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Abstract: 

Crack growth in viscoelastic solids under cyclic loading tends to be faster than that under static 

loading with the same amplitude. This phenomenon, known as “dynamic effect”, is a key 

mechanism underlying the fatigue fracture of soft viscoelastic polymers, but its physical nature 

remains a mystery. We develop a scaling theory to delineate how viscoelastic dissipation associated 

with crack growth is governed by the coupling between three time-dependent processes: cyclic 

loading, crack growth and viscoelastic creep. In the limit of slow crack growth and slow cyclic 

loading, a simple integral equation is derived to predict the crack growth velocity under different 

cyclic loading frequencies.  
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1. Introduction 

Crack growth in viscoelastic solids is a fundamental problem for the failure analysis of rubber 

and other soft polymers. Fatigue fracture, referring to crack growth under prolonged cyclic loading, 

is a failure mode of particular relevance to applications such as tires, sealants, and biomedical 

implants. Despite the extensive experimental studies on fatigue fracture in rubber [1–5], predictive 

theories are still lacking. Most existing analyses of viscoelastic fracture focus on steady-state crack 

growth under static loading [6–10]. The underlying physics is manifested in the coupling between 

two time scales: one associated with the crack growth velocity V and the other being the 

viscoelastic relaxation time . This coupling can be visualized using the “viscoelastic trumpet” 

proposed by de Gennes [8]. Briefly, for a steadily growing crack, the crack tip is surrounded by a 

region with highly amplified strain rate within which the material behaves as a “hard solid”. Far 

away from the crack tip, the material is relaxed and hence behaves as a “soft solid”. Bridging the 

“hard solid” and “soft solid” regions is a “liquid region” where viscoelasticity dissipates energy. 

Such dissipation implies that additional energy is required to drive crack growth, as stated by the 

equation G = G0 + GD(V), where G is the total energy release rate, i.e., energy available for driving 

a unit area of crack growth, G0 is the energy release rate delivered to the crack tip, and GD is due 

to viscoelastic dissipation and hence sensitive to the crack velocity V. To maintain quasi-static 

crack growth, G0 should be equal to the intrinsic fracture energy of the solid 0 (energy per unit 

area), which is regarded as a material constant. Further analyses on GD have shown that in an 

infinite domain G/G0 = (V/l) where l is the length scale associated with the fracture processes at 

the crack tip and the function  can be solved by integrating dissipation over the viscoelastic 

domain [8,10]. 

In case of fatigue fracture, G is a periodic function of time t. It is tempting to use the relation 

G/G0 = (V/l) for static crack growth to predict the length of crack extension per cycle, i.e., dc/dN 

where c is the crack length and N is the cycle number. However, caution must be taken as shown 

in a seminal work by Lake and Lindley [11]. They performed both cyclic and static crack growth 

experiments for a synthetic rubber (i.e., styrene-butadiene) that is unfilled and non-crystallizing 

and hence can be considered as a viscoelastic solid. From these experiments, they measured the 

function of dc/dN versus G for cyclic crack growth, and Vs (or dc/dt) versus G for static crack 

growth. They used the function Vs(G) for static crack growth to predict the cycle crack growth rate, 

denoted as (dc/dN)s, by calculating dc/dt = Vs at any time during a cycle and integrating dc/dt over 



3 
 

one cycle. Interestingly, (dc/dN)s was found to be much smaller than the actual dc/dN. To account 

for the discrepancy, Lake and Lindley concluded an extra term (dc/dN)d must exist and named it 

as the “dynamic component” of crack growth, i.e., 

        d / d d / d d / d
s d

c N c N c N  .          (1) 

Experimental data revealed that (dc/dN)d is negligible at low frequency, but becomes dominant at 

high frequency, e.g., (dc/dN)s is less than 3% of the total dc/dN at high frequency [11]. Here 

“dynamic” implies cyclic loading rather than inertial effects. It has also been observed that 

(dc/dN)d is sensitive to the waveform of the cyclic loading [12]. Despite the clear experimental 

evidence, the physical nature of the dynamic effect causing (dc/dN)d remains a long standing 

mystery. 

The goal of this work is to develop a scaling theory to explain the underlying physics of the 

dynamic component (dc/dN)d. Given that the synthetic rubber used in Lake and Lindley [11] was 

unfilled and non-crystallizing, we attribute (dc/dN)d to viscoelasticity. From a scaling analysis 

perspective, cyclic loading introduces an additional time scale (e.g., the cycle period T) to the 

coupling between crack velocity V and relaxation time . Interplay between the three time scales 

holds the key towards understanding the viscoelastic dissipation associated with cyclic crack 

growth. In the following, we first present a fracture criterion derived from energy balance and then 

introduce two concepts, “spatial hystersis” and “phantom state”, to enable the definitions of G and 

GD for cyclic crack growth (Section 2). In Section 3, we use a Finite Element (FE) model to verify 

the energy balance theory and to demonstrate the dynamic effect of cyclic loading. Based on the 

energy balance theory, we derive an integral equation governing the crack velocity during a loading 

cycle. In the limit of slow crack growth and slow cyclic loading, this integral equation can be 

greatly simplified and numerically solved to obtain the crack growth velocity under different cyclic 

loading frequencies. It should be emphasized that we do not seek quantitative prediction of the 

experimental data in Lake and Lindley [11], which would require a detailed calibration of the 

viscoelastic behavior since synthetic rubber typically exhibit a wide spectrum of relaxation times. 

Instead, our focus is on using the scaling theory to capture the qualitative trend of dynamic effect 

found in FE simulations based on a simple viscoelastic model. This can pave the way for future 

development of more sophisticated theories to achieve quantitative prediction. In Section 4, we 

conclude by summarizing the theory and outlining limitations and potential improvements. 
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2. Energy Balance Theory  

Existing theories of viscoelastic fracture [6–10] focus on steady-state crack growth under 

static loading in which material far away from the crack tip, referred to as the “far field”, is relaxed 

and viscoelastic dissipation occurs only around the moving crack tip. However, under cyclic 

loading, viscoelastic dissipation can occur in the far field even in the absence of crack growth. A 

theoretical challenge is on how to separate the dissipation due to cyclic loading and that due to 

crack growth, which is addressed here. Without loss of generality, we consider the ideal “pure 

shear” geometry (see Fig.1a) consisting of an infinitely wide thin sheet with a semi-infinite crack. 

A vertical displacement , or equivalently, a nominal stretch ratio  ≡ 1 + /H, is applied to open 

the crack symmetrically and drive crack growth. This configuration, known as plane stress Mode-

I fracture, has been widely used in the fracture tests of rubber and soft elastomers [11,13,14]. In 

experiments, crack growth settles to a constant rate after a number of initial cycles. This 

phenomenon motivates us to assume the quasi-steady-state condition, where the crack extension 

within each loading cycle is the same and the stress and strain tensors at a material point only 

depend on its relative position to the crack tip and the time within a loading cycle. As detailed in 

Section S1 of the Supplementary Information (SI), we use the quasi-steady-state condition to 

derive the following energetic fracture criterion [15], which is valid for both elastic and inelastic 

materials,  
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where  and  are the stress and strain tensors, respetively, and X-Y is a moving coordinate system 

centered at the crack tip and translates with crack. 

Equation (2) presents both stress and strain in terms of tensorial quantities. For simplicity, we 

follow de Gennes [8] and use the normal stress and strain along the Y-direction, i.e.,  and , as 

scaling representations of the multi-axial stress and strain fields. Therefore, Eq. (2) is simplified 

to 𝐺଴ ൌ ׬ 𝜉ሺ𝑌ሻ
ு/ଶ

ିு/ଶ 𝑑𝑌 where 𝜉ሺ𝑌ሻ ൌ ׬ 𝜎ሺ∂𝜀/𝜕𝑋ሻାஶ
ିஶ 𝑑𝑋. To understand what contributes to G0, 

we schematically plot  versus  along a horizontal line with a constant Y where  = 0 at X = −∞ 

and  =  – 1 at X = +∞ (see Fig.1a). A peak stress (or strain) is expected due to stress concentration 

at the crack tip. The closer to the crack tip (i.e., smaller |Y|), the higher the peak stress is. For elastic 
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materials, there is a one-to-one relationship between  and . Consequently, the integral, 𝜉ሺ𝑌ሻ is 

independent of the peak stress and thus is uniform with Y. Specifically, for linear elastic materials 

𝜉= ∞∞/2, where ∞ =  (X = +∞) and ∞ =  (X = +∞). In this case, Eq. (2) degenerates to G0 = 

∞∞H/2 which recovers the well-known energy release rate equation for pure shear geometry 

[13,14,16]. Note that the result that G0 = ∞∞H/2 for linear elastic materials can also be derived 

by applying the J-integral to the pure shear geometry, as illustrated in Rice [17]. For inelastic 

materials, however, a stress may correspond to two different strains depending on the deformation 

history, leading to hysteretic stress-strain curves along a horizontal line. Such hysteresis does not 

refer to the temporal history at a fixed material point. Rather, it is regarding the spatial distribution 

from X = −∞ to X = +∞ and thus is termed as the “spatial hysteresis”. When spatial hysteresis is 

present, 𝜉 depends not only on ∞ and ∞, but also on the peak stress that varies with Y.  

 

 

Figure 1 Spatial hysteresis. (a) Ideal pure shear fracture geometry and schematics showing the 
stress and strain along a horizontal line. (b) Spatial hysteresis along a horizontal line. The blue 
dashed line connecting A and C represents the phantom state, while the solid line represents the 
actual state. 

 

The spatial hysteresis is completely attributed to crack growth. To demonstrate this point, we 

assume linear viscoelasticity and introduce a fictious state where the same crack is subjected to the 

same external loading but its growth is suppressed. This fictious state will be referred to as the 

“phantom state” hereafter. In this state, the fields are determined by the external loading and the 

presence of the crack, but not by crack growth. Spatial hysteresis is absent in the phantom state, 

because each material point in the phantom state follows the same oscillatory strain history but 
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different amplitudes. Therefore, at a given time, the stress and the strain at all material points are 

related by the same dynamic modulus. Therefore, in the phantom state, the integral in Eq. (2) 

reduces to G0 = ∞∞H/2. This is like the case of linear elastic materials but with a subtle difference: 

∞ and ∞ are related by the dynamic modulus which is sensitive to the loading frequency. In other 

words, even under the assumption of quasi-steady-state condition, the far field is not necessarily 

in the relaxed state, which is different from the steady-state condition under static loading. 

Nevertheless, we can always define a phantom state (without crack growth) corresponding to the 

actual state (with crack growth) at any moment during a loading cycle. These two states share the 

same stress and strain fields far away from the crack tip, but exhibit different fields near the crack 

tip due to the different status of crack growth. To distinguish them, we denote the stress and strain 

fields in the phantom state as 𝜎ത and 𝜀.̅ Based on the discussions above, we apply Eq. (2) to the 

phantom and actual states and write the difference as: 
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Eq. (3) reflects two important implications of introducing the phantom state. First, for viscoelastic 

solids under cyclic loading, dissipation can occur even in the far field. As a result, the total energy 

release rate G is not well defined, since it is difficult to delineate the energy consumed by crack 

propagation and that dissipated by cyclic loading. By introducing the phantom state, we can 

unambiguously identify G as the energy release rate that can be delivered to the crack tip in the 

phantom state, which is equal to ∞∞H/2 (see Eq. (3)). Second, Eq. (2) requires the full stress and 

strain fields over the entire geometry, which can be difficult to obtain for viscoelastic solids under 

cyclic loading. By introducing the phantom state, we obtain Eq. (3) in which the integrand, 

𝜎തሺ∂𝜀/̅𝜕𝑋ሻ െ 𝜎ሺ∂𝜀/𝜕𝑋ሻ, is only non-zero near the crack tip, since the phantom and actual states 

should cancel each other in the far field. This feature allows us to avoid determining the full stress 

and strain fields over the entire geometry and focus on the crack tip region. Applying the 

correspondence principle extended by Graham [18] for problems with moving boundaries to a 

growing crack and assuming no crack surface contact during unloading [19], we conclude that the 

stress field near the crack tip in the actual and phantom states still follows the K-field in linear 

elastic fracture mechanics. Therefore, we hypothesize that 𝜎ሺ𝑋, 𝑌, 𝑡ሻ ൌ 𝜎തሺ𝑋, 𝑌, 𝑡ሻ ൌ 𝐾ሺ𝑡ሻ𝑓ሺ𝑋, 𝑌ሻ 

near the crack tip, where K is the stress intensity factor and f(X,Y) represents the spatial distribution 
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of the K-field. More discussions on justifying and verifying this assumption are provided in Section 

S3 of the SI. Consequently, we obtain the following energy balance equation: 

       
2
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2

d d
H

D
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G G G X Y
X
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 

         ,         (4) 

where 𝜀 െ 𝜀̅is the strain differential between the actual and phantom states. By introducing 

the phantom state, we have unambiguously defined G and GD for cyclic loading. 

Although the actual and phantom states share the same crack tip stress field at a given time t, 

material points in these two states have experienced different stress histories (see Section S3 of the 

SI). For example, consider a material point located at (X, Y) at the current time t. The stress 

experienced by this point at any prior time 𝑡′(≤ t) is 𝜎 ൌ 𝐾ሺ𝑡′ሻ𝑓ሺ𝑋 ൅ Δ𝑐ሺ𝑡, 𝑡′ሻ, 𝑌ሻ in the actual 

state and 𝜎ത ൌ 𝐾ሺ𝑡′ሻ𝑓ሺ𝑋, 𝑌ሻ in the phantom state, where Δ𝑐ሺ𝑡, 𝑡′ሻ ≡ 𝑐ሺ𝑡ሻ െ 𝑐ሺ𝑡′ሻ is the length of 

crack extension from 𝑡′to t. Such a difference in stress history leads to the differential strain  

which is the key mechanism underlying the spatial hysteresis. As schematically illustrated in 

Fig.1b, along a horizontal line AB on the sample, the phantom state yields a linear relation between 

𝜎ത and 𝜀 ̅ with the slope given by the dynamic modulus. In the actual state, crack growth results 

in negative  ahead C (i.e., location of the peak stress) and positive behind C, thus expanding 

the stress strain curve into a spatial hysteresis loop. Using the areas S1, S2 and S3 marked on Fig.1b, 

G, G0 and GD are equal to the integral of S2 + S3, S3 − S1, and S1 + S2 along the Y axis, respectively. 

Physically the effects of cyclic loading and crack growth are manifested in the time functions of 

K(t) and c(t), respectively. Their coupling is encoded in the strain differential  between the actual 

and phantom states.  

To put our theory into perspective, we note that existing theories for steady-state crack growth 

under static loading can be categorized into two approaches: i) cohesive zone and ii) energy 

balance. The cohesive zone approach [19,20] focuses on analyzing the opening displacement of a 

cohesive zone at the crack tip. The energy balance approach [8–10] considers a featureless crack 

and integrates the energy dissipation due to crack growth by assuming the stress near the crack tip 

follows K-field. We adopt the energy balance approach to highlight the physics of how cyclic 

loading affects energy dissipation around the crack tip. By introducing two concepts: spatial 

hysteresis and phantom state, we have extended the energy balance approach from static loading 

to cyclic loading.  
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Although it appears that the energy balance approach does not require an intrinsic length scale 

at the crack tip, this is not the case. As summarized in a historical perspective by Hui et al. [21], a 

cut-off length l must be introduced to exclude a small region around the crack tip from the integral 

for energy dissipation, otherwise the crack tip singularity would lead to a paradox noted by Rice 

[22]. Conceptually, the cut-off length l is similar to the cohesive zone size in that both the energy 

balance and cohesive zone approaches need to introduce an intrinsic length scale to regularize the 

crack tip singularity. Recent studies [21,23,24] comparing the energy balance and cohesive zone 

approaches showed that these two approaches give similar results (except at low crack velocity) 

provided that the cut-off length or cohesive zone size is viewed as a fitting parameter rather than 

a prescribed constant. Within the energy balance approach, there are different ways to impose the 

cut-off length l. For example, de Gennes [8] assumed a constant cut-off length and attribute it to 

the fracture process zone at the crack tip, while Persson and Brener [9] assumed a maximum stress 

at the crack tip which resulted in an increasing cut-off length l with the energy release rate G. As 

will be discussed in the next section, we also need to introduce a cut-off length when carrying out 

the integral in Eq. (4). For simplicity, we follow de Gennes [8] and assume a constant cut-off length. 

A common problem for the energy balance and cohesive zone approaches is that the cut-off 

length (or the cohesive zone size in the limit of low crack velocity) needs to be unrealistically 

small (on the order angstroms) for the viscoelastic fracture theories to fit experimental data [21]. 

In a review paper [6], Knauss pointed out limitations of applying linear viscoelasticity at the crack 

tip and that nonlinear viscoelasticity may be the key to address this problem, but this remains an 

open problem. Since our goal is to develop a scaling theory, we still adopt linear viscoelasticity 

but keep in mind that the cut-off length l may be unrealistically small.  

 

3. Dynamic Effect of Cyclic Loading 

Equipped with the energy balance theory, we are now ready to study the dynamic viscoelastic 

effect in cyclic crack growth. To demonstrate that the dynamic effect observed by Lake and 

Lindley[11] can be qualitatively modeled using a simple viscoelastic model, we first perform FE 

simulations using ABAQUS (Simulia, Providence, RI, USA). The FE model (see Fig.2a) consists 

of a wide thin sheet (width: L; height: H) clamped by rigid plates at the top and bottom edges. A 

pre-crack with length c is introduced in the middle of the sheet’s left edge. To simulate crack 
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growth, we introduce a cohesive zone directly ahead of the crack tip by introducing a layer of 

cohesive elements. The cohesive elements follow a bilinear traction-separation law featuring a 

peak cohesive traction cm and a maximum separation m. Consequently, the intrinsic fracture 

energy 0 is given by 0 = cmm/2. Viscoelasticity is introduced by assuming a simple model 

whose rheological schematic is shown in Fig.2b. This model, featuring a single relaxation time , 

an instantaneous modulus E0 and a long-term relaxed modulus E∞, was implemented using Simo’s 

approach of quasi-linear viscoelasticity [25]. More details on the FE model gometry, cohesive and 

material parameters, simulation procedures and data processing are provided in Section S2 of the 

SI. We consider both static and cyclic loadings by prescribing the nominal stretch ratio  ≡ 1+ /H 

(Fig.2c). The applied energy release rate is calculated using G = ∞∞H/2 where ∞ = Under 

static loading, the crack growth settles to a steady state with constant velocity Vs (Fig.S2) after an 

initial transient stage. By varying , an empirical relation between G and Vs, Vs(G), can be 

established (see inset of Fig.2d). Note that we normalize Vs by m/ where m is the maximum 

separation of the cohesive element. In the literature [21], Vs is often normalized by the cohesive 

zone size and relaxation time so that it reflects the characteristic strain rate near the crack tip. Since 

our purpose here is to present the simulation results in a dimensionless form rather than to reveal 

physical significance, we choose to use the prescribed constant m for normalizing Vs. Under cyclic 

loading, we apply triangular periodic functions for (t) that is bounded by min = 1 and max and 

has a period of T. After a few cycles, the cyclic crack growth is observed to settle at a constant rate 

dc/dN (Fig.S3).  

To quantify the dynamic viscoelastic effect, we first determine (dc/dN)s using the empirical 

relation Vs(G) with the periodic function G(t) (see Section S2 of the SI) and calculate the ratio  = 

(dc/dN)/(dc/dN)s. Our simulation results in Fig.2d show that  approaches one when the period T 

is much larger than the relaxation time  but can be substantially larger than one when T becomes 

comparable to , which is consistent with the trend of experimental observations in Lake and 

Lindley [11]. To verify our fracture criterion, we compute G0 during a loading cycle using Eq. (2) 

and the stress and strain fields obtained from the FE results, and compute G and GD by G = 

∞∞H/2, and GD = G – G0, respectively. The results are shown in Fig.2e. We observe that during 

crack growth G0 is bounded by 0, while G can exceed 0. The duration when G0 = 0 overlaps 

that of crack growth. The excessive energy release rate G – G0 is consumed by the viscoelastic 
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dissipation GD. For comparison, we repeat the simulation but increase the inrinsic fracture energy 

to a sufficiently large value Γ଴
∗  (= 30) so that crack growth is suppressed, which effectively 

recovers the phantom state. In this case (Fig.2f), G is approximately equal to G0 while GD is 

negligible. 

 

 

Figure 2 FE simulation and results. (a) Model geometry and dimensions. (b) Schematic of the 
viscoelastic model. (c) Static and cyclic loading processes. (d) FE results of the ratio  defined as 
(dc/dN)/(dc/dN)s. The inset shows the empirical ration between Vs and G for static loading. Note 
that Vs is normalized by m/ where m is the maximum separation of the cohesive element. (e-f) 
G, G0 and GD computed using the FE results during a loading cycle for the (e) actual state and (f) 
phantom state. To suppress crack growth in the phantom state, we increase the instrinsic fracture 
energy to Γ଴

∗ = 30. However, to facilitate comparison, we normalize the energy release rates in 
both (e) and (f) by 0. 
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Our energy balance theory allows us to qualitatively capture the dynamic viscoelastic effect. 

By using the stress history for the actual and phantom states to calculate the strain differential  

and then substituting it into Eq. (4), we obtain the following integral equation for the crack length 

c(t) (see Section S4 of the SI): 

            
2
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    

             ,  (5) 

where J(t) is the creep compliance function and 𝐽ሶ ൌ 𝑑𝐽/𝑑𝑡. Recall that f(X,Y) represents the spatial 

distribution of the K-field (see Eq. (S14) in the SI). Eq. (5) is valid for general cyclic loadings, but 

numerical solution of this equation can be challenging. To obtain physical insights, we focus on 

the limit of slow crack growth and slow loading. After a lengthy derivation detailed in Section S4 

of the SI, we obtain the following simplified equation: 

              0

t

fG t G K t C J t t K t V t dt


       ,       (6) 

where Cf is the spatial integral of the K-field distribution 𝑓ሺ𝑋, 𝑌ሻ, 𝐽ሚ(t) = J(t) – J(t →+∞) is the 

non-equilibrium portion of the creep function J(t), and V(t) is the crack propagation velocity at 

time t. As detailed in Section S4 of the SI, Cf is obtained by integrating a field involving 𝑓ሺ𝑋, 𝑌ሻ 

and its spatial gradients. When carrying out the integration, we introduce a constant cut-off length 

l representing the length of the fracture process zone [8,10], as discussed in Section 2. We find that 

Cf is a negative constant that scales as Cf ~ −1/l. The slow crack propagation and slow loading 

conditions required by Eq. (6) implies V/l << 1/c and 𝐾ሶ /𝐾<< 1/c, respectively, where c is the 

characteristic time for the creep function, also known as the creep retardation time. For the standard 

linear solid model in Fig. 2c, c is related to the relaxation time  by c = where  ≡ E0/E∞. 

Equation (6) highlights the coupling between the three time scales associated with cyclic loading, 

viscoelastic creep and crack propagation. It is worth mentioning that Knauss [6] showed the 

dynamic viscoelastic effect would be absent (i.e., = 1) if 𝐾ሶ /𝐾 << V/2l. Even though Eq. (6) 

requires that both V/l and 𝐾ሶ /𝐾 are much smaller than 1/c, it is still possible for Eq. (6) to capture 

dynamic viscoelastic effect by allowing 𝐾ሶ /𝐾~𝑉/𝑙. 

We numerically solve Eq. (6) by prescribing G(t) and K(t) according to the external loading. 

