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Abstract 

 We compare the predictions of different theories on the steady state growth of a Mode I 
crack in linear viscoelastic solids.  The theories studied in this work included those by Knauss, 
Schapery, Persson and Brener.  The comparisons focus on the fractional dissipation rate and the 
relationship between crack growth velocity and fracture energy.  Analytical solutions are carried 
out using realistic constitutive models such as the Generalized Maxwell Solid (GMS) and the 
Power Law Solid (PLS).  These theories are tested against two different sets of experimental data 
reported in the literature.  We also present new results such as the strain field directly ahead of the 
crack tip, the residual strain on the crack surfaces and the crack opening displacement (COD).  We 
use the expressions for COD to study the shape and size of the “viscoelastic trumpet” proposed by 
de Gennes.  Using a new approach, we study the shape and size of the viscoelastic dissipation zone 
around the crack tip and discuss its dependence on the crack growth velocity.    

 

Keywords: Viscoelasticity, fracture, steady-state crack growth, dissipation zone, energy release 
rate, crack opening displacement.    
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Nomenclature (Greek followed by English alphabets; in alphabetical order): 
 length of the cohesive zone or fracture process zone. 

K  length of the cohesive zone in Knauss’s theory (see eqs. (4a) and (10b)). 

S  effective length of the cohesive zone in Schapery’s theory (see eq. (11b)) 

PB  length of the fracture process zone in Persson and Brener’s theory (eqs. (4b) and (12d)). 

ˆ PB  ≡PB/2. 

 ≡vtc , dimensionless parameter given in eq. (8c). 

n ≡vtn , dimensionless parameter for the generalized Maxwell solid. 
K  dimensionless parameter given in eq. (10b). 

K
n  K  defined using retardation time tn of a generalized Maxwell solid (see eq. (18b)). 

K
ave  K  defined using the average retardation time ave

ct  of a generalized Maxwell solid (see eq. 

(18f)). 
S  dimensionless parameter given in eq. (11b). 

S
n  S  defined using retardation time tn of a generalized Maxwell solid (see eq. (19a)). 

S
ave  S  defined using the average retardation time ave

ct  of a generalized Maxwell solid (see eq. 

(19b)). 
PB  dimensionless parameter given in eq. (12d). 

PB
n  PB defined using retardation time tn of a generalized Maxwell solid (see eq. (20a)). 

PB
ave  PB defined using the average retardation time ave

ct  of a generalized Maxwell solid (see 

eq. (20c)). 

cod    viscoelastic effect parameter on crack opening displacement (see eq. (56a)). 

strain   viscoelastic effect parameter on strain field (see eq. (36b)). 

*
strain   viscoelastic effect parameter for *

22  (* indicates non-interacting model). 

0   critical crack opening displacement of the Dugdale-Barenblatt cohesive zone model. 

+ = +(t), Dirac delta function (see Table 1). 

22   normal strain perpendicular to the crack calculated using the exact stress field with the 

Dugdale-Barenblatt cohesive zone. 

22    limiting value of 22  in a fully relaxed solid.  

*
22   normal strain perpendicular to the crack calculated using the non-interacting model stress 

field. 
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*
22    limiting value of *

22  in a fully relaxed solid. 

 dimensionless dummy integration variable. 

 Euler’s constant = 0.5772156649... 

 Gamma function. 

  0 01 / 1 /J J E E     . 

  ≡GD/G = (G – G0)/G, fractional dissipation rate. 

K  fractional dissipation rate according to Knauss’s theory (see eq. (10a)). 

S  fractional dissipation rate according to Schapery’s theory (see eq. (11a)). 

PB fractional dissipation rate according to Persson and Brener’s theory (see eq. (12c) and 
(13a)). 

dG fractional dissipation rate according to de Gennes’s theory (see eq. (13b)). 

  frequency of oscillatory deformation in viscoelastic solids. 

c  ≡ 2v/PB, cut-off frequency near the crack tip in Persson and Brener’s theory. 

max ≡ 2v/, cut-off frequency near the crack tip in de Gennes’s theory (see eq. (2)). 

D   local dissipation rate (see eq. (61)). 

D  Normalized local dissipation rate (see eq. (67)). 

 integral function defined in eq. (38b). 

PL integral function defined in eq. (42b). 

  function defined in eq. (50b). 

D  angular function in eq. (68a). 

          total dissipation rate inside a square centered at crack tip divided by GD 1  

D   constant cohesive stress in the Dugdale-Barenblatt cohesive zone model.  

m   maximum cohesive stress in a general cohesive zone model.  

PB   critical cohesive stress in Persson and Brener’s theory.  

ij  in-plane stress components (i, j = 1 or 2). 

ˆij  angular variation of the Mode-I crack tip stress field (see eq. (5)). 

     angular coordinate of the polar coordinate system centered at the crack tip. 

 dimensionless dummy integration variable.  

  =for plane strain and =for plane stress where  is the Poisson’s 
ratio (assumed to be 0.5 in this work). 
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an  coefficients in the generalized Maxwell solid (see eq. (16a)). 

b  substitution symbol defined in eq. (60d). 

cm  dimensionless parameter in eq. (31a). 

cD  constant of order one in eq. (68b) and (68c). 

CPB  creep compliance function in Persson and Brener’s definition (see Table 1).  

d  lower bound of  at zero crack velocity, related to  through  = Gd/G0. 

dK  lower bound of K at zero crack velocity (see eq. (10b)). 

dS  lower bound of S at zero crack velocity (see eq. (11b)). 

dPB  lower bound of PB at zero crack velocity (see eq. (12d)). 

ˆ PBd  ≡dPB/2.  

E*  complex modulus in the frequency domain: E* = E*(). 
*
lossE   imaginary part of the complex modulus *E . 

*
storageE  real part of the complex modulus *E . 

*
PBE   complex modulus in Persson and Brener’s definition (see Table 1). 

E0  instantaneous tensile modulus. 

E∞  relaxed tensile modulus. 

F  function given in eq. (6c).  

𝐹′  derivative of ( )F X ; given in eq. (6b). 

2F1  Gauss Hypergeometric function (see eq. (22a)). 

G  applied energy release rate; = 2 /IK E  for plane stress; = 23 / 4IK E  for plane strain.  

G0  intrinsic fracture energy; =D0 in Dugdale-Barenblatt model.   

GD  ≡ G – G0, the dissipative energy release rate due to viscoelasticity. 

G  ≡ G/G0, normalized energy release rate.  

H1  Hankel transform of order one (see eq. (13a)). 

I  integral function defined in eq. (18c). 

J(t)  creep function under uniaxial tension.  

J0  = J(t = 0) = 1/E0, instantaneous creep compliance.  

J∞  = J(t = +∞) = 1/E∞, long-term creep compliance. 

J1  Bessel function of the first kind of order one (see eq. (13a)). 
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*J   complex compliance in the frequency domain: J* = J*(). 

*
storageJ  real part of the complex compliance *J . 

J  J (t) = J(t) − J∞ ≤ 0 (see eq. (6d)). 

J   ( / )cJ t t  =J (t). 

KI    applied stress intensity factor. 

L length of a square centered at crack tip to for integrating the local dissipation rate.   

L   L normalized by size of cohesive or fracture zone, 

Lt length scale of the “viscoelastic trumpet” (see eq. (1)). 

m exponent parameter of a power law solid (see eq. (17)), 0 < m < 1. 

M Kummer’s Confluent Hypergeometric function (see eq. (18c)). 

N number of viscous branches in a generalized Maxwell solid (see eq. (16a)). 

Q integral function defined in eq. (55b). 

R  radial coordinate of the polar coordinate system centered at the crack tip. 

tc  creep retardation time under uniaxial tensile creep test. 
ave
ct   average creep retardation time of a generalized Maxwell solid (see eq. (16c)). 

tn creep retardation times of a generalized Maxwell solid (n = 1, 2, ..., N). 

tR  relaxation time under uniaxial tensile relaxation test (< tc). 

ucod  crack opening displacement. 

codu  0/codu   , normalized crack opening displacement.  

v  crack growth velocity. 

v   ≡ /cvt d , generic normalized crack growth velocity.  

Kv   ≡ / K
cvt d , normalized crack growth velocity in Knauss’s theory.  

Sv   ≡ / S
cvt d , normalized crack growth velocity in Schapery’s theory.  

PBv   ≡ ˆ/ 2 /PB PB
c cvt d vt d , normalized crack growth velocity in Persson and Brener’s 

theory.  

vc ≡ / cd t , reference crack velocity used to define v ; a material constant. 

eW   elastic stress work rate 

X    horizontal coordinate of the moving Cartesian system centered at the crack tip. 

𝑋ത /X  , normalized horizontal coordinate. 

Y    vertical coordinate of the moving Cartesian system centered at the crack tip. 
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Abbreviations: 

1D: One-dimensional 

2D:  Two-dimensional 

COD:  Crack Opening Displacement 

DB:  Dugdale-Barenblatt 

FDR:  Fractional Dissipation Rate 

GMS:  Generalized Maxwell Solid  

K:  Knauss 

LHS:  Left Hand Side 

PB:  Persson and Brener 

PLS:  Power Law Solid 

RHS: Right Hand Side 

S:  Schapery 

SI:  Supplementary Information 

SS:  Standard Solid 

SSC:  Small Scale Creep 
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1. Introduction and Historical Perspective  

Interest in the fracture of viscoelastic materials has been around since the 1960s.  The 
subject was brought into the attention of engineers and mechanicians due to the increasing use of 
polymer as engineering materials.  There was also an intense interest in the reliability of 
viscoelastic solid propellant in rockets [1].  The main contributors to theoretical development in 
this period are Williams [2], Mueller and Knauss [3].  In these earlier works, crack growth is 
assumed to occur in discrete jumps.  A continuous crack growth theory where a 2D crack growing 
quasi-statically under steady state in a Maxwell solid was given by Kostrov and Nikitin [4] in 
1970.  Here it is interesting to note that Willis [5], in 1967, obtained the exact solution of a steady 
state Mode III semi-infinite crack growing dynamically in an infinite linear viscoelastic medium 
driven by surface traction translating rigidly with the growing crack.  Willis used a Dugdale-
Barenblatt (DB) cohesive zone model [6,7] to quantify local failure at the crack tip.  The 
viscoelasticity in his medium was modeled using the standard linear solid, where there is a single 
relaxation time.  A more comprehensive theory of fracture in linear viscoelastic solids, together 
with experiments, was published by Knauss in 1973 [8].  In this work, he developed an exact 
expression for the crack opening displacement for a steadily growing plane stress/plane strain 
crack in a linear viscoelastic solid with an arbitrary creep function.  In this formulation, Knauss 
considered the small-scale creep (SSC) problem where viscoelastic dissipation is confined to a 
small region near the crack tip.  The geometry is shown in Fig.1.  He used a cohesive model more 
sophisticated than the DB model to eliminate the stress singularity at the crack tip.  In his model, 
a material point experiences a constant cohesive stress as it enters the cohesive zone tip, which 
then decays to zero linearly at the crack tip.  The relation between the crack growth velocity and 
the applied stress intensity factor was obtained by enforcing the fracture criterion that the crack 
opening displacement (COD) must be equal to the critical opening displacement where the 
cohesive stress vanishes.  In this work we focus on a special case of this model, i.e., the DB model 
where the cohesive stress is constant throughout the cohesive zone (see the inset of Fig.1A). 

In 1975, Schapery published a series of papers [9–11] where he removed many of the 
restrictions in Knauss’s theory.  For example, his theory accounts for non-steady state crack growth 
and allows for a much wider class of cohesive zone models.  More importantly, he also provided 
closed-form, approximate expressions for the relationship between crack growth velocity and the 
stress intensity factor [10] which can be difficult to determine in Knauss’s formulation (to be 
elaborated below).  Here one should also mention the work of Graham, an applied mathematician 
who extended the classical correspondence principle applicable to stationary cracks to growing 
and closing crack problems with moving boundaries [12].  For example, a straightforward 
application of Graham’s theory shows that the stress field in Knauss’s SSC problem is given by 
the classical DB model where the material is elastic outside the cohesive zone.  This stress field 
depends only on the cohesive stress and is independent of any other material properties.  For 
completeness, we have included the full stress field for the DB model in Section S1 of the 
Supplementary Information (SI).     
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Figure 1 Geometry of the SSC problem. (A) A semi-infinite crack in an infinite viscoelastic solid. 
The crack tip is subjected to a DB cohesive zone at 0 ≤ X ≤  with a constant cohesive stress D. 
(B) Zoomed-in view of the circular area centered at the crack tip. The crack opening profile under 
sufficiently fast growth velocity consists of four regions: I) fracture process zone; II) “hard solid” 
region; III) “liquid” trumpet region; IV) “soft solid” region. The outer boundary of the circular 
area is subjected to tractions prescribed by the K-field. 

  

As noted by Rice [13], the presence of singular fields at the growing crack tip will create a 
paradox in which the local energy available for fracture is independent of the crack velocity v.   
This is because the local stress rate at the crack tip is proportional to the spatial gradient of stress 
multiplied by v.  Therefore, the presence of a singular stress field will result in infinite stress rate 
at the crack tip.  Thus, as long as v > 0, there is always a glassy region surrounding the crack tip.  
The extended correspondence principle states that local energy release rate in this glassy region is 
given by 2

0/IK E  where E0 is the instantaneous or glassy Young’s modulus.  This means that the 

local energy release rate is independent of crack velocity – a paradox.  The use of cohesive zone 
model eliminates the stress singularity and resolves this paradox.    

 The acceptance of Knauss’s and Schapery’s theories is not without controversy.  It is 
interesting to note that a different approach to the crack growth problem was proposed by 
Christensen in 1979 [14].  In Christensen’s approach, he avoided the use of cohesive zone model 
or a local fracture criterion.  Instead, he used energy balance to separate the total energy of the 
system into the energy dissipated by the viscoelastic solid and the energy available for separation 
at the crack tip.  The difficulty with this approach is that the energy dissipation rate (i.e., energy 
dissipated per unit length of crack extension) diverges due to the infinite strain rate at the crack 
tip.  This difficulty is not fully appreciated at the time because of the mathematical difficulty of 
evaluating the energy dissipation rate in closed form.  As we shall see later, there are two ways to 
compute this dissipation rate.  Readers interested in historical perspective are encouraged to 
consult the lively correspondence between Christensen and McCartney debating the role of energy 
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balance [15–18].  The story ended well: in 1983, Christensen and McCartney co-published a paper 
[19] reconciling their differences and agreed that a bounded stress at the crack tip is necessary to 
apply energy balance.  It is perhaps because of this controversy that the energy balance approach 
(which must be equally valid) is abandoned in favor of the cohesive zone approach.  As we shall 
see, the energy balance approach will be resurrected by physicists.  In any case, it is reasonable to 
conclude that by the end of 1983 most of the key elements of linear viscoelastic fracture have been 
agreed upon by the mechanics community.   

  In the late nineteen eighties and nineties, spurred by the interest in soft condensed matter 
physics, physicists started to develop their own versions of viscoelastic fracture theory.  In the 
theories of Knauss [8] and Schapery [9], little attention is given to the amount of dissipation and 
where it occurs.  In 1996, de Gennes published his seminal paper on soft adhesives [20].  In this 
work, he considered the same geometry as that in Knauss’s 1973 paper: a semi-infinite steady state 
crack growing under SSC condition, but with a new twist.  To simplify the analysis, he assumed 
crack growth occurs in a standard solid with a single relaxation time tR.  de Gennes did not solve 
the continuum equations; instead, he used scaling analysis and energy balance to reveal two results 
concealed in Knauss’s and Schapery’s theories: the first of these results indicates that, for 
sufficiently fast cracks, the crack opening profile can be roughly divided into four regions1 (see 
Fig.1B):  I). a very small “nonlinear” region around the crack tip where linear viscoelasticity breaks 
down; this region is essentially the fracture process zone and corresponds to the cohesive zone in 
the theories of Knauss [8] and Schapery [9]; II) a “hard solid” region immediately outside the 
“nonlinear” region where the material is glassy and the crack opening is small; III) next to the 
“hard solid” region is the “liquid” trumpet region where the material behaves like a viscous fluid; 
IV) the “liquid” region is joined by a “soft solid” region where the material is fully relaxed at its 
rubbery state.  de Gennes proposed that most of the dissipation takes place in the “liquid” trumpet 
region.  His scaling argument suggested that the length of the “liquid” trumpet region, Lt, is  

     0~ /t RL E E vt ,                         (1) 

where v is the crack velocity, 0E and E  are the glassy and relaxed Young’s modulus respectively. 

Note that in this paper the subscripts “0” and “∞” for the modulus refer to the time domain, in 
contrast to a number of literature [20–22] where these subscripts refer to the frequency domain.  
In other words, E0 and E∞ is equivalent to the elastic modulus at infinite and zero frequency, 
respectively.  For highly dissipative viscoelastic solids, 0 /E E   102 ~ 103.  The second result 

(equation (20) in de Gennes [20]) is that the dissipation part of the energy release rate GD scales 
as: 

       
 

max

2
0 *

0

1
~ ImD I

d
G G G K

E

 
 

 
    

 
 ,                      (2) 

                                                 
1 Only three regions are illustrated in de Gennes [20]; the nonlinear zone is too small to include.  The “nonlinear” 
region was later added to the trumpet diagram by Saulnier et al. [21].         
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where G is the applied energy release rate outside the viscoelastic dissipation region (i.e., in the 
“soft solid” region), G0 is the energy release rate delivered to the fracture process zone (equal to 
the intrinsic fracture energy during quasi-static crack growth), KI is the stress intensity factor and  
E*() is the complex modulus under uniaxial tension2.  The frequency  in the integral of eq. (2) 
represents the cyclic loading rate at a material point as the crack grows and scales with the crack 
velocity v as  ~ v/R, where R is the distance between the material point and the crack tip.  The 
introduction of a cutoff frequency max ~ v/ in eq. (2), where  is the size of the “nonlinear” 
zone, not only prevents the divergence of the dissipation integral but also brings in the dependence 
on crack velocity v.  This expression highlights the difficulty with Christensen’s approach [14]: 
the dissipation rate will diverge unless a cutoff length is introduced.  Indeed, the divergence of the 
dissipation rate and the paradox raised by Rice [13] are one and the same issue.  

 In de Gennes’s theory, existence of the “liquid” trumpet region relies on a sufficiently fast 
crack growth velocity v.  In this regime, the size of the trumpet is given by eq. (1) which is 
independent of the cohesive zone properties, suggesting a decoupling between local fracture 
process and bulk dissipation.  However, as the crack slows, the size of the trumpet is expected to 
decrease and eventually vanish.  As this happens, the “soft solid” region starts to interact with the 
“nonlinear” zone.   de Gennes’s theory has very little to say about this regime. Specifically, de 
Gennes suggested that most of the energy dissipation takes place in the liquid trumpet region: at 
slow velocities, energy dissipation can be neglected.  This turns out to be inaccurate, as noted by 
Saulnier et al. in their 2004 paper [21].  The scaling theory of Saulnier et al. [21] indicates that the 
regime of slow velocities can be important since considerable energy dissipation may take place 
in the “soft solid” region due to its large volume.  However, the potential interaction between local 
fracture process and bulk dissipation for low crack velocities cannot be studied using a purely 
energetic model where the stress outside the fracture process zone is unaffected and given by the 
elastic field.  Finally, de Gennes considered an infinite domain, so his theory may break down 
when the size of trumpet exceeds the specimen dimension.  This finite specimen effect was 
considered by Saulnier et al. [21].  In this work, we focus on the SSC problem with an infinite 
domain (see Fig.1), and thus do not account for the finite specimen effect either. 

 The dissipation rate expression obtained by de Gennes [20] (with a similar one given by 
Saulnier et al. [21]) is based on scaling analysis and a standard linear solid model.  Therefore, it is 
difficult to apply this expression to provide quantitative information such as the relation between 
crack velocity and the applied energy release rate.  A useful form of such relation, valid for any 
linear viscoelastic solids, was derived by Persson and Brener (PB) [22].  Similar to de Gennes [20] 
and Saulnier et al. [21], the “nonlinear” zone is treated as a black box and the stress distribution  is 
assumed to follow the elastic K-field all the way to the boundary of the “nonlinear” zone.  PB did 
not study the crack opening profile and the viscoelastic trumpet. Instead, they focused on 
evaluating the total viscoelastic dissipation rate around the moving crack tip.  They ignored the 
angular variation of the stress field when evaluating the dissipation integral.  The effect of angular 
variations is approximately accounted for by adjusting an integration constant so that the energy 

                                                 
2 We modified de Gennes’s notation.  He used the shear complex modulus while we used tensile complex modulus.  
This does not affect eq. (2) from a scaling perspective.   



11 

 

release rate at high velocities is given by 0 0( / )E E G , where 0G  is the intrinsic fracture energy.   

However, in contrast to de Gennes [20] and Saulnier et al. [21] where the size of the “nonlinear” 
zone  is assumed to be a constant,  in PB’s theory is not constant and is directly proportional 
to the applied energy release rate G.  In this respect there is little difference between the cohesive 
zone model of Knauss and Schapery and the “nonlinear” zone description of PB, since in both 
approaches the size of the cohesive or “nonlinear” zone can be predicted using a critical stress 
criterion.  More specifically, dimensional consideration implies that the size of cohesive zone 
must scale with the maximum stress in the cohesive zone model, m , by 

   2~ / mE G  .               (3) 

For the DB cohesive zone assumed in Knauss’s theory, the cohesive zone size K is 

   
2

28
K I

D

K


 ,             (4a) 

where 𝐾ூ
ଶ ~ E∞G since the far field is in the fully relaxed elastic limit. In the PB model, the 

“nonlinear” or fracture zone size PB is given by the critical stress condition 

   
2

222

PBI I
PBPB

PB

K K 


   ,          (4b) 

where PB is the critical stress in PB’s theory and is analogous toD in the cohesive zone model. 
A comparison between eq. (4a) and (4b) shows that the two approaches differ by a numerical 
constant.  Here we note that the size of cohesive zone in both models is independent of modulus if 

IK  is prescribed instead of G. Another difference between PB’s theory [22] and that by de Gennes 

[20] or Saulnier et al. [21] is on how to relate KI to the energy release rate: PB applied the relation 
that 𝐾ூ

ଶ ~ E∞G while de Gennes and Saulnier et al. assumed  𝐾ூ
ଶ  ~ E0G0. While the two are 

equivalent in the limit of high crack velocity, the latter (i.e., 𝐾ூ
ଶ ~ E0G0) may not be accurate at 

low crack velocity due to the lack of a “hard solid” region. However, this difference does not 
appear to affect the scaling relation between G and v at low crack velocity, as discussed in Section 
3.1.  

 Since the dependence of fracture energy G on crack velocity v can be directly measured 
from experiments, attention was chiefly directed to predicting the relation between G and v.   
Unfortunately, these relations are usually given in integral form, as will be summarized below for 
different theories, and these integrals can be difficult to evaluate.  As a result, it is not always 
possible to obtain analytic formula connecting G and v.  Schapery’s approximate theory can be 
used to produce these formulae.  However, his theory is not widely appreciated and there is no 
careful study of its accuracy.  One of our goals is to provide a comparative study on the theories 
by Knauss, Schapery and PB.  Amongst these theories, the only one that does not involve 
approximation (in the sense that the solution satisfies all the field equations exactly) is Knauss’s 
theory. Schapery’s theory is approximate since he assumed the second derivative of the logarithm 
of creep compliance function with respect to the logarithm of time is small.  In addition, he used 
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an approximate method to compute the crack opening displacement inside the cohesive zone.  PB’s 
calculation is approximate since they assumed that the elastic K-field of stress is valid all the way 
to the boundary of the fracture process zone, ignoring the interaction between fracture processes 
and the continuum fields outside.  They also ignored the angular variation of the stress fields when 
evaluating the dissipation integral. 

 In 1994, Gent and Lai [23] took thin sheets of different elastomers, adhered them together 
by C-C or S-S interfacial bonds, and then peeled them apart at various rates and temperatures.  
They noted that the experimental G versus v curves for different elastomers can be collapsed into 
a single master curve.  They also plotted the storage shear modulus * against the oscillation 
frequency  and found that these curves resemble the master curve of G versus v.  As noted by 
Gent and Lai, this result is consistent with the theory of Knauss [8].  By comparing their G versus 
v master curve (see Figure 13 of [23]) with the * versus  curve (upper curve in Figure 16 of 
[23]), they obtained a set of lengths (each length corresponds to different G), which were suggested 
to represent the size of the fracture zone.  In Figure 17 of their paper, they found the size of this 
fracture zone increases from 10−11 m to 10−9 m as the fracture energy increases from G0 (intrinsic 
fracture energy as v → 0) to the high velocity limit.  In a later 1996 paper, Gent [24] identified this 
length scale as the dissipation zone size with a reference to Knauss’s work: “Knauss assumed that 
energy is dissipated in a small region of length δ ahead of the crack tip…. But values of δ obtained 
in this way are only about 1 Å, far too small to represent the actual size of a dissipation zone.”  
This paper started a controversy which remains until today.   

 Therefore, despite the ingenuity and efforts expended on viscoelastic fracture, the theory 
is rather inconclusive when it comes to the shape and size of the dissipative zone.  The problem is 
that only the total dissipation rate is known, which is insufficient to determine the shape of the 
dissipation zone.  What is needed is the local dissipation rate. Determination of this rate is a 
formidable task.  This is compounded by the fact that a precise definition of the dissipation zone 
has not been given.   In a viscoelastic solid, energy dissipation starts once the material is stressed, 
so energy is dissipated at all points and all times. This is in stark contrast to elastic-plastic solids 
where the onset of dissipation is clearly defined by the yield criterion.  Moreover, a problem 
inherent in linear viscoelastic theory is that it does not address the amount of internal dissipation.  
For example, given the relaxation function, viscoelastic theory allows one to uniquely determine 
the tension in a bar during a constant strain rate test.  However, one cannot determine the amount 
of energy dissipated until the bar is returned to its initial stress-free state – e.g., by specifying the 
unloading history.  Additional assumptions are required to determine the amount of energy 
dissipated during any part of the loading history.  In this paper, we will state these assumptions 
and compute the dissipation rate at a material point.  This approach will allow us to determine the 
size and shape of the dissipation zone.            

  Aside from the paradox of the dissipation zone size, the different approaches and 
approximations adopted in different theories present difficulties to practitioners.  Are there 
significant differences between theories?  Which theory should one use to interpret data?  Here we 
note that the formulation of Knauss [8] and Schapery [9,10] is in the time domain, that is, the 
tensile creep compliance function J(t) is required for calculations.  On the other hand, de Gennes 
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[20], Saulnier et al. [21] and PB [22] present their results in the frequency domain, where the 
complex modulus *( )E   is used to characterize viscoelasticity.  Here it is important to note that 

the characteristic time in the creep compliance function is the retardation time (tc) which is 
typically much larger than the characteristic relaxation time (tR) in a relaxation test.  For example, 
in a standard Maxwell solid, tc = E0tR/E∞, thus the retardation time can be three orders of magnitude 
larger than the relaxation time.   Therefore, the characteristic time scale in the theories of Knauss 
[8] or Schapery [9,10] is much larger than that in the theories of de Gennes [20], Saulnier et al. 
[21] and PB [22].  Of course, in principle, one should be able to go back and forth between time 
and frequency domains.  In practice, this is easier said than done.  In this paper, we provide a 
simple transformation which express the dissipation rate of PB (similarly that of de Gennes) in the 
time domain (see eq. (13a) in Section 2.2).    We also suggest a simple and accurate method to 
predict relation between crack velocity and fracture energy from rheological data (see eq. (35d) in 
Section 3.1).    

 A goal of this work is to carry out a detailed comparison of these theories and to highlight 
differences and similarities.  The comparisons are carried out for two general classes of viscoelastic 
solids which we believe to be more realistic.  The first is a Generalized Maxwell Solid (GMS) 
where the creep functions can be represented by a Prony series.  The second is a Power Law Solid 
(PLS).  We also present new results that is not available in the literature, such as the residual strain 
on the crack surface and the strain distribution directly ahead of the crack tip.  In particular, we 
develop a procedure to compute the size and shape of the dissipation zone.   

The physical quantities we seek to compare between different theories are categorized into 
the six sections listed below, followed by conclusions in Section 8. To limit the scope of 
comparison, we will focus on results for the SSC problem (i.e., infinite domain) with linear 
viscoelasticity and the plane stress condition unless otherwise specified. 

 Section 2: viscoelastic dissipation during steady state crack growth. 

 Section 3: relation between the crack growth velocity v and the applied energy release rate G. 

 Section 4: strain distribution directly ahead of the cohesive zone tip. 

 Section 5: residual strain behind the crack tip.  

 Section 6: crack opening displacement (COD). 

 Section 7: shape and size of dissipation zone. 

We believe many of the difficulties arise because analytical solutions are difficult to obtain, which 
is particularly true with Knauss’s formulation.  Therefore, we have given considerable efforts to 
obtain exact closed-form solutions.  Surprisingly, we have found many exact closed-form results, 
most of which in terms of special functions.  The advantages of using special functions are two-
fold. First, properties of these special functions, such as series expansion, asymptotic behaviors, 
and connection with other special functions are well documented (see [25] for example).  Second, 
just like trigonometric functions, these special functions can be readily evaluated using standard 
numerical software packages.  
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2. Viscoelastic Dissipation during Steady State Crack Growth 

 Among the many theories reviewed in the previous section, we use Knauss’s [1,8] and 
PB’s theories [22] to represent the cohesive zone and energy balance approaches, respectively, 
because both theories provide quantitative formulae to relate the energy release rate G and the 
crack growth velocity v.  We also include Schapery’s theory in the discussion due to its closed-
form solution.  In the following, we use the superscripts K, S, PB to denote quantities associated 
with Knauss, Schapery and PB’s approach, respectively.  We have not included the theories by de-
Gennes [20] and Saulnier et al. [21] in the comparison since they are based on scaling relations.     

2.1 Fracture criterion: COD versus energy balance 

 In this section we show that the cohesive zone approach of Knauss and Schapery using a 
COD-based fracture criterion is equivalent to the energy balance approach of PB.  Figure 1B 
illustrates a Mode-I steady state crack growing with a constant velocity v in a linear incompressible 
viscoelastic medium under the SSC condition.  In SSC, the traction boundary condition is 
prescribed by the linear elastic K-field for Mode-I cracks [26,27]: 

       2 2 1ˆ, ,    ,   tan /
2

I
ij ij

K
R R X Y Y X

R
    


                          (5) 

where KI is the applied stress intensity factor, R,  are polar coordinates corresponding to the 
translational coordinate system X-Y centered at the moving crack tip, 𝜎ො௜௝ሺ𝜃ሻ are angular variations 
of the Mode-I crack tip stress field, and the subscripts i, j range from 1 to 2 (i.e., 1 and 2 represents 
the X and Y directions, respectively).  In the SSC problem, the material in the far field (R → ∞) is 
fully relaxed with relaxed Young’s modulus E.   

 In Knauss’s theory, the fracture process zone is represented by a cohesive zone (see 
Fig.1A).  To simplify the formulation while retaining the essential mechanics, we specialize the 
cohesive zone to a DB model with constant traction D.  The COD is zero at the right end of the 
cohesive zone (i.e., X = ) and increases as one moves towards the −X direction.  Crack growth 
occurs when the maximum total COD reaches a critical value 0 which also defines the left end of 
the cohesive zone where the traction on the crack surfaces first vanishes (i.e., the crack tip at X = 
0).  The intrinsic fracture energy G0 is related to the cohesive parameters as G0 = D0. To apply 
the COD-based fracture criterion, Knauss calculated the COD by applying the correspondence 
principle and elastic crack tip stress field.  In normalized form, the opening displacement ucod of 
the upper crack surface in Knauss’s theory can be written as  

        
1

0 0

1 3
1 ( )

2 2
Icod

cod

X

Ku
u X J F X J X F d

v

     
   

           
  

 ,      (6a) 

where 
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X
F X
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   
 

,                      (6b) 
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2 4 1 1

X X X
F X

X

  
 

 
.                                (6c) 

In eq. (6a), we have normalized the one-sided crack opening displacement ucod by 0, the critical 
opening displacement in the DB model where the traction on the crack surfaces first vanishes.  The 
horizontal coordinate X is normalized by the cohesive zone length,. J(t) is the creep function 
under uniaxial tension and 

    ( ) ( )J t J t J   ,                         (6d) 

where J∞ ≡ J(t = +∞) = 1/E∞, and  is a constant related to the Poisson’s ratio. Assuming 
incompressibility (i.e., Poisson’s ratio = 0.5),  = 1 for plane strain and = 5/3 for plane stress. 
Knauss [1] argued that since cohesive zone size can be much smaller than the thickness even for 
thin sheet fracture specimens, one should implement a local plane strain condition in eq. (6a) by 
setting  = 1. Here for theoretical purpose, we retain the possibility of plane stress condition within 
the cohesive zone by allowing the specimen thickness to be sufficiently small. The first term in eq. 
(6a) is the COD in a purely elastic solid with relaxed or long-time tensile modulus 1/J∞ = E∞ 
subjected to the same remote K-field. The integral term accounts for viscoelastic effects during 
crack growth.  Note that since J and ( )F   are less than or equal to zero, the integral in eq. (6a) 

is always positive.  Thus, the COD, ucod, is always smaller than its counterpart in a relaxed solid 
under the same remote load since the material stiffens due to crack growth.   

To relate the COD-based fracture criterion to the energy balance, we first note that KI is 
related to the applied energy release rate G through the following equations due to the SSC 
condition and incompressibility (i.e., Poisson’s ratio = 1/2):  

   
2

2I
I

K
G J K

E 


         (plane stress),            (7a) 

2 23 3

4 4
I IK J K

G
E





   (plane strain).                    (7b) 

The cohesive zone length  is related to KI and D in eq. (4a) where  is denoted as K to emphasize 
that it is according to Knauss’s theory.  Substituting eq. (4a) into eq. (6a) and using eq. (7a) or 
(7b), we obtain the following equation which is valid for both plane stress and plane strain 
conditions: 

        
1

0 0

1
1 ( )cod

X

G G
u X F X J X F d

G G J v

   


       
  ,            (7c) 

The fracture or crack growth condition is met when the one-sided COD reaches 0/2 at the crack 

tip where 0X  .   Using ( 0)F X   = 1/2, the fracture condition obtained by setting the LHS of 

eq. (6a) to 1/2 and evaluating at 0X   is 
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    
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J v
   



 
 
 

   .                           (8a) 

Since G is the applied energy release rate and G0 is the intrinsic fracture toughness, the integral 
term in eq. (8a) must be the energy dissipated per unit crack extension, GD.  Thus, the COD fracture 
criterion and the energy balance equation are equivalent and that the integral term in (8a) 
represents dissipation per unit crack extension.  We can rewrite eq. (8a) as 

    0 1G G    ,   
1

0

2

c

J F d
J vt

  


 
    

 
  ,        (8b) 

where is the fraction of energy dissipated per unit crack extension, referred to as the Fractional 
Dissipation Rate (FDR) hereafter.  For dimensional consistency, we have normalized the time t in 

the creep function J by a characteristic creep retardation time tc so that J ≡ J (t/tc). This 

normalization leads to an important dimensionless parameter  defined as 

    
cvt

  ,                       (8c)  

where  is the length of the cohesive zone.  Recall that  in Knauss’s theory, denoted as K, is 
related to the stress intensity factor KI in eq. (4a).  Equation (8c) indicates that  is the time for the 
crack to move one cohesive (fracture) zone length divided by the retardation time.  Thus, a small 
 means fast crack growth and vice versa. Although the energy balance theory of PB does not 
explicitly include a cohesive zone, we interpret  as the length of the fracture process zone which 
is defined by a prescribed critical stress PB and the stress intensity factor KI in eq. (4b). By 
comparing eq. (4a-4b), the  in Knauss’s and PB’s theories differ to within a numerical factor of 
order 1 due to different ways of estimating or equivalently, different definition of cohesive 
stress.  If there is a chance of confusion, we will label  and  by a superscript, e.g.,  and  
refers to  and  in Knauss’s theory.   

In the following, we normalize the applied energy release rate G by the intrinsic toughness

0G , i.e., 

    0/G G G .                       (9a) 

Since the cohesive zone length  increases linearly with the energy release rate G (see eq.(4a,b) 
and eq.(7a,b)) and hence also depends on the crack growth velocity v, it is convenient to define a 
fracture length scale d that is independent of v.  This is done by defining  

    /d G .           (9b) 

Physically, d is the size of the cohesive or fracture zone as crack velocity v goes to zero, i.e., the 
minimum size of the cohesive or fracture process zone.  Equation (9b) allows us to define a 

material velocity /c cv d t , which will be used to normalize the crack velocity v, i.e., 
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/ c

v
v

d t
 .                       (9c) 

Recall that the definition of  is based on the stress field and thus is the same under both plane 
stress and plane strain, but the definitions of d under plane stress and plane strain may differ by a 
constant coefficient. Take Knauss’s theory for example. Equation (4a) for K is valid for both 
plane stress and plane strain. However, using eq. (4a), (7a) and (7b), we find that dK = G0/(8J∞𝜎஽

ଶ) 
under plane stress and dK = G0/(6J∞𝜎஽

ଶ) under plane strain. In practice, the cohesive stress D for 
a given material is often unknown and hence treated as a fitting parameter, which is equivalent to 
treating dK as a fitting parameter. In this regard, the difference in the definition of dK does not 
practically affect the fitting process. For theoretical rigorousness, we will assume plane stress 
condition in the following unless otherwise specified. 

 

2.2 Fractional dissipation rate (FDR)  

Having established the equivalence between the cohesive zone approach and the energy 
balance approach, we next show that the different theories based on these two approaches are 
essentially different ways of calculating or approximating in the form of a 1D integral. The FDR 
from the theories of Knauss, Schapery and PB is summarized in the following. As mentioned 
earlier, our summary will focus on results under the plane stress condition.  

In Knauss’s theory, the FDR Kis given by eq. (8b), which is rewritten below using the 
dimensionless parameter K  : 

       
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2K KJ F d
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                      (10a)  

    
K

K

cvt

  ,  K KGd  , 0
28

K

D

G
d

J




 .      (10b) 

In Schapery’s theory, the integral in eq. (8b) is approximated by the closed-form 
expression (see derivation in Section S2 of the SI): 
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where in dS is approximately 1/3.  Note that S and dS should be interpreted as the effective 
cohesive zone length, since the factor of  ≈ 1/3 is absorbed into S and dS to unify notation (see 
Section S2 of the SI for detail). Had not been absorbed, S and dS would be the same as their 
counterparts in Knauss’s theory (see eq. (10b)). 

In Persson and Brener’s theory, the FDR PB
 is calculated through the energy balance 

approach and is given by 
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where 𝐸௉஻
∗ ሺ𝜔ሻ is the complex modulus in tension defined by PB and  is the oscillatory frequency. 

Also, the factor 2v/PB in eq. (12a) corresponds to cut-off frequency c in PB’s paper.  Here we 
caution the reader that the viscoelastic functions in PB differ from their usual definitions in the 
literature (e.g., Ferry [28], Christensen [29]).  Serious errors can occur if one is not aware of these 
differences.  We have carefully studied PB’s paper and these differences, as detailed in Section S3 
of the SI and summarized in Table 1. In particular, we denote the quantities used by PB with the 
subscript “PB” and use a superscript * to denote complex modulus in the frequency domain to 
avoid confusion.   
 
 Standard notation PB’s notation 

Creep function      t d t
t J t t dt

dt







  

        
t

PBt C t t t dt 


     

Conversion 
    0( )PB

dJ t
C t t J

dt
   

Complex creep 
compliance 

   *

0
( ) i tJ J i J t J e dt 

 
       *( )PBC J     

Complex modulus    * *1/E J    * ( ) 1/PB PBE C   

Table 1 Conversion of viscoelastic properties between the standard and PB’s notation. J(t) and 
CPB(t) are the creep compliance functions in the standard notation and PB’s notation, respectively. 
𝐸∗ሺ𝜔ሻ and 𝐸௉஻

∗ ሺ𝜔ሻ  are the complex moduli in the standard notation and PB’s notation, 
respectively.  +(t) is the Dirac delta function.  Derivation of conversion is given in Section S3 of 
the SI. 

