Dynamic effect in the fatigue fracture of viscoelastic solids
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Abstract:

Crack growth in viscoelastic solids under cyclic loading tends to be faster than that under static
loading with the same amplitude. This phenomenon, known as “dynamic effect”, is a key
mechanism underlying the fatigue fracture of soft viscoelastic polymers, but its physical nature
remains a mystery. We develop a scaling theory to delineate how viscoelastic dissipation associated
with crack growth is governed by the coupling between three time-dependent processes: cyclic
loading, crack growth and viscoelastic creep. In the limit of slow crack growth and slow cyclic
loading, a simple integral equation is derived to predict the crack growth velocity under different

cyclic loading frequencies.
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1. Introduction

Crack growth in viscoelastic solids is a fundamental problem for the failure analysis of rubber
and other soft polymers. Fatigue fracture, referring to crack growth under prolonged cyclic loading,
is a failure mode of particular relevance to applications such as tires, sealants, and biomedical
implants. Despite the extensive experimental studies on fatigue fracture in rubber [1-5], predictive
theories are still lacking. Most existing analyses of viscoelastic fracture focus on steady-state crack
growth under static loading [6—10]. The underlying physics is manifested in the coupling between
two time scales: one associated with the crack growth velocity V' and the other being the
viscoelastic relaxation time z. This coupling can be visualized using the “viscoelastic trumpet”
proposed by de Gennes [8]. Briefly, for a steadily growing crack, the crack tip is surrounded by a
region with highly amplified strain rate within which the material behaves as a “hard solid”. Far
away from the crack tip, the material is relaxed and hence behaves as a “soft solid”. Bridging the
“hard solid” and “soft solid” regions is a “liquid region” where viscoelasticity dissipates energy.
Such dissipation implies that additional energy is required to drive crack growth, as stated by the
equation G = Go + Gp(V), where G is the total energy release rate, i.e., energy available for driving
a unit area of crack growth, Go is the energy release rate delivered to the crack tip, and Gpis due
to viscoelastic dissipation and hence sensitive to the crack velocity V. To maintain quasi-static
crack growth, Go should be equal to the intrinsic fracture energy of the solid I'o (energy per unit
area), which is regarded as a material constant. Further analyses on Gp have shown that in an
infinite domain G/Go = & V'7/[) where [ is the length scale associated with the fracture processes at

the crack tip and the function ¢ can be solved by integrating dissipation over the viscoelastic

domain [8,10].

In case of fatigue fracture, G is a periodic function of time ¢. It is tempting to use the relation
G/Go= V) for static crack growth to predict the length of crack extension per cycle, i.e., dc/dN
where c is the crack length and N is the cycle number. However, caution must be taken as shown
in a seminal work by Lake and Lindley [11]. They performed both cyclic and static crack growth
experiments for a synthetic rubber (i.e., styrene-butadiene) that is unfilled and non-crystallizing
and hence can be considered as a viscoelastic solid. From these experiments, they measured the
function of dc/dN versus G for cyclic crack growth, and Vs (or de/df) versus G for static crack
growth. They used the function Vs(G) for static crack growth to predict the cycle crack growth rate,
denoted as (dc/dN)s, by calculating de/df = Vs at any time during a cycle and integrating dc/d¢ over
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one cycle. Interestingly, (dc¢/dN)s was found to be much smaller than the actual dc/dN. To account
for the discrepancy, Lake and Lindley concluded an extra term (dc/dN)s must exist and named it

as the “dynamic component” of crack growth, i.e.,
dc/sz(dc/dN)S+(dc/dN)d. (1)

Experimental data revealed that (dc/dN)« is negligible at low frequency, but becomes dominant at
high frequency, e.g., (dc/dN)s is less than 3% of the total dc/dN at high frequency [11]. Here
“dynamic” implies cyclic loading rather than inertial effects. It has also been observed that
(dc/dN)a 1s sensitive to the waveform of the cyclic loading [12]. Despite the clear experimental

evidence, the physical nature of the dynamic effect causing (dc/dN)s remains a long standing
mystery.

The goal of this work is to develop a scaling theory to explain the underlying physics of the
dynamic component (dc/dN)a. Given that the synthetic rubber used in Lake and Lindley [11] was
unfilled and non-crystallizing, we attribute (dc/dN)a to viscoelasticity. From a scaling analysis
perspective, cyclic loading introduces an additional time scale (e.g., the cycle period 7) to the
coupling between crack velocity 7 and relaxation time 7. Interplay between the three time scales
holds the key towards understanding the viscoelastic dissipation associated with cyclic crack
growth. In the following, we first present a fracture criterion derived from energy balance and then
introduce two concepts, “spatial hystersis” and “phantom state”, to enable the definitions of G and
G for cyclic crack growth (Section 2). In Section 3, we use a Finite Element (FE) model to verify
the energy balance theory and to demonstrate the dynamic effect of cyclic loading. Based on the
energy balance theory, we derive an integral equation governing the crack velocity during a loading
cycle. In the limit of slow crack growth and slow cyclic loading, this integral equation can be
greatly simplified and numerically solved to obtain the crack growth velocity under different cyclic
loading frequencies. It should be emphasized that we do not seek quantitative prediction of the
experimental data in Lake and Lindley [11], which would require a detailed calibration of the
viscoelastic behavior since synthetic rubber typically exhibit a wide spectrum of relaxation times.
Instead, our focus is on using the scaling theory to capture the qualitative trend of dynamic effect
found in FE simulations based on a simple viscoelastic model. This can pave the way for future
development of more sophisticated theories to achieve quantitative prediction. In Section 4, we

conclude by summarizing the theory and outlining limitations and potential improvements.



2. Energy Balance Theory

Existing theories of viscoelastic fracture [6—10] focus on steady-state crack growth under
static loading in which material far away from the crack tip, referred to as the “far field”, is relaxed
and viscoelastic dissipation occurs only around the moving crack tip. However, under cyclic
loading, viscoelastic dissipation can occur in the far field even in the absence of crack growth. A
theoretical challenge is on how to separate the dissipation due to cyclic loading and that due to
crack growth, which is addressed here. Without loss of generality, we consider the ideal “pure
shear” geometry (see Fig.1a) consisting of an infinitely wide thin sheet with a semi-infinite crack.
A vertical displacement A, or equivalently, a nominal stretch ratio A =1 + A/H, is applied to open
the crack symmetrically and drive crack growth. This configuration, known as plane stress Mode-
I fracture, has been widely used in the fracture tests of rubber and soft elastomers [11,13,14]. In
experiments, crack growth settles to a constant rate after a number of initial cycles. This
phenomenon motivates us to assume the quasi-steady-state condition, where the crack extension
within each loading cycle is the same and the stress and strain tensors at a material point only
depend on its relative position to the crack tip and the time within a loading cycle. As detailed in
Section S1 of the Supplementary Information (SI), we use the quasi-steady-state condition to

derive the following energetic fracture criterion [15], which is valid for both elastic and inelastic

materials,
V=0 if G,<T : e
LT with 6= [ [ [0 22 |axay @)
V>0 if G,=T, B ART)

where ¢ and ¢ are the stress and strain tensors, respetively, and X-Y is a moving coordinate system

centered at the crack tip and translates with crack.

Equation (2) presents both stress and strain in terms of tensorial quantities. For simplicity, we
follow de Gennes [8] and use the normal stress and strain along the Y-direction, i.e., o and &, as

scaling representations of the multi-axial stress and strain fields. Therefore, Eq. (2) is simplified

H/2
to GO = f—H/Z

E(Y)dY where (V) = fj;o 0(0e/0X) dX. To understand what contributes to Go,
we schematically plot o versus ¢ along a horizontal line with a constant ¥ where £= 0 at X = —o©
and e= 41— 1 at X=+oo (see Fig.1a). A peak stress (or strain) is expected due to stress concentration

at the crack tip. The closer to the crack tip (i.e., smaller | Y]), the higher the peak stress is. For elastic



materials, there is a one-to-one relationship between oand & Consequently, the integral, £(Y) is
independent of the peak stress and thus is uniform with Y. Specifically, for linear elastic materials
&= 0w&x/2, Where 0w = o (X = +w) and & = £ (X = +0). In this case, Eq. (2) degenerates to Go =
0»&xH/2 which recovers the well-known energy release rate equation for pure shear geometry
[13,14,16]. Note that the result that Go = cw&.H/2 for linear elastic materials can also be derived
by applying the J-integral to the pure shear geometry, as illustrated in Rice [17]. For inelastic
materials, however, a stress may correspond to two different strains depending on the deformation
history, leading to hysteretic stress-strain curves along a horizontal line. Such hysteresis does not
refer to the temporal history at a fixed material point. Rather, it is regarding the spatial distribution
from X = —oo to X = 400 and thus is termed as the “spatial hysteresis”. When spatial hysteresis is

present, ¢ depends not only on o and &, but also on the peak stress that varies with Y.

Figure 1 Spatial hysteresis. (a) Ideal pure shear fracture geometry and schematics showing the
stress and strain along a horizontal line. (b) Spatial hysteresis along a horizontal line. The blue
dashed line connecting A and C represents the phantom state, while the solid line represents the
actual state.

The spatial hysteresis is completely attributed to crack growth. To demonstrate this point, we
assume linear viscoelasticity and introduce a fictious state where the same crack is subjected to the
same external loading but its growth is suppressed. This fictious state will be referred to as the
“phantom state” hereafter. In this state, the fields are determined by the external loading and the
presence of the crack, but not by crack growth. Spatial hysteresis is absent in the phantom state,

because each material point in the phantom state follows the same oscillatory strain history but



different amplitudes. Therefore, at a given time, the stress and the strain at all material points are
related by the same dynamic modulus. Therefore, in the phantom state, the integral in Eq. (2)
reduces to Go = ow&H/2. This is like the case of linear elastic materials but with a subtle difference:
o and &, are related by the dynamic modulus which is sensitive to the loading frequency. In other
words, even under the assumption of quasi-steady-state condition, the far field is not necessarily
in the relaxed state, which is different from the steady-state condition under static loading.
Nevertheless, we can always define a phantom state (without crack growth) corresponding to the
actual state (with crack growth) at any moment during a loading cycle. These two states share the
same stress and strain fields far away from the crack tip, but exhibit different fields near the crack
tip due to the different status of crack growth. To distinguish them, we denote the stress and strain
fields in the phantom state as ¢ and &. Based on the discussions above, we apply Eq. (2) to the

phantom and actual states and write the difference as:

0.t _ G Hj/z T(Ea—g—aa—gjdXdY : (3)
2 e ax X
Eq. (3) reflects two important implications of introducing the phantom state. First, for viscoelastic
solids under cyclic loading, dissipation can occur even in the far field. As a result, the total energy
release rate G is not well defined, since it is difficult to delineate the energy consumed by crack
propagation and that dissipated by cyclic loading. By introducing the phantom state, we can
unambiguously identify G as the energy release rate that can be delivered to the crack tip in the
phantom state, which is equal to ow&.H/2 (see Eq. (3)). Second, Eq. (2) requires the full stress and
strain fields over the entire geometry, which can be difficult to obtain for viscoelastic solids under
cyclic loading. By introducing the phantom state, we obtain Eq. (3) in which the integrand,
6(0&/0X) — a(de/0X), is only non-zero near the crack tip, since the phantom and actual states
should cancel each other in the far field. This feature allows us to avoid determining the full stress
and strain fields over the entire geometry and focus on the crack tip region. Applying the
correspondence principle extended by Graham [18] for problems with moving boundaries to a
growing crack and assuming no crack surface contact during unloading [19], we conclude that the
stress field near the crack tip in the actual and phantom states still follows the K-field in linear
elastic fracture mechanics. Therefore, we hypothesize that o(X,Y,t) = a(X,Y,t) = K(t)f(X,Y)

near the crack tip, where K is the stress intensity factor and f{X,Y) represents the spatial distribution



of the K-field. More discussions on justifying and verifying this assumption are provided in Section

S3 of the SI. Consequently, we obtain the following energy balance equation:

Ml oAg
G-Gy=G,=- | I(a—jdXdY, 4)
pn U ax

where Ae= ¢ — £ is the strain differential between the actual and phantom states. By introducing

the phantom state, we have unambiguously defined G and Gp for cyclic loading.

Although the actual and phantom states share the same crack tip stress field at a given time ¢,
material points in these two states have experienced different stress histories (see Section S3 of the
SI). For example, consider a material point located at (X, Y) at the current time ¢. The stress
experienced by this point at any prior time t'(<¢)is o = K(t')f(X + Ac(t,t"),Y) in the actual
stateand & = K(t')f(X,Y) inthe phantom state, where Ac(t,t") = c(t) — c(t') is the length of
crack extension from t' to z. Such a difference in stress history leads to the differential strain A,
which is the key mechanism underlying the spatial hysteresis. As schematically illustrated in
Fig.1b, along a horizontal line AB on the sample, the phantom state yields a linear relation between
o and & with the slope given by the dynamic modulus. In the actual state, crack growth results
in negative Ag ahead C (i.e., location of the peak stress) and positive A¢ behind C, thus expanding
the stress strain curve into a spatial hysteresis loop. Using the areas Si1, S2 and S3 marked on Fig.1b,
G, Go and Gp are equal to the integral of S2 + 53, §3 — S1, and S1 + 52 along the Y axis, respectively.
Physically the effects of cyclic loading and crack growth are manifested in the time functions of
K(?) and c(¢), respectively. Their coupling is encoded in the strain differential Asbetween the actual

and phantom states.

To put our theory into perspective, we note that existing theories for steady-state crack growth
under static loading can be categorized into two approaches: i) cohesive zone and ii) energy
balance. The cohesive zone approach [19,20] focuses on analyzing the opening displacement of a
cohesive zone at the crack tip. The energy balance approach [8—10] considers a featureless crack
and integrates the energy dissipation due to crack growth by assuming the stress near the crack tip
follows K-field. We adopt the energy balance approach to highlight the physics of how cyclic
loading affects energy dissipation around the crack tip. By introducing two concepts: spatial
hysteresis and phantom state, we have extended the energy balance approach from static loading

to cyclic loading.



Although it appears that the energy balance approach does not require an intrinsic length scale
at the crack tip, this is not the case. As summarized in a historical perspective by Hui et al. [21], a
cut-off length / must be introduced to exclude a small region around the crack tip from the integral
for energy dissipation, otherwise the crack tip singularity would lead to a paradox noted by Rice
[22]. Conceptually, the cut-off length / is similar to the cohesive zone size in that both the energy
balance and cohesive zone approaches need to introduce an intrinsic length scale to regularize the
crack tip singularity. Recent studies [21,23,24] comparing the energy balance and cohesive zone
approaches showed that these two approaches give similar results (except at low crack velocity)
provided that the cut-off length or cohesive zone size is viewed as a fitting parameter rather than
a prescribed constant. Within the energy balance approach, there are different ways to impose the
cut-off length /. For example, de Gennes [8] assumed a constant cut-off length and attribute it to
the fracture process zone at the crack tip, while Persson and Brener [9] assumed a maximum stress
at the crack tip which resulted in an increasing cut-off length / with the energy release rate G. As
will be discussed in the next section, we also need to introduce a cut-off length when carrying out

the integral in Eq. (4). For simplicity, we follow de Gennes [8] and assume a constant cut-off length.

A common problem for the energy balance and cohesive zone approaches is that the cut-off
length (or the cohesive zone size in the limit of low crack velocity) needs to be unrealistically
small (on the order angstroms) for the viscoelastic fracture theories to fit experimental data [21].
In a review paper [6], Knauss pointed out limitations of applying linear viscoelasticity at the crack
tip and that nonlinear viscoelasticity may be the key to address this problem, but this remains an
open problem. Since our goal is to develop a scaling theory, we still adopt linear viscoelasticity

but keep in mind that the cut-off length / may be unrealistically small.

3. Dynamic Effect of Cyclic Loading

Equipped with the energy balance theory, we are now ready to study the dynamic viscoelastic
effect in cyclic crack growth. To demonstrate that the dynamic effect observed by Lake and
Lindley[11] can be qualitatively modeled using a simple viscoelastic model, we first perform FE
simulations using ABAQUS (Simulia, Providence, RI, USA). The FE model (see Fig.2a) consists
of a wide thin sheet (width: L; height: H) clamped by rigid plates at the top and bottom edges. A

pre-crack with length c is introduced in the middle of the sheet’s left edge. To simulate crack



growth, we introduce a cohesive zone directly ahead of the crack tip by introducing a layer of
cohesive elements. The cohesive elements follow a bilinear traction-separation law featuring a
peak cohesive traction oem and a maximum separation om. Consequently, the intrinsic fracture
energy [0 is given by I'o = oemdn/2. Viscoelasticity is introduced by assuming a simple model
whose rheological schematic is shown in Fig.2b. This model, featuring a single relaxation time z,
an instantaneous modulus Eo and a long-term relaxed modulus E«», was implemented using Simo’s
approach of quasi-linear viscoelasticity [25]. More details on the FE model gometry, cohesive and
material parameters, simulation procedures and data processing are provided in Section S2 of the
SI. We consider both static and cyclic loadings by prescribing the nominal stretch ratio A = 1+ A/H
(Fig.2c). The applied energy release rate is calculated using G = ow&.H/2 where .= A — 1. Under
static loading, the crack growth settles to a steady state with constant velocity Vs (Fig.S2) after an
initial transient stage. By varying A, an empirical relation between G and Vs, Vi(G), can be
established (see inset of Fig.2d). Note that we normalize Vs by ow/7 where on is the maximum
separation of the cohesive element. In the literature [21], V5 is often normalized by the cohesive
zone size and relaxation time so that it reflects the characteristic strain rate near the crack tip. Since
our purpose here is to present the simulation results in a dimensionless form rather than to reveal
physical significance, we choose to use the prescribed constant on for normalizing Vs. Under cyclic
loading, we apply triangular periodic functions for A(¢) that is bounded by Amin = 1 and Amax and
has a period of 7. After a few cycles, the cyclic crack growth is observed to settle at a constant rate
dc/dN (Fig.S3).

To quantify the dynamic viscoelastic effect, we first determine (dc/dN)s using the empirical
relation Vs(G) with the periodic function G(¢) (see Section S2 of the SI) and calculate the ratio =
(de/dN)/(dc/dN)s. Our simulation results in Fig.2d show that £ approaches one when the period 7
is much larger than the relaxation time 7 but can be substantially larger than one when 7 becomes
comparable to 7, which is consistent with the trend of experimental observations in Lake and
Lindley [11]. To verify our fracture criterion, we compute Go during a loading cycle using Eq. (2)
and the stress and strain fields obtained from the FE results, and compute G and Gp by G =
Ox&oH/2, and Gp = G — Go, respectively. The results are shown in Fig.2e. We observe that during
crack growth Go is bounded by I'o, while G can exceed I'o. The duration when Go = I'o overlaps

that of crack growth. The excessive energy release rate G — Go is consumed by the viscoelastic
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dissipation Gp. For comparison, we repeat the simulation but increase the inrinsic fracture energy
to a sufficiently large value Iy (= 3T0) so that crack growth is suppressed, which effectively

recovers the phantom state. In this case (Fig.2f), G is approximately equal to Go while Gbp is

negligible.
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Figure 2 FE simulation and results. (a) Model geometry and dimensions. (b) Schematic of the

viscoelastic model. (c¢) Static and cyclic loading processes. (d) FE results of the ratio £ defined as
(dc/dN)/(dc/dN)s. The inset shows the empirical ration between Vs and G for static loading. Note

that Vs is normalized by ow/7 where om is the maximum separation of the cohesive element. (e-f)
G, Go and Gp computed using the FE results during a loading cycle for the (e) actual state and (f)
phantom state. To suppress crack growth in the phantom state, we increase the instrinsic fracture

energy to I = 3T0. However, to facilitate comparison, we normalize the energy release rates in
both (e) and (f) by I'o.
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Our energy balance theory allows us to qualitatively capture the dynamic viscoelastic effect.
By using the stress history for the actual and phantom states to calculate the strain differential Ag

and then substituting it into Eq. (4), we obtain the following integral equation for the crack length

c(?) (see Section S4 of the SI):
7 ' ' af ' af '
G-Gy==K (1) [ [ [J(e-t)K(e )f(X,Y)[a7(X+Ac(t,z ),Y)—a(X,Y)}dthdY, (5)

where J(7) is the creep compliance function and | = dJ/dt. Recall that f{X,Y) represents the spatial
distribution of the K-field (see Eq. (S14) in the SI). Eq. (5) is valid for general cyclic loadings, but
numerical solution of this equation can be challenging. To obtain physical insights, we focus on
the limit of slow crack growth and slow loading. After a lengthy derivation detailed in Section S4

of the SI, we obtain the following simplified equation:
t
G()=G, =K (t)C, [ J(e=t) K (¢)V (¢')dr', (6)

where Cris the spatial integral of the K-field distribution f(X,Y), J(t) = J(t) — J(t —+0) is the
non-equilibrium portion of the creep function J(¢), and V() is the crack propagation velocity at
time . As detailed in Section S4 of the SI, Cris obtained by integrating a field involving f(X,Y)
and its spatial gradients. When carrying out the integration, we introduce a constant cut-off length
[ representing the length of the fracture process zone [8,10], as discussed in Section 2. We find that
Cr is a negative constant that scales as Cy ~ —1//. The slow crack propagation and slow loading
conditions required by Eq. (6) implies V/I << 1/z. and K /K<< 1/, respectively, where z is the
characteristic time for the creep function, also known as the creep retardation time. For the standard
linear solid model in Fig. 2c, 7 is related to the relaxation time 7 by 7. =17 where 17 = Eo/Ex.
Equation (6) highlights the coupling between the three time scales associated with cyclic loading,
viscoelastic creep and crack propagation. It is worth mentioning that Knauss [6] showed the
dynamic viscoelastic effect would be absent (i.e., = 1) if K/K << V/2l. Even though Eq. (6)
requires that both ¥//and K/K are much smaller than 1/z, it is still possible for Eq. (6) to capture

dynamic viscoelastic effect by allowing K/K~V /L.

We numerically solve Eq. (6) by prescribing G(¢) and K(¢) according to the external loading.