Generally speaking, under cyclic loading the material far away from the crack tip (i.e., the far field) 



12 
 

is not in the relaxed, but is governed by the dynamic modulus set by the loading frequency. In this 

case, the relation between G(t) and K(t) may not be straightforward. However, because of the slow 

loading condition (𝐾ሶ /𝐾<< 1/c) assumed for Eq. (6), the loading cycle is much longer than the 

relaxation time. Therefore, it is reasonable to assume the far field is in the fully relaxed state under 

slow loading, yielding that G(t) = (K(t))2/E∞. Furthermore, we apply the standard linear solid model 

with 𝐽ሚ (t) = െሺ𝜂 െ 1ሻ𝑒ି௧/ఛ೎/𝐸଴ . Details of the numberical solution procedures are given in 

Section S5 of the SI. It is informative to first consider the static loading case where G, K and V are 

constants, for which Eq. (6) results in 𝐺 െ 𝐺଴ ൌ 𝐾ଶห𝐶௙ห𝑉𝜏௖ሺ𝜂 െ 1ሻ/𝐸଴. Using c =, |Cf| ~ 1/l 

and assuming  >> 1 [8], we obtain 𝐺 െ 𝐺଴~ሺ𝐾ଶ/𝐸଴ሻ𝑉𝜏𝜂ଶ/𝑙, which recovers the scaling relation 

in Saulnier et al. [10] in the limit of slow crack propagation (i.e., V<< l/c = l/).  

Under cyclic loading, we assign periodic functions for G(t) and K(t) to numerically solve for 

the crack velocity V using Eq. (6). To demonstrate that Eq. (6) can capture the trend of FE results 

in Fig. 2d, we implement the same G(t) and viscoelastic parameters as those in the FE model and 

set G0 to be the same as the 0 in the FE model which is specified by the cohesive zone. It should 

be emphasized that our theory does not use cohesive zone to model the crack tip fracture process, 

but simply enforces a constant cut-off length l at the crack tip. On the other hand, the cohesive 

zone size in the FE model may vary with crack velocity. For example, it has been shown that the 

cohesive zone size can increase with crack velocity by a ratio up to  = E0/E∞ [6,21]. This is 

inconsistent with the constant cut-off length l assumed in the theory. To address this issue, we have 

adopted a small value for  (i.e., = 2, see Section S2 and S5 of the SI) in both the FE model and 

the numerical solutions for Eq. (6), which can limit the variation of cohesive zone size in the FE 

model while still capturing viscoelasticity. As a reference, more realistic values of  for elastomers 

should fall in the range of 10 to 103. Solutions of crack velocity in a loading cycle obtained from 

Eq. (6) are shown in Fig.3a. The static limit, obtained using ሺ𝐺ሺ𝑡ሻ െ 𝐺଴ሻ/𝐺ሺ𝑡ሻ ൌ ห𝐶௙ห𝜏ሺ𝜂 െ

1ሻ𝑉ሺ𝑡ሻ is also plotted for comparison. When T/ increases, the crack velocity V approaches the 

static limit. In constrast, when T is comparable to , the crack velocity V is highly skewed towards 

the loading part of the cycle and quickly decays to 0 once the unloading starts, which is consistent 

with the FE results. By integrating the crack velocity over one period T, we calculated the crack 

growth per cycle dc/dN, as well as the static counterpart (dc/dN)s, and then obtained the dynamic 

amplifcation factor  = (dc/dN)/(dc/dN)s, as shown in Fig.3b. The data qualitatively capture the 
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trend that  approaches one when T/>> 1, but rapidly increases as T/ decreases. Recall that Eq. 

(6) requires the conditions of slow crack growth (V/l << 1/c) and slow loading (𝐾ሶ /𝐾<< 1/c). 

Therefore, the theoretical solution is not expected to be valid as T/ approaches 1 since it would 

violate the slow loading condition. However, the FE results are not subjected to this restriction and 

should be valid for the full range of T/. This explains the increasing discrepancy between FE 

result and theoretical solution as T/ is reduced. 

 

 

Figure 3 Numerical solutions of crack velocity. (a) The evolution of V during a loading cycle. 
Note that V is normalized by 1/|Cf|. The inset shows a zoomed-out view of the entire loading cycle. 
(b) The dynamic viscoelastic amplification factor  defined as (dc/dN)/(dc/dN)s. The inset shows 
the comparation with FE simulaton results. 

 

4. Discussions and Conclusion 

In summary, we formulate a scaling theory to qualitatively capture the dynamic viscoelastic 

effect in cyclic crack growth. By introducing the concepts of spatial hysteresis and phantom state, 

the theory separates the viscoelastic dissipation induced by cyclic loading and crack growth, which 

enables us to unambiguously define G, G0 and GD for cyclic crack growth. Our analysis leads to 

an integral equation governing the crack growth velocity, which can be numerically solved to 

predict the cylic crack growth rate during fatigue fracture.  

 Since the scaling theory is based on several simplifying assumptions, limitations due to these 

assumptions should be addressed to achieve quantitative agreement with experimental data. These 
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potential extensions are outlined in the following. First, the multi-axial state of crack tip stress and 

strain is not considered in the current theory, but can be taken into account by keeping the stress 

and strain in the tensorial form. Second, we have assumed a constant cut-off length l that is 

independent of crack velocity. Dependence of the cut-off length l on crack velocity can be 

incorporated by following Persson and Brener [9] and imposing a maximum stress at the crack tip 

rather than a fixed cut-off length. Third, we have assumed that no crack surface contact occurs 

during unloading. If crack surface contact occurs, validity of the extended correspondence 

principle needs to be reexamined. Specifically, the case of crack surface contact was considered 

by Schapery [26] where an alternative form of the correspondence principle was given and later 

used to study crack closing [27,28]. How to extend our theory requiring only the crack tip K-field 

to cases with crack surface contact needs to be further studied. Fourth, numerical solution of Eq. 

(5) should be explored to extend the theoretical solution beyond the slow crack groth and slow 

loading condition. Finally, more realistic viscoelastic models should be implemented in the theory 

and FE model to facilitate a parametric study on the effects of viscoelastic properties, cut-off length 

(or cohesive zone in the FE model) and loading cycles.  
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S1. Energetic Fracture Criterion 
To understand the role of viscoelastic dissipation in cyclic crack growth, we derive an 

isothermal and instantaneous energy balance equation for crack growth in a solid occupying a 

volume  and boundary surface  in the reference configuration. Following the procedures 

described in our recent work [1], we find that at any instant 

0
d d dd : d
d d d

A

t t t 

     
  

u FΣ P ,                                (S1) 

where  and u are the traction and displacement vectors on the boundary  P is the first Piola-

Kirchhoff stress tensor, F is the deformation gradient tensor, 0 is the Helmholtz free energy 

required to grow the crack by a unit area in the reference configuration, also known as the intrinsic 

fracture toughness (energy/area), and A is the area of crack surface. Equation (S1) states that the 

power of external tractions subtracted by the internal stress power is equal to the power consumed 

by crack growth. To make eq. (S1) valid for any finite deformation in general, we have adopted 

the first Piola-Kirchhoff stress P and deformation gradient tensor F. It is known from the 

continuum mechanics literature [2] that the incremental stress work P:dF is equal to S:dE, where 

S is the second Piola-Kirchhoff stress tensor and E = (FTF – I)/2 is the Green-Lagrange strain 

tensor (I is the identity tensor). Under infinitesmal deformation, S:dE (or equivalently P:dF) 

degenerates to:dwhere  and  are the linear stress and strain tensors, respectively. A version 

of eq. (S1) in terms of  and  can be found in Anderson [3].  

For elastic solids, Eq. (S1) can be cast in terms of the J-integral [4]. First, we recognize that du 

vanishes on the displacement boundary d, which allows us to reduce the total boundary  in Eq. 