 

 It is interesting to compare the dissipative energy release rate GD obtained by de Gennes  
[20] in eq. (2) with that of PB.  Using the normalization  =  /max = /v and eq. (7a), we can 
rewrite eq. (2) as 
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 ,      (12b) 

knowing that E*( = 0) = E∞ = 1/J∞. Besides the obvious difference in the pre-factor, the weight 

function 21  is absent from the scaling model of de Gennes.  However, from a scaling 

perspective, the two expressions are practically identical.  To cast PB’s FDR expression into a 

form similar to eq. (10a), we note that ( 0)PBE    = E = 1/J and introduce a characteristic time 
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tc (i.e., the creep retardation time) in the complex modulus: ( ) ( )PB PB cE E t    .  Therefore, eq. 

(12a) can be rewritten as  
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Here we note that PB  in eq. (12d) is defined with an extra factor of 1/2 in comparison to its 

counterpart in eq. (10b) and (11b).  To be consistent, we divided the size of cohesive zone in PB’s 

model by a factor of 2: ˆ / 2PB PB    or equivalently ˆ / 2PB PBd d  , so that ˆ /PB PB
cvt  .   

This is equivalent to increasing the fracture stress in PB’s theory by a factor of 2 .    

We emphasize two important results: 

a) The FDR expressions of Knauss and Schapery are based on the creep compliance in the time 
domain, whereas PB employs the complex modulus in frequency domain to evaluate the FDR.  
We found an elegant expression converting one to the other. In the time domain, PB’s 

dissipation rate can be written as the Hankel transform of the standard creep function J (t/tc), 
as derived in Section S4 of the SI. Specifically 
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 ,    (13a)  

 where J1 is the Bessel function of the first kind of order one and H1 is the Hankel transform of 
order one. The FDR by de Gennes as expressed in eq. (12b) can also be written in the time 
domain following similar derivation, which has an even simpler form:   
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b) The size of fracture process zone or cohesive zone, , in different approaches differs by a 
numerical constant and is directly proportional to the applied energy release rate G.  The 

minimum size  0v d   is reached as crack velocity approaches zero and G approaches 

the intrinsic fracture energy G0.  Indeed, the theories of Knauss, Schapery and PB share a 
common result: 
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implying that the size of the cohesive zone can increase by three orders of magnitudes as the 
crack velocity increases.  In contrast, in the theory of de Gennes [20] and Saulnier et al. [21], 
 is assumed to be a constant, which has been recognized by Saulnier et al. [21] as a limitation 
in their model. 
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2.3 Material model: Generalized Maxwell Solid (GMS) and Power Law Solid (PLS):   

The results in Section 2.1-2.2 are valid for any incompressible linear viscoelastic solids.  
To make our discussions more relevant to applications, we consider two broad classes of material 
models: Generalized Maxwell solid (GMS) and Power Law solid (PLS).  In a GMS, the creep or 
relaxation function can be expressed using a Prony series.  This series is widely used in finite 
element analysis and engineering applications.  A difficulty with the GMS model is that many 
terms of the Prony series is often needed to model real material behavior.   In practice, it is often 
found that the PLS, which has much fewer material parameters, fits data well [30,31] for a wider 
range of frequencies in a rheology test.  In the following, we denote a dimensionless material 
parameter   that measures bulk dissipation  

    0
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1 1
J E

J E
 



    ,           (15) 

where J0 ≡ J(t = 0) = 1/E0. Note dissipation is zero when  = 0 since material is purely elastic.  For 
highly viscoelastic solids,  is slightly less than one.   

In GMS, the creep function is represented as a Prony Series [32]  
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where tn are characteristic retardation times; they are arranged so that t1 < t2 <...< tN.  The an’s are 
weights indicating the compliance contribution for different retardation mechanisms.  In the 
viscoelastic fracture literature, theoretical results are often confined to the standard solid (SS) 
where there is one characteristic retardation time t1 which we shall denote by tc.  For this case, eq. 
(16a) reduces to 

       /
0

ct tJ t J J J e
    .                              (16b) 

Finally, since
1

 1
N

n
n

a


 , we define an average retardation time ave
ct  by 

    
1

1 N
n

ave
nc n

a

tt 

           (16c) 

Later, we shall see that ave
ct  is the appropriate time scale for defining in the FDR .   

 For PLS, we assume the following form of creep function: 

      
 

0 ,     0 1
1 /

m
c

J J
J t J m

t t





   


.         (17) 

A very similar power law solid model was proposed by Williams [33].     

Our focus is on evaluating the FDR in eq. (10a), (11a) and (12a) for these two classes of 
viscoelastic models.  The evaluation of these integrals and associated asymptotic behaviors are 
tedious, they are given in the SI.  In the following, we indicate closed-form solutions by the 
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notation “(closed form)”.  If the solution is in closed form and can be written in terms of elementary 
functions, we use the notation “(elementary)”.   

  
2.4 Evaluation of FDR for GMS 

 In this section, we summarize the FDR by Knauss, Schapery and PB for GMS using the 
creep function in eq. (16a). 

In Knauss’s theory, the FDR is given by   

      
1

2
N

K K
n n

n

a I 


   ,       (closed form)      (18a)  

K K
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Gd

vt vt

   ,                                                        (18b) 
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                
 .    (18c)  

In eq. (18c),  is the generic form of K
n , M is the Kummer’s Confluent Hypergeometric function 

and  is the Gamma function (see Section S5 of SI). The series in eq. (18c) has infinite radius of 

convergence3.  Since t1 < t2 <...< tN, we have 1 2 ...K K K
N     . To facilitate the application of 

eq. (18a), we derived the following asymptotic results (see Section S6 of SI)   
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where  = 0.5772156649... is the Euler constant and 

             
K

K
ave ave

c

Gd

vt
  .               (18f) 

In Schapery’s theory, the FDR is given by 

  
1

S
n

N
S

n
n

a e  



   , 
S S

S
n

n n

Gd

vt vt

      (elementary).     (19a) 

                                                 
3 The function I is entire as () has a simple pole at  = 0, while [M(, 1/2, −) – 1] has a simple zero at = 0, hence 
I  has a removable singularity at the origin, as evident by the power series expansion.      
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In the limit of large S
n (low crack velocity), S decays exponentially. In the limit of small S

n , 

the asymptotic result is      

   1 1 1 ..S S S
ave       , 

S
S
ave ave

c

Gd

vt
  .       (19b) 

In PB’s theory, the FDR is given by (see Section S7 of the SI): 

 2
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1 ,
N

PB PB PB
n n n
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a  
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 
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ˆPB
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n

n

Gd

vt
              (elementary).                 (20a) 

The following asymptotic behaviors can be readily obtain using eq. (20a): 

       3
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1
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   1 1 1 ... ,PB PB PB
ave        

ˆ PB
PB
ave ave

c

Gd

vt
  .      (20c) 

 Before we compare the FDR from different approaches, we note an important observation: 
the FDR is a function of n  only4.  Comparison of eq. (18e), (19b) and (20c) shows that for large 

crack velocities ( 1n  ) all three theories are practically identical.  The difference between 

theories occurs at small velocities ( 1n  ).  In this regime, Schapery’s approximation eq. (19a) 

considerably underestimates the FDR due to the rapid exponential decay.  However, it must be 
noted that Schapery’s approximation is designed for realistic material behavior so it is not expected 
to be accurate for the SS.  The relevant comparison is between eq. (18d) and (20c).  As noted in 
the introduction, in this regime there can be significant interaction between the fracture process 
zone and the continuum field surrounding it.  In Knauss’s formulation, this interaction is accounted 
for by the cohesive zone model.  However, this interaction is neglected in PB’s model.  According 
to eq. (18d) in Knauss’s theory, the dominant behavior at low velocity is: 

      
1

ln
1

2

KN
nK K

N n K
n n

a


 


    ,                (21) 

which states that the FDR for low velocities (where 1G  ) scales with v as  1 lnK K
N v v   .  

In contrast, PB’s theory predicts that the FDR for low velocities is directly proportional to v, which 
is valid for any GMS, regardless of the number of terms in the Prony series.  This is because 

1( )PB
n v    for all n (see eq. (20b)).   It is also interesting to note that eq. (20b) suggests that the 

region of linear behavior is quite large, since the next order term in the asymptotic series is
3 3( )PB

N v   .  This result is consistent with the scaling analysis of Saulnier et al. [21] where it was 

proposed that the dissipation rate increases linearly with the crack velocity until the full 

                                                 
4 Straightly speaking, / is a function of n only.   
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development of the trumpet.  On the other hand, if the interaction between the fracture process 
zone and the continuum field is taken into consideration, as in Knauss’s model, this conclusion is 
not entirely true (e.g., see inset of Fig.2).  In eq. (18d), we carried out asymptotic expansion to the 

third order to show that the quadratic term 2( )K
n

  in the series is not zero, which, together with 

the fact that the dominance of the logarithmic term at very small velocities, suggests the linear 
region can be significantly reduced.   

 

Figure 2  FDR for a Standard Solid (N=1) with  = 0.99.  Full solutions based on the theories of 
Knauss, Schapery and PB are represented by solid lines, whiles the symbols represent asymptotic 
solutions.  The inset shows that PB’s theory can be brought into reasonable agreement with 
Knauss’s theory, except at very low velocities, by plotting against 0.3/PB, i.e., by shifting the 
PB curve to the left by log(1/0.3). 

 

Figure 2 plots the FDR according to Knauss, Schapery and PB for standard solid where N 
=1.  In this case, there is only one retardation time and hence one n, i.e.,   ≡ 1 where superscript 
K, S or PB is added to distinguish the three theories. The full solutions are shown as solid lines 
and the asymptotic behaviors at large and small 1/ are represented as symbols.  All three theories 
show the same trend for large 1/ (large velocity).  However, the three theories are quite different 
for small 1/ (small velocities).  In particular, Schapery’s theory deviates from the trends exhibited 
by Knauss’s and PB’s theories at small velocities.  Note that the three term expansions for large  
(i.e., small 1/) in eq. (18d) is very accurate for ≥, while eq. (18e) is accurate for  < 1.  Hence 

these asymptotic expressions in eq. (18d) and (18e) can be used to compute the FDR for the entire 
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range of .  The resemblance between Knauss’s and PB’s curves suggests that one can adjust the 

critical stress PB in PB’s theory, and hence ˆ PBd  and PB, to bring the two theories into better 
agreement.  The inset in Fig.2 shows that this is possible if we shift the PB (blue solid curve) to 
the left by log(1/0.3).  However, as shown in the insert of Fig.2, the asymptotic behavior of PB’s 
theory at low velocity differs from that of Knauss’s theory even after the shift.  As mentioned 
above, this is due to interaction between the fracture process zone and the continuum field, giving 
rise to the logarithmic dependence on velocity in Knauss’s theory (see eq. (21)).      

 

2.5 Evaluation of FDR for PLS 

The evaluation of FDR for PLS is summarized in this section.  Unlike the Prony Series for 
GMS, the creep function of PLS assumed in eq. (17) only involves a single time scale tc, which 
corresponds to a single  in the FDR solution. 

In Knauss’s theory, the FDR is given by (see Section S8 of the SI for derivation): 
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, (closed form),      (22a) 

where 2 1F  is the Gauss Hypergeometric function. Using the series expansion of eq. (22a), we 

found the following asymptotic behaviors (see Section S9 of the SI for derivation): 
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A more detailed asymptotic solution for K >> 1 with additional higher order terms is provided in 
Section S7 of SI. Interestingly, we found that eq. (22a) can be reduced to elementary functions in 
the special case of m = 1/2 (see Section S10 of the SI), i.e.,  
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In this special case, the asymptotic behaviors become (Section S10 of the SI) 
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In Schapery’s theory, the FDR is determined by substituting the power law creep function 
in eq. (17) into eq. (11a): 

 1

S
mS




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
     (elementary).      (24a) 

The asymptotic behaviors of eq. (24a) are 

   1, 1 ...S S Sm m        ,        (24b) 
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In PB’s theory, we calculate the FDR using the Hankel transform expression given by eq. 
(13a), which gives (see 6.563 on Page 685 of [34] and Page 23 of [35] for the Hankel transform of 
(1 ) /m  ): 
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          (closed form) 

The asymptotic behavior for large PB  can be directly obtained from eq. (25a), i.e., 
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    (25b) 

The behavior for small PB  can be obtained from literature on asymptotic behavior of Hankel 

transforms [36]:   

   1, 1 ...PB PB PBm m       .           (25c) 

Similar to the results for GMS, in the regime of high crack velocity ( << 1), all approaches 
give similar results.  Indeed, eq. (25c), (24b) and (22b) are practically identical, with the 
understanding that   in different theories differs by a numerical factor of order 1.  Likewise, in 

the regime of low crack velocity ( << 1), all three theories predict that 

    m mv    .           (26)  
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Note that Schapery’s theory, which disagrees with the other two theories in the low velocity regime 
for GMS, is doing just as well as Knauss’s or PB’s theory for the PLS in terms of the scaling trend.  
More interesting is the difference between the prediction of the GMS and the PLS in the low crack 
velocity regime.  For PLS, the FDR in all three theories scales with the velocities to the power m, 
whereas for a GMS, the FDR scales with the crack velocity v as lnv v (Knauss) or v (PB).  It is 
interesting to note that the FDR for PLS and GMS scales with v in essentially the same way in the 
high crack velocity regime. Figure 3 plots the FDR against   for m = 1/2.  The full solutions are 

plotted as solid lines and the asymptotic behavior for small and large   are represented by 

symbols. The insert in Fig.3 shows that all three theories can be brought into close agreement by 
horizontal shifting in the log-log plot.  Comparison of these theories for different values of m (m 
= 0.25, 0.5 and 0.75) is shown in Fig. S1 in Section S11 of the SI.  

   

 

Figure 3 FDR for a PLS with m = 1/2 and  = 0.99.  The solid lines represent full solutions based 
on the theories of Knauss, Schapery and PB, while the symbols represent asymptotic solutions.  
The inset shows that all three theories can be brought into agreement by a horizontal shift to the 
left in the log-log plot by a factor of log(2 (for Schapery) and log(2/2) (for PB) .   

 

 
3. Energy Release Rate and Crack Growth Velocity 
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 Once the FDR is computed, the relationship between the normalized energy release rate 

0/G G G  and the normalized crack velocity /ave
cv vt d  can be determined by solving the 

energy balance equation: 

      1
1G

   .           (27) 

Equation (27) is a nonlinear algebraic equation. For example, for GMS the arguments of , 

/ave
n c nGt vt  , depend on both G and v .  As a result, there is no closed form solution in general.  

However, numerically this relation can be determined easily.  Indeed, since  depends only on , 
given the viscoelastic material parameters, we can assign n  to compute G using eq. (27) and eq. 

(18)-(21).  Once G  is known, we simply compute v  using /ave
c n nv Gt t .  This procedure 

generates a plot of v  versus G without solving any nonlinear equation.  

 

3.1 Solutions for GMS   

In this section, we seek closed-form solutions that relate G and v based on the theories of 
Knauss, Schapery and PB. If no closed form solution exists, we provide the asymptotic behavior.  
For GMS, we only present results for the SS where N = 1, tc ≡ t1, and 1  .  Here we note that 

some authors use relaxation time Rt in a relaxation test as the characteristic material time [20,21].  

In general, the relaxation time tR is much smaller than the retardation time tc.  For example, for an 

SS, 0( / )R ct E E t , which can be three orders of magnitude smaller than tc.   

 In Knauss’s theory, the FDR in eq. (18b) (N =1) does not permit a closed form solution 
for eq. (27). Therefore, we provide the asymptotic behaviors below using eq. (18d) and (18e): 
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Recall that  in eq. (28a) is the Euler’s constant.  

In Schapery’s theory, closed-form solution is found by substituting eq. (19a) (N =1) into 
eq. (27), which gives    
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This solution has the following asymptotic behaviors: 

   1/1
SvG e      1Sv  ,           (29b) 
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In PB’s theory, closed-form solution is also found by substituting eq. (20a) (N = 1) into eq. 
(27), which gives 
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The asymptotic behaviors of eq. (30a) are 

  1 PBG v     1PBv  ,                   (30b) 
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Figure 4  Normalized energy release rate G versus normalized crack velocity v  for an SS with  
= 0.99.  Solid lines represent full solutions based on the theories of Knauss (numerical), Schapery 
(eq. (29a)) and PB (eq. (30a)), while symbols represent asymptotic solutions.  The inset shows that 
the three theories can be brought into reasonable agreement by shifting the Schapery and PB curves 
to the left by log( (Schapery) and log(/2) (PB), respectively.   
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For all three theories, G  approaches 1 in the limit of low crack velocity ( v <<1), and 
approaches J∞/J0 = E0/E∞ in the limit of high crack velocity ( v >>1), as expected. To illustrate the 

asymptotic solutions, we plot the G  versus v  in Fig.4 for an SS using the three theories.  From 
Section 2.4, these theories are expected to exhibit different behaviors in the regime of low crack 
velocity, as confirmed by eq. (28a), (29b) and (30b).  In particular, Schapery’s theory 

underestimates G  for low crack velocities.  For high crack velocities, the prediction for different 

theories is practically identical up to constant coefficients.  It should be noted that by plotting Kv

, Sv , and PBv on the same axis, we have implicitly assumed that Kd = Sd = ˆ PBd .  Given that 

the definitions of Kd , Sd and ˆ PBd  differ by constants of order one and the cohesive stress (i.e., 

D or PB) is unknown, Kd , Sd and ˆ PBd  can be interpreted as independent fitting parameters. 

Changing their values is equivalent to shifting the G versus v curves horizontally in the log-log 
plot.  As illustrated in the insert of Fig.4, the theories of Knauss, Schapery and PB can be brought 
into good agreement (except at low crack velocities) by shifting the Schapery and PB curves to the 
left.   

 

3.2 Solutions for PLS 

In this section we summarize solutions for PLS. In Knauss’s theory, closed-form solution 

relating G  and Kv is not available. Instead, we get the following asymptotic solutions by 
substituting eq. (22b) and (22c) into eq. (27) (see Section S12 of the SI for derivation). 
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where  is the Gamma function.   

In Schapery’s theory, closed-form solution is found by combining eq. (24a) and (27): 
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The asymptotic behaviors of eq. (32a) are given by  
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Derivation of eq. (32c) is given in Section S13 of the SI. 

In PB’s theory, closed-form solution is not available. The asymptotic behavior in the low 
crack velocity limit is obtained using eq. (25b): 
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The asymptotic behavior under high crack velocity limit similar to eq. (32c) since eq. (25c) is 
identical to eq. (24b), i.e.,  
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Similar to SS, in all three theories G  approaches 1 in the limit of v <<1 and approaches 

0 0/ /J J E E   in the limit of  v >>1. 

 

 

Figure 5 Normalized energy release rate G versus normalized crack velocity v  for a PLS with m 
= 1/2 and  = 0.99. Solid lines represent full solutions based on the theories of Knauss (numerical), 
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Schapery (eq. (32a)) and PB (numerical), while symbols represent asymptotic solutions.  Note that 
the Schapery and PB curves are very close to each other; only a small difference is observed in the 
low crack velocity regime. The inset shows that all theories can be brought into agreement by 
shifting the Knauss curve to the right by a factor of log(.   

 

It is interesting to compare the PLS model with the SS model.  Note that in the low crack 
velocity limit, all theories predict the same scaling (with different scaling constants) for the PLS, 
which is 

      1/
1

m
v G   .            (34) 

Equation (34) suggests the difference between the three theories in the low crack velocity regime 
can be mostly attributed to the limitation of the SS model, which has only one characteristic 
relaxation time.  To demonstrate this point, we plot the normalized energy release rate versus 
normalized crack velocity in Fig.5 (log-log) for PLS with m = 1/2.  The asymptotic results in eq. 
(31) to (34) are also plotted as symbols to indicate their regions of validity.  Notably, all three 
curves exhibit a middle section with a slope slightly less than 0.5 (≈ 0.47), which is consistent with 
eq. (34) implying that for 01 G J / J  , 1/ 2~ ( 1) ~mv G G .  The inset shows that all theories 

can be brought into agreement by shifting horizontally. 