Generally speaking, under cyclic loading the material far away from the crack tip (i.e., the far field)
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is not in the relaxed, but is governed by the dynamic modulus set by the loading frequency. In this
case, the relation between G(7) and K(¢) may not be straightforward. However, because of the slow
loading condition (K /K<< 1/z.) assumed for Eq. (6), the loading cycle is much longer than the
relaxation time. Therefore, it is reasonable to assume the far field is in the fully relaxed state under
slow loading, yielding that G(¢) = (K(¢))*/E-. Furthermore, we apply the standard linear solid model
with J(f) = —(n — 1)e /% /E,. Details of the numberical solution procedures are given in
Section S5 of the SI. It is informative to first consider the static loading case where G, K and V are
constants, for which Eq. (6) results in G — G, = K2|Cf|VTC(77 —1)/E,. Using = = nz, |Cf| ~ 1/]
and assuming 77>> 1 [8], we obtain G — Gy~ (K?/E,)V1n?/l, which recovers the scaling relation

in Saulnier et al. [10] in the limit of slow crack propagation (i.e., V<<//z. = l/n7).

Under cyclic loading, we assign periodic functions for G(¢) and K(#) to numerically solve for
the crack velocity V using Eq. (6). To demonstrate that Eq. (6) can capture the trend of FE results
in Fig. 2d, we implement the same G(#) and viscoelastic parameters as those in the FE model and
set Go to be the same as the I'o in the FE model which is specified by the cohesive zone. It should
be emphasized that our theory does not use cohesive zone to model the crack tip fracture process,
but simply enforces a constant cut-off length / at the crack tip. On the other hand, the cohesive
zone size in the FE model may vary with crack velocity. For example, it has been shown that the
cohesive zone size can increase with crack velocity by a ratio up to 7 = Eo/Ex [6,21]. This is
inconsistent with the constant cut-off length / assumed in the theory. To address this issue, we have
adopted a small value for 7 (i.e., 7= 2, see Section S2 and S5 of the SI) in both the FE model and
the numerical solutions for Eq. (6), which can limit the variation of cohesive zone size in the FE
model while still capturing viscoelasticity. As a reference, more realistic values of 7 for elastomers
should fall in the range of 10to 10°. Solutions of crack velocity in a loading cycle obtained from
Eq. (6) are shown in Fig.3a. The static limit, obtained using (G(t) — G,)/G(t) = |Cf|r(n -
1)V (t) is also plotted for comparison. When 7/7 increases, the crack velocity ¥ approaches the
static limit. In constrast, when 7'is comparable to 7, the crack velocity V is highly skewed towards
the loading part of the cycle and quickly decays to 0 once the unloading starts, which is consistent
with the FE results. By integrating the crack velocity over one period 7, we calculated the crack
growth per cycle dc/dN, as well as the static counterpart (dc/dN)s, and then obtained the dynamic
amplifcation factor £ = (dc/dN)/(dc/dN)s, as shown in Fig.3b. The data qualitatively capture the

12



trend that £ approaches one when 7/7>> 1, but rapidly increases as 7/ 7 decreases. Recall that Eq.
(6) requires the conditions of slow crack growth (V/l << 1/z.) and slow loading (K /K<< 1/z.).
Therefore, the theoretical solution is not expected to be valid as 7/7 approaches 1 since it would
violate the slow loading condition. However, the FE results are not subjected to this restriction and
should be valid for the full range of 7/z. This explains the increasing discrepancy between FE

result and theoretical solution as 777 is reduced.
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Figure 3 Numerical solutions of crack velocity. (a) The evolution of V during a loading cycle.
Note that V'is normalized by 1/7Cy. The inset shows a zoomed-out view of the entire loading cycle.

(b) The dynamic viscoelastic amplification factor £ defined as (dc¢/dN)/(dc/dN)s. The inset shows
the comparation with FE simulaton results.

4. Discussions and Conclusion

In summary, we formulate a scaling theory to qualitatively capture the dynamic viscoelastic
effect in cyclic crack growth. By introducing the concepts of spatial hysteresis and phantom state,
the theory separates the viscoelastic dissipation induced by cyclic loading and crack growth, which
enables us to unambiguously define G, Go and Gp for cyclic crack growth. Our analysis leads to
an integral equation governing the crack growth velocity, which can be numerically solved to

predict the cylic crack growth rate during fatigue fracture.

Since the scaling theory is based on several simplifying assumptions, limitations due to these

assumptions should be addressed to achieve quantitative agreement with experimental data. These
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potential extensions are outlined in the following. First, the multi-axial state of crack tip stress and
strain is not considered in the current theory, but can be taken into account by keeping the stress
and strain in the tensorial form. Second, we have assumed a constant cut-off length / that is
independent of crack velocity. Dependence of the cut-off length / on crack velocity can be
incorporated by following Persson and Brener [9] and imposing a maximum stress at the crack tip
rather than a fixed cut-off length. Third, we have assumed that no crack surface contact occurs
during unloading. If crack surface contact occurs, validity of the extended correspondence
principle needs to be reexamined. Specifically, the case of crack surface contact was considered
by Schapery [26] where an alternative form of the correspondence principle was given and later
used to study crack closing [27,28]. How to extend our theory requiring only the crack tip K-field
to cases with crack surface contact needs to be further studied. Fourth, numerical solution of Eq.
(5) should be explored to extend the theoretical solution beyond the slow crack groth and slow
loading condition. Finally, more realistic viscoelastic models should be implemented in the theory
and FE model to facilitate a parametric study on the effects of viscoelastic properties, cut-off length

(or cohesive zone in the FE model) and loading cycles.
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S1. Energetic Fracture Criterion
To understand the role of viscoelastic dissipation in cyclic crack growth, we derive an
isothermal and instantaneous energy balance equation for crack growth in a solid occupying a
volume A and boundary surface Q2 in the reference configuration. Following the procedures
described in our recent work [1], we find that at any instant
jz j[P —jdA r, 4 (S1)
“dr’
where X and u are the traction and displacement vectors on the boundary Q, P is the first Piola-
Kirchhoff stress tensor, F is the deformation gradient tensor, I'o is the Helmholtz free energy
required to grow the crack by a unit area in the reference configuration, also known as the intrinsic
fracture toughness (energy/area), and A4 is the area of crack surface. Equation (S1) states that the
power of external tractions subtracted by the internal stress power is equal to the power consumed
by crack growth. To make eq. (S1) valid for any finite deformation in general, we have adopted
the first Piola-Kirchhoff stress P and deformation gradient tensor F. It is known from the
continuum mechanics literature [2] that the incremental stress work P:dF is equal to S:dE, where
S is the second Piola-Kirchhoff stress tensor and E = (F’F — I)/2 is the Green-Lagrange strain
tensor (I is the identity tensor). Under infinitesmal deformation, S:dE (or equivalently P:dF)
degenerates to o:de, where ¢ and ¢ are the linear stress and strain tensors, respectively. A version

of eq. (S1) in terms of ¢ and € can be found in Anderson [3].

For elastic solids, Eq. (S1) can be cast in terms of the J-integral [4]. First, we recognize that du
vanishes on the displacement boundary Qas, which allows us to reduce the total boundary Q in Eq.
(S1) to only the traction boundary Q. Second, for elastic solids we can define a strain energy
density function such that dW = P:dF = S:dE. Combining these two points, we see that the left
hand side of Eq. (S1) is essentially the rate of change of potential energy. For a two-dimenionsal
crack, one can follow the derivation on Page 211-213 in Rice [4] or the Appendix A in Qi [1] to
show that the rate of change of potential energy is equal to the J-integral multiplied by dA4/dz.

To specialize eq. (S1) for the ideal “pure shear” geometry shown in Fig.1a of the main text, we

make the following observations:



e The boundary surface Q is either traction-free (i.e., = 0) or subjected to a prescribed
displacement u which solely depends on A (= A/H).

e The crack area A4 is equal to the product of crack length ¢ and specimen thickness b.

e After a transient stage, the cyclic crack growth reaches a quasi-steady-state where the stress
and deformation tensors at a material point located at (x, y) only depend on its relative position
to the crack tip and the time ¢. Because of the periodic nature of cyclic loading, the time ¢
essentially reflects the external loading A (= A/H), i.e., A is a functions of ¢. Therefore, we can
write P = P*(x—c(¢), y, {) and F = F"(x—c(?), y, f), where c is the crack length defined as the
horizontal coordinate of the crack tip in the fixed coordinate system x-y and varies with the
time z.

Based on these observations, we rewrite eq. (S1) as

jz-d—“ﬂdg— (P:a—FjdV - J(P:a—FjdV+F0b de . (S2)
J7da dr AGEY AGY dt

The first term of eq. (S2) represents the energy balance for cyclic loading in the absence of crack
growth and should be equal to zero since we ignore inertial effects. This means that the second
term in eq. (S2) must vanish as well. We introduce a moving coordinate system X-Y that is centered
at the crack tip and translates with the crack, i.e., X=x — c and Y =y (see Fig. 1a of the main text).
Using the quasi-steady-state condition, we write 0F/0c = — 0F/0X and conclude that the following

equation must be satisfied at any time during crack propagation:

H/2 4o
(P :2—)1;jdXdY -T,. (S3)

-H/2 -0

Equation (S3) relies only on the quasi-steady-state condition for crack growth, and is valid for any
material behavior regardless whether it is elastic or inelastic. Moreover, since the steady-state
crack growth under static loading is a special case of the quasi-steady-state condition, eq. (S3) is

valid for static loading as well.

Since this work focuses on linear viscoelasticity and infinitesmal deformation, we replace the
incremental stress work P:dF by o:de, where ¢ and € are the linear stress and strain tensors.
Therefore, eq. (S3) becomes

H/2 +w aa
I J‘(c:—jdXdY:FO, (S4)
—H/2 -0 aX



On this basis, we further propose the following energetic fracture criterion:

V=0 if G <T e e
DTS ith G, = [ ] o: %8 |axay (S5)
V>0 if G,=T, ox

which is eq. (2) of the main text.



S2. Finite Element Simulations of Crack Growth

We built a plane stress model in ABAQUS according to the geometry shown in Fig. 2a of
the main text. Unlike the ideal “pure shear” geometry with infinite width, in Finite Element (FE)
simulations we have to implement finite dimensions. Specifically, the model dimensions are: width
L =90 mm and height H = 6 mm. Note that L >> H as required by the “pure shear” geometry. An
initial crack with length ¢ = 30 mm was introduced on the left side of the model. To simulate crack
growth, a cohesive zone was introduced along the projected crack growth path directly ahead the
original crack tip. The mesh near the crack propagation path was refined to improve accuracy with
the smallest element size being 0.01 mm. To limit the number of elements and hence computational
cost, only a region with length of 15 mm and height of 1.8 mm ahead of the initial crack tip was
assigned the refined mesh. The mesh was formed by 2D quadrilateral, plane stress elements with

reduced integration (CPS4R). A representative figure of the FE mesh is shown in Fig. Sla.

(a)

(b)

e e

v

o

m

Figure S1 Geometry of FE model and cohesive zone. (a) Representative mesh of the FE model.
(b) Zoomed-in view of the crack tip region under loading. The cohesive elements are not shown
to improve readability. Instead, the cohesive traction o is represented by red arrows and J'is the
separate between the crack surfaces. (c) Bilinear traction-separation law for the cohesive zone
featuring a peak cohesive traction oem, maximum separation om, and intrinsic fracture energy I'o
(i.e., area underneath the traction-separation curve).



The cohesive zone along the projected path of crack growth was implemented using a layer of
cohesive elements. We adopted the bilinear traction-separation law as illustrated in Figs.S1b-Slc,
which has been applied in the literature to study crack growth in inelastic soft materials [1,5]. This
cohesive zone model featured a peak cohesive traction oem, maximum separation om, and intrinsic
fracture energy I'o. In our simulations we set oem =2 MPa, om = 0.25 mm and [0 = cemdn/2 = 250

J/m?.

For the bulk material model, we implemented the viscoelastic model using Simo’s approach
of quasi-linear viscoelasticity [6]. This approach combines a hyperelastic model with a relative
relaxation function g(7) (i.e., g=1 at =0 and g = g at ¢ =+ o). Although one can apply a Prony
series for the relaxation function to capture the spectrum of relaxation times for practical
viscoelastic solids, for simplicity we assumed a simple model as illustrated in Fig. 2b of the main

text. In this case, the relative relaxation function is
t
g(t)=(1-g.)+g. exp| — |, (S6)

where 7is the relaxation time and g« is the long-term relaxation ratio. The elastic springs in Fig.2b
of the main text were modeled by the neo-Hookean solid with the following strain energy density
function:

E - ¥ 2
W:E(ll—3)+7(det(F)—l) , (S7)

where E is the Young’s modulus, W is the bulk modulus, F is the deformation gradient tensor,

det(F) is the determinant of F, and
T, =[det(F)] " ur(FF"). (S8)

Since most soft rubber and elastomers are approximately incompressible (i.e., Poisson’s ratio close
to 0.5), we assumed that the bulk modulus ¥ is much larger than E, specifically ¥ = 4167E. We
assigned the neo-Hookean model to both springs in Fig.2b of the main text and set £1 = E2 =2.4
MPa, which is equivalent to setting the instantanesous modulus as Eo = E; + E> = 4.8 MPa, the
relaxed modulus as Ex = E> = 2.4 MPa, and the relaxation ratio as g» = 0.5. The relaxation time 7

in eq. (S6) was left as a variable and we preformed simulations with different 7 to study the effect



of ratio 7/7 (recall that T is the loading cycle period). The viscoelastic model implemented in
ABAQUS (Section 4.8.2 of ABAQUS Theory Guide) follows Simo’s approach [6]. Here we
briefly describe the formulation implemented in ABAQUS. The instantaneous Cauchy stress

tensor, denoted as oy, is first calculated based on the strain energy density function in eq. (S7), and

is then decomposed into the hydrostatic part ¢ and deviatoric part 6, , i.€.,

tr\c
6, =6, +6, where o, = ( 0)I, (S9)

3

where I is the identity tensor. The deviatoric Cauchy stress over time is given by

¢’ (1)=0y (Ft)+deV{Ft ( X dgd—(:)(F,_s ) o) (F)(F.)" dsj(Ft)T}, (310)

where F: is the deformation gradient tensor from time 0 to time ¢, Frs is the deformation gradient
tensor from time 0 to time # — s (s < £), and g(¢) is the relaxation function. The hydrostatic Cauchy
stress over time 65(¢) is determined by enforcing the plane stress condition, i.e., the out-of-plane

components of the total Cauchy stress o(f) must be zero.

The viscoelastic and cohesive parameters adopted in the FE model are justified as follows.

o Viscoelastic parameters: The long-term modulus E. was set to be 2.4 MPa as a typical value
for elastomers. As discussed in the main text, Eo/E. was set to be relatively small (= 2) to limit
the variation of cohesive zone size and hence facilitate the comparison between the FE model
and theory. The relaxation time 7 was varied to change the ratio of 7'/z.

o Cohesive zone parameters: The maximum separation om was set to be 0.25 mm, which is ~ 4%
of the sample height (= 6 mm). This value was selected so that the cohesive zone is localized
at the crack tip spanning over tens of elements. Recall that the element size near the crack tip
was 0.01 mm. The localized cohesive zone is required so that the K-field based analysis of
energy dissipation is valid. Further reduction of om would require smaller element size at the
crack tip and hence higher computational cost. The peak cohesive stress ocm was selected to
be 2 MPa so that the intrinsic toughness I'o (i.e., area underneath the cohesive traction-
separation law), given by gemdm/2 = 250 J/m?, is within the reasonable range of elastomers (on

the order of 100 J/m?).