(S1) to only the traction boundary t. Second, for elastic solids we can define a strain energy 

density function such that dW = P:dF = S:dE. Combining these two points, we see that the left 

hand side of Eq. (S1) is essentially the rate of change of potential energy. For a two-dimenionsal 

crack, one can follow the derivation on Page 211-213 in Rice [4] or the Appendix A in Qi [1] to 

show that the rate of change of potential energy is equal to the J-integral multiplied by dA/dt.  

To specialize eq. (S1) for the ideal “pure shear” geometry shown in Fig.1a of the main text, we 

make the following observations: 
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 The boundary surface  is either traction-free (i.e., = 0) or subjected to a prescribed 

displacement u which solely depends on  (= /H). 

 The crack area A is equal to the product of crack length c and specimen thickness b. 

 After a transient stage, the cyclic crack growth reaches a quasi-steady-state where the stress 

and deformation tensors at a material point located at (x, y) only depend on its relative position 

to the crack tip and the time t. Because of the periodic nature of cyclic loading, the time t 

essentially reflects the external loading  (= /H), i.e.,  is a functions of t. Therefore, we can 

write P = P*(x−c(t), y, t) and F = F*(x−c(t), y, t), where c is the crack length defined as the 

horizontal coordinate of the crack tip in the fixed coordinate system x-y and varies with the 

time t.  

Based on these observations, we rewrite eq. (S1) as 

   0
d d dd : d : d 0
d d d

V V

c
V V b

t t c t




                          
  

u F FΣ P P .             (S2) 

The first term of eq. (S2) represents the energy balance for cyclic loading in the absence of crack 

growth and should be equal to zero since we ignore inertial effects. This means that the second 

term in eq. (S2) must vanish as well. We introduce a moving coordinate system X-Y that is centered 

at the crack tip and translates with the crack, i.e., X = x − c and Y = y (see Fig. 1a of the main text). 

Using the quasi-steady-state condition, we write ∂F/∂c = − ∂F/∂X and conclude that the following 

equation must be satisfied at any time during crack propagation: 

    
/2

0
/2

: d
H

H

XdY
X



 

      
FP .                     (S3) 

Equation (S3) relies only on the quasi-steady-state condition for crack growth, and is valid for any 

material behavior regardless whether it is elastic or inelastic. Moreover, since the steady-state 

crack growth under static loading is a special case of the quasi-steady-state condition, eq. (S3) is 

valid for static loading as well.  

Since this work focuses on linear viscoelasticity and infinitesmal deformation, we replace the 

incremental stress work P:dF by d, where  and  are the linear stress and strain tensors. 

Therefore, eq. (S3) becomes 

     
/2

0
/2

: d
H

H

XdY
X



 

      
εσ ,                     (S4) 
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On this basis, we further propose the following energetic fracture criterion: 

0 0

0 0

0 if
0 if 

V G

V G

  
   

 with 
2

0
2

: d d
H

H

G X Y
X



 

     
εσ                   (S5) 

which is eq. (2) of the main text.  
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S2. Finite Element Simulations of Crack Growth 

We built a plane stress model in ABAQUS according to the geometry shown in Fig. 2a of 

the main text. Unlike the ideal “pure shear” geometry with infinite width, in Finite Element (FE) 

simulations we have to implement finite dimensions. Specifically, the model dimensions are: width 

L = 90 mm and height H = 6 mm. Note that L >> H as required by the “pure shear” geometry. An 

initial crack with length c = 30 mm was introduced on the left side of the model. To simulate crack 

growth, a cohesive zone was introduced along the projected crack growth path directly ahead the 

original crack tip. The mesh near the crack propagation path was refined to improve accuracy with 

the smallest element size being 0.01 mm. To limit the number of elements and hence computational 

cost, only a region with length of 15 mm and height of 1.8 mm ahead of the initial crack tip was 

assigned the refined mesh. The mesh was formed by 2D quadrilateral, plane stress elements with 

reduced integration (CPS4R). A representative figure of the FE mesh is shown in Fig. S1a. 

 

 

Figure S1 Geometry of FE model and cohesive zone. (a) Representative mesh of the FE model. 
(b) Zoomed-in view of the crack tip region under loading. The cohesive elements are not shown 
to improve readability. Instead, the cohesive traction c is represented by red arrows and  is the 
separate between the crack surfaces. (c) Bilinear traction-separation law for the cohesive zone 
featuring a peak cohesive traction cm, maximum separation m, and intrinsic fracture energy 0 
(i.e., area underneath the traction-separation curve). 
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 The cohesive zone along the projected path of crack growth was implemented using a layer of 

cohesive elements. We adopted the bilinear traction-separation law as illustrated in Figs.S1b-S1c, 

which has been applied in the literature to study crack growth in inelastic soft materials [1,5]. This 

cohesive zone model featured a peak cohesive traction cm, maximum separation m, and intrinsic 

fracture energy 0. In our simulations we set cm = 2 MPa, m = 0.25 mm and 0 = cmm/2 = 250 

J/m2. 

 For the bulk material model, we implemented the viscoelastic model using Simo’s approach 

of quasi-linear viscoelasticity [6]. This approach combines a hyperelastic model with a relative 

relaxation function g(t) (i.e., g = 1 at t = 0 and g = g∞ at t = + ∞). Although one can apply a Prony 

series for the relaxation function to capture the spectrum of relaxation times for practical 

viscoelastic solids, for simplicity we assumed a simple model as illustrated in Fig. 2b of the main 

text. In this case, the relative relaxation function is 

     1 exp t
g t g g

 
     
 

,          (S6)  

where is the relaxation time and g∞ is the long-term relaxation ratio. The elastic springs in Fig.2b 

of the main text were modeled by the neo-Hookean solid with the following strain energy density 

function: 

       2
1 3 det( ) 1

6 2
E

W I


   F ,         (S7) 

where E is the Young’s modulus,  is the bulk modulus, F is the deformation gradient tensor, 

det(F) is the determinant of F, and 

       2 /3
1 det TI tr


   F FF .          (S8) 

Since most soft rubber and elastomers are approximately incompressible (i.e., Poisson’s ratio close 

to 0.5), we assumed that the bulk modulus  is much larger than E, specifically  = 4167E. We 

assigned the neo-Hookean model to both springs in Fig.2b of the main text and set E1 = E2 = 2.4 

MPa, which is equivalent to setting the instantanesous modulus as E0 ≡ E1 + E2 = 4.8 MPa, the 

relaxed modulus as E∞ ≡ E2 = 2.4 MPa, and the relaxation ratio as g∞ = 0.5. The relaxation time  

in eq. (S6) was left as a variable and we preformed simulations with different  to study the effect 
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of ratio T/ (recall that T is the loading cycle period). The viscoelastic model implemented in 

ABAQUS (Section 4.8.2 of ABAQUS Theory Guide) follows Simo’s approach [6]. Here we 

briefly describe the formulation implemented in ABAQUS. The instantaneous Cauchy stress 

tensor, denoted as 0, is first calculated based on the strain energy density function in eq. (S7), and 

is then decomposed into the hydrostatic part 0
Sσ  and deviatoric part 0

Dσ , i.e.,  

  where  0
0 3
S

tr


σ
σ I , (S9) 

where I is the identity tensor. The deviatoric Cauchy stress over time is given by  

              1
0 00

dev
t T TD D D

t t t s t s t s t

dg s
t ds

ds

 
  

  
    

   
σ σ F F F σ F F F , (S10) 

where Ft is the deformation gradient tensor from time 0 to time t, Ft-s is the deformation gradient 

tensor from time 0 to time t – s (s ≤ t), and g(t) is the relaxation function. The hydrostatic Cauchy 

stress over time S(t) is determined by enforcing the plane stress condition, i.e., the out-of-plane 

components of the total Cauchy stress (t) must be zero. 

The viscoelastic and cohesive parameters adopted in the FE model are justified as follows. 

 Viscoelastic parameters: The long-term modulus E was set to be 2.4 MPa as a typical value 

for elastomers. As discussed in the main text, E0/E was set to be relatively small (= 2) to limit 

the variation of cohesive zone size and hence facilitate the comparison between the FE model 

and theory. The relaxation time  was varied to change the ratio of T /. 

 Cohesive zone parameters: The maximum separation m was set to be 0.25 mm, which is ~ 4% 

of the sample height (H = 6 mm). This value was selected so that the cohesive zone is localized 

at the crack tip spanning over tens of elements. Recall that the element size near the crack tip 

was 0.01 mm. The localized cohesive zone is required so that the K-field based analysis of 

energy dissipation is valid. Further reduction of m would require smaller element size at the 

crack tip and hence higher computational cost. The peak cohesive stress cm was selected to 

be 2 MPa so that the intrinsic toughness 0 (i.e., area underneath the cohesive traction-

separation law), given by cmm/2 = 250 J/m2, is within the reasonable range of elastomers (on 

the order of 100 J/m2).  

0 0 0
S D σ σ σ
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Using the FE model outlined above, we performed a series of FE simulations to study the rate 

of crack growth under static and cyclic loading. These simulations were carried out using the 

explicit dynamic solver (ABAQUS/Explicit) to accomodate the rapid unloading due to crack 

growth. We ensured that inertial effects in these simulations were negligible by using slow loading 

rates and mass scaling. Therefore, the simulations were still quasi-static, and the purpose of using 

the explicit dynamic solver was to circumvent the convergence problems with a static solver. When 

a vertical displacement  is applied to the sheet, the crack opens symmetrically and grows under 

sufficiently large . Both static and cyclic loadings are considered in the simulations, as expressed 

in terms of the history of the nominal stretch ratio  ≡ 1 + /H (see Fig.2c of the main text). 

We first considered static loading with prescribed nominal stretch  ≡ 1 + /H (ranging from 

1.18 to 1.22). Figure S2 shows a representative set of simulation results for static loading. After 

an initial transient stage, the crack growth settled at a steady state with constant velocity Vs. As 

stated in the main text, we extracted the crack velocity Vs during the steady state and calculated 

the corresponding energy release rate using G = ∞∞H/2. By varying the nominal stretch , we 

obtained a set of data points for G versus Vs (see inset of Fig.2d of the main text) and then applied 

polynomial fitting to generate an empirical function of Vs(G). Note that we normalize Vs by m/ 

in the inset of Fig.2d, since  is the only material time scale in the simulations and m (i.e., 

maximum cohesive separation shown in Fig. S1c) is the relevant length scale for crack growth. 

For cyclic loading, we imposed triangular periodic functions for (t) that is bounded by min 

= 1 and max (ranging from 1.16 to 1.25) and has a period of T = 100s. Figure S3 shows a 

representative set of simulation results for cyclic loading. As shown in Fig.S3d, the cyclic crack 

growth rate dc/dN settled at a constant value. Note that the slight oscillation of dc/dN was due to 

the discretization of cohesive zone, since the crack only grew by a few elements per cycle. 

Following the idea of Lake and Lindley [7], we use the empirical function Vs(G) obtained from 

static loading to predict the cyclic crack growth rate (dc/dN)s as follows 

       
0

d / d
T

ss
c N V G t dt  ,          (S11) 

where G(t) is obtained using the far-field stress and strain in the simulations with cyclic loading, 

i.e., G(t) =  ∞(t)∞(t)H/2. As stated in the main text, we quantify the dynamic viscoelastic effect 

by the ratio : 
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 

d / d
d / d

s

c N

c N
  .                                            (S12) 

The results for  in Fig.2d in the main text confirm that viscoelasticity can result in the dynamic 

effect observed for cyclic crack growth. 

 Finally, although the FE model is based on a quasi-linear viscoelastic model that acounts for 

large deformation while our theory is based on linear viscoelasticity, discrepancy caused by this 

difference is insignificant due to the moderate peak stretch applied (max = ~1.2) and the relatively 

weak material nonlinearity of the neo-Hookean model. 

 

 

Figure S2 Representative FE results for static loading. (a) Deformed mesh during crack growth 
(b) Zoomed-in views of the crack tip region as the crack grows. (c) Crack length c and crack 
growth velocity Vs over time. A steady state emerges for t > 200s. For reference, the relaxation 
time is  = 10 s. (d) History of the energy release rate G. Crack growth occurs when G ≥ 0 = 250 
J/m2.  
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Figure S3 Representative FE results for cyclic loading. (a) Deformed mesh during crack growth 
(b) Zoomed-in views of the crack tip region as the crack grows. (c) Crack length c versus time t. 
For reference, the viscoelastic relaxation time is  =10 s and the cycle period is T = 100 s. (d) 
Cyclic crack growth rate dc/dN over 20 loading cycles. 
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S3. Actual and Phantom States: Stress Field 

We discuss the stress fields in the actual state (with crack growth) and the phantom state 

(without crack growth).  

First, we use the extended correspondence principle by Graham [8] to conclude that the stress 

field near the crack tip in viscoelastic solids is the same as that in elastic solids. For scaling analysis, 

we neglect the effect of the fracture process zone (or equivalently, the cohesive zone) and adopt 

the K-field. The same approach has been adopted in the theories for steady-state crack growth 

under static loading by de Gennes [9], Saulnier et al. [10] and Persson & Brenner [11]. Specifically, 

for Mode-I crack, the K-field is given by 

    
11

22

12

31 sin sin
2 2

3cos 1 sin sin
2 2 22

3sin cos
2 2

K

R

 


  

  

  
   
           

  
 

,        (S13) 

where K is the stress intensity factor, R and  are polar coodrinates centered at the crack tip, and 𝑅 ൌ  √𝑋ଶ ൅ 𝑌ଶ and 𝜃 ൌ arctan ሺ𝑌/𝑋ሻ. Recall that we use  ≡ 22as the scaling representation of 

the entire stress field. At a given instant, the near-tip stress field can be written as 

     3cos 1 sin sin ,
2 2 22

K
Kf X Y

R

  


    
 

.       (S14) 

Therefore, the near-tip stress field can be completely specified by the stress intensity factor K. 

Second, by definition the stress field in the phamton state is identical to that in the actual state 

far away from the crack tip. This condition implies that the phantom and actual states should also 

share the same stress intensity factor K for the near-tip field. The agreement in both the far field 

and near-tip field suggests that the two states should share the same stress field at any given instant. 

As discussed in the main text, the difference between the two states is on the near-tip strain fields. 

Therefore, we focus on the near-tip fields given by eq. (S14) and write the phamton stress field 𝜎ത 

and the actual stress field at an instant t as: 

           , , , , ,X Y t X Y t K t f X Y   .        (S15) 
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It should be emphasized that the cohesive zone may interact with the near-tip stress field, which 

can cause deviation from the K-field near the crack tip, as demonstrated in the cohesive zone 

approach by Knauss [12] or Schapery [13]. Such interaction may lead to difference in stress fields 

very close to the cohesive zone between the phantom and actual states. By adopting the K-field in 

eq. (S14), our scaling theory neglects this potential interaction. 

 

 

Figure S4 Stress distributions in the actual state and state. (a) Normal stress 22 versus X along 
seven horizontal lines with different Y. (b) Normal stress 22 versus normal strain 22 along Y = 
0.174 mm. The dashed lines represent results for the phantom state and the solid lines represent 
results for the actual state. 
 

We verify the assumption of identical stress fields for the phantom and actual states using the 

FE results. The actual state (with crack growth) was obtained using the cohesive zone approach 

described in Section S2, while the phantom state (without crack growth) was obtained by 

substantially increasing cm and 0 of the cohesive zone model to suppress crack growth. In 

Fig.S4a, we plot the distributions of 22 along seven horizontal lines (i.e., different Y) at the same 

time during a loading cycle. Recall that X = 0 is the vertical line passing through the crack tip. It 

can be seen that stress distributions for the two states are approximately the same. Deviations can 

be found near X = 0 with small Y. This is attributed to the different cohesive zone parameters 

employed for the two states. Specifically, the phantom state exhibits a larger stress near the crack 

tip due to the larger peak cohesive stress cm used in the phantom state. Such deviations are 

expected since we have neglected the effects of cohesive zone by adopting the K-field. In Fig.S4b, 
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we plot the stress 22 versus the strain 22 along a horizontal line (Y = 0.174 mm), which is 

approximately the same as the schematic shown in Fig.1b of the main text. In particular, the spatial 

hysteresis in the phantom state is nearly zero, but is significant in the actual state. Again, the 

slightly discrepancy between Fig.S4b and Fig.1b of the main text is due to the different cohesive 

zone parameters employed to produce the actual and phantom states. 

 

 

Figure S5 Stress history in the actual and phantom states. (a) Schematic of the “pure shear” 
geometry in the FE simulation. PA and PB are two points ahead of (X > 0) and behind (X < 0) the 
crack tip at Y = 1 mm. (b) We extract the stress history of a material point located at Y = 1 mm in 
the actual state (black line), and compare it to the stress histories at PA (blue line) and PB (red line) 
in the phantom state. (c-d) Zoomed-in view of the stress history to facilitate the comparison of 
stress history between the actual and phantom states. 
 

Although the actual and phantom states share the same stress field at a given instant, they 

exhibit different strain fields near the crack tip. This is because material points in these two states 

experienced different stress histories. To illustrate this point, we use the FE simulations and 

compare the stress histories for the two states. As shown in Fig.S5b, the stress history experienced 
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by a material point (black line) follows a cyclic profile, but the amplitude first increases and then 

decreases as the crack tip approaches the material point and then passes it. Such advective effect 

due to crack growth is absent in the phantom state, as illustrated by stress histories at two points 

PA (blue line) and PB (red line) ahead of and behind the crack tip, respectively. Figure S5c shows 

that when the material point in the actual state is temporarily located at PB (i.e., 750 s < t < 800 s), 

it has the same stress as that in the phantom state. However, the stress history experienced by the 

material point prior to t = 750 s is different from that in the phantom state. Similar observation is 

found in Fig.S5d. 

To mathematically represent the advective effect in the actual state, we consider an abitrary 

material point located at (x, y) where x-y is a fixed coordinates system (see Fig.S5a). Without loss 

of generality, we set 

      x X c   and Y y ,             (S16) 

where c is horizontal coordinate of the crack tip relative to the fixed x-y system, and can be 

regarded as the effective crack length. In the actual state, c is a function of time, i.e., c = c(t), and 

thus the stress history at t’ prior to the current time t is 

           , , ,x y t K t f x c t y     ,   t t  .       (S17) 

In the phantom state that corresponds to the actual state at the current time t, c is the same as c(t) 

and remains unchanged for any prior time t’. Therefore, we have  

           , , ,x y t K t f x c t y    ,     t t  .       (S18) 

Equations (S17) and (S18) can also be written in terms of the X and Y coordinates of the material 

point at the current t by using eq. (S16) with c = c(t): 

          , , ,x y t K t f X c t c t Y       and      , , ,x y t K t f X Y   , t t  ,     (S19) 

which is the form in the main text. 

 

   



15 
 

S4. Integral Equation for Crack Velocity 

In linear viscoelasticity, the strain  at a material point under unaxial tension can be expressed 

using the hereditary integral: 

             0
d d d
d

t t

t J t t t J t J t t t t
t

  
 

        
   ,       (S20) 

where J(t) is the creep compliance function, J0 = J(t = 0) and 𝐽ሶ ൌ 𝑑𝐽/𝑑𝑡. Note that eq. (S20) 

implicitly assumes that  = 0 at t = −∞. This is not contradictory to the stress histories in eq. (S17) 

and (S18), because one can always set the time t = −∞ to be before the start of cyclic loading. The 

principle of fading memory dictates that the transient stage can be neglected and we only need to 

consider the stress history in the quasi-steady state. Combining eq. (S20) with the stress histories 

in eq. (S17) and (S18), we obtain 

               , , , , , , , , d
t

x y t x y t x y t J K t f x c t y ft t x c y tt  


            .   (S21) 

Note that 𝜎 ൌ  𝜎ത at the current time t.  

To apply eq. (4) of the main text, we rewrite eq. (S21) in the local coordinates X and Y using 

x = X + c(t) and y = Y, i.e., 

           d, ,, ,;
t

K t f X c t YX Y Yt t t ft XJ t


           ,          (S22) 

where Δ𝑐ሺ𝑡, 𝑡′ሻ ≡ 𝑐ሺ𝑡ሻ െ 𝑐ሺ𝑡′ሻ. Substituting eq. (S22) into eq. (4) and using eq. (S14) gives 

            
2

0
2

, , , , d d d
H t

H

f
YG G K t J t t f X

f
K t X c t t Y tX Y

X X
Y X



  

    

             , 

                (S23) 

which is eq. (5) in the main text. Equation (S23) is the general governing equation for quasi-steady-

state crack growth (static or cyclic). Under cyclic loading, both G and K are periodic functions of 

time. If these two functions are given, one can numerically solve eq. (S23) to determine the crack 

length c(t) at the current time and hence obtain the cyclic crack growth rate dc/dN. 
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To obtain physical insights, we consider the limiting case of slow crack growth, i.e., V = dc/dt 

is small. Note that the creep compliance function J(t) can be written as J(t) = J(t→+∞) + 𝐽ሚ(t) where 

J(t→+∞) is the equilibrium portion and 𝐽ሚ(t) is the non-equilibrium portion of the creep function. 

Therefore, we replace 𝐽ሶ(t) by 𝐽ሚሶ(t) to take advantage of the limit that 𝐽ሚ(t→+∞) = 0. 𝐽ሚሶ(t) is a decaying 

function with a characteristic time of c. For example, for simple viscoelastic solid shown in Fig.2b 

(also known as the standard linear solid), 

  /0

0

1
ctE E

J t e
E E E



 


  ,      /0

0

ctE E
J t e

E E






  ,      (S24) 

    /0

0

1
ct

c

E E
J t J t e

E E









   ,        (S25) 

where E0 is the instantaneous modulus, E∞ is the relaxed modulus and c is the characteristic creep 

retardation time. Note that c is related to the relaxation time through c = (E0/E∞). Because of 

the decaying behavior of 𝐽ሚሶ(t), we only need to account for the integrand of eq. (S23) when 𝑡 െ 𝑡′ 
is on the same order of c. Consequently, Δ𝑐ሺ𝑡, 𝑡′ሻ in eq. (S23) should scale as Vc. 

Under slow crack growth, Vc is a small value and hence Δ𝑐ሺ𝑡, 𝑡′ሻ is small, which allows 

us to make the following approximation: 

           
2

2
, , , , ,

f f f
X c t t Y X Y X Y c t t

X X X

      
  

.     (S26) 

However, caution should be taken here because 𝜕ଶ𝑓/𝜕𝑋ଶ is not bounded at the crack tip. Recall 

that the distribution function f(X,Y) has a square root singularity, i.e., f ~ R−1/2 as R → 0 (see eq. 

(S14)) where 𝑅 ൌ  √𝑋ଶ ൅ 𝑌ଶ. The square root singularity renders the following scaling relation: 𝜕ଶ𝑓/𝜕𝑋ଶ ~ R−5/2. The approximation in eq. (S26) cannot be valid at the crack tip (R = 0) because 

of the singular higher order derivatives, e.g., 𝜕ଷ𝑓/𝜕𝑋ଷ  ~ R−7/2. For this reason, we need to 

implement a cut-off length at the crack tip. This cut-off length, denoted as l, represents the size of 

the fracture process zone (or equivalently, the cohesive zone). For simplicity, we follow de Gennes 

[9] and assume l is a material constant. More detailed analyses have shown that l can be dependent 

on the crack velocity [10–12]. For eq. (S26) to be valid, we need to satisfy the following condition 
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     
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 
,       (S27) 

which formally specifies the slow crack growth limit as Vc << l. 

The approximation in eq. (S26) allows us to decouple the spatial and temporal integrals in 

eq. (S23), i.e., 

           
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.     (S28) 

The spatial integral Cf can be readily evaluated. First, we expand the integration domain to infinity, 

since H >> l and f(X,Y) decays to zero as 𝑅 ൌ  √𝑋ଶ ൅ 𝑌ଶ → ∞. Second, we rewrite the integral in 

terms of the polar coordinates R and  and use eq. (S14) to determine f. Third, we set the lower 

integration limit for R to be the cut-off length l. Consequently, we obtain 

                
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Note that we only account for 22 and 22 in our scaling analysis. The numerical pre-factor in eq. 

(S29) would change if we include the multi-axial stress components in eq. (S13). Nevertheless, we 

can still write Cf = −l where  is a positive constant of order one. 

Next, we use integration by parts in eq. (S28) and obtain 
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    , 

    (S30) 

where 𝐾ሶ ሺ𝑡ሻ ൌ 𝑑𝐾/𝑑𝑡 and 𝑐ሶሺ𝑡ሻ ൌ 𝑑𝑐/𝑑𝑡. The first term within the square bracket of eq. (S30) 

vanishes because 𝐽ሚ(t→+∞) = 0 and Δ𝑐ሺ𝑡, 𝑡ሻ ൌ 0. Therefore, we arrive at the following result 

           0 , d
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f tG tG K t KC J K t c t V tt t t
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            ,       (S31) 
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where we have identified 𝑐ሶሺ𝑡′ሻ as the crack velocity 𝑉ሺ𝑡′ሻ. To further simplify eq. (S31), we 

assume slow loading, i.e., 

     
 

 
 ,

K t V t

K t c t t

 


 


  for ~ ct t  .       (S32) 

Using eq. (S32), we reduce eq. (S31) to 

       0 d
t

fG G K t C J t t tK t V t


       ,      (S33) 

which is eq. (6) in the main text. Note that both Cf (see eq. (S29)) and 𝐽ሚ(t) are negative, which 

ensures that the right-hand side of eq. (S33) is positive. 

It should be emphasized that eq. (S33) is based on two assumptions: slow crack propagation 

and slow loading, as manifested in eq. (S27) and (S32). Using the scaling relation that Δ𝑐ሺ𝑡, 𝑡′ሻ ~ 

Vc for 𝑡 െ 𝑡′ ~ c, we can rewrite eq. (S27) and (32) as 

1
c

V

l 
  for slow crack growth.       (S34) 

and 

    1
c

K

K 



 for slow loading.        (S35) 

These two conditions involve three time scales: external loading (𝐾ሶ /𝐾), viscoelastic relaxation 1/𝜏௖, and crack propagation 𝑉/𝑙. It is interesting to note that Knauss [12] pointed out that the 

steady state solution under static loading is applicable to cases with non-static loading (e.g. cyclic 

loading) if the following condition is satisfied: 

    
2

K V

K l



.          (S36) 

Neglecting the factor 1/2, this condition states that “differences between a steady state solution 

and a transient one arise only if significant speed changes occur during the time interval in which 

the crack passes through the cohesive zone” [12]. Comparison of eq. (S36) with our two 
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assumptions in eq. (S34) and (S35) implies that we can still capture the dynamic effects using eq. 

(S33) if 𝑉/𝑙~𝐾ሶ /𝐾 ≪ 1/𝜏௖. 

The slow crack growth and slow loading assumptions also imply that the far field is in the 

fully relaxed state. Recall that 𝜏௖  is the creep retardation time and is typically larger than the 

relaxation time . For the simple model in Fig.2b, 𝜏௖ is related to the relaxation time  via c = 

(E0/E∞) > . Therefore, 1/𝜏௖  ൏ 1/𝜏, indicating that 𝐾ሶ /𝐾 ≪ 1/τ. Since we apply a displacement 

boundary condition at the far field, the condition that 𝐾ሶ /𝐾 ≪ 1/τ implies that the viscoelastic 

solid in the far field should be in the fully relaxed state. Therefore, we can relate K(t) and G(t) 

using the relaxed modulus, i.e., G(t) = (K(t))2/E∞ assuming plane stress conditions. 

 

S5. Solution of the crack velocity 
Before presenting the numerical solution of eq. (6), it is worth discussing the special case of 

static loading. In this case, both K and V are constants. Assuming the standard linear solid model 

in Fig.2b, we substitute eq. (S24) into eq. (S33) and obtain  

     2 0
0

0
f c

E E
G G K VC

E E
 




    for 

1
c

V

l 
 .                 (S37) 

Using eq. (S29) to write Cf ~ −l and introducing the ratio  = E0/E∞, we have  

     
2

0
0

~ 1c
D

VK
G G G

E l

     for 
1
c

V

l 
 .      (S38) 

Equation (S38) recovers the scaling relation for slow crack growth in Saulnier et al. [10]. To cast 

eq. (S38) in the same form as that in Saulnier et al. [10], we replace c by the relaxation time 

(E0/E∞)and use G0 = K2/E0 which is obtained by assuming the crack tip is surrounded by 

unrelaxed solid with modulus E0. Therefore, eq. (S38) becomes 

     
0

~ 1DG V

G l

     for 
l

V


 .       (S39) 

If  >> 1, eq. (S39) becomes 
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2

0

~DG V

G l

   for 
l

V


 ,         (S40) 

which is identical to equation (13) of Saulnier et al. [10]. Therefore, we have recovered the static 

solution in the slow velocity limit. 

 Under cyclic loading, we numerically solve eq. (6) in the main text (or eq. (S33)) by assuming 

a triangular periodic function for K(t) and determine G(t) using G(t) = (K(t))2/E∞. This condition 

allows us to rewrite eq. (6) as: 

                   
2

0

t

f

K t
G K t C J t t K t V t dt

E 

       .      (S41) 

Next we introduce the normalization  

           t
t

T
 ,   t

s
T


 , 

m

K
K

K
 ,  fV V C  , J E J         (S42) 

where T is the period of a loading cycle, Km is the maximum value of K(t) in a loading cycle, and 

 is the characteristic relaxation time. Therefore, eq. (S41) becomes 

                        2 0
2

t

m

G E T
K t K t J T t s K s V s ds

K 




    .    (S43) 

To formulate the numerical scheme, the loading history, provided in terms of ( )K t , needs to be 

divided into sufficiently small increments. To this end, the time t  is divded into small steps with 

a uniform step size t . Without loss of generality, we assume the loading starts at t = 0, i.e., K = 

0 for t  < 0.  At the k-th step with kt  = k t , we have   

              2 0
2

1

k

k k k i i i

im

G E T
K t K t J t t T K t V t t

K 




       .  (S44) 

with it i t  . Subsequently, it is straightforward to deduce the following iterative format for the 

normalized crack velocity  kV t : 
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

 


.     (S45) 

To implement numerical computation calculation, we need to apply the following conditions: 

 Set the initial condition that 0V   at 1t  = t .  

 Substitute the creep function  J t  using eq. (S24). 

 Apply the fracture criterion in eq. (S5), i.e., we set G0 = 0 and calculate V for the current time 

step. If V turns out to be negative, it means that the K or G at the current time step is not 

sufficient to drive crack growth. Therefore, the negative value of V is reset to zero at the current 

time and we move on to the next time step.   

The numerical solution depends on three dimensionless parameters:  2
0 / mG E K ,   E0/E∞ (also 

denoted as ) and T/ . To facilitate comparison with the FE simulation results, we fix 2
0 / mG E K  

= 0.667 and E0/E∞ = 2, and vary T/ from 2.5 to 100. Using eq. (S45), we numerically compute the 

crack velocity for 10 cycles, i.e., t ranges from 0 to 10 with an increment size of t = 0.05. 

Because of the range of T/ (≥ 2.5), we find that the numerical solution of V rapidly settles to a 

periodic function with time after the first cycle, as shown in Fig.S6. Therefore, we take V in the 

last cycle as the solution for the quasi-steady-state under cyclic loading. 

 
Figure S6 Numerical solution of crack velocity. Only the first five cycles out of the ten cycles 
are shown. The solutions are based on 2

0 / mG E K =0.667, E0/E∞ = 2 and T/ = 2.5, 5, or 10. 
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