do so, we first need to define the
procedure Linearity-Test.

Definition 7. The procedure Linearity-Test(D, τc, τ`, κ) takes as input oracle access to D : Fn2 → F2, distance
parameters τc < τ` and confidence parameter κ. With probability 1−κ, Linearity-Test can distinguish between
the cases (i) D is τc-close to some parity χ and (ii) D is τ`-far from every parity χ.

The Fourier analysis based proof [BCH+96] of the standard linearity tester [BLR93] can be (easily) used to
obtain such a procedure Linearity-Test as long as τc < τ`/3. The query complexity of the procedure is
log(1/κ) · poly(1/|τ` − 3τc|).

At a high level, the routine Implicit-GL starts exactly the same way as of the Goldreich-Levin algorithm—
in particular, the standard analysis of Goldreich-Levin shows the following (for Step 3(b)): For any α such that
|f̂(α)| > θ, there is some b ∈ Ft2 such that

Pr
x∼Fn

2

[
χα(x) 6= DAb (x)

]
≤ 1/10.
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It easily follows that for any α such that |f̂(α)| > θ, there is some b ∈ Ft2 such that OAb is a probabilistic oracle
for χα. Further, for any b ∈ Ft2, OAb is a probabilistic oracle for some parity. In Step 3(d), we compute the
correlation between OAb and A up to ±θ/4. This implies that all OAb which survive satisfy properties (2) and (3)
of Theorem 4.2. We leave the detailed analysis to the interested reader.

Algorithm 4.1.

Input: Query access to A : Fn2 → {0, 1}, confidence parameter δ > 0 and significance parameter
θ > 0.

Output: Probabilistic oracles OA1 , . . . ,OAT for some T ≤ 4/θ2. The oracle machines OA1 , . . . ,OAT
satisfy conditions (1) and (2) from Theorem 4.2.

Implicit-GL(A, θ, δ):

1. Let
t = log

(
1

θ2

)
+O(1)

and initialize S = ∅.

2. Pick X1, . . . , Xt ∈ Fn2 uniformly at random.

3. For all b := (b1, . . . , bt) ∈ Ft2:

(a) For all ∅ 6= S ⊆ [t]:

i. Define XS :=
∑
i∈S Xi.

ii. Define bS :=
∑
i∈S bi.

(b) Define DAb : Fn2 → {0, 1} as

DAb (x) := maj
∅6=S⊆[t]

{
A
(
XS + x

)
+ bS

}
.

(c) Define δ1 := δθ2

4 . Run Linearity-Test
(
DAb , 1/20, 1/5, δ1

)
. If

Linearity-Test does not accept, discard DAb .
(d) Define OAb : Fn2 → {0, 1} as follows: choose y1, . . . , yR ∈ Fn2 where R =

Θ(log(1/δ)).

OAb (x) := maj
1≤j≤R

{
DAb (x+ y) +DAb (y)

}
.

(e) Estimate Θ̂b :=
〈
A,OAb

〉
up to an additive error of ±θ/4 and confidence δ1. If

the estimate Θ̂b < 3θ/4, discard OAb .

4. Output all OAb which survive.

4.2 A Query-Efficient Version of Algorithm 3.1 Recall that Algorithm 3.1 takes in as input query access
to A ⊆ Fn2 , a quasirandomness parameter ε > 0, and a density threshold τ > 0, and outputs a

(
0, 1, O(n)

)
-oracle

OAA′ for A′ where A′ ⊆ A is as in Proposition 3.1. The value of this oracle OAA′ on an input x ∈ Fn2 is obtained
by routing x through the decision tree Tregular(x) (recall that each internal node of Tregular(x) is labeled by an
“explicit” parity function χαi

obtained from some call to the Goldreich–Levin algorithm), and outputting the
value A(x) if a 1-leaf is reached (if a 0-leaf is reached the output is 0). This call to A at the leaf that x reaches is
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why OAA′ makes one (and only one) call to the oracle for A.
In contrast, in the query-efficient regime we cannot use the standard Goldreich–Levin algorithm because

its Ω(n) query complexity is prohibitively high; instead we replace each call to Goldreich–Levin with a call
to Implicit-GL. While Goldreich–Levin returns explicit parity functions which label the various nodes of
Tregular, the ConstructImplicitDT procedure constructs an “implicit” decision tree in which each node queries
some probabilistic oracle machine (that was returned by Implicit-GL) to obtain the value of the desired parity
function. Consequently, a call to the oracle OAA′ produced by ConstructImplicitDT makes d · ` + 1 calls to
A, where d is the depth of the implicit decision tree and ` is the number of oracle calls to A that are made by
each parity oracle produced by Implicit-GL. Crucially, both d and ` are values that are Oε,τ (1) and completely
independent of n.

In addition to constructing an implicit decision tree, ConstructImplicitDT also needs to check for linear
independence of the obtained parity oracles (see Step 2(e)(i) of Algorithm 3.1) in a query-efficient way. We detail
the performance guarantee of ConstructImplicitDT in the following proposition:

Proposition 4.1. Let A ⊆ Fn2 be an arbitrary subset. Given query access to A and ε, τ > 0, there exists an
algorithm ConstructImplicitDT that:

1. Makes Oε,τ (1) queries to A and does an Oε,τ (1) time computation; and

2. With probability 9/10, outputs a probabilistic
(
0, Oε,τ (1), O(n)

)
-oracle OAA′ for A′ where A′ ⊆ A is as in

Proposition 3.1.