Using the FE model outlined above, we performed a series of FE simulations to study the rate
of crack growth under static and cyclic loading. These simulations were carried out using the
explicit dynamic solver (ABAQUS/Explicit) to accomodate the rapid unloading due to crack
growth. We ensured that inertial effects in these simulations were negligible by using slow loading
rates and mass scaling. Therefore, the simulations were still quasi-static, and the purpose of using
the explicit dynamic solver was to circumvent the convergence problems with a static solver. When
a vertical displacement A is applied to the sheet, the crack opens symmetrically and grows under
sufficiently large A. Both static and cyclic loadings are considered in the simulations, as expressed

in terms of the history of the nominal stretch ratio A =1 + A/H (see Fig.2c of the main text).

We first considered static loading with prescribed nominal stretch A =1 + A/H (ranging from
1.18 to 1.22). Figure S2 shows a representative set of simulation results for static loading. After
an initial transient stage, the crack growth settled at a steady state with constant velocity Vs. As
stated in the main text, we extracted the crack velocity Vi during the steady state and calculated
the corresponding energy release rate using G = ow&xH/2. By varying the nominal stretch A, we
obtained a set of data points for G versus Vs (see inset of Fig.2d of the main text) and then applied
polynomial fitting to generate an empirical function of Vs(G). Note that we normalize Vs by om/7
in the inset of Fig.2d, since 7 is the only material time scale in the simulations and om (i.e.,

maximum cohesive separation shown in Fig. S1c¢) is the relevant length scale for crack growth.

For cyclic loading, we imposed triangular periodic functions for A(¢) that is bounded by Amin
= 1 and Amax (ranging from 1.16 to 1.25) and has a period of 7 = 100s. Figure S3 shows a
representative set of simulation results for cyclic loading. As shown in Fig.S3d, the cyclic crack
growth rate dc/dN settled at a constant value. Note that the slight oscillation of dc/dN was due to
the discretization of cohesive zone, since the crack only grew by a few elements per cycle.
Following the idea of Lake and Lindley [7], we use the empirical function Vi(G) obtained from
static loading to predict the cyclic crack growth rate (dc/dN)s as follows

(de/dN) = |V, (G(1))at, (S11)

S

El

where G(7) is obtained using the far-field stress and strain in the simulations with cyclic loading,
1.e., G(f) = ow(f)en(t)H/2. As stated in the main text, we quantify the dynamic viscoelastic effect

by the ratio £



dc/dN
=— S12
P ={acrany, (12
The results for #in Fig.2d in the main text confirm that viscoelasticity can result in the dynamic

effect observed for cyclic crack growth.

Finally, although the FE model is based on a quasi-linear viscoelastic model that acounts for
large deformation while our theory is based on linear viscoelasticity, discrepancy caused by this
difference is insignificant due to the moderate peak stretch applied (Amax = ~1.2) and the relatively

weak material nonlinearity of the neo-Hookean model.
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Figure S2 Representative FE results for static loading. (a) Deformed mesh during crack growth
(b) Zoomed-in views of the crack tip region as the crack grows. (c) Crack length ¢ and crack
growth velocity Vs over time. A steady state emerges for £ > 200s. For reference, the relaxation
time is 7 = 10 s. (d) History of the energy release rate G. Crack growth occurs when G >1"0 =250
J/m?.



(a)

(b)

450 s

0.0 : : : -
0 500 1000 1500 2000
t(s
550 (@ oz ®
__ 015}
£
E
= 0.10}
L
= g e e
© —E—E—— —a— —E—E—E—E— —n
650's 005t /
0.00 ;
0 5 10 15 20

Figure S3 Representative FE results for cyclic loading. (a) Deformed mesh during crack growth
(b) Zoomed-in views of the crack tip region as the crack grows. (¢) Crack length ¢ versus time ¢.
For reference, the viscoelastic relaxation time is 7=10 s and the cycle period is 7= 100 s. (d)
Cyclic crack growth rate de/dN over 20 loading cycles.
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S3. Actual and Phantom States: Stress Field

We discuss the stress fields in the actual state (with crack growth) and the phantom state

(without crack growth).

First, we use the extended correspondence principle by Graham [8] to conclude that the stress
field near the crack tip in viscoelastic solids is the same as that in elastic solids. For scaling analysis,
we neglect the effect of the fracture process zone (or equivalently, the cohesive zone) and adopt
the K-field. The same approach has been adopted in the theories for steady-state crack growth
under static loading by de Gennes [9], Saulnier et al. [10] and Persson & Brenner [11]. Specifically,
for Mode-I crack, the K-field is given by

.0 .3
1 —sin —sin —
2 2

Oy

o, | ==K cosZ| 14sinZsin22 |, (S13)
o 27 R 2 2

12

.0 3
sin —cos—
2 2

where K is the stress intensity factor, R and & are polar coodrinates centered at the crack tip, and

R = VX? +Y?and 6 = arctan(Y /X). Recall that we use o= o2 as the scaling representation of

the entire stress field. At a given instant, the near-tip stress field can be written as

K

N27R

Therefore, the near-tip stress field can be completely specified by the stress intensity factor K.

o= cos%(l+sin§sin%):Kf(X,Y). (S14)

Second, by definition the stress field in the phamton state is identical to that in the actual state
far away from the crack tip. This condition implies that the phantom and actual states should also
share the same stress intensity factor K for the near-tip field. The agreement in both the far field
and near-tip field suggests that the two states should share the same stress field at any given instant.
As discussed in the main text, the difference between the two states is on the near-tip strain fields.
Therefore, we focus on the near-tip fields given by eq. (S14) and write the phamton stress field

and the actual stress field o at an instant ¢ as:

(XY, t)=0c(X,Y,t)=K(1) f(X,Y). (S15)
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It should be emphasized that the cohesive zone may interact with the near-tip stress field, which
can cause deviation from the K-field near the crack tip, as demonstrated in the cohesive zone
approach by Knauss [12] or Schapery [13]. Such interaction may lead to difference in stress fields
very close to the cohesive zone between the phantom and actual states. By adopting the K-field in

eq. (S14), our scaling theory neglects this potential interaction.

(@) . _v=012mm | (b) [y=0.174mm e
=l Y=0.174 mm 15} i
e
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Figure S4 Stress distributions in the actual state and state. (a) Normal stress o»2 versus X along
seven horizontal lines with different Y. (b) Normal stress o»2 versus normal strain &2 along ¥ =
0.174 mm. The dashed lines represent results for the phantom state and the solid lines represent
results for the actual state.

We verify the assumption of identical stress fields for the phantom and actual states using the
FE results. The actual state (with crack growth) was obtained using the cohesive zone approach
described in Section S2, while the phantom state (without crack growth) was obtained by
substantially increasing oem and I'o of the cohesive zone model to suppress crack growth. In
Fig.S4a, we plot the distributions of o022 along seven horizontal lines (i.e., different Y) at the same
time during a loading cycle. Recall that X = 0 is the vertical line passing through the crack tip. It
can be seen that stress distributions for the two states are approximately the same. Deviations can
be found near X = 0 with small Y. This is attributed to the different cohesive zone parameters
employed for the two states. Specifically, the phantom state exhibits a larger stress near the crack
tip due to the larger peak cohesive stress oem used in the phantom state. Such deviations are

expected since we have neglected the effects of cohesive zone by adopting the K-field. In Fig.S4b,
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we plot the stress o»2 versus the strain &2 along a horizontal line (¥ = 0.174 mm), which is
approximately the same as the schematic shown in Fig.1b of the main text. In particular, the spatial
hysteresis in the phantom state is nearly zero, but is significant in the actual state. Again, the
slightly discrepancy between Fig.S4b and Fig.1b of the main text is due to the different cohesive

zone parameters employed to produce the actual and phantom states.