 Although the solutions for relating G and v  are based on the creep compliance function 
in the time domain, J(t), we note a practical disadvantage, i.e., it can be time-consuming to obtain 
the creep compliance function.  It is easier to determine complex modulus E*() from small strain 
rheological tests or Dynamical Mechanical Analysis.  Here we highlight a useful result which 
allows quick estimate of fracture behavior from the complex modulus data.  Specifically, one can 
obtain the complex compliance J*() from the complex modulus using the identity: J*() = 
1/E*(), and further estimateJ(t) using the approximation5:    
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where storageJ
() is the storage compliance, i.e., the real part of J*().  Using J*() = 1/E*(), we 

have 
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where E∞ = E*( = 0) = 1/J*(= 0).  For example, Schapery’s theory can be easily casted in the 
frequency domain using eq. (11a), (35a) and (35b),  

                                                 
5 This approximation is often used to convert storage modulus to creep compliance (see equation 4.60 on Page 142 
of Christensen [29]).  We are not aware of any study on its limitations.    
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where S  is defined in eq. (11b). Using eq. (35c) and (27), the relation between energy release 

rate G and crack velocity v  can be written as  
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Although the length Sd , i.e., the minimum fracture process zone size, can be calculated from the 

cohesive stress D using eq. (11b), it is more convenient to determine Sd  by fitting experimental 
data (see Section 2.7 for example) since D is unknown.  Note for the limits of low and high 

velocities, eq. (35d) is exact and reduces to G  = 1 and *
0( ) / /G E E E E      , respectively.  

If the storage modulus is much larger than the loss modulus in the domain of interest, one can 
further make the approximation6 
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3.3 Comparison with experimental data  

 We end this section by two examples which compare the theories of Knauss, Schapery and 
PB to experimental data in the literature.  

In the first example, we use the GMS model with N = 5 to fit the storage and loss modulus 
of a styrene-butadiene copolymer, which was given in Figure14 of Gent and Lai [23].  Details of 
the fitting are given in Section S14 of the SI.  This fit provides us with the material constants in 

eq. (16a).  We then use eqs. (18a), (19a) ,(20a) and (27) to predict the relationship between G  and 
v , which is compared with the experimental data in Gent and Lai [23]. The comparison between 
theory and experimental data based on the three different theories (Knauss, Schapery and PB) is 
shown in Fig.6.  Recall v  is normalized by / ave

cd t , where d is related to the minimum fracture 

process or cohesive zone size and is specialized to Kd , Sd and ˆ PBd  for the theories of Knauss, 

Schapery and PB, respectively.  We determine d by shifting the theoretical G  and v  curve 
horizontally in a log-log plot to minimize the difference between theory and experiment.  This 
procedure also allows us to determine the size of the cohesive or fracture process zone using eq. 
(10b) and compare with the result in Figure 17 of Gent and Lai [23] which was obtained based on 

                                                 
6 In theory, the loss modulus can be obtained using the Kramer-Kronig relation if the storage modulus is known.  In 

practice, the loss modulus can be obtained quickly using the approximation 𝐸௟௢௦௦
∗ ሺ𝜔ሻ ≅ ቀ

గఠ

ଶ
ቁ ൫𝑑𝐸௦௧௢௥௔௚௘

∗ ሺ𝜔ሻ/𝑑𝜔൯ 

(see equation 4.54 on Page 141 of Christensen [29]).   
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various approximations.  We found a good fit for all three theories by choosing Kd = Sd = ˆ PBd  

= 0.1 nm, consistent with Gent and Lai [23].  Although Kd , Sd and ˆ PBd can be treated as 
independent fitting parameters to further optimize the fit for each theory, this is not pursued here 
since the results in Fig.6 are already illustrative of the three theories’ behaviors.   Figure 6 shows 
that the Schapery model given by eq. (19a) is surprisingly good, despite its simplicity.  The 
oscillation in the Schapery curve is due to the limitation of the GMS model where each term in the 
Prony series is a decaying exponential with different time constants.  The fit would have been 
smoother if more terms of the Prony series are chosen.   

 

 

Figure 6 Comparison of normalized energy release rate G  versus crack velocity v using the GMS 
model.  Experimental data (circles) are extracted from Figure 12 in Gent and Lai [23]. The solid 
lines are given by Knauss’s, Schapery’s and PB’s theories.  

 

 In the second example, we use the creep compliance and fracture data for a polyurethane 
elastomer called Solithane 113 provided in the review article of Knauss [1].  To further test the 
theory, we use the PLS model to fit the experimental creep compliance curves provided in Figure 
3 of Knauss [1], as shown in Section S15 of the SI.  The parameters which give best fit to creep 
compliance data are: J0 = 6.0256 × 10−7 Pa−1, J = 3.4914 × 10−4 Pa−1, tc = 0.1446 s, and m = 

0.2523.  Since we have verified that the theories of Knauss, Schapery and give similar G  versus 
normalized crack velocity v  (to within a shift factor), we use Schapery’s theory eq. (32a) to 
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predict the G  versus v  behavior for its simplicity.  We then compare the predicted behavior with 
the experimental data in Knauss [1], which is given in Figure 12 in his paper7.  The only unknown 

parameter is Sd  defined in eq. (11b).  From eq. (32a) and the definition of S
cv vt / d , we found 

Sd  = 0.9 nm by shifting Schapery’s theory along the horizontal axis (log v ) to obtain the best fit 
to the experimental data.  Comparison between the theory and experimental data is shown in Fig.7.       

 

 

Figure 7  Comparison of normalized energy release rate G  versus crack velocity v using the PLS 
model.  Experimental data (circles) are extracted from Figure 12 of Knauss [1], and the solid line 
represents Schapery’s theory based on a PLS model determined by fitting the creep compliance 
data in Knauss [1].   

 

4. Strain distribution directly ahead of the cohesive zone tip  

 Our review of the literature shows that little attention is paid to the deformation field of a 
growing crack in viscoelastic solids. Analytical solutions revealing the displacement or strain 
fields surrounding a crack under steady state propagation not only provide theoretical insights 
towards the viscoelastic fracture mechanics, but also enable a new avenue for experimental 
validation, since the displacement and strain fields can be directly measured. For example, de 

                                                 
7 Knauss reported fracture strain versus crack velocity.  We have converted his fracture strain to toughness (see Section 
S15 of SI) 
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Gennes’ examination of the Crack Opening Displacement (COD) has led to the “viscoelastic 
trumpet” model highlighting the physics of viscoelastic dissipation. On the experimental side, 
digital image correlation has been applied to measure the strain fields associated with a 
propagating crack in elastomers and hydrogels [37–43]. More recently, a method based on tracking 
randomly distributed tracer particles has been demonstrated to be capable of accurately measuring 
the large deformation fields around a crack in soft elastomers [44].  Later, in Section 7, we will 
see that the strain distribution is needed to compute the local dissipation rate.   In this and the next 
two sections, we will focus on three aspects of the crack deformation fields:  
 Distribution of the normal strain 22 (i.e., perpendicular to the crack) directly ahead of the 

cohesive zone tip (X ≥ , Y = 0) in Section 4. 
 Residual strain behind the crack tip (X < , Y = 0) in Section 5. 
 Crack opening displacement in Section 6.  
To avoid redundancy, we will limit our discussions to the plane stress condition, since extension 
of the solutions to the plane strain condition is straightforward.  

In Section 2, we discussed that in the limit of low crack velocity, the fracture process zone 
may interact with bulk viscoelasticity and hence alter the crack tip field. Such interaction is 
accounted for in Knauss’s theory via the cohesive zone [1,8], but is not captured in the energetic 
theories (e.g., PB [22], de Gennes [20] and Saulnier et al. [21]). Under the SSC condition, the 
correspondence principle of linear viscoelasticity dictates the crack tip stress field in a viscoelastic 
solid is identical to that in an elastic solid. However, the crack tip strain field is expected to be 
affected by viscoelasticity. To quantify the effect of viscoelasticity on the crack tip strain field, we 
use the distribution of 22 directly ahead of the cohesive zone tip, 22(X ≥ , Y = 0), as a benchmark 
problem. For Mode-I cracks, it is known that material points directly ahead the crack tip (Y = 0) is 
under equi-biaxial tension: 22 = 11. Combining this feature, the steady state condition and the 
incompressibility constraint (i.e., Poisson’s ratio = 1/2), we obtain the following strain distribution 
in plane stress8: 
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The first term on the RHS of eq. (36a) represent the strain distribution of the fully relaxed solid, 
which is referred to as 22   and is larger than the actual strain 22 .  To highlight the effect of 

viscoelasticity, we define a dimensionless quantity strain which is the relative difference between 

22  and 22 ,  
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8 For plane strain, multiply the RHS by a factor of 3/4.   
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Note that we normalized X by the cohesive zone size , i.e., /X X  .  In general, strain  is a 

monotonically decreasing function of X  for 1X   and also depends on the crack velocity.    

 To evaluate eq. (36a), we need to determine the creep function J(t) and the stress 

distribution 22( )X . The former is specified according to the two viscoelastic models: GMS and 

PLS, as detailed in Section 2.3. The latter depends on whether the cohesive zone is explicitly 
included. For example, if the DB cohesive zone model with a constant traction D is included (as 
in Knauss’s theory), we have the following stress distribution using the stress field in Section S1 
of the SI: 
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22
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, 0 tanDX Y
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 .                     (37a) 

In contrast, in PB’s theory,22( X ) is given by the K-field all the way until the fracture process 
zone. To facilitate comparison, we will also use D to denote the critical stress and  to denote the 
fracture process zone size. In this case, the stress distribution is 
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where we added an asterisk superscript to 22 to distinguish it from that in eq. (37a) and used the 

relation / 2D IK  .   We shall call this the non-interacting model and will label quantities 

associated with it by *.  We will implement both stress distributions and compare the resultant 
strains to illustrate the interaction between cohesive zone and bulk viscoelasticity.  

 

4.1 Solutions for GMS 

 We first consider the stress distribution in eq. (37a) and find that (see Section S16 of the 
SI)   
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where n ≡ /vtn and 
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The second term on the RHS of eq. (38a) measures the deviation from the elastic strain due to 
viscoelasticity.  Using eq. (38a) and (38c), eq. (36b) becomes 
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For SS, N =1, a1 = 1, and there is only one retardation time tc = t1. Consequently, eq. (39a) reduces 
to   
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where  = /vtc.   

For general GMS, we find that for 1X  , the asymptotic behavior of eq. (39a) is given by 
(see Section S17 of the SI) 
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where we have used the definitions /X X   and /n nvt  . Equation (39c) tells us that it takes 

a distance from the cohesive zone tip much greater than 𝑣 ∑ 𝑎௡𝑡௡
ே
௡ୀଵ  to reach the relaxed state. 

The characteristic distance emerging in eq. (39c), 𝑣 ∑ 𝑎௡𝑡௡
ே
௡ୀଵ , is independent of the cohesive zone 

size and depends only the crack velocity.   The faster the crack velocity, the larger this distance is.  
The above result forstrain  is valid for a plane strain crack as well since strain  is the ratio of strains 

and the constant factor of 3/4 needed for the plane strain case does not appear in strain .  

 It is useful to consider the strain at the cohesive zone tip (i.e., 1X  ). At this point, eq. 
(38a) can be reduced to 
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where we have used the identity (see Section S16 of the SI): 

      1, n nX erfc     ,          (40b) 

and erfc is the complementary error function. Accordingly, eq. (39b) becomes 
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It is worth noting that in the limit of high crack velocity (i.e., 1 <<1), ( 1)strain X   approaches 

. This is consistent with the expectation that at high crack velocity the cohesive zone is 
surrounded by materials in the unrelaxed elastic limit with modulus E0.   
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 Next, we use the stress distribution in eq. (37b) (i.e., the K-field) to calculate the strain 
directly ahead of the fracture process zone tip (i.e., X ≥  and Y = 0) and for strain . The resulting 

expressions are simpler (see Section S18 of the SI for detailed derivation):  
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where /n nvt   and we have added an asterisk superscript to 22 and strain  to distinguish from 

those from that in eq. (38a) and (39a).  Unlike eq. (39a) where strain  is a function of both X  and 

n , here *
strain  depends only on n X , which is independent of the fracture process zone size .  

Hence, there are obvious differences between eq. (38a) and (41a) near the cohesive zone tip due 
to interaction between fracture process zone and the viscoelastic continuum fields, especially at 
low crack velocities.  In particular, the strain at the cohesive tip is given by 
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n n n n
n

X Y a erfc
E

    


  
      

  
 ,      (41c) 

which is clearly different from its counterpart in eq. (40a). However, far ahead of the cohesive 

zone tip (i.e., X  >>1), we expect strain  and *
strain  to agree. This is confirmed in Section S19 of 

the SI, where we show that the asymptotic behavior of *
strain  for large X  is the same as eq. (39c).   

Figure 8 compares the strain distribution predicted by eq. (38a) and eq. (41a) using the SS 
(N=1) as an example.  In this case, there is only one retardation time tc = t1 and hence one  (i.e., 
= /vtc).  To facilitate comparison, we normalize 22  and *

22 by D/E.  We found that if we 

multiply eq. (41a) by a factor of 2/, then Knauss’s and PB’s theories are in good agreement with 
each other, as shown in Fig.8.  This factor is not coincident: eq. (37a) suggests that 22 approaches 

(2 / ) /D X    when X >> . Comparing this behavior with eq. (37b), we can see that far ahead 

of the cohesive zone tip 22 is equal to 2/times *
22 . Multiplying eq. (41a) by 2/ ensures that 

the stress far ahead of the cohesive zone tip is given by the same stress intensity factor KI. After 
the vertical shift, we still expect deviations between eq. (38a) and (41a) near the cohesive zone tip

X  = 1, because the effects of interaction between fracture process zone and bulk viscoelasticity 
are not accounted for in eq. (41a). However, Fig.8 shows that such deviations are not significant.  
These differences depend on  and can be explored by examining the asymptotic behavior of eq. 
(40a) and (41c) (see Section S20 of the SI).  The curves for different  can be collapsed into a 
single master curve if we plot *

22 22/ 1 strain      (or * * *
22 22/ 1 strain     ) versus X  as shown in the 

insert of Fig.8. Although this is expected for eq. (41b), it is interesting to see that it also 

approximately holds for eq. (39a) except the small deviations at the cohesive zone tip X  = 1.  
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Figure 8 Normalized strain distribution 22 DE /   and 22
*

DE /   directly ahead of the cohesive 

zone tip ( 1X  ) for SS with N = 1, = 0.99 and 4 different .  The strain in eq. (41a) is multiplied 

by 2/to bring it into agreement with eq. (38a) for 1X  . The inset shows that by plotting 

22 22  1/  strain    (or * * *
22 22/ 1 strain     ) versus X  all curves for different collapsed into a 

single curve.   

 

4.2 Solutions for PLS 

  In this section we present results for PLS. We start with the stress in eq. (37a) and find that 

22  directly ahead of the cohesive zone tip is given by  

     1
22 1, 0 tan 1 , ,

2 2
D

PLX Y X X m
E

   






            
,      (42a) 

where  = /vtc and 

1 1
( , , )

11 ( )
PL m

X

X m d
X

 
  



 
   

 .         (42b) 
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As in the GMS, the first term in eq. (42a) is the elastic strain of a fully relaxed solid (i.e., 22  ) and 

the second represents the reduction in strain due to viscoelasticity. Using eq. (36b), we find  

     
 1

, ,
1

2 tan 1

PL

strain

X m
X

X

 


 


 

 
.          (42c) 

For general m, we have not been able to obtain a closed-form solution in terms of well-known 
special functions.  However, there is a special case where the integral in eq. (42b) can be evaluated 
exactly: m = 1/2.  In this case, strain  is found to be (see Section S21 of the SI) 

       1

1
1

2 1
1, , 1 / 2 ln

1 1 12 tan 1 1
strain

X

X m
X X XX

X X


 

 
 



  
 

          
 

, 

               for 1X    ,      (43a) 

 

   1 1

1

1, , 1/ 2

2 1 1 1
sin sin 1 1/

1 112 tan 1

strain X m

X X
X

X XXX

 

  
   

 



 

     
                    

, 

            for  1X      (43b) 

These two expressions are continuous at 1X  where  

 
  1

1 12
1, 1/ 2  

2 tan 1 /
strain X m

 
  

 
  

 
.                 (43c) 

The asymptotic behaviors of strain  in case of m =1/2 can be readily found using eq. (43a) and 

(43b). For  >> 1 (i.e., slow crack velocity), the 
strain  in eq. (43a) simplifies to  

        
 1

1 2 1 1
1, 1,  ln

2 12 tan 1 1
strain

X
X m

XX X
X

 






 
 

              
 

 .      (44a) 

As expected, for slow crack growth, the contribution to the strain from viscoelastic flow is 

insignificant, even at the cohesive zone tip ( X  = 1). For  << 1 (i.e., fast crack velocity), the 
strain  

at a fixed X as  → 0 is obtained using eq. (43b):  
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 
1

1

1

2

2 1
( 1, 1, ) sin

22 tan 1
strain

X
X X m

XX
  






 
  
  

   
 

 .         (44b) 

Similar to the GMS, it is useful to consider the strain at the cohesive zone tip X  = 1. For 
> 1, eq. (43a) implies that 

 2 1
( 1, 1, 1/ 2) ln 1

1strain X m
   
 

     


.        (45a) 

For < 1, eq. (43b) implies that 

 1sin 12
( 1, 1, 1/ 2)

1
strain X m

 
 

 
   


.            (45b) 

In particular, eq. (45b) shows that in the high crack velocity limit ( << 1), ( 1)strain X   

approaches , which is expected due to the unrelaxed solids surrounding the cohesive zone with 
high crack velocity. 

Next, we use the approximate stress field in eq. (37b) based on the K-field outside the 
fracture process zone. In this case, a closed-form solution for *

22  directly ahead of the cohesive 

zone tip can be obtained for any m (see Section S22 of the SI).  

    *
22 2 1

1 3 1
1 , , ,

2 1 2 2
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D X

X F m m m
m X

X Y
E X
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      

  


   ,       (46a) 

where  = /vtc and 2F1 is the hypergeometric function. Accordingly, *
strain  is given by  

        *
2 1

1 3

2 2

1
1, , , , ,

2 1strain

m
X X

X m F m m m
m X

   



 
  
 

   


.      (46b) 

Equation (46b) indicates that *
strain  depends only on X  , m and , implying that in absence of 

interaction between cohesive zone and bulk viscoelasticity, *
strain  at a given X scales inversely with 

vtc.  Using the asymptotic behavior of the hypergeometric function (see Section S23 of the SI), we 
found the following asymptotic behaviors for *

strain  

          *
2 3 / 2 1

1, 1,
2 1strain

m
X m m

X X m
m

 
 




   

  


,     (47a) 

 1, 1,strain X X m     ,             (47b) 

where  is the Gamma function. Equation (47a) shows that for slow crack velocity, we need to 
move ahead of the cohesive zone tip by a distance of 1 /X    or cX vt  for the viscoelastic 
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effect (i.e., *
strain ) to vanish.  Comparing eq. (47a) with (39c), the rate of decay of *

strain  in the PLS 

is much slower than the GMS in this regime.  Thus, the PLS predicts a much larger region where 
viscoelastic effect is present. Finally, for m = 1/2, the hypergeometric function eq. (46a) is 
elementary and is (see 15.1.13 in [25]) 

  

1 11/2

2 1

1 1 1 1
,1, 2, 2 1 1 2 1

2

X X
F

X X X

 
  

 
       

          
         

        

(48) 

The strain distribution 
22  and 22

* , normalized by and /D E  , for a PLS with m = 1/2 

and  = 0.99 and different  is shown in Fig. 9.  The results of eq. (42a) and (46a) can be brought 
into good agreement, except near the cohesive zone tip, if the strain in eq. (46a) is multiplied by a 
constant factor of 2/ which originates from the difference in the far field stress given in eq. (37a) 
and (37b), as already discussed for Fig.8.  Similar to SS, the curves for different   collapse into a 

master curve (except near X  = 1) when the vertical and horizontal axes are replaced by 

22 22  1/  strain     (or * * *
22 22/ 1 strain     ) and X respectively (see Fig.9 inset). 

 

Figure 9 Normalized strain distribution 
22 DE /   and 22

*
DE /   directly ahead of the cohesive 

zone tip ( 1X  ) for PLS with m = 1/2, = 0.99 and 4 different.  The strain in eq. (46a) is 

multiplied by a constant factor of 2/ to bring it into agreement with eq. (42a) for 1X  . Inset 
shows that curves for different  collapsed into a master curve (except when X  is close to 1) when 
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the vertical and horizontal axes are replaced by 22 22  1/  strain     (or * * *
22 22/ 1 strain     ) and X

respectively. 

 

5. Residual strain on crack surface 

 As a material point sweeps past the crack tip and enters the crack surface, it unloads 
completely but the accumulated strain takes a finite distance to vanish, the residual strain in this 
region can be seen in experiment [45] and reflects dissipation.  In this section, we use the residual 
strain on the crack surfaces, 22(X < 0, Y = 0), to characterize the viscoelastic effect behind the 
crack tip. Solutions of the residual strain requires knowledge of the detailed stress distribution 
within the cohesive zone, which is not available in the K-field based approximate stress distribution 
in eq. (37b). Therefore, only results based on the stress fields with the DB cohesive zone model 
(i.e., constant cohesive stress D) will be included. 

 

5.1 Solutions for GMS 

 A detail calculation shows that for GMS (see Section S24 of SI), the residual strain behind 
the crack tip is given exactly by 

       22
1

0, 0 exp
2 n n

N
D

n
n

X Y a X erf
E

   
 

    ,      (49a) 

where /X X   and n ≡ /vtn. Equation (49a) shows that 22 decays exponentially with | |X  

and the decaying distance is governed solely by | |n X  which is independent of the cohesive zone 

size .  The maximum residual strain occurs right behind the crack tip (i.e., at X = 0), and is given 
by 

     22
1

0 , 0
2

N
D

n n
n

X Y a erf
E

  



    .        (49b) 

Equation (49b) shows that the magnitude of the residual strain decreases as the crack velocity 
increases, although the distance of decay increases linearly with velocity since it is directly 
proportional to  1 / n .   Since 1 2 .... N     , the decay is controlled by the largest retardation 

time tN.  Hence the residual strain far behind the crack faces is: 

       22 1, 0 exp
2

D
N N NX Y X erf

E

    


    .          (49c) 

Thus, the decay distance can be estimated by setting 1N X   which yields NX vt . At this 

position the residual strain is 1/e of its maximum value at the crack tip.     

5.2 Solutions for PLS 
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For PLS, exact solution of the residual strain distribution on the crack surface can also be 
obtained (see Section S25 of the SI), which is 

   
22

1 , 0
0, 0, 1

2 1

m

D
m

X X
X Y m

E X
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where  = /vtc and 
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.        (50b) 

Recall that 2F1 is the hypergeometric function and  is the Gamma function.  An equivalent form 
of is given in Section S25 of the SI. The maximum residual strain occurs just behind the crack 
tip at 0X  , which is  
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         (51) 

The asymptotic behavior of  max
22 0 , 0X Y    for  << 1 (fast crack velocity) can be obtained 

directly from the series expansion of the hypergeometric function in eq. (50b), which is (see 
Section S26 of the SI) 

     
22

2 1/ 2
0 , 0, 1

2 ( )
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   
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
 .                    (52a) 

Thus, the maximum residual strain vanishes as the reciprocal of the square root of the crack 
velocity.  Similarly, the behavior of  22 0 , 0X Y    for  >> 1 (slow crack velocity) is found to 

be (see Section S26 of the SI): 

     
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1 / 21
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2 1
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 
.                 (52b) 

Just as in the case of GMS, eq. (52a) and (52b) indicates that the maximum residual strain 
decreases as the velocity increase.    

 At large distances behind the crack tip (i.e., | X | >>1), the residual strain should go to zero.  

For the special case of SS, the residual strain decays exponentially fast with | X | as governed by 
the characteristic length cvt  (see eq. (49c)). For PLS, the characteristic decay distance is still 

controlled by cvt , but the rate of decay is much slower.  To obtain the decay behavior, we first 

rewrite the residual strain distribution in eq. (50a) as (see Section S27 of the SI): 
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. (53a) 

Equation (53a) is exact since we have made no assumption that distance is large.  Since X   

appears as a unit, one must insist 1X   (instead of 1X  ). Therefore, for fast crack 

velocity (i.e., 1  ),  the characteristic decay distance can be very large (i.e., 1 /X  ) even 

though the magnitude of residual strain is small.  In the limit of 1X  , the first order behavior 

of eq. (53a) is (see Section S27 of the SI):  
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Recall that eq. (52a) shows the maximum residual strain is proportional to   (small) in the limit 

of fast crack velocity. Here eq. (53b) shows that the residual strain decays with | X | in a power 
law (i.e., ~ 1/ 2| | mX   ) and the characteristic distance of decay scales with 1/.   

 Finally, for the special case of m = 1/2, the residual strain distribution is elementary (see 
Section S28 of the SI)  
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.            (54) 

The normalized residual strain distribution 
22 / DE    is plotted in Fig.10 for different values of  

for the case of the SS (N =1) (solid lines)and PLS (m = 1/2) (dash lines) as a comparison.  The 
long and short times moduli for both cases are chosen to be the same.    
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Figure 10  Normalized residual strain distribution 
22 / DE    on crack surface (X < 0, Y = 0) for 

the SS and the PLS (m = 1/2) for different .  Both materials have the same short and long times 
modulus and E/E0 = 0.01. The solid lines represent results for the SS and the dashed lines 
represent results for the PLS.  The inset shows that all SS curves can be collapsed into a single 

master curve by translating the curves vertically according to  erf  (see eq. (49a) with N = 1).   

For the PLS, the curve cannot be brought exactly into a single master curve.    

 

6. Crack opening displacement 

de Gennes [20] was the first to suggest that the dissipation zone can be identified as the 
“liquid” trumpet region of the Crack Opening Displacement (COD), i.e., the “liquid” trumpet 

separates the “soft solid” region in the far field ( X  → −∞) from the “hard solid” region.  Here we 
present the COD for GMS and PLS. Like Section 5, we will only present results based on the exact 
stress field with the DB cohesive zone in eq. (37a), since solutions of the COD requires the detailed 
stress distribution in the cohesive zone, which is not available in the approximate stress field in eq. 
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(37b). To maintain dimensional consistency, we normalize the COD ucod by the critical cohesive 
separation of the DB model  0: 0/cod codu u  . 

6.1 Solutions for GMS 

 For the GMS, a useful form of the normalized COD 
codu  is given by (see Section S29 of 

the SI) 
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where 0/G G G , /n nvt  , ( )F X  and ( )F X  are defined in eq. (6b) and (6c), and the 

function ( , )nQ X  is defined as 
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The first term ( )codu GF X  in eq. (55a) is the normalized COD of a crack in a purely elastic solid 

with the relaxed modulus E .  The second and third term in eq. (55a) represent the reduction of 

COD due to viscoelasticity.  Unfortunately, we cannot find an expression for ( , )nQ X  in terms 

of known special functions.  As before, we define the relative difference cod ,   
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    (56a) 

to characterize the extent of the viscoelastic trumpet.  Note that 0 ≤ cod  ≤ 1.  When N  >>1 (i.e., 

low crack velocity), cod  approaches zero. When N <<1 (i.e., high crack velocity), cod

approaches .  Therefore, when cod  is small in the limit of low crack velocity, the material is fully 

relaxed, implying that there is no viscoelastic trumpet.  The viscoelastic trumpet of de Gennes 

appears where cod  is not small.  To illustrate this point, Fig.11 plots the COD  / 1cod cod codu u     

for SS (N=1) for different values of  .  Recall the FDR 1K G    depends only on  , and hence 

each /cod codu u   curve corresponds to a different FDR which is also labelled on the curve.  Note that 

since codu  is normalized by 
codu , the upper and lower horizontal lines / 1cod codu u    and 

/ 1cod codu u     in Fig.11 represents the COD in a fully relaxed and a glassy solid respectively.   

The trumpet region is the curve in between these two horizontal lines. From eq. (6a), (8b) and the 

definition ( )codu GF X  , we must have  
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Hence each of the horizontal lines in Fig.11 is associated with a particular value of FDR.   

A more quantitative way to estimate the size of the “viscoelastic trumpet” is to find the 

location where cod  becomes small.  Although eq. (55a) is valid for 1X   (i.e., including the 

cohesive zone), here we focus on the COD behind the crack tip, i.e., 0X  . In Section S30 of the 

SI, we show that the COD for large 
N X , which occurs either X  is large or N  is large or 

both, is given by 
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Using the asymptotic behavior of ,F F  , we have 
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The implication from eq. (57b) is that cod  becomes small when  
N X  is large, i.e., when 

~ 1/ nX   or ~ ave
cX vt . Hence the size of viscoelastic trumpet is dictated by ave

cvt .    
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Figure 11  / 1 0cod cod codu u X     versus normalized distance X  from crack tip for SS 

(N=1) with  = 0.99 and different values of  .  The corresponding FDR for each curve is indicated 

in figure.  Note that since codu  is normalized by ( )codu GF X  , the upper and lower horizontal lines  

/ 1cod codu u    and / 1cod codu u     = 10−2 represents the COD in a fully relaxed and a glassy solid 

respectively.   The vertical coordinate of each intermediate horizontal dotted line is 1 K
according to eq. (56b). 

 

6.2 Solutions for PLS 

The normalized COD for PLS is given by 

   
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F d
u X G F X

X

 


 

    
     

  ,                                                        (58) 

where  = /vtc. Following similar procedures in Section 6.1, one can evaluate cod  for PLS 

similarly to eq. (56a). Although it is possible to find closed-form solution for the COD in the region 

1X   , the solution is complicated: we have not been able to express the solution in term of 
known special functions but a power series solution can be obtained (see Section S31 of the SI).  
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We also obtain asymptotic properties of the solution (also shown in Section S31 of the SI).  In 
particular, for 0X   and 1X  , we found  
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.      (59) 

 In the special case of m = 1/2, the integral in eq. (58) can be separated into two integrals 
and each integral can be evaluated exactly after a lengthy derivation (see Section S32 of SI), i.e.,  
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The first integral measures the effect of cohesive traction on the COD and is: 
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The second integral measures the effect of far field traction on the COD: 
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In both eq. (60b) and (60c), b is defined as, 

    1b X            (60d) 

The COD for PLS with m = 1/2 is obtained using eq. (58) with the integral determined by adding 
eq. (60b) and (60c).  This solution is plotted in Fig.12 to facilitate the comparison with that of SS 
(see Fig.11) for different values of .    
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Figure 12 /cod codu u  versus normalized distance X  from crack tip for a PLS (m = 1/2 and  = 

0.99) and different values of  .  The FDR for each curve is indicated in figure.  Note that since 

codu  is normalized by ( )codu GF X  , the upper and lower horizontal lines /cod codu u  = 1 and 

/cod codu u  = 1−  = 10−2 represents the COD in a fully relaxed and a glassy solid respectively.  The 

vertical coordinate of each intermediate horizontal dotted line is 1 K . 

 

7. Dissipation Zone 

 As discussed in the introduction section, existing theories in the literature focus only on 
the total viscoelastic dissipation as manifested in the FDR , but little is known about how 
dissipation is distributed around the crack tip.  This is attributed to the lack of a thermodynamically 
based way to define energy dissipation in linear viscoelasticity. Specifically, one can define the 
following dissipation density per unit length of crack extension at any point within the moving 
coordinate system (X, Y), referred to as the local dissipation rate: 

     /D ij ij eW v     
 ,            (61) 

where ij ij  is the stress power at a material point and eW  is the elastic stress power (or the time 

rate of change in the stored elastic energy per unit volume).  However, for an arbitrary linear 
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viscoelastic model, in which a creep compliance function or relaxation function is prescribed, eW  

is not always well defined.  Certain physical assumptions are needed to define eW  and hence the 

local dissipation.  Here we refer to a method suggested by Holzapfel [46] (see Page 286-288) to 

evaluate eW , which is based on the rheological representation of GMS. A GMS can be represented 

by parallel elements consisting of an elastic spring and a set of Maxwell elements.  This physical 

model allows us to define eW  as time rate of change in the total elastic energies stored in the 

springs.  Alternatively, one can also evaluate D  by computing the power of energy dissipated by 

the dashpots.  Since the calculations are quite tedious for a general GMS, we consider only the SS 
(N =1) and give details in Section S32 of SI.  

Equipped with the definition of local dissipation for SS, we can now quantitatively discuss 
the dissipation zone around the crack tip. This can be achieved by evaluating D  and plotting its 

contour, knowing that the areal integral of D  over the entire plane is equal to the GD = G – G0. 

However, this approach can only be implemented numerically. To gain insights, we will first 
evaluate D  directly ahead of the cohesive zone tip in Section 4.1 and discuss its physical 

implications, and then plot the 2D contours of D  in Section 4.2. 

 

7.1 Dissipation rate ahead of the cohesive zone tip 

In this section, we evaluate the local dissipation rate D  for any material point directly 

ahead of the cohesive zone tip.  We first base our calculation on the crack tip stress fields in 
Knauss’s theory with the DB cohesive zone and show that for SS (see Section S33 of SI)  
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,        (62) 

where  = /vtc and the function ( , )X   is defined by eq. (38b).  Physically, /cE t   represents 

the effective viscosity for material points on the crack line and the term inside the square bracket 

is the stress acting on the dashpot.  For large X , the local dissipation rate D  in eq. (62) is 

obtained from the asymptotic behavior of ( , )X   (see Section S17 of the SI): 
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              (63) 

 A simpler expression for the local dissipation rate directly ahead of the crack tip can be 
obtained if we use the K-field based approximate stress distribution in eq. (37b). In this case, the 
local dissipation rate can be expressed in closed form (see Section S33 of SI): 
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where  = /vtc and we have added an asterisk superscript to D  to distinguish it from that in eq. 

(62).  The asymptotic behavior of eq. (64) for X >>1 is shown below 
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which is the same as eq. (63) if a constant numerical factor (2/ )2 is multiplied to the RHS of eq. 
(65). The factor 2/ is due to the difference in the far field stress prescribed by eq. (37a) and (37b), 
as discussed in Section 4.1.  However, eq. (62) and (64) differ considerably near the cohesive zone 

tip.  This can be seen by comparing them at the cohesive zone tip where 1X  .  For this case,  
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whereas 
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In the limit of high crack velocity where  → 0, using the asymptotic behavior of the 
complementary error function, we obtain  
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The maximum dissipation rates at the cohesive zone tip agree in the limit of high crack velocities 
and exhibit similar first order asymptotic behavior.  However, in the limit of low velocities (i.e.,  
→ +∞), we obtain 
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which implies that the maximum dissipation rate at the cohesive zone tip predicted by eq. (66a) 
vanishes much slower than that in eq. (66b).  This result again illustrates the fact that interaction 
effect becomes important for slow crack growth.   Hence, a non-interacting model such as the PB’s 
theory tends to overestimate the dissipation rate.    

Motivated by eq. (62), we define a normalized local dissipation rate D  as 
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From eq. (63) and (65), we expect that a log-log plot of  D  versus 2/3 X  should have a slope of 

−3 for sufficiently large values of 2/3 X .  Figure 13 shows that this is indeed the case.  As 

predicted by eq. (66c) and (66d), maximum deviation between the two theories occurs when 1X 
and  >>1 (i.e., at the tip of cohesive zone under low crack velocity).   

 

 

Figure 13 Normalized local dissipation rate D defined in eq. (67) versus 2/3 X  for a standard 

solid with  = 0.99.  

 

Equation (65) also allows us to gain insight in the scaling analysis of Saulnier et al. [21].  

Note that the asymptotic behavior in eq. (65) also applies to 0X   and  >>1 (i.e., low crack 
velocity). From a scaling perspective, we extend eq. (65) and assume the local dissipation rate 
everywhere has the form in the limit of low crack velocity ( >>1):  
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The total dissipation rate is given by the areal integral of * ( , )D R  : 
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   is assumed to be a numerical constant of order 1.   Using eq. (37b), we 

replace D  by / 2IK   and obtain  
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showing that GD is proportional to the crack velocity v, as noted by Saulnier et al. [21]. It should 
be noted that the analysis above is based on eq. (65) for the non-interacting model.  Indeed, it can 
be shown that eq. (68c) agrees with eq. (30b) in Section 3.1 for PB’s theory within a constant 
prefactor.  For the interacting model, however, since eq. (63) does not apply to the limit of  >>1 

near 1X  , the scaling behavior between GD and v under low crack velocity is not exactly linear, 
as confirmed eq. (28a) in Section 3.1 for Knauss’s theory. 

 

7.2 Areal distribution of local dissipation rate   

 To gain further insights towards the shape and size of the viscoelastic dissipation zone, we 
carry out a 2D analysis of the dissipation zone. This analysis is based on the exact stress field 
around the crack tip with a DB cohesive zone model (see Section S34 of the SI), which is valid for 
steady state crack growth in viscoelastic solid due to the correspondence principle. Using eq. (61) 
and the rheological representation of SS, we are able to calculate the local dissipation rate over the 
entire plane. The shape of dissipation zone can be evaluated by plotting the contours of D .  An 

example is shown in Fig.14 for  = 0.001 and  = 0.99.  

Since D  does not vanish exactly until one moves infinitely far away from the crack tip, 

strictly speaking dissipation occurs everywhere. However, one can define the dissipation zone as 
the region within which the integral of D  can account for most of the total dissipation rate GD. 

To demonstrate this point, we consider a series of concentric squares centered at the crack tip but 
with different sizes. The side length of each square, denoted as L, is normalized by the cohesive 
zone length , i.e., /L L  . We integrate the local dissipation rate within each square and define 
 as the ratio between the contribution from each square region and the total dissipation per unit 
crack extension, GD (see Fig.14).  The numerical results for versus L for different are given in 
Fig.15. In particular, Fig.15A illustrates the method we used to calculate the energy dissipated 
within the square of side length 𝐿ത. We divided the whole domain into progressively larger square 
regions surrounding the crack tip, i.e., Region (i – 1) ⸦ Region (i).  Then we use a set of square 
grids to partition each region (see grid in Region 𝑖 for example). The local dissipation rate is 
calculated on each black point. We multiple the local dissipation rate evaluated at these points by 
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the area of each little square, the red one for example.  The energy dissipated within each region 
is the sum of these energies.  Verification of our areal integral scheme is shown in Section S34 of 
the SI.  We keep increasing the size or number of regions until the sum of dissipated energy reaches 
a constant value which is the normalized total energy dissipation rate, as shown in Fig.15B.  Since 

the cohesive zone size  is proportional to G  (≡ G/G0) and hence varies with , in Fig.15B we 

renormalize L by the minimum cohesive zone size d (≡ / G ) which is a constant.  As is 
decreased from 105 to 10−5 (i.e., increasing crack velocity), the L required for the saturation of 
increases from ~ 10d to 108d, indicating a substantial expansion of the dissipation zone size.  

 

 

Figure 14 Contour of the local dissipation rate. The solid colored lines represent contour of 
normalized local dissipative rate.  𝐿ത is the side length of the concentric squares centered at the 
crack tip (normalized by ) and  is the ratio between the areal integral of D  within the square 

region and the total dissipation per unit crack extension, GD. 
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Figure 15 Size of the dissipation zone defined by relative contribution to the total dissipation 
rate. 

 

 8. Discussion and Conclusions 

 In this work, we present a quantiative comparative study on the theories for steady-state 
crack growth in viscoelastic solids assuming the SSC condition (i.e., infinite domain and 
dominance of K-field) and the DB cohesive zone model.  Our analysis reveals that there are no 
significant differences between the theories of Knauss, Schapery, and PB provided that the size of 
cohesive zone is regarded as a fitting parameter to experimental data.   The main difference in 
these theories arises from the different way of estimating the size of the fracture zone .  This 
results in different estimates for d, which is used to fit experimental data.  The fact is that this 
length is controlled by the parameters in the cohesive or fracture model (e.g. the cohesive stress 
D) and different models give different answers (up to numerical constants). This conclusion is 
consistent with the findings in recent works [47,48] that compared PB’s theory to Schapery’s 
theory (extended by Greenwood [49]). In addition, these models have limitations.  For example, 
there is no particular reason why fracture process has to be concentrated on a line zone. Indeed, a 
recent experimental work [50] has used mechanophores to demonstrate that bond scission in 
elastomers are not restricted to the crack plane but can occur in a delocalized manner. Given the 
simplicity of Schapery’s theory, we advocate its usage (see eq. (35d)).  However, it must be noted 
that Schapery’s theory is developed for realistic material behavior so it does not work well for 
highly idealized solids such as the SS, especially at slow crack growth velocities. 