Proof. The ConstructImplicitDT procedure is obtained by modifying the ConstructDT procedure pre-
sented in Algorithm 3.1 in the following ways.

1. In Line 2(a) of ConstructDT, instead of maintaining a list of explicit cosets H1, . . . ,HM , the algorithm
maintains a list of probabilistic oracle machines OA1 , . . . ,OAlogM (obtained from calls to Implicit-GL) for
the logM parities which define the cosets H1, . . . ,HM .

2. In Line 2(b), to simulate access to A�Hi
on an input x, the algorithm queries the logM oracle machines and

uses the obtained responses to determine whether or not x belongs to the relevant coset. In addition, each
call toGoldreich–Levin

(
A�Hi

, ε/M, δ
)
in Step 2(b) is replaced with a call to Implicit-GL

(
A�Hi

, ε/M, δ
)
.

Note that each set Si produced by a call to Implicit-GL is now a set of oracles for parity functions.

3. Each estimate of
∣∣∣ÂHi

(α)
∣∣∣ in Line 2(c) is obtained by random sampling, using the simulated version of A�Hi

described above and the oracle for the parity function for χα.

4. In Line 2(e)(i), since the algorithm does not explicitly have the vectors in Fn2 that define the parity functions,
it instead uses the following simple sampling-based procedure to check linear independence:

• Given a collection of oracles {Oχ1 ,Oχ2 , . . . ,Oχk
} where each χi is some parity function, the algorithm

queries all of them on N independent uniform random points in Fn2 and builds the corresponding k×N
matrix with entries in F2.

• Then the algorithm checks if the rank of this matrix is k.

It is clear that if the parities {αi} are not linearly independent, then the k ×N matrix constructed by this
procedure will not have rank k. On the other hand, a simple probabilistic argument shows that if the k
parities are linearly independent, then the matrix will have rank k except with failure probability at most
2k

2−N .

5. In Line 3 the estimate of VolHi
(A) is obtained using the logM oracle machines mentioned above in the

obvious way; and

6. Finally, the output oracle OAA′ is the obvious analogue of Tregular ·A where again the logM oracle machines
are used to route inputs through the implicit decision tree to the correct coset.
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The analysis of correctness is essentially the same as that of Proposition 3.2. We note that while
ConstructDT outputs a deterministic oracle, ConstructImplicitDT outputs a probabilistic oracle (because
of the probabilistic oracles for parity functions that it uses). For the query complexity, a tedious but
straightforward inductive argument shows that the values of δ (for each call to Implicit-GL) and N (for each
execution of Line 2(e)(i)) can be taken to be independent of n, yielding the claimed query complexity.

4.3 A Query-Efficient Version of Algorithm 3.2 Finally, the query-efficient version of Algorithm 3.2,
which we call Implicit-Simulate-Sumset, works in the obvious way. In Line 1, the call to ConstructDT is
replaced by a call to ConstructImplicitDT, and the “explicit” decision tree Tregular is replaced by the ensemble
of parity oracles corresponding to the coset decomposition. We observe that while in the explicit algorithm
Simulate-Sumset, the function Tsum can be evaluated on an input x ∈ Fn2 without making any calls to A, in our
implicit setting we need to query the ensemble of parity oracles (and hence make queries to A) for each evaluation
of Tsum on an input x (to route x to the correct leaf node in the implicit tree for Tsum). Theorem 4.1 follows from
Proposition 4.1 and the obvious analogue of Proposition 3.3 for Implicit-Simulate-Sumset.

5 Conclusion and Future Work
Our results suggest a number of interesting directions for future work. In particular, a broad goal is to develop
query-efficient procedures for simulating oracle access to other types of sumsets, or sumsets over other domains.
Our approach extends relatively straightforwardly to the sumset A + B for distinct sets A,B ⊆ Fn2 given access
to oracles to both A and B, and likewise to the iterated sumset A+ · · ·+A = kA for any constant k.

A more ambitious extension would be to handle the sumset A + A when A is an arbitrary subset of some
other Abelian (or potentially non-Abelian) group G. Green’s regularity lemma is known to hold for general finite
Abelian groups [Gre05], but to obtain constant query complexity independent of |G| via our approach it seems that
one would need an “implicit” procedure for finding large Fourier coefficients of functions from G to R. As observed
in [DGKS08], the algorithm of Goldreich and Levin does not generalize to finding large Fourier coefficients over
arbitrary finite groups. There is an alternative algorithm, due to Kushilevitz and Mansour [KM93], for finding
large Fourier coefficients of functions Fn2 → R which has been generalized to arbitrary finite Abelian groups G
by Akavia et al. [AGS03], but the query complexity of the Kushilevitz-Mansour algorithm grows with n and the
query complexity of the Akavia et al. algorithm grows with |G|. Developing a constant-query “implicit” version of
the algorithm of Akavia et al. for general finite groups is an interesting specific direction for future work.

Yet another intriguing problem, as mentioned in Section 1.2, is to try to develop a query-efficient algorithm
for simulating an oracle to A+A

2 (where addition denotes the Minkowski sum) or Conv(A) (the convex hull of A)
when A is a subset of Rn (and we view Rn as endowed with the standard Normal N (0, 1)n distribution).
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