05, (MPa)

1100 1125 1150 1175 1200

t(s) t(s)

Figure S5 Stress history in the actual and phantom states. (a) Schematic of the “pure shear”
geometry in the FE simulation. Pa and Ps are two points ahead of (X > 0) and behind (X < 0) the
crack tip at Y= 1 mm. (b) We extract the stress history of a material point located at Y =1 mm in
the actual state (black line), and compare it to the stress histories at Pa (blue line) and Ps (red line)
in the phantom state. (c-d) Zoomed-in view of the stress history to facilitate the comparison of
stress history between the actual and phantom states.

Although the actual and phantom states share the same stress field at a given instant, they
exhibit different strain fields near the crack tip. This is because material points in these two states
experienced different stress histories. To illustrate this point, we use the FE simulations and

compare the stress histories for the two states. As shown in Fig.S5b, the stress history experienced
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by a material point (black line) follows a cyclic profile, but the amplitude first increases and then
decreases as the crack tip approaches the material point and then passes it. Such advective effect
due to crack growth is absent in the phantom state, as illustrated by stress histories at two points
Pa (blue line) and Ps (red line) ahead of and behind the crack tip, respectively. Figure S5c shows
that when the material point in the actual state is temporarily located at Pg (i.e., 750 s < < 800 s),
it has the same stress as that in the phantom state. However, the stress history experienced by the
material point prior to £ = 750 s is different from that in the phantom state. Similar observation is

found in Fig.S5d.

To mathematically represent the advective effect in the actual state, we consider an abitrary
material point located at (x, y) where x-y is a fixed coordinates system (see Fig.S5a). Without loss

of generality, we set

x=X+cand Y=y, (S16)

where ¢ is horizontal coordinate of the crack tip relative to the fixed x-y system, and can be
regarded as the effective crack length. In the actual state, ¢ is a function of time, i.e., ¢ = ¢(¢), and

thus the stress history at ¢’ prior to the current time ¢ is
a(x,y,t')=K(t')f(x—c(t'),y), t'<t. (S17)

In the phantom state that corresponds to the actual state at the current time ¢, ¢ is the same as c(?)

and remains unchanged for any prior time ¢’. Therefore, we have
E(x,y,t')=K(t')f(x—c(t),y), t'<t. (S18)

Equations (S17) and (S18) can also be written in terms of the X and Y coordinates of the material

point at the current 7 by using eq. (S16) with ¢ = c(?):
O'(X,y,t') = K(t')f(X+c(t)—c(t’),Y) and E(X,y,t') = K(t’)f(X,Y) ,t'<t, (S19)

which is the form in the main text.
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S4. Integral Equation for Crack Velocity

In linear viscoelasticity, the strain ¢ at a material point under unaxial tension can be expressed

using the hereditary integral:

s(0)= | 108 ar = g0 (1)+ [J(=r)o()ar (520)
where J(¢) is the creep compliance function, Jo = J(t = 0) and /] = dJ/dt. Note that eq. (S20)
implicitly assumes that o= 0 at # = —oo. This is not contradictory to the stress histories in eq. (S17)
and (S18), because one can always set the time ¢ = —oo to be before the start of cyclic loading. The
principle of fading memory dictates that the transient stage can be neglected and we only need to
consider the stress history in the quasi-steady state. Combining eq. (S20) with the stress histories

in eq. (S17) and (S18), we obtain

t

Ag(x,y,t)zg(x,y,t)—E(x,y,t)z IJ(l—t')K(t')[f(x—c(t'),y)—f(x—c(t),y)]dt'. (S21)

Note that ¢ = & at the current time ¢.

To apply eq. (4) of the main text, we rewrite eq. (S21) in the local coordinates X and Y using
x=X+c()andy=Y,i.e.,

Ae(X,Y;t)= jJ(z—z')K(z')[f(X+Ac(z,t'),Y)—f(X,Y)]dt', (322)

where Ac(t,t") = c(t) — c(t'). Substituting eq. (S22) into eq. (4) and using eq. (S14) gives
H/2 4o ¢t

G-G,=-K(1) | fJJ'(t—t')K(t')f(X,Y)[S—f((X+Ac(t,t’),Y)—%(X,Y)}dt'dXdY,

-H/2 -0 —»

(S23)

which is eq. (5) in the main text. Equation (S23) is the general governing equation for quasi-steady-
state crack growth (static or cyclic). Under cyclic loading, both G and K are periodic functions of
time. If these two functions are given, one can numerically solve eq. (S23) to determine the crack

length ¢(¢) at the current time and hence obtain the cyclic crack growth rate dc/dN.
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To obtain physical insights, we consider the limiting case of slow crack growth, i.e., V = dc/dt
is small. Note that the creep compliance function J(¢) can be written as J(f) = J(t—+o0) + J(f) where
J(t—+o0) is the equilibrium portion and J(¢) is the non-equilibrium portion of the creep function.
Therefore, we replace f(f) by ] (¢) to take advantage of the limit that J(t—+o0) = 0. j (7) is a decaying
function with a characteristic time of 7. For example, for simple viscoelastic solid shown in Fig.2b

(also known as the standard linear solid),

1 E-E - E_E
J :——u _t/Tc Jt — 0 0 —l‘/z’c
(7) E. E.E, e, J(1) EE e, (S24)
: % 1 E-E
Jt :Jt N 0 o ~tT,
(£)=J(1) R (S25)

where Eo is the instantaneous modulus, Ex is the relaxed modulus and z is the characteristic creep
retardation time. Note that z is related to the relaxation time 7 through 7 = (Eo/Ex)7. Because of

the decaying behavior of f (¢), we only need to account for the integrand of eq. (S23) when t — t’

is on the same order of z. Consequently, Ac(t,t") in eq. (S23) should scale as Vz.

Under slow crack growth, V. is a small value and hence Ac(t, t") is small, which allows

us to make the following approximation:

of
ox’

z ! —z ~
aX(X+Ac(t,t),Y) aX(X,Y)

(X,Y)Ac(,1). (S26)

However, caution should be taken here because d%f/0X? is not bounded at the crack tip. Recall
that the distribution function f(X,Y) has a square root singularity, i.e., f~ R"'? as R — 0 (see eq.
(S14)) where R = VX2 + Y2. The square root singularity renders the following scaling relation:
0%f/0X? ~ R, The approximation in eq. (S26) cannot be valid at the crack tip (R = 0) because
of the singular higher order derivatives, e.g., 33f/0X3 ~ R72. For this reason, we need to
implement a cut-off length at the crack tip. This cut-off length, denoted as /, represents the size of
the fracture process zone (or equivalently, the cohesive zone). For simplicity, we follow de Gennes
[9] and assume / is a material constant. More detailed analyses have shown that / can be dependent

on the crack velocity [10—12]. For eq. (S26) to be valid, we need to satisfy the following condition
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2 2
Ac(t,t')~ VT, <<%~l, (S27)

which formally specifies the slow crack growth limit as Ve <<|.

The approximation in eq. (S26) allows us to decouple the spatial and temporal integrals in

eq. (S23), i.e.,

t H[2 40 2
G—Goz—K(t)j](t VK () Ac(1,1")d! j _[f (XY SXf(X Y)dxdy (S28)
S —HJ2 o

Cr

The spatial integral Crcan be readily evaluated. First, we expand the integration domain to infinity,
since H >> [ and f(X,Y) decays to zero as R = VX2 + Y2 — 0. Second, we rewrite the integral in
terms of the polar coordinates R and & and use eq. (S14) to determine f. Third, we set the lower

integration limit for R to be the cut-off length /. Consequently, we obtain

2 af I & f 271
)dxd 0) 0) RAOAR = —=L~
=] X - (X.Y)dxdy = “f (R, a —(RO)R (S29)

~HJ2 o _ 1281

Note that we only account for o»2 and &2 in our scaling analysis. The numerical pre-factor in eq.
(S29) would change if we include the multi-axial stress components in eq. (S13). Nevertheless, we

can still write Cr= —a/[ where « is a positive constant of order one.

Next, we use integration by parts in eq. (S28) and obtain
GG, ==K (1)C, | =T (t=t)K () Ac(t.t')_+ [ J(e=1)[K(£)Ac(t.t')- K(t’)c‘(t’)}dt},

(S30)
where K (t) = dK/dt and ¢(t) = dc/dt. The first term within the square bracket of eq. (S30)
vanishes because J(t—+0) = 0 and Ac(t,t) = 0. Therefore, we arrive at the following result

t

G—G,==K(t)C, [ J(t=t")[ K (t')Ac(tt') =K (¢)V (') ]dr', (S31)

—00
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where we have identified ¢(t") as the crack velocity V(t'). To further simplify eq. (S31), we

assume slow loading, i.e.,

<< ( )') fort—t'~7,. (S32)
Using eq. (S32), we reduce eq. (S31) to
G-G,=K(t)C, [ J(t=t)K (¢ )V (£)dr', (S33)

which is eq. (6) in the main text. Note that both Cr (see eq. (S29)) and J(f) are negative, which
ensures that the right-hand side of eq. (S33) is positive.

It should be emphasized that eq. (S33) is based on two assumptions: slow crack propagation
and slow loading, as manifested in eq. (S27) and (S32). Using the scaling relation that Ac(t,t") ~

Vi for t — t' ~ 7, we can rewrite eq. (S27) and (32) as

1
7 <<— for slow crack growth. (S34)
TC
and
K 1
— << — for slow loading. (S35)
K T

c

These two conditions involve three time scales: external loading (K /K), viscoelastic relaxation
1/7., and crack propagation VV /L. It is interesting to note that Knauss [12] pointed out that the
steady state solution under static loading is applicable to cases with non-static loading (e.g. cyclic

loading) if the following condition is satisfied:
—<<—. (S36)

Neglecting the factor 1/2, this condition states that “differences between a steady state solution
and a transient one arise only if significant speed changes occur during the time interval in which

the crack passes through the cohesive zone” [12]. Comparison of eq. (S36) with our two
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assumptions in eq. (S34) and (S35) implies that we can still capture the dynamic effects using eq.

(S33)if V/I~K /K «< 1/1,.

The slow crack growth and slow loading assumptions also imply that the far field is in the
fully relaxed state. Recall that 7. is the creep retardation time and is typically larger than the
relaxation time 7. For the simple model in Fig.2b, 7. is related to the relaxation time 7 via 7z =
(Eo/Ex) 7> 1. Therefore, 1/t. < 1/, indicating that K/K <« 1/1. Since we apply a displacement
boundary condition at the far field, the condition that K/K <« 1/t implies that the viscoelastic
solid in the far field should be in the fully relaxed state. Therefore, we can relate K(¢) and G(7)

using the relaxed modulus, i.e., G(¢) = (K(¢))*/E= assuming plane stress conditions.

SS. Solution of the crack velocity
Before presenting the numerical solution of eq. (6), it is worth discussing the special case of
static loading. In this case, both K and V" are constants. Assuming the standard linear solid model

in Fig.2b, we substitute eq. (S24) into eq. (S33) and obtain

E,—E, Vo1
for 7 <<—. (S37)
T

00 c

G-G,=-KVC,z,

Using eq. (S29) to write Cr~ —1// and introducing the ratio 7 = Eo/E~, we have

KVt V 1
GGy =Gy ~———=( 1) for <<, (S38)
0

c

Equation (S38) recovers the scaling relation for slow crack growth in Saulnier et al. [10]. To cast
eqg. (S38) in the same form as that in Saulnier et al. [10], we replace 7 by the relaxation time
(Eo/Ex)t= nrand use Go = K*/Eo which is obtained by assuming the crack tip is surrounded by

unrelaxed solid with modulus Eo. Therefore, eq. (S38) becomes

G, Vr [
L~ —1) for V <<—. 539
Gl n(n=1) for V<< (839)

If n>>1, eq. (S39) becomes
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[
Gy Ve oyt (S40)
G, [ nr’
which is identical to equation (13) of Saulnier et al. [10]. Therefore, we have recovered the static

solution in the slow velocity limit.

Under cyclic loading, we numerically solve eq. (6) in the main text (or eq. (S33)) by assuming
a triangular periodic function for K(¢) and determine G(¢) using G(f) = (K(f))*/E=. This condition

allows us to rewrite eq. (6) as:

t
—GO=K(t)‘Cf‘j](r—t’)K(r’)V(z’)dt’. (S41)
Next we introduce the normalization

7 ¢, J=E.J (S42)

N~

, §= I?E£ VEV‘C
K, .

Ly
T’
where T is the period of a loading cycle, K is the maximum value of K() in a loading cycle, and

7 is the characteristic relaxation time. Therefore, eq. (S41) becomes

5))K(5)V(5)ds . (S43)

\al

G,E, &
KO/

To formulate the numerical scheme, the loading history, provided in terms of K(7), needs to be

divided into sufficiently small increments. To this end, the time 7 is divded into small steps with
a uniform step size Az . Without loss of generality, we assume the loading starts at 7 =0, i.e., K=

0 for ¢ <0. At the k-th step with 7, =kA¢ , we have
— k = _ o _
R(m) 2T [(1-D)T]R (D)7 (7)AT}. (s44)

with ¢ =iAf . Subsequently, it is straightforward to deduce the following iterative format for the

normalized crack velocity V7 (7,):
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V(t)= ) o . (S45)

To implement numerical computation calculation, we need to apply the following conditions:

e Set the initial condition that /" =0 at 7, = A7 .
e Substitute the creep function J(¢) using eq. (S24).

e Apply the fracture criterion in eq. (S5), i.e., we set Go = I'o and calculate V" for the current time
step. If V' turns out to be negative, it means that the K or G at the current time step is not
sufficient to drive crack growth. Therefore, the negative value of V'is reset to zero at the current

time and we move on to the next time step.
The numerical solution depends on three dimensionless parameters: G,E, /K., Eo/Ex (also

denoted as 77) and 7/ . To facilitate comparison with the FE simulation results, we fix G,E_ /K

=0.667 and Eo/Ex =2, and vary T/t from 2.5 to 100. Using eq. (S45), we numerically compute the
crack velocity for 10 cycles, i.e.,  ranges from 0 to 10 with an increment size of Az = 0.05.
Because of the range of 7/7 (> 2.5), we find that the numerical solution of ¥ rapidly settles to a

periodic function with time after the first cycle, as shown in Fig.S6. Therefore, we take ¥ in the

last cycle as the solution for the quasi-steady-state under cyclic loading.

4 I T I I
TiT=2.5
Tir=5
3L —T/=10 h
o
fonl 2 b _
= \ \ \ \ \
1- T o 1 o o &
O 1 1 l 1
0 05 1 1.5 2 2.5 3 35 4 45 5

Normalized time: /T

Figure S6 Numerical solution of crack velocity. Only the first five cycles out of the ten cycles
are shown. The solutions are based on G,E, /K,i =0.667, Eo/Ex=2and T/t= 2.5, 5, or 10.
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