 Our analysis did reveal that there are small differences in the prediction at low velocities 
between Knauss’s and PB’s theories.  In this regime, the relation between fracture energy and 
crack velocity is sensitive to the interaction between the fracture process and continuum fields.  
Such interaction is accounted for in interactive theories such as Knauss, but not in non-interactive 
theories such as PB.  This difference leads to different scaling behaviors of FDR, strain distribution 
and local dissipation rate in the regime of slow crack velocity.  Although the interactive theory can 
account for the exact stress field near the cohesve zone (e.g., Knauss), its solution for the slow 
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crack velocity limit may depend on the detailed form of the cohesive zone.  Since it is difficult to 
directly measure the cohesive zone parameters, predictive solution (e.g., FDR and dissipation zone) 
for the slow crack velocity regime remains an open question.  The challenge of capturing the slow 
crack velocity regime is manifested in Fig.6 and 7, where the deviation between experimental data 
and theories appears mostly in the slow crack velocity regime. 

We have obtained closed-form expressions for the residual strain directly behind the crack 
tip as well as the normal strain directly ahead of the cohesive zone tip using Knauss model.  We 
also obtained closed-form expressions for the crack opening displacement and use these 
expressions to quantify the size of the “liquid” trumpet in de Gennes’s theory.  The scaling analysis 
of Saulnier et al. [21] shows that a significant amount of energy can be dissipated before the a full 
trumpet is established.  Our analysis verified this result.  This result reveals a weakness of de 
Gennes’s argument, that dissipation is associated with the viscous trumpet.  Indeed, if a significant 
energy dissipation occurs before the establishment of a full trumpet, there is no direct 
correspondence between crack opening profile and dissipation.  Intuitively, one may argue that 
since the stress tensor on the crack surface is exactly zero, the work rate on material points there 
is also zero, hence dissipation must occur elsewhere other than the crack surface.  Since 
deformation of the crack surface can be affected by stresses far away from the surface, it is far 
from certain that there is a direct link between dissipation and the deformed crack profile.   

A key point discussed in this work is the size of dissipation zone. de Gennes suggested that 
the size of dissipation scales with E0vtR/E∞ [20].  An estimate for vtR can be obtained using the data 
from Gent and Lai [23].  Their Figure 13 shows that G increases from G0 to its high velocity limit 
as crack velocity v increases from 10−20 m/s to 10−2 m/s.  If we estimate the characteristic relaxation 
time using the frequency R corresponding to the peak of the tan curve in their Figure 17, we 
obtain tR = 2/R ≈ 2/10−2 s−1.   Hence, in their experiments, vtR varies from 10−17 m to 10 m, and 
E0vtR/E∞ is sub-angstroms at low crack velocities., We also confirmed, by fitting theory to 
experimental data, that the size of the cohesive/fracture zone is very small (between 1 angstrom 
and 1 nm), so neither of these length scales can realistically represent the size of the dissipation 
zone (the lower bound is the length of a polymer chain between cross-links as established by Lake 
and Thomas [51]).  By computing the local dissipation rate, we have been able to determine the 
shape and size of dissipation zone based on a criterion of relative contribution to the total 
dissipation.  Our result shows that the dissipation zone size is about 10 times the minimum 
cohesive zone size d (i.e., 10d ~ 10 nm if d ~ 1 nm) in the limit of slow crack velocity. However, 
the size of the dissipation zone increases with crack velocity and can be as large as 108d at large 
crack velocities as shown in Fig.15B.  It should be noted that this result is for a SS solid, and 
quantitative result could be different for more realistic viscoelastic behavior.  More complex 
viscoelastic behavior will be considered in a future work.    

Finally, we emphasize that this work focuses on steady-state crack propagation in an 
infinite viscoelastic domain. While de Gennes [20] and Saulnier et al. [21] suggested that effect of 
finite specimen size would result in a critical velocity beyond which the fracture energy decreases 
with crack velocity, different opinion has been raised [47]. Although the finite size effect is not 
the focus of this work, we note two points regarding the implications of our analyses. First, the 
underlying physics of finite size effect is essentially how the viscoelastic dissipation zone interacts 
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with the boundary condition. To this end, it is critical to have a well-defined method to compute 
energy dissipation, which would enable clear identification of the viscoelastic dissipation zone. 
Second, the assumption of steady state crack propagation should be examined with caution in case 
of finite-sized specimen. In principle, the method to define dissipation rate, as presented in Section 
7, can be extended to finite-sized geometry or even non-steady state crack propagation. Combining 
such definition with computational methods (e.g., finite element analysis) or experimental methods 
(e.g., imaging-based strain field mapping) may lead to a more precise understanding on the finite 
size effect. 
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S1. Stress field for a crack with a Dugdale-Barenblatt cohesive zone 
 We follow the geometry and coordinate system defined in Fig.1A of the main text.  A 
Dugdale-Barenblatt cohesive zone with constant cohesive stress D occupies the line segment: 0 
≤ X ≤  and Y = 0.  To describe the stress field, we introduce the complex variable z = X + iY where 

1i   . In general, one can write the stress fields in terms of a stress function (z) [1]: 

𝜎ଵଵ ൌ 2Reሾ𝜙ᇱሺ𝑧ሻሿ െ Reሾሺ𝑧̅ െ 𝑧ሻ𝜙ᇱᇱሺ𝑧ሻሿ,        (S1a) 

𝜎ଶଶ ൌ 2Reሾ𝜙ᇱሺ𝑧ሻሿ ൅ Reሾሺ𝑧̅ െ 𝑧ሻ𝜙ᇱᇱሺ𝑧ሻሿ,                                         (S1b) 

𝜎ଵଶ ൌ Imሾሺ𝑧̅ െ 𝑧ሻ𝜙ᇱᇱሺ𝑧ሻሿ.                                                     (S1c) 

For the SSC problem shown in Fig.1A, the complex stress function  is given by: 

𝜙ᇱሺ𝑧ሻ ൌ
𝜎஽
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Substituting eq. (S2a)-(S2b) into eq. (S1a)-(S1c), we obtain 
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The stress field given in eq. (S3a)-(S3b) is valid for both linear elastic and viscoelastic materials. 
Note that the stress field is independent of modulus.   

 

S2. Derivation of eq. (11a)-(11b) 
 In Schapery’s analysis, he defined a creep function Cv(t) which is 4 times the uniaxial 
tensile creep function in plane strain (see discussion after equation (4) of Schapery [2]).  In our 
notation, Cv(t) = 4(1−2)J(t), where  is the Poisson’s ratio. Since we focus on results for plane 
stress, Cv(t) should be 4J(t).  Schapery [2] assumed a power law form of the creep compliance 
function Cv(t), and obtained the following expression connecting the local energy release rate G0 
and the stress intensity factor KI (see his equation (47) [2]): 

      20 1

2 8 v I

G
C t K  , t

v
 ,        (S4a) 
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where  is the cohesive zone length and (denoted as “𝜆௡
ଵ/௡ ” in Schapery [2]) has a weak 

dependence on the power parameter of the creep function Cv(t) and is found to be approximately 
1/3 by Schapery [2].  Note that the local fracture energy, denoted as “” in Schapery [2], is 
equivalent to G0/2 in our notation, since its definition only involves the upper half of the cohesive 
zone separation.  Regarding the cohesive zone length , Schapery considered arbitrary distribution 
of cohesive stress in the cohesive zone and found that [2]: 

    
2

2
I

m S

K

I



 

  
 

,         (S4b) 

where m is the maximum cohesive stress and IS is a constant reflecting the effect of non-uniform 
cohesive stress (ranging from 0 to 2 and given in equation (2b) of Schapery [2]). In our work, since 
we consider only the Dugdale-Barenblatt cohesive zone with a constant cohesive stress D, we 

have m = D and 𝐼ௌ ൌ ׬  𝜉ିଵ/ଶ𝑑𝜉
ଵ

଴  = 2. As a result, eq. (S4b) reduces to 

      
2

28
I

D

K


 ,             (S4c) 

which is identical to that given by Knauss’s theory (see eq.(4a) of the main text).   

 Assuming plane stress condition, we can cast eq. (S4a) in terms of our notation using eq. 
(6d), (7a), (8b) of the main text, i.e.,  

   0 1 1
1 1S

c

G
J J

G J v J vt

  
 

           
   

 ,      (S5a) 

where J  (t/tc)J = J(t) + J∞and  ≈ 1/3. To simplify notation, we absorb the factor ≈ 1/3 
into  and define   

  
2

2 2
08 8

S SI

D D

K G G
d

J G

    
 

    ,    0
28

S

D

G
d

J




 .      (S5b) 

This is equivalent to increasing the cohesive stress D by a factor of approximately √3. Therefore, 
eq. (S5a) becomes: 

    1 1S
S S

c

J J
J vt J

 
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S
S

cvt
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which is eq. (11a) of the main text.  
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S3. Derivation for Table 1 
 In standard notation of viscoelasticity [3,4], the stress and strain relation under uniaxial 
tension is 

     t d
t J t d

d

 
  




  .                              (S6a) 

Using integration by parts we obtain 

               0

t t
t J t

t J t d J t J t d
d


           


 


       ,     (S6b) 

where ( ) /J t dJ dt  .  In the PB’s work, the compliance function CPB(t) is defined such that  

     
t

PBt C t d    


  .        (S7a) 

By comparing eq. (S6a) and (S7a), we conclude  

         0PBC t J t J t   .        (S7b) 

where ( )t  is the Dirac delta function with the property that ׬ 𝛿ାሺ𝑡ሻ𝑑𝑡
ஶ

଴  = 1.   

The connection between the complex moduli (i.e., according to the standard notation and 
PB’s notation) is simple but more difficult to show.  First, we take the time Fourier transform of 
the strain and stress in eq. (S6b) according to PB’s notation: 

   1
ˆ

2
i te t dt  







  ,      1
ˆ

2
i te t dt  







  .      (S8a) 

It should be noted that eq. (S8a) is different from the standard notation. For example, in the 

standard notation the Fourier transform of the strain is defined as    i te t dt  
 


  [5], where 

the pre-factor 1/(2) is absent and the exponential term is e−it rather than eit as in eq. (S8a). We 
follow PB’s notation and substitute eq. (S8a) into eq. (S6b), which gives 

       

       

 

   

0

0 0

0 0

ˆ

1
ˆ ˆ

2

1
ˆ ˆ

2

t
i t

i t si s i t

J e J t d dt

J e J s e t s dt ds J J t e dt



 

 

       


    




 

  




 
   

  
  

       
     

 

  


.    (S8b) 

PB defined their complex creep compliance PBC  using    ˆ ˆPBC    .  Using eq. (S8b), we see 

that it is related to the standard creep function ( )J t  by  
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      0

0

i t
PBC J J t e dt


    .         (S8c) 

Integration by parts give 

     0
0

0 0

( ) ( ) ( )i t i t i t
PBC J J t J e i J t J e dt J i J t e dt    

 


           .      (S8d) 

Comparing this with the standard notation where the complex creep compliance is  

       
0 0

( ) i t i tJ J i J t J e dt J i J t e dt   
 

  
         ,      (S8e) 

we find 

      ( )PBC J             (S8f) 

Since the imaginary part of 1 / ( ) ( )PB PBE C    and ( )J   has opposite signs, the dissipation rate 

would be negative if the standard complex modulus ( )E   is used in PB’s formulation.  Note that 

the sign change in  has no effect on the storage modulus since it is an even function of the 
frequency. 
    

S4. Derivation of eq. (13a) and (13b) 
Using eq. (S8d), we can convert the integral in eq. (12a) to  

 
1 12

2

0 0 0

1 1
Im ( ) cos 1

( )
c c

PB c

d J t dt t d
E


     

  





 
     

 
   ,     (S9a) 

where 2 1 ( )PB PB
c cv / / t      is the cut-off frequency in PB’s theory.  It is well known that  

     
1

2
1

0

cos 1
2c c

c

t d J t
t

    


           (S9b) 

where 1J  is the Bessel function of the first kind of order one.  Substituting eq. (S9b) into eq. (S9a) 

gives 

  
1 2

1 1

0 0 0

1 1 ( ) ( )
Im

2 2( )
c PB

PB c

J t J
d J t dt J d

tE

      
   

 



     
          

  


,       (S9c) 

where t = t/tc, ( ) ( / )cJ t J t t  , and 1 ( )PB
c c/ t  .  The standard definition of Hankel transform 

of a generic function f(), denote by   1 ,H f    is [6] 
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        1 1

0

,H f f J dt    


  .        (S10a) 

By identifying    ( ) /f J    and 1/ PB  , we have 

1 2

1 3/2
0

1 1 ( ) 1
Im ,

2( )
PB

PB
PB c

J
d H

E

   
    

    
        

 .    (S10b) 

Recall that 2 PB
c v /   . Substituting eq. (S10b) into eq.(12a) gives eq. (13a).  

The derivation of eq. (13b) proceeds in the same way. The integral in eq. (12b) can be 
rewritten as  

 
 

    
1 1

max max max*
max0 0 0 0

1 ( )
Im ( ) cos 1 cos

d J t
J t dt t d t dt

tE

     
 

   
       

 
    ,  (S11a) 

where max = v/. Therefore, the FDR of de Gennes is: 

      max*

0 0

1 cos 1 cos /1
0 ( ) ( )dG D

t vtG
E J t dt J t dt

G t J t

 


 



     
           

   
  ,   (S11b) 

where we have used  * 0 1/E J   . 

 

S5. Derivation of eq. (18c) 
We apply integration by parts to the integral I(): 

           
1 1 1 1

0 0 0 0

1 1 1 1
1 1

4 1

e
I e F d F d e F e d d


        

    


             

     

             (S12a) 

where we have used  F   given in eq. (6b) to obtain 

  1 1

4 1
F 


 


        (S12b) 

The integrand in eq. (S12a) has a removable singularity at  = 0.  Expanding the numerator in a 
power series, we find 

 

   

       

1 1

00 0

0 0

1 1 1 ( 1)

4 4 1 !1 1

( 1) ! ( 1)

4 1 ! 3 / 2 4 1 3 / 2

i i i

i

i i i i

i i

e
I d d

i

i

i i i i

    
   

   

 



 

 

 
  

 

 
 

     

 

 
.     (S12c) 



8 
 

The series in eq. (S12c) has infinite radius of convergence and converges rapidly.  We can also 
express I () in terms of Kummer’s Confluent Hypergeometric function by writing 

   1

10
0

exp 11
lim

4 1
I d




 

  

  
  

  
  .      (S13a) 

The integral in eq. (S13a) can be evaluated using the following identities (see 3.383 on Page 318 
of [7]) 

 
     

 
1

1
0

exp 1/ 2 1
, ,

1 / 2 21
d M



 
   

 

           ,     (S13b) 

and  

   
 

1

1
0

1 / 21

1/ 21
d






 

 
  

  .      (S13c) 

Adding eq. (S13b) and (S13c) and taking the limit of   going to zero gives eq. (13c) in the main 
text.  One can also use the series expansion of the Kummer’s Confluent Hypergeometric function 
to obtain the power series in eq. (S12c) or eq. (18c) of the main text.   
 

S6. Derivation of eq. (18d) and (18e)  
We first use Watson’s Lemma to determine the asymptotic behavior of I() for large .  

   
1 1

0 0

1 11 1
ln

4 4 1 1
I e F d e d  
   


     

    
0

1 11
1 ln

4 1 1
I e d 
 




  

 
  . 

 (S14a) 

Equation (S14a) can be further expanded as follows: 

   
0 0

0 0

2
0 0

1
1 ln 1 1 ln 1 1

4

1
ln 2 1 ... ln 1 ...

4 4 2 4

1 ln 2 1
... ln ln 1 ...

4 2 44

I e d e d

e d e d

e dr e d

 

 

 

    

   

  
 

 
 

 
 

 
 

         
  

                            
                

    

 

 

 
 


  

 .   (S14b) 

We note  

  
0 0

ln 2 ln 2 ln
ln ln ln

2
e d e d      

  

 
           

   ,   (S14c) 
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where 05772156649. ...   is the Euler constant, and 

 3
2

0

1
ln 1 ..

4 4
e d O   




          

 .       (S14d) 

By combining eq. (S14b)-(S14d), we obtain 

  2 2 2

1 ln 2 1 ln 2 ln 1 ln 2ln 2 1
1 .. .. ..

4 44 4 8
I

   
     

                     
     

. 

             (S14e) 

Replacing the generic  by K
n  and substituting eq. (S14e) into eq. (18a), we obtain eq. (18d).  

In the limit of small , we use the first three terms of the power series in eq. (18c) in the 

main text to compute I() and derive eq. (18e) by replacing the generic  in I() by K
n  and using 

eq. (18a).  
 

S7. Derivation of eq. (20a) 

Using PB’s definition of complex modulus *
PBE , it is easy to show the following relation 

for GMS: 

   
 

 
 

*
0* 2

1

1
Im Im

1

N
n n

PB
PB n n

a t
C J J

E t




 




  


 .     (S15a) 

Substituting eq. (S15a) into the integral of eq. (12a) of the main text and using  0PBE    = E∞ 

= 1/J∞, we get  

 
 

     
1 12 2

2 1
0 02

1 10 0

1 11
Im 1

2( ) 1

N N
n c n

n c n c n
PB c n nc n

a t
d J J d J J a t t

E t

      
   

 
 

 

                 
    

             (S15b) 

where 2 PB
c v /    is the cut-off frequency in PB’s theory. Combining eq. (S15b) and eq. (12a) 

of the main text, we obtain eq. (20a).  

 

S8. Derivation of eq. (22a) 
To derive eq. (22a), we plug the creep compliance function for the PLS (in eq. (17)) in eq. 

(10a): 

     1 1

0 0

2
2 2

1

K K
PLmK

F d
J F d I

J

 
     

 


      

  
  .   (S16a) 
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Integration by parts gives 

     

        

   

1
1

0

11
1 1

0 0

0

1 1
1 1

10
0 0

1
1 1

1

1
1 1 1 1

1

1 1 1 11 1
lim

1 4 4 11 1

mK
PL K

m mK K
K

m mK K

K K

I F d
m

F F dr
m

d d
m m 

  


     


   
 

    



 

 



     

 
                 

             
   
 





 


.  (S16b) 

The integral in eq. (S16b) can be determined by using 

   
1

1

2 11
0

1 1/ 2 1
1 , , ,

1 21
2

mK

Kd F m


  
   

  





                 
 

     (S16c) 

and 

  
   
 

1

1
0

1/ 21

1/ 21
d






 

 


  ,       (S16d) 

where 2F1 is the Gauss Hypergeometric function. Combining eq. (S16c) and (S16d), we have  

    2 10

1 1
lim 1 , , , 1

4 1 2
K

PL K
I F m

m 
   

 

                 
.       (S17) 

Substituting eq. (S17) into eq. (S16a) gives eq.(22a).  
 

S9. Derivation of eq. (22b) and (22c)  
For 1K  , the hypergeometric function in eq. (S17) can be expanded as a convergent 

power series, 

   
 

 

    
  

 

2 1
0

2

11
1 , , ,

2 1/ 2 !

1 1 1 ( )
1 ....

1/ 2 1/ 2 3 / 2 2!

kK

K k k

k k

K

K

m
F m

k

m m m


  



  


  





         

    
   

  


  ,    (S18a) 

where we have used the notation:     / ( )
k

a a k a    . Equation (S18a) implies the following 

result as → 0+: 
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   
  

 
   

2 1
0

2

1

1
lim 1 , , , 1

2

11 1 ( ) ( )
...

1/ 2 1/ 2 3 / 2 2! 1/ 2

K

K
kK Kk

k k

F m

mm m m

k


  

   







          
      

      
 


.   (S18b) 

Recall that     / ( )
k

a a k a    . Since   1    as 0  , combining eq. (S17) and (S18b), 

we obtain 

   
 
   

1

11 1
, 1 ... ,      1

4 1 1 / 2 2 3

kK K K Kk
PL K

k k

m m
I m

m k
   







             
 .   (S18c) 

In the limit of 1K   (large crack velocity), using eq. (S18c) and (S16a), we obtain 

 1 1 ....
3

K K Km        
 

,        (S18d) 

which is eq. (22b) in the main text.  

For 1K  , we use the linear transformation formula for hypergeometric functions to 

evaluate eq.(S17). Specifically,   

   

 
 

   
     

1

2 1 2 1

2 1

1 / 2 11 1 1
1 , , , 1 1 , , ,

32 2
2

1/ 2 1 1 1
                                                 , , 2 , 1

1 1/ 2 2

mK K
K

K
K

m
F m F m m m

m

m
F m

m



 
     

 

 
  







                            
 

       
         

             (S19a) 
Since 1 / 1K  , we can use the power series expansion of the hypergeometric function and after 

taking the limit of 0  , we obtain 

 
   

     2 1 2

11 1 1 1 1 1 (3 / 2) 1
1 , , , 1 ...

34 1 2 2 3 2!2
2

mK
PL K KK

m
I F m m m

m m m
m




 



 
                              

 

             (S19b) 

Substituting eq. (S19b) into eq. (S16a) and keeping the dominant term for 1K  , we have 

                   
 

   1
1

2 1 3 / 2

mK K Km

m m

 
  

    
    

                                                       (S19c) 

which is eq. (22c).       
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S10. Derivation of eq. (23a)-(23c) 
For the special case of PLS with m = 1/2, we have 

 
 

21 1

2
0 0

1 11 11 1 1
,

2 2 11

K KK
K

PL K
K

r
I m d dr

r

  
 

  

              ,   (S20) 

where we have implemented a change of variable: 21 r   . The integrand has a removable 

singularity at r = 1.   We divide the integral in eq. (S20) into two integrals and evaluate each with 
upper limit at r = s < 1.  The first integral is   

 
   

1 2

2 * 2 * 2 * 2

2 2
0 0 0 0

1 1 1 1 1
1 1

2 1 11 1

K Ks s s s

K K

I I

r r r r
dr dr dr dv

r rr r

     

 
     
     

    
  

   
 

(S21a) 

where * / (1 )K K      or *1 1 / 1K    . The two integrals in eq. (S21a) can be carried 

out exactly, i.e.,  

   
*

* 2 * 1 * * *
1 * * * 2

1 1
1 1 sin 1 ln 1 ln 1

1 1 1
I s s s

s s

    
  


  

              
 

             (S21b) 

   * * 1 * * *
21

lim 1 1 sin 1 ln 1 1
s

I     


                                   (S21c) 

Adding eq. (S21b) and (S21c) and taking the limit of s → 1, we have 

       
*

1 * *
1 2 *1

1 1 1
lim sin ln 2 1 ln 1

2 2 21

K

s
I I s

   






        
,   (S21d) 

where we have used *1 1 / 1K    . The last term on the right hand side of eq. (S21d) is 

singular as s → 1, which should be canceled by the second integral from eq. (S20), which is 

   2
00

1 1 1 1 1
ln ln 1 ln 1

2 1 2 21

ss
r

dr s s
rr

                  (S21e) 

Adding eq. (S21d) and eq. (S21e), we cancel the singular term ln(1−s) and then take limit of s → 
1, which gives  

 
     

21 *
1 * * 1

2 *
0

1 1
sin ln 1 sin ln 1

2 11 1

K K K
K K

K

r
dr

r

      


 
 

     
 

  

             (S21f) 
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Substituting eq.(S21f) into eq. (S20) and (S16a) gives: 

11 1
2 ln 1 sin

1

K
K K

K KK

 
 


 

     
  

.       (S22) 

Note that when 0K  , we have 

      

   2 3/2
1 1 1

0 2 ... ...
2 2 1 6 1

1 1
2 ... 1 ( ) 2 ... 1 ..

2 4 2 6 2 12 6

K K K
K K K

K K KK

K K K K K
Ko

    
  

       

                           
        

                      
        

(S23) 

which is consistent with eq. (S18c) when m = 1/2.   

 

S11. FDR for PLS with different m  

 

Figure S1 FDR for PLS with  = 0.99 and m = 0.25, 0.5 or 0.75.  Results for the case of m = 0.5 
are identical to those in Fig.3 of the main text, while results for the cases of m = 0.25 and 0.75 are 
obtained using eq. (22a), eq. (24a) and eq. (25a) of the main text for Knauss, Schapery and PB, 
respectively. 
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S12. Derivation of eq. (31a) and (31b) 

In the limit of 1K   (i.e., 1Kv  ), we combine eq. (22c) and (27) and use the definition 

that K K K
cGd / vt G / v   , which results in 

  
 

 
 

11

2 1 3 / 2

m

m m

mK K

c

mG G G
c

G m m v v


 

     
          

,    (S24a) 

where we have introduced the symbol cm to simplify notation. Solving Kv from eq. (S24a), we 
obtain 

   
1/ 1/

1 /1 1
m m

m mK

m m

G G
v G G

c G c
    

    
   

, 1Kv  ,    (S24b) 

which is eq. (31a) in the main text.  

 In the limit of 1K   (i.e., 1Kv  ), combing eq. (22b) and eq. (27), we have 

  
1

1 1
3 3

K
K

G m m G

G v
  

        
   

.      (S25a) 

Using the definition that  = 1− J0/J∞, we obtain 

   
2

0 03 /
K Jm G

v
J J J G

 



 
    

,   1Kv  ,    (S25b) 

which is eq. (31b) in the main text.  

 

S13. Derivation of eq. (32c) 
We start from the exact solution in eq. (32a). In the limit of  1Sv  , we expect G  to 

approach J∞/J0 = 1/(1−. Therefore, we assume (1 )/(1 )G      where  is a small positive 

value (i.e.,  1  ). Substituting it into eq. (32a) and keeping only leading order term of , we 
obtain 

   
    

   
     1/ 1/ 2

1 / 1 1 / 1

11 / 1 / 1 1 1 / 1

S
m m

m
v

    
      

   
  

     
.   (S26a) 

Using 1 (1 )G     and  = 1− J0/J∞, we have 

  
2 1

0

0

1S JJ
v m G

J J








   
    

  
,   1Sv  ,    (S26b) 
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which is eq. (32c) in the main text. 

 

S14. Comparison with Gent & Lai’s data 
We extract the experimental data of dynamic shear modulus 𝜇ᇱ and loss modulus 𝜇ᇱᇱ versus 

effective frequency 𝜔  for a styrene-butadiene copolymer in Figure 14 of Gent and Lai [8]. 
Specifically, we divide the frequencies into small equal intervals 1i i     and extract 𝜇ᇱሺ𝜔௜ሻ 

and 𝜇ᇱᇱሺ𝜔௜ሻ from Figure 14 of Gent and Lai [8] at the nodal points i.  This information allows us 
to determine the complex shear modulus 𝜇∗ሺ𝜔ሻ ൌ 𝜇ᇱሺ𝜔ሻ ൅ 𝑖𝜇ᇱᇱሺ𝜔ሻ  at i. The complex 
compliances at these frequencies are obtained by 𝐽∗ሺ𝜔ሻ ൌ 1/3𝜇∗ሺ𝜔ሻ assuming the polymer is 
incompressible. In GMS, the complex compliance is:  

𝐽∗ሺ𝜔ሻ ൌ 𝐽ஶ െ 𝑖𝜔ሺ𝐽ஶ െ 𝐽଴ሻ ∑ ௔೙௧೙

ଵା௜ఠ௧೙

ே
௡ୀଵ         (S27)  

where ∑ 𝑎௡
ே
௡ୀଵ ൌ 1.  For convenience, we take 𝑁 ൌ 5 in eq. (S27) to determine the material 

constants 𝑎௡ and 𝑡௡.  The relax and instant compliance 𝐽ஶ and 𝐽଴ can be decided easily and directly 
by the lower and upper limits of complex compliance, i.e., 𝐽଴ ൌ 5. 81 ൈ 10ି଻Paିଵ  and 𝐽ஶ ൌ
4.00 ൈ 10ିଵ଴Paିଵ .  To impose the constraint ∑ 𝑎௡

ே
௡ୀଵ ൌ 1 , we set 𝑎ଵ ൌ 1 െ ∑ 𝑎௡

ହ
௡ୀଶ  and 

determine 𝑎ଶ to 𝑎ହ and 𝑡ଵ to 𝑡ହ through fitting. The fitting of 𝑎ଶ to 𝑎ହand 𝑡ଵ to 𝑡ହ is done by using 
the “lsqnonlin” function in the optimization toolbox of MATLAB. The fitting curve and 
parameters are shown in Fig.S2.  

 

Figure S2 Experimental data of Gent and Lai [8] for the real part of  𝐽∗ሺ𝜔ሻ and the fit using a 
GMS with 5 viscous branches. Fitted values of an and tn (n = 1 to 5) are shown in the inset table. 
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S15. Comparison with Knauss’s data  
We use the power law model given by eq. (17) to fit the data of “Batch number 1” in Figure 

3 of Knauss [9]. We choose the instantaneous and relaxed compliance to be the lower and upper 
limits. The results are 𝐽଴ ൌ 6.026 ൈ 10ି଻Paିଵ and 𝐽ஶ ൌ 3.491 ൈ 10ିସPaିଵ.  As a result, m and 
𝑡௖  are the only two fitting parameters. We use the fitting function “nlinfit” in MATLAB to 
determine the optimal values for m and 𝑡௖.  The results are shown in Fig.S3 below.  

In Figure 12 of [9], Knauss plotted 𝜀ஶ, which denotes the strain imposed on the pure shear 
fracture specimen against the crack velocity v. For plane stress and incompressible solid, the 

applied energy release rate for a pure shear fracture specimen 24 / 3tG b E   , where bt is the 

specimen thickness and E∞ is the relaxed modulus.  This equation allows us to convert Knauss’s 
strain data 𝜀ஶ to G.  To compare the experimental data with theory, G and v should be normalized 

by 0/G G G  and /cv vt d .  We chose 0G  to be the minimum fracture energy in Knauss’s data.  

The value of ct  is determined by the fitting procedure described above (see Fig.S3).  The only 

adjustable parameter in Schapery’s theory is Sd .  We found that Sd  = 0.9 nm provides the best 
fit for Knauss’s fracture test data as shown in Fig. 7 of the main text.   

 

Figure S3 Experimental data of Knauss [9] for 𝐽ሺ𝑡ሻ and the fit using the PLS compliance function 
given by eq.(17). Fitted values of tc and m are shown in the inset table.  

 

S16. Derivation of eq. (38a) 
Using the stress field with the DB cohesive zone model (see eq. (S3a)-(S3c) in Section S1),  

we find the following stress distribution directly ahead of the cohesive zone tip: 



17 
 

      1
11 22 12

2
, 0 , 0 tan ,       0DX Y X Y

X

     
 

      


,      (S28) 

where  is the cohesive zone length.  The strain directly ahead of the cohesive zone tip is obtained 
by substituting eq. (S28) into the viscoelastic constitutive relation for plane stress deformation, 
i.e.,  

  11 22
22 22

1
, 0 ( )

2 2

t

X

X X
X Y J t d J dX

v X

    






                    ,    (S29a) 

where we have used the steady state crack growth condition and the incompressibility condition 
(i.e., Poisson’s ratio = 1/2).  For GMS, we substitute the creep function in eq. (16a) of the main 
text into eq.(S29a) results in:      

     22 0
1

1
1, 0 exp ( )

2 1

N
D

n n
nX

X Y J J J a X d
   
  



 


 
         

 ,    (S29b) 

where we have used 
1

1
N

n
n

a


 , /n nvt  , /X X  ,  /X  , and  

22 D

X X X

  
 


 

 
  .         (S29c) 

We apply the following identify 

   11
2 tan 1

1X

d X 
 


  

 , 1X  ,      (S30a) 

and introduce the integral function 

  
1 1

1,
1 1 1

n n nX

n

X

e e e
X d d d

     

   
     

   

    
     .                 (S30b) 

The first integral on the right hand side of eq. (30b) can be related to the complementary error 
function: 

   2
1 0

2 2
1 21

n n

n n n

s

n n

e e
d e ds e e erfc erfc

s

  
     

 

  
   

  .     (S30c) 

Equation (S30b) and (S30c) suggest that    1, n nX erfc     .  Using eq. (S30a) and (S30b), 

the strain in eq. (S29b) is:   

         1
22

1

1, 0 2tan 1 exp ,
2

N
D

n n n
n

X Y X a X X
E

    






 
       

 
 ,   (S30d) 

where we used E∞ = 1/J∞. Equation eq. (S30d) is eq. (38a) in the main text.    
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S17. Derivation of eq. (39c) 

We first consider the asymptotic behavior of  , nX   for 1X  , which is obtained using 

integration by parts, i.e., 

        5/2
3/2 3/2 5/2 3/2

3
1,

2

n n n n

n

X X
X

n
n nX X

e e e e
X d d O X e

X X

     
  

   

    
        .        (S31a) 

Using eq. (S31a), we obtain the following asymptotic behavior for the numerator of eq. (39a) 

    3/2
1 1

exp ,
N N

n
n n n

n n n

a
a X X

X

  
 

   ,   1X  .      (S31b)   

The denominator in eq. (39a) approaches the following limit for 1X  : 

  1 2
lim 2tan 1
X

X
X

 


   

   .        (S31c) 

Substituting eq. (S31b) and (31c) into eq. (39a), we obtain the eq. (39c) for the asymptotic behavior 

of strain  for 1X  . 

 

S18. Derivation of eq. (41a) 
 We use the stress distribution given in eq. (37b) of the main text (i.e., approximation based 
on the K-field) and obtain 

 22

2
D

X X X

  
 


.          (S32a) 

Substituting eq. (S32a) into eq. (S29a) using the creep function for GMS (see eq. (16a) of the main 

text), we obtain the following equation for *
22 , 

     *
22 3/2

1

1
1, 0 exp exp

2 4

N
D D

n n n
n X

J J
X Y a X d

X

     



 



      ,   (S32b) 

where we have used /X X   and /n nvt  .  The integral in eq. (S32b) can be readily 

evaluated using integration by parts, which results in  

     *
22

1

1, 0 1 1 exp
2

N
D

n n n n
n

X Y a X X erfc X
E X

     


  
      

  
 ,   (S32c)  

which is eq. (41a).   
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S19. Asymptotic behavior of eq. (41a) and (41b) 
 Using the asymptotic behavior of the complementary error function, i.e.,  

   exp 1
1

2
n

n
nn

X
erfc X

XX






  
  

 
  for 1nX   ,       (S33a) 

we found the following asymptotic behavior of *
22  in eq. (41a): 

  *
22

1

1, 0 1
22

N
nD

n n

a
X Y

XE X

 


 
    

 
    for 1nX   .       (S33b) 

Using eq. (S33b), we can also evaluate the asymptotic behavior of *
strain :  

     *

1 1

1 exp
2

N N
n

strain n n n
n n n

a
X X X erfc X

X

     
 

 
   

 
   for  1ave X  ,     (S33c)  

which is identical to eq. (39c) in the main text.  

 

S20. Asymptotic behavior of eq. (40a) and (41c) 
Here we examine the asymptotic behavior of eq. (40a) and (41c) in the main text for the 

SS (i.e., GMS with N = 1). In this case, there is only one retardation time tc = t1 and hence one  
(= /vtc). In the limit of high crack velocity ( → 0), using the series expansion of the 
complementary error function, we find:   

 22

2
1, 0 1 1 .. ,     

2
DX

E

  


  
           

    (S34a) 

   *
22 1, 0 1 1 .... ,    

2
DX

E

   


            (S34b) 

Comparing eq. (34a) and (34b), we notice that in the limit of high crack velocity (i.e.,  → 0), the 
first order terms in the strains given by the interacting and non-interacting models agree exactly as 
expected.  However, the second order terms do not agree as  increases.  In the limit of low crack 
velocity ( → ∞), we have: 

    3/2
22

1
1, 1 ,     

2
DX O

E
   






  
      

         (S35a) 

    * 2
22 1, 1     

2 2
DX O

E

   






 
     

 
 .     (S35b) 
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In this limit, again the first order terms in the strains for both interacting and non-interacting 
models agree exactly.  However, the rate of convergence is quite different as reflected by the 

second term in the expansion.  Note that in Fig. 7, the discrepancy at X  = 1 for small and large  
is partly due to our effort to bring the two theories into agreement, i.e., the blue dash line is (41a) 
multiplied by 2/.    

 

S21. Derivation of eq. (43a), (43b) and (43c) 
The integral ( , , )PL X m given eq. (42b) can be rewritten in the following form after a 

change of variable 1 /w  : 

  
1/ 1/2

0

1 1
( , , ) 1

1

mX m

PL m

X w
X m w dw

w


 

   
    

  
 .     (S36a) 

For the special case of m = 1/2, we have 

  
1/21/

0

1 1 1
( , , 1 / 2) 1

1

X

PL

X
X m w dw

w





  

     
  

 .    (S36b) 

To evaluate the integral in eq. (S36b), we implement another change of variable, 21 w   , which 

leads to  

 
1 1

1/2
2

2
1 1/ 1 1/

2 2 1
( , , 1 / 2) 1 1

(1 )
PL

X X

X m A d d
A A

   
  



 

         
  ,   (S36c) 

where 

  
1 1

1 1

X A X
A

A X

 
  

  
       

,       (S36d) 

The value of A can be positive, negative or zero, depending on the sign of 1 X . The integral in 

eq. (S36c) depends on the sign of A. For A < 0 (i.e., 1X  ), we have  

 

  

1
2

1 1/

2 1
( , , 1 / 2) ln (1 )

1
1

1
2 ln

1 1 1 1

PL
X

X m A A A
A

X

X X X

X X

  





 
 


      



  
 

     
 

 

 for X  > 1.   (S37a) 

For A > 0 (i.e., 1X  ), we have 
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 

1

1

1 1/

1 1

2 1
( , , 1 / 2) sin

1

2 1 1
sin sin 1 1/

1 11

PL

X

A
X m

AA

X X
X

X XX

 


 
   





 

 
      

     
                   

 for 1X   .      (S37b) 

For A = 0 (i.e., 1X  ), we have 

  2 1 2
( , , 1 / 2) 1 1 1 1PL X m

X
 

 

 
         

 
    for 1X  .   (S37c) 

Substituting eq. (S37a), (37b) and (37c) into eq. (42c) gives eq. (43a), (43b) and (43c), 
respectively.  

 

S22. Derivation of eq. (46a) 
Using the approximate stress distribution based on the K-field given in eq. (37b) and the 

compliance function for PLS in eq. (17), the strain *
22  in eq. (S29a) is  

      * 3/222
22

1 1 1
1, 0 1 1

2 2 2 2

m
D D

X X

X
X Y J J X d J X d

X X

          


 
 

 

                 
 

             (S38a) 

To evaluate the integral on the right hand side of eq. (S38a), we implement a change of variable 
/w X  : 

 
   

 

1
3/2 1/2

0

2 1

1
1 1

1 1
, 1 / 2, 3 / 2,

1 / 2

m m
m m

X

m

X X
X d w w dw

XX

X X
F m m m

m XX

    


 


 
  



            

 
     

 
.   (S38b) 

Substituting (S38b) in (S38a) and using E∞ = 1/J∞, we obtain 

   *
22 2 1

1
1, 0 1 , 1/ 2, 3 / 2,

2 12

mD X
X Y X F m m m

m XE X

   






  
          

,   (S38c) 

which is eq. (46a) in the main text.  
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S23. Derivation of eq. (47a) and (47b) 

Here we derive the asymptotic behavior of *
strain   given in eq. (46b) of the main text. In 

the limit of 1X  , we have  1 / 1X X    within the hypergeometric function in eq. (46b). 

Therefore, we obtain first-order behavior for 1X   by evaluating the hypergeometric function 

at 1, which gives eq. (47a), i.e., 

         *
2 1

2 3 / 2 11 3

2 2
1, 1, , , ,1

2 1 2 1strain

m m

m mX X
X X m F m m m

m m 

   
 

 

      
 

    
 

, 

             (S39a) 

which is eq. (47a) in the main text. 

In the limit of 1X  , we use the linear transformation formulae for hypergeometric 

functions to obtain 

   
 

2 1

1/2

2 1

1
, 1 / 2, 3 / 2,

2 3 / 21 1
2 1 , 1 / 2,1 / 2;

1

m m

X
F m m m

X

mX X X
m F m

X X m X




  
  

  

 
  

 

       
              

.  (S39b) 

Using the condition 1X  , we expand the hypergeometric function in eq. (S39b) in power series 

and keep only the first term which is 1. This gives  

   
    

1/2

2 1

2 3 / 21 3 1 1 1
, , , 2 1 2 1

2 2

m m
mmX X X

F m m m m m X
X X m X

   
  

          
                

 

             (S39c) 

Substituting eq. (S39c) into eq. (46b) of the main text, we have 

    
  * 2 11, 1,

2 1
m

strain

m

m X
X

X X m
m

 
 

 


   


,     (S39d) 

which is eq. (47b) of the main text.  

 

S24. Derivation of eq. (49a)  
As before, we assume plane stress condition (for plane strain condition, the strain 22 should 

be reduced by a factor of 3/4).  Directly behind the crack (X < 0, Y = 0), we have 11 =  22 and 12 
= 0 according to the stress field given in Section S1 of the SI. Similar to eq. (36) of the main text, 
the general expression for the residual strain behind the crack tip is: 
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  22
22

1
0, 0

2 X

X X
X Y J dX

v X


             .     (S40a) 

Since 22 0   on the crack surface (X < 0, Y = 0) and is equal to a constant D within the cohesive 

zone (0 ≤ X ≤ , Y = 0), the residual strain on the crack surface is 

   22
22

1
0, 0

2 2
D

X

H XX X X X
X Y J dX J dX

v X v X





 
                        (S40b) 

where H is the Heaviside function.  The second integral represents the sudden unloading as a 
material point pass through the crack tip at X = 0 (where the stress suddenly vanishes, recall the 
stress is constant inside the cohesive zone).  Hence on the crack surface, the strain is  

  22
22

1
0, 0

2 2
DX X X

X y J dX J
v X v

 
                 .     (S40c) 

Using eq. (S29c) and the normalization that /X X   and /X  , the first integral in eq. 

(S40c) is  

1

1

2 1
D X

J d
v

  
  

  
 

 
 .        (S40d) 

For a GMS, the tensile creep function J(t) is given by eq. (16a) of the main text.  Substituting eq. 
(16a) into eq. (S40c) gives: 

 
 

 1
22

11

1 exp
0, 0 1 exp

2 21

N

n n n N
nD D

n n
n

a X
J J

X Y d a X
   

    
  


 



                   
 
 


 (S41) 

To evaluate the integral in eq. (S41), we use the following two identities:  

  
1

1

1
d 

 




 ,         (S42a) 

   
     

2

2
1 0

expexp
2 2

211

s
d e ds e e erfc erfc

s
  

    
 

 
 


  

  .  (S42b) 

Combining eq. (S42a) and (42b), eq. (S41) becomes 

       

   

22
1 1

1

0, 0 1 exp 1 exp
2 2

exp
2

N N
D D

n n n n n
n n

N
D

n n n
n

J J
X y a erfc X a X

a X erf
E

      

   

 

 



   
          

   

 

 


,  (S42c) 
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which is eq. (49a) of the main text.  The residual strain at the crack tip (i.e., at X = 0) is obtained 
by taking the limit of X to zero in eq. (S42c), which results in 

   22
1

0 , 0
2

N
D

n n
n

X y a erf
E

  



    ,      (S42d) 

which is eq. (49c) of the main text. At very slow crack speed (i.e., n  >>1 and   1nerf   , the 

residue strain at the crack tip reaches a maximum of / (2 )D E   , which decays to zero almost 

immediately due to the exponential function  exp n X .  

 

S25. Derivation of eq. (50a) 
Substituting eq. (17) of the main text into eq. (S40c), the residual strain for the PLS is: 

   
 

 

 
 

0 0
22

1

1

,

1
0, 0

2 21 11

1 1 1

2 21 11

D D
m m

D D
m m

X

J J J J
X Y J d J

XX

d
E E XX

 

  
    

   
    


 

 



 

            
              

 
   
           






.       (S43) 

The next step is to evaluate the integral  , X  in eq. (S43), i.e., 

   

 
 

  

   
 

1
1/2 1/2

1/1 0

2 1

1 1 1
, 0 1 1

11

11/ 2 1 / 2 1
, , 1,

1 2

m

m m
m

w

m

X
X d w w w dw

X

Xm
F m m m

m



   
  







 





  
      

       
    
   
    

 
,       (S44) 

where 2F1 is the hypergeometric function. Combining eq. (S43) and (S44), we obtain eq. (50a) in 
the main text. 

 

S26. Derivation of eq. (52a) and (52b)  
To examine the asymptotic behavior of eq. (51) of the main text, we first obtain an 

alternative form of  , 0X    by using the linear transformation of the hypergeometric function 

in eq. (S44), i.e., 
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,            (S45) 

where ( 1) /z X   . Since  2 1 ,0,1/ 2, 1F m z  , eq. (S45) reduces to 
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Equation (S46) results in two equivalent forms of  :   
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or  
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                        (S47b) 

The maximum residual strain occurs at the crack tip (i.e., 0X  ). Using eq. (S43), we find  
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For 1   , we use eq. (S47b) to obtain 
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Substituting eq. (S48b) into eq. (S48a), we find that for high crack velocity ( 1  ), the maximum 

residual strain is: 
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which is eq. (52a) in the main text. Therefore, the maximum residual strain vanishes as the 
reciprocal of the square root of the crack velocity since  = /vtc.  For  > 1, we use eq. (S47a) to 

evaluate   at 0X   and obtain 
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For low crack velocity (i.e., 1  ), the maximum residual strain is given by taking the limit of 

1/ 0   in eq. (S49a), i.e.,  

   
 22

1/ 21
0 , 0, 1 1

2 1
mD

m
X Y

E m

   


 



  
        

,     (S49b) 

which is eq. (52b) in the main text. 

 

S27. Derivation of eq. (53a) and (53b) 
To derive eq. (53a), we use the alternative form of   in eq. (S47b) and note that 
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Combining eq. (S40a) with eq. (50a) of the main text, we obtain 
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            (S50b) 

which is eq. (53a) of the main text. In the limit of X  >> 1, / (1 | |)X   approaches zero. 

Since  2 1 1/ 2,1/ 2,3 / 2,0 1F m   and ( 1/ 2) 2      , the first order behavior of the right hand 

side of eq. (S50b) is 
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which is eq. (53b) of the main text. 

 

S28. Derivation of eq. (54) 
For the special case of PLS with m = 1/2, we use eq. (S47a) to show that the function   

can be reduced to an elementary function.  As shown in 15.15 of Abramowitz and Stegun [10], for 
the following set of parameters the hypergeometric function is elementary:   
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Therefore, the residual strain for m = 1/2 is given by the following using eq. (50a) of the main text 
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which is eq. (54) of the main text.  

 

S29. Derivation of eq. (55a) 
The normalized crack opening displacement codu  in eq.(6a) for the case of GMS is 
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where /n nvt  . The integral in eq. (S52a) is 
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where 
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Recall that ( )F X  is given in eq. (6b) of the main text and ( )F   is given in eq. (S12b). 

Substituting eq. (S52b) into eq. (S52a), we obtain eq. (55a) of the main text: 
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Note the first two terms of eq. (S53) is elementary while the last term cannot be integrated in closed 
form.   

 

S30. Derivation of eq. (57a) and (57b) 

Here we propose an approximation that allows us to evaluate the integral  ,nQ X  in eq. 

(S52c).  Although eq. (S52a) and (S52c) are defined for 1X  , i.e., including both the crack 
surface and the cohesive zone, here we are interested in the COD for 0X   (i.e., behind the crack 

tip). Therefore, we can write  ,nQ X  as the sum of two integrals: 
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The first integral,  1 nQ  is independent of X and reflects the effect of cohesive stress on the crack 

opening displacement.  From eq. (S12c), (S13a) and (S13b), we see that 
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which depends only on n .   This term contributes little to the COD at large distances from the 

crack tip since it decays exponentially fast due to the factor  exp n X  in the last term of eq. (S53) 

(recall that X < 0).  The relevant term is  2 nQ X  which can be written as, after changing the 

integration variable   to (1 )X w :  
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Next, we assume X  to be sufficiently large so that  1 / 1 1X w X w    , then 



29 
 

 

 
1 1

2 3/2 3/2
0 0

1 11
1/2

1/2
0 0 0

1

11

(1 )1 1

2 2
1 1

11 1

n n n
n

n n

n n n

Xn

X w X X
X

n

X X s
X X X

n n

e

e e ee
Q X dw d

wX X

e e
e X d e X e ds

sX X


   


  
   

 


   


 






          
 

 
                      

  

 

 


               (S57) 

For n X  >> 1, we have, neglecting exponentially small terms, 
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Substituting eq. (S58) into eq. (S53) and noting that 1 .... N   , we have 
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which is eq. (57a) of the main text.  

In particular, the ratio cod  defined in eq. (56a) of the main text in this limit is: 

 

 
 

 
1 1

1 1

1

1
...

4 1
0, 1

1
...

2 4 1
1 ...

2 2

N N
n n

n nn n n

cod N

N N
n n

Nn nn n n
n

n n n

a a
F X

XX
X X

F X

a a

XX X a

X XX


  

 

 
   

 

 

 



 
      

  

 
      

     
 

 

 


,             (S60) 

which is eq. (57b) in the main text.  

 

S31. Derivation of eq. (59): asymptotic behavior of COD for PLS 
To understand the asymptotic behavior of COD in eq. (58) of the main text, the key integral 

to be studied is  
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We are primarily interested in the COD for 0X  . In particular, for 1X   (so we are at least one 

cohesive distance away behind the crack tip), we write 
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The first integral is,  
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As long as  / 1 1g X     (for example when 1X   or 1  ), the power series expansion  
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is uniformly convergent in  0,1g   and hence can be integrated term by term.  Note that 

( ) ( ) / ( )km m k m    .  Therefore, the integral in eq. (S62a) is 
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This is because 
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Note that eq. (S62c) is exact for all 1X  .    For 1X  , the first order behavior is obtained 

by keeping the first term of the series,  
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This result shows that the effect of cohesive stress on the COD decays rather slowly for the PLS, 

especially for fast cracks where   is small.  Since we are interested in 1X  , 1 1X     

from eq. (S62c), we see that eq. (S62e) holds also for this case.   

The asymptotic behavior of the second integral in eq. (S61b) requires more work.   
Integration by parts leads to 
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where / (1 )g X   .  Note the removable singularity of the integrand at the upper integration 

limit.  Next, we make the change of variable X    and eq. (S63a) becomes: 
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Note that / (1 ) 1g X X X     for all   .  Hence we can expand  11
m

g X 


  as a 

uniformly convergent power series in  01, , i.e., 
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Therefore,  11 1 /
m

g X  
    

 is analytic at zero since the numerator has a simple zero there.   

We can develop a power series solution since term by term integration is legitimate.  The series 
solution of the last integral in eq. (S63b) is 
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where  
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So far, eq. (S64b) is exact.   

To get asymptotic behavior for 1X  , we note that  
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Hence the first order behavior of the integral in eq. (S64b) is 
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Combining eq. (S65b) with eq. (S63b), we have, for 1X   (or small   since X > 1):  
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Surprisingly, the asymptotic behavior for small X  is approximately independent of m.   

Next, consider the behavior where 1 1X g X   , the last integral in eq. (S63b) is 
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This means in this limit the integral in eq. (S66a) is independent of .  We are mostly interested 

in 1X   , so eq. (S66a) can be approximated by 
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Substituting eq. (S66b) into eq. (S63b) and using the asymptotic behavior of  F X   for large 

X gives, for large X , 
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Combining eq. (S66c) and (S62e), we have                                                                                                              
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Therefore, the COD for 1X   is : 
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which is eq. (59) of the main text.  

 

S32. Derivation of eq. (60b) and (60c): exact solution for the special case m = 1/2 
 In the special case of m = 1/2, the integral in eq. (S61b) becomes: 
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We apply integration by parts to the integral 1PLQ : 
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where we have used  1 0F    , eq. (S12b) and the change of variable 21 w   .  Note that the 

integrand has no singularity at w = 1 (i.e., a removable singularity).  To proceed further, we 
separate the two integrals, evaluate them at s < 1, then take limit as s approaches 1.  The last 
integral in eq. (S70) is 
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The first integral in eq. (S70) is  
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Note that the second integral in eq. (S72) has no singularity at w = 1, and so we have set s = 1.   
The first integral is  
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This integral can be evaluated exactly (see 2.267 on Page 84 of [7]) and is 

    
   

 

1
1 1 1 1 sin

1 1

1 1 1 1
1 ln (1 )

2 1

H X X
X

X X X
X s

X


  



   






 
           

           
 

.     (S74) 

Next, we compute H2 in eq. (S72). Using a change of variable 1q w  , we have 
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Again, this integral can be evaluated exactly: 
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Adding eq. (S74) and (S75b), we have 
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Adding eq. (S76) to eq. (S71) and noting that the singular terms proportional to ln(1 )s are 

canceled, we obtain the integral in eq. (S72), i.e., 
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

                 
                 



 .     (S77) 

Therefore,  
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
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           

 ,       (S78) 
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where 1b X  . Equation (S78) is eq. (60b) of the main text.  Here we consider the asymptotic 

behavior of eq. (S78) in the limit of 1X  .  For 1X  , we have 

1 1
ln 1 ln 1

2 1 2

X X

X X

 
  

   
     

      
,      (S79a) 

 
1 11 1 1
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11 1 XX


 

 

   
           

 .     (S79b) 

Therefore,  

1
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1 1 1 1
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2 2 1
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Q X m

X X





                         

   (S79c) 

In particular, if 1X  , then  

1
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1,
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

 
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    

 .     (S79d) 

Next, we evaluate 2PLQ  in eq. (S69). Using integration by parts, we obtain 
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                        (S80a) 
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where we have used the change of variable: 21 w    . Therefore, 

  2 3

2 1
1 1PLQ F X X H

 
     .        (S80b) 

We break H3 into two integrals, i.e., 

  
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  

  


 

               (S81) 

The last integral in eq. (S81) is  
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
    (S82a) 

Recall that 1b X  . The integral P in eq. (S81) is 
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             (S82b) 

To proceed, let us use the notations that 1b X   . By taking the limit 0   judiciously, we 

obtain 
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 
    (S82c) 

and  
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  (S82d) 

Combining eq. (S82d) and (S82d), we obtain 
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.              (S82e) 

Substituting eq. (S82e) into eq. (S81), we obtain 
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                        (S82f) 

Substituting eq. (S82f) into eq. (S80b), we obtain eq. (60c) of the main text, which is 
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            (S82g) 

Adding eq. (S82g) and eq. (S78), we obtain the integral in eq. (S69):  
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               (S83) 

Recall that 1b X  . 

 

S33. Local dissipation rate and dissipation zone 
 We first derive the local dissipation rate directly ahead of the cohesive zone tip (X > ).  
Consider plane stress deformation.  Material elements on the crack line are under equal bi-axial 
tension, and so the non-trivial strains are 11 22   and they are related to the stress 11 22  by eq. 

(S29a), i.e., 

   22
22

1
, 0

2 cX

X X
X Y J dX

vt X


          
 .          (S84) 

For a standard solid (SS),  J t  is given by eq. (16b) of the main text, where 1/J E   and 

0 01/J E .  The viscosity v  of the dashpot of the standard solid in bi-axial tension is related to 

the retardation time ct  in eq. (16b) of the main text by  
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2 1v c

E
E t

E
 



 
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 
.          (S85a) 

We decompose the stress 22  into a part that acts on the soft spring  22s , and the rest acts on the 

Maxwell element consisting of a spring (with modulus 0E E and a dashpot with viscosity v ) in 

series.   The stress s   acting on the soft spring is (the factor of 2 comes from biaxial deformation),  

 22 22

2
2s E

J
  



  .          (S86a) 
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Hence the viscous stress acting on the dashpot is 

 1
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2 1
tan 2

1
D

s E
X

  



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
 ,       (S86b) 

where 22  is given by eq. (S28).    The strain in eq. (S86b) is given by eq. (38a) in the main text. 

Substituting the strain into eq. (S86b) gives: 
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
,       (S86c) 

where = /vtc and   is given in eq. (38b) of the main text. The dissipation power at a material 
point is:    
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      (S86d) 

The factor of 2 on the left hand side of eq.(S86d) accounts for the fact that stress work is done by 
both 11  and 22  (biaxial deformation).  Due to the steady state crack growth condition, the local 

dissipation rate (per unit crack extension) D  is obtained by dividing eq. (S86d) by the crack 

velocity v, which results in eq. (62a) of the main text: 
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                (S87a) 

The maximum dissipation rate occurs at 1X  .  From eq. (S30b,c),   

     1, 0,X Y erfc             (S87b) 

If we use the non-interacting model where the stress field near the cohesive zone is 

approximated by the K-field (i.e., Persson and Brener’s approach), i.e., where 22 /D X   and 

the viscous stress is   

      22 1 expD D
s X X erfc X

X X

        .     (S88a) 

The local dissipation rate *
D  for this case is obtained using eq. (S88a) and the left hand side of 

eq. (S86d), this results in eq. (64) of the main text: 
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41 
 

S34. Areal distribution of the local dissipation rate 
Next, we calculate the 2D distribution of the local dissipation rate D  assuming plane 

stress deformation. Because of the multiaxial stress and strain state around the crack, D  is 

defined as 

ij ij e
D

W

v

  
 


 .         (S89a) 

Using steady state condition, eq. (S89a) simplifies to  

ij e
D ij

W

X X




 
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 
.        (S89b) 

To evaluate the elastic stress power 𝑊௘ሶ , we take a generalized Maxwell element which is 
represented schematically in Fig.S4.  𝑊௘ሶ  is evaluated by computing the time rate of change of the 
energy stored in the springs.  The energy stored in the springs are (see Fig.S4)  

𝑊௘ ൌ ଵ

ଶ
ቂ𝜎௜௝

ሺଵሻ𝜀௜௝
ሺଵሻ ൅ 𝜎௜௝

ሺଶሻ𝜀௜௝
ሺଶሻቃ, 𝑖 ൌ 1,2     (S90a) 

where 

𝐸ଵ ൌ 𝐸ஶ         (S90b) 

𝐸ଵ ൅ 𝐸ଶ ൌ 𝐸଴         (S90c) 

𝜎௜௝
ሺଵሻ ൅ 𝜎௜௝

ሺଶሻ ൌ 𝜎௜௝,             𝜀௜௝
ሺଵሻ ൌ 𝜀௜௝                   (S90d) 

 

Figure S4 Schematic representation of the Standard Solid model. 

 

Using the stress field ij  given in Section S1, we can evaluate 𝜎௜௝
ሺଵሻ, 𝜎௜௝

ሺଶሻ, 𝜀௜௝
ሺଵሻ, 𝜀௜௝

ሺଶሻ given in eq. 

(S90d). Note that 𝜎௜௝
ሺଵሻ and 𝜀௜௝

ሺଵሻ are related through the linear elastic Hooke’s law with Young’s 
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modulus E∞ and Poisson ratio = 0.5. Once 𝜎௜௝, 𝜀௜௝,
డఙ೔ೕ

డ௑
,

డఌ೔ೕ

డ௑
 are derived, we compute D  

everywhere on the plane using eq. (89a).  We normalize the dissipative work rate as follows: 

2

/ D
D D

cE vt





 
    

 
          (S91) 

The contour lines of D  shown in Fig.14 of the main text are obtained using MATLAB by 

dividing the region into discrete grid points and calculating the normalized local dissipation rate 

( , )D X Y  at every grid point. 

We used two ways to verify the accuracy of our numerical calculation. First, we compare 

results of the normalized local dissipation rate D  directly ahead of the cohesive zone tip (i.e., 

1X   and Y = 0) from our 2D numerical calculation and eq. (62) of the main text, which is shown 
in Fig. S5. These two results agree well.  Second, the areal integral of local dissipation rate 
∬ Φഥ ஽ dA  should be equal to the total energy dissipation rate 𝐺 െ 𝐺଴  ൌ ሺ𝐺̅ െ 1ሻ𝐺଴ . We use 
𝜅𝜎஽

ଶ/ሺ𝐸ஶv𝑡௖ሻ to normalize these two values, and then use the theory of Knauss to evaluate 𝐺̅. The 
comparison of these results is shown in Fig.S6 below.  

 

Figure S5 Normalized local dissipation rate D  directly ahead of the cohesive zone tip ( 1X   

and Y = 0) for different values of . Results from the 2D numerical calculation (solid lines) agree 
well with those from eq. (62). 
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Figure S6 Comparison between the areal integral of the local dissipation rate ∬ Φഥ ஽ dA and the 
total energy dissipation rate 𝐺 െ 𝐺଴ calculated using Knauss’s theory for different values of   
Results from the 2D areal integral agree well with those based on Knauss’s theory. 
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