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Abstract—This paper considers the co-operation of distributed
generators (DGs), battery energy storage systems (BESSs) and
voltage regulating devices for integrated peak shaving and volt-
age regulation in distribution grids through a co-optimization
framework, which aims to minimize the operational costs while
fulfilling the operational constraints of network and devices. To
account for the uncertainties of load demand and generation, we
then convert the co-optimization model into a two-stage stochas-
tic program where state-of-charge (SoC) trajectories of BESSs
and the operation of voltage regulating devices are optimized
at the first stage for day-ahead scheduling (that determines the
day-ahead bidding plans of utilities in the day-ahead market
and the long-term voltage profile of feeders) while the reactive
powers of DGs and BESSs are left at the second stage for po-
tential intra-day scheduling to handle short-term voltage issues.
The proposed co-optimization scheme is validated on the IEEE
37-node test feeder and compared with other practices.

Index Terms—Co-optimization, distributed generation (DG),
battery energy storage system (BESS), peak shaving, two-stage
stochastic programming, voltage/var regulation.

I. INTRODUCTION
A. Background and Motivation

N recent decades, a variety of government policy-based in-

centives have supported the growth in distributed genera-
tors (DG) such as wind, photovoltaic (PV), fuel cells, biomass,
etc. Indeed, DGs bring technical, economic and environmen-
tal benefits; however, in turn, they may incur new operational
stress, e.g., power quality and network congestion issues [1].
Battery energy storage system (BESS) is arguably the most
promising solution to aid the integration of renewables since
it can be deployed in a modular and distributed fashion [2]-[3].
Clearly, with a high penetration of DGs and BESSs, the real
load profile may significantly deviate from the forecast, which
will affect the utility companies’ bidding behaviors in the
wholesale electricity market and correspondingly, the feeder
voltage profile will vary with the net load. Hence, in a nutshell,
the ongoing deployment of DGs and BESSs poses challenges
to energy management of distribution systems but facilitates
its revolution to exploit renewables in a cost-effective way.

Peak shaving and voltage/reactive power (volt/var) regula-
tion are two fundamental functionalities in distribution man-
agement systems where peak shaving is a process of flattening
the load profile by shifting peak load demand to the off-peak
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periods by leveraging energy storage and/or demand side man-
agement [6]; and the primary goal of volt/var regulation is, as
the name suggests, maintaining the feeder voltages within a
feasible range (e.g., 0.95-1.05 p.u. in ANSI Standard C84.1
[7]) by scheduling the voltage regulating devices, e.g., on-load
tap changers (OLTCs), step-voltage regulators (SVRs) and ca-
pacitor banks (CBs) [8]. Moreover, the advanced four-quadrant
inverter-interfaced DGs and BESSs are capable of providing
fast and continuous volt/var support locally [4]-[5], which can
significantly alleviate the work loads on the legacy devices.

Thanks to the conventional separate operation of peak shav-
ing and volt/var regulation [8], a substantial body of studies
have solely discussed either peak shaving or volt/var regula-
tion for a long time; see [6] and [9]-[10] for surveys on these
two isolate topics, respectively. However, the practical opera-
tion reveals the fact that they interact with each other due to
the physical nature of power network: i) reshaping the load
profile also reshapes the voltage profile, especially for some
low-voltage (LV) feeders with high R/X ratios; and ii) regulat-
ing voltages can lower the peak load via reducing line losses
and load demand (conservation voltage reduction) [11].

In light of this, the co-operation of peak shaving and voltage
regulation becomes appealing since it can maximize the usage
of DGs and storage, thereby unlocking additional benefits in
terms of operational cost, power quality, supply reliability as
well as network reinforcement, which, however, cannot be well
accomplished by the traditional separate architectures.

B. Literature Review

A few studies have addressed the co-operation between peak
shaving and volt/var regulation, especially for the planning of
DGs and BESSs considering the operation conditions. Several
rule-based control algorithms have been proposed in [12]-[14].
However, they rely on the heuristic design without providing
system-wide optimality guarantees.

Some studies have bridged the methodology gap by propos-
ing optimization frameworks. In [15], the authors investigated
the potential of BESSs in deferring upgrades needed to host a
higher penetration of PV, where an optimal power flow (OPF)
problem was formulated with the aim of mitigating voltage
deviation and reducing peak load restricted by limited capital
and operation and maintenance costs of BESSs. In [16], an
optimization model that minimizes BESS cost, voltage devia-
tion, voltage unbalance and peak demand charge together was
built. It should be noted that the weight allocation on multiple
heterogeneous objectives as in [15]-[16] is usually tricky. A
short-term scheduling scheme of BESSs was proposed in [17]
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to address peak shaving, volt/var regulation and reliability en-
hancement, simultaneously, resorting to solve an OPF program
by Tabu search. In [18], a bi-level scheduling strategy was de-
veloped, consisting of the bidding in day-ahead market (DAM)
to minimize overall the costs in supplying the net load and a
real-time dispatch to compensate for the energy gap. How-
ever, [15]-[18] mainly focused on the operation of BESSs,
neglecting the coordination with voltage regulating devices.

To address such issue, the efforts in [19]-[21] further have
the legacy voltage regulating devices participate in the co-
operation. In [19], a two-stage optimal dispatch framework for
distribution grids with distributed wind was proposed, where
the peak shaving and volt/var regulation are implemented in
a successive coordinated fashion instead of the so-called co-
optimization in a strict sense. In [20], a model predictive con-
trol scheme was proposed to minimize network losses or en-
ergy purchase cost whilst maintaining voltages within limits by
co-optimizing the operation of OLTCs, PV inverters as well as
BESSs in two timescales (1h and 15-min). The authors in [21]
proposed an integrated framework for conservation voltage re-
duction and demand response to reduce the energy bills of
customers. Besides, all of [19]-[21] addressed the prediction
uncertainties of DGs and load by leveraging scenario-based
stochastic programming techniques with one-stage [19], [21]
or two-stage models [20]. However, the unbalanced case was
not well addressed in [19]-[21]. !

C. Contributions

In spirit, this work is close to [18]-[19] and [21] which
consider a day-ahead multi-step scheduling of DGs and BESSs
to enhance utilities’ bidding strategies in the DAM. However,
we contribute in the following distinct ways:

1) First, we for the first time propose a comprehensive co-
optimization framework for an integrated peak shaving
and volt/var regulation by scheduling DGs, BESSs and
voltage regulating devices. This framework aims to min-
imize the overall operational costs including energy pur-
chase, battery degradation, as well as wear and tear of
tap changers and CBs, while satisfying the operational
constraints. Especially, an unbalanced network with tap
changers is considered where the multi-phase branch flow
model is generalized and linearized in to incorporate
phase-wise tap changers, rendering the problem compu-
tationally tractable.

2) Second, to account for the forecast uncertainties of renew-
ables and load while relieving the conservative behavior
of a robust decision, we propose to reformulate the prob-
lem into a two-stage stochastic program. It is noteworthy
that, with this two-stage model, only the SoC trajectories
of BESSs and voltage regulating devices will be actu-
ally implemented in day-ahead operation while reactive
powers of DGs and BESSs are left for a re-scheduling.

IThe unbalanced networks were considered in [15] and [16] but without the
discrete voltage regulating devices. The works [20]-[21] used the second-order
cone programming (SOCP) relaxation to convexify the OPF programs, which
cannot be easily extended to unbalanced cases due to the mutual impedance of
feeders. The semidefinite programming (SDP) relaxation used in [18] is appli-
cable to unbalanced systems; however, it may be computationally expensive,
especially in the presence of discrete variables.
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Fig. 1. Schematic diagram of the proposed day-ahead co-optimization frame-
work for cooperative peak shaving and volt/var regulation. Though the intra-
day dispatch is not explicitly addressed in this work, the proposed two-stage
stochastic programming methodology remains its potential in the second stage.

3) Last but not least, we demonstrate the proposed co-
optimization unlocks additional revenue compared with
the successive optimization method and also demonstrate
that only relying on cost reduction does not necessarily
lower the peak load. This implies an explicit peak load
limit should be imposed in the co-optimization.

The rest of this paper is organized as follows. Section II
presents the deterministic formulation of the co-optimization
problem. In Section III, the optimization problem is reformu-
lated as a two-stage stochastic program accounting for uncer-
tainties. Section IV presents the numerical results with method
comparison, followed by conclusions.

II. PROBLEM FORMULATION

This section presents the problem formulation of the co-
optimization framework for day-ahead cooperative peak shav-
ing and volt/var regulation over the time horizon of 24 h with
1-h time resolution compatible with the DAM. Fig. 1 gives the
overview of the proposed framework. Table I lists the major
definitions of the symbols used throughout the paper?.

A. Objective Function

The co-optimization framework aims to minimize the over-
all operational costs including energy purchase, batter degra-
dation and wear-and-tear of tap changers and CBs during 7T,
which is mathematically given as follows:

1) Electricity Purchase Cost:

Cele = Z )\ele,t (Re {Tr(s()l,t)}

teT

+ 3 Re{Tr(zijzij_,t)}) AT (1)
(i.j)€E
where the first part is the feed-in power flow from the sub-

station (that does not include the line losses) and the second
term represents the total line losses.

2Notations:(-)*, ()T and (-)¥ denote the element-wise conjugate, trans-
pose and complex-conjugate transpose, respectively. For a vector, diag(-)
denotes a diagonal matrix with the diagonal being (-); for a matrix, diag(-)
denotes the vector consisting of the diagonal entries of (). Re{-} and Im{-}
denote the real part and imaginary part of a complex number; i := /—1.
Tr(-) denotes the matrix trace.
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TABLE I

NOTATIONS
Symbols Description
N :={0}U{L,....,n} Set of buses
N Set of children buses of bus %
ECNXN Set of branches
AT Time resolution [h]

={1,...,24} Set of time intervals

Phase sets of bus ¢ and branch (¢, j)
Set of scenarios
Vi Nominal bus voltage

Aele Predicted electricity price [$/kWh]
Abat Battery degradation cost [$/kWh]

Acell Battery cell price [$/kWh]

Atap Adjustment cost of tap changer [$/time]
Acap Switching cost of CB [$/time]

i ymax Min./max. bus voltage magnitude limits
Imax Max. current limit of branch (i, j)
AZTapz] Tap ratio change per step

Agy Capacity per bank of CB at bus %, ¢

AK ﬁjﬁ;‘ Tap change limit per time step
AK;]OZ; Total tap change limit over T’
min - prinax Min./max. tap position at branch (i, j
‘géﬁ b Number of C[;;s) at bus 7, ¢ 9
ABtOt Allowable changes of CB at bus i, ¢
Peak Peak load limit
i Transformer capacity
§£? DG capacity at bus ¢, ¢
p H Available power of renewable-based DG

SOlen Socmax

Min/max operation limits of SoC
=b

Battery power capacity at bus i, ¢

i
E - Battery energy capacity at bus i,
r]c ndc Battery charging/discharging efficiency
st = [s’jy oleca; Complex BESS power injection at bus %
8§ = [s§ ploca; Complex CB power injection at bus
s? = [s? Sleca; Complex DG power injection at bus %
sd = [s oleca; Complex load demand at bus %
v; ]I-H“I> [ Complex voltage at bus 4
zij € Cl®ij 1% ®ij1 Impedance matrix of branch (%, j)
IZ] = [Lij,ploed;; Complex line current from buses ¢ to j
Kij = [Kij,plpea,; Tap position at branch (i, )

Number of CBs connected to bus

Complex power flow from buses ¢ to j
SoC of battery at bus %, ¢

B = [Bi,p]pca;
S c C‘(I)ulx‘cbu‘
SOC—L ©

2) Battery Degradation Cost:
O = 3 M [Re (s, }AT. @
teT iEN pED;
3) Operational Cost of Tap Changer:

Ctap = Z Z Z Atap [Kijpt —

teT (i,j)EE pePij

Kijpi-1].- 3

4) Operational Cost of Capacitor Bank:

cap: ZZ ZAcap|Bcht

teT i€N ped;

i 4p,t71| . (4)

Accordingly, the overall cost function is given by,

C = Ce]e + Cbat + Ctap + Ccap~ (5)

B. Constraints

1) Multi-Phase Power Flow: The SOCP relaxation and
SDP relaxation are usually used to convexify the nonlinear
power flow equations. However, the SOCP relaxation can-
not be readily applied to unbalanced cases due to the mu-
tual impedance. Though the SDP relaxation can be used for

unbalanced networks, it does not scale well with the size of
problem. Thus, it may be computationally expensive, espe-
cially in the presence of discrete variables. Moreover, the ex-
actness of relaxation cannot be guaranteed. So, to make the
optimization problem computationally tractable, we generalize
the linear multi-phase branch flow model [23] to incorporate
a tap changer, which is as, for any branch (i,j) € E,

l b P,
Aije = 850 =874 — 80— S + Z Ayl teT  (6)
o keN;
Siji = (aa’) ”diag (Aij ), teT (7)
D
Vi = V0 = kij, tvo ’+ Sy, tzz; + Z'L.]SZ] pt €T 3)
where a := [1,€_i2ﬂ—/3,ei2ﬂ—/3]T; kij,t = [kij,t]tp,go’eqnj with

the entries as,
kijport = (Kijopt + Kijor 1) ATapij, ¢,¢" € ®ij. (9)

It is understood that k;; ; = diag(1,1, 1) always holds for each
branch without a tap changer.

Besides, to estimate the line losses, the line current can be
approximately captured as, for any (i,5) € E,

Aij,t = V dlag(
= Iz_] tI

i m) teT
teT.

(10)
(1)

lijt gt
Keep in mind that the linear approximation in (6)—(11) es-
tablishes on the fact that the network is not too severely unbal-
anced and operates around the nominal voltage. This is widely
believed to hold in practice if with effective voltage regulation.
2) Network Operation Security: The operational limits of
bus voltage and line current are as follows:

(anirl)2 S diag(vi,t) S
diag(lij1) <

(Vmax)2 i e NteT
(I73)?, (i,j) € E,t € T.

(12)
13)

3) Peak Load Demand: Additionally, we consider a hard
constraint of net peak load during a day,

Re{Tr(Sore)} + Y Re{Tr(zi;lije)} < Peak, t € T.
(i,j)€E
(14)

Imposing this explicit constraint is of great significance for
effective peak shaving because only relying on cost reduc-
tion does not necessarily lower the peak load, which will be
demonstrated later.

4) Substation Transformer: The transformer capacity limit
is expressed as,

—=tr
<SS ,teT

[ [Re{Tr(So1,0)}  Tm{Tx(So1,:)}] (15)

I,
where to reduce the computation complexity, line losses are
neglected here since this constraint generally is not truly bind-
ing considering the feed from DGs and the slight overloading
of transformer is allowed for a short period.
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5) Tap Changer: The operational constraints of tap changer
over branch are given by, for any (4,7) € E and ¢ € ®;j,

K$1£<Kljgot<K”¢7Kij¢t€Zt€T (16)
|K1j7%t — K,-j,%t_ﬂ < AK;??;, teT (17

it = Kijpa—1| < AKTY (18)
teT

where (16) denotes the tap position limits; (17) constrains the
tap change during a sampling time interval; and (18) constrains
the total operation times of tap changers during 7'

6) Capacitor Bank: The operational constraints of capaci-
tor banks are given as, for any bus ¢ € N and ¢ € &,

Re{sj .} =0,t €T (19)
Im{sj,;} = BiptAg;,, t€T (20)
0< Biyy < B>, Biyi €Z, t€T (1)
> IBigt = Bipi1| < ABS: (22)

teT

where (19) denotes the total reactive power injected by CBs;
(20) constrains the maximum number of CBs; (21) constrains
the maximum switching times of CB units during 7.

7) Battery Energy Storage: In this paper, we consider the
lithium-ion battery—one of the most popular options today. If
we limit the battery operation within certain depth of discharge
region to avoid the overcharge and over-discharge, there is a
constant marginal cost for the cycle depth increase. In this
way, the battery degradation cost can be prorated with respect
to charged and discharged energy into a per-kWh cost [24],

)\cell
2M (SoCmax — SoCmin)
where M is the number of cycles that the battery could be
operated within [SoC™in SoC™max],
The model and operational constraints of a BESS at ¢ € ®;
of bus ¢ € N can be expressed as,

Abat = (23)

Re{sls&t}_bzg;t bfhwt, teTl (24)
O<bf}:at<ul,% Si,w tbeT 25)
0<b, <(1—pigs) Sy teT (26)
Wi, p,t € {0 1}, teT @7)
SoC; ot = S0C; 4 1—1 + <bg,};7tnch _ :;(f) EA;p et
(28)
SoC™™ < §0C; 4. < SoC™, t € T 29)
S0C; 4.0 = S0C; 4 24 30)
|[Re{st, .} TIm{st . }]|, < ?fw teT G1)

where ;¢ denotes the indicator variable representing the
charge or discharge status, respectively. Constraints (24)—(27)
represent the real power model of a BESS. Constraint (28)
represents the physical model of SoC of a BESS while (29)—
(30) represent its operational constraints. As shown in (30),
the SoC at the beginning and the end of a day will be equal
so that the framework can periodically operate. (31) constrains
the apparent power of BESS converter that restricts the real
and reactive power in a coupling way.

8) Inverter-Based DG: A four-quadrant inverter-interfaced
DG at ¢ € ®; of bus ¢ € N is modeled by,

Re {sf’%t} = ﬁ?’%t,t eT
g g =9
|| [Re{si’%t} Im{si’%t}} H2 <S8 teT
where it is assumed the PV system operates with the maximum
power tracking mode (track the available power ]Bf o) 3

Clearly, for each bus ¢ that does not have CB, BESS or DG
installation, we have s7 , = 0, sit =0or sf’t = 0, respectively.

(32)
(33)

C. Linearization and Compact Formulation

The objectives (2)—(4) and constraints (18) and (22) con-
tain the sum of absolute terms with respect to the tap posi-
tion and CBs, which are not tractable for off-the-shelf solvers.
Thus, we linearize them by introducing the auxiliary variables

K o Ko BJr and B; . Then, constraint (18) can be equiv-
alently rewntten as,
Kijopr = Kijpu—1 =K o0 = Kij o4 (34
— tot
Z(Kljtpt +Kzggot) < AKU, (35)
teT
+ - +
K, 20K ,,>0,K5 K, €L (36)
Similarly, constraint (21) becomes,
Bigt— Bigi-1=B,, — B, 37)
+ tot
Z(Bzapt_'_Bupt)SABi,cp (38)
teT
Bf,,>0,B;,,>0,B, B, €Z (39

For BESSs, similar linearization has been done in (24)—(27).
Correspondingly, the cost functions Ctap, Ceap as well as Chat
can be rewritten as,

Ctap:z Z Z )‘tap( 13¢t+K1;sot) (40)
teT (i,j)€E pE®;;
Coap =D, D D ean (Biys + Biyy) (41)
teT ieN ped;
Coat = D> Y Avar (B, + b, ) AT. (42)

teT iEN ped;

Finally, the optimization problem is abstractly expressed as,

(DP): miniGHL}ize C(u) (43a)
(12)-(17),(21)
subject to g(u) <O0: (25)-(27),(29),(31) (43b)
(33),(35),(36),(38),(39)
(1),(5),(6)—~(11),(19)
h(u) =0:< (20),(24),(30),(32) (43¢)

(34),(37),(40)—(42)

where u is the compact decision vector of all the decisions; I/
is the Cartesian product of real, complex and integer number
sets, which characterizes v in an element-wise manner.

So far, the deterministic problem formulation (DP) has been
given in (43), which is inherently a mixed-integer second-order
cone program (MISOCP) that can be efficiently handled by the
off-the-shelf solvers, e.g., CPLEX, MOSEK, etc.

3To allow for real power curtailment, oen can replace “=" by “<” in (33).
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III. STOCHASTIC PROGRAMMING FORMULATION

The day-ahead operation scheduling establishes on the load,
renewable generation and electricity price, etc. However, due
to various uncertainties, e.g. stochastic nature of the load and
renewables, it is difficult to forecast them with very high accu-
racy. Therefore, we consider the forecast uncertainties of load
and renewables by converting the deterministic optimization
program DP into a two-stage stochastic program, while allow-
ing for intra-day re-dispatching of reactive power resources.

A. Scenario Generation and Reduction

The load consumption prediction error is calculated based
on a truncated normal distribution [29]. The solar power gen-
eration is dependent on the incident solar irradiance, while the
irradiance significantly depends on the cloud coverage condi-
tion. Therefore, the solar irradiance prediction error is modeled
by introducing a correction factor to the prediction Ir with a
clear weather, following a normal distribution that depends on
the given cloud coverage level [30],

1

Ir=1Ir(l—¢),e= [Norm(us,ag)]o

(44)

where [-]§ denotes the projection operation onto the set [0, 1].

Based on the known probability distributions, Monte-Carlo
simulation is conducted to create a required number of scenar-
ios for solar irradiance and load and then they are reduced to a
given number of scenarios by the backward reduction method,
of which more details can be referred to [31]-[32].

B. Two-Stage Stochastic Programming Formulation

First, we split u € U into two groups, i.e., u := {z,y} and
U = X x ) where
o x represents the decision variables associated with the
charging/discharging of BESSs, operation of tap changers
and operation of CBs (without the power flow); and
o y consisting of all the remaining ones.
Correspondingly, the cost function and constraints in OPF-d
can be reconstructed as,

C(u) = Ci(z) + C2(y) (45)
h(u) = h1(z) =0 N ha(x,y) =0 (46)
g(u) = g1(z) <0 N go(w,y) <0 47
veU=zeX Nye) 48)

where C'(x) corresponds to Chat + Ciap + Ceap While Co(y)
corresponds to Cele.

Then, define a realization of stochastic scenario as & :=
{P] o8¢ ot b ien yoqe @ tWo-stage stochastic counterpart of
DP can be formulated as,

(SP): minimize Cy(x) + {mn;lergl}lze Ca(y; f)} (49a)

subject to hy(x) = (49b)
g1(z) <0 (49¢)
ha(z,y;§) = (494d)
92(z, y; ): (49e)

14
4 o—=o 13
el
5 I 6
o—0 e 10
3

R
(3]
W
1%
3]

©cB

Fig. 2. Single-line diagram of IEEE 37-node test feeder. The original feeder
is modified to include two phase-wise PV panels at Buses 20 and 30 with the
rated capacities of 200 kVA and 300 kVA per phase. Two phase-wise BESSs
with 500 kW/1500kWh and 300 kVA/900kWh power/energy ratings per phase
at Buses 20 and 30, respectively. Besides, a CB with a rated capacity of 50
kVAr/unit and 100 kVAr in total per phase is installed at Bus 36.

@ svrR

(© DG+BESS

where x corresponds to the first-stage (here-and-now) deci-
sions before the realization of ¢ and y corresponds to the
second-stage (wait-and-see) corrective actions under a given
realization of £&. To be more clear, the independent control
variables at the first stage include charging/discharging power
of BESSs Re{s?’%t}, operation trajectories of tap changers
Kj+ and operation trajectories of CBs s ,; and the second-
stage control variables are the reactive powers of BESSs and
: b
DGs, i.e., Im{s; , ;} and Tm{s} ,}.

C. Deterministic Equivalent

Representing the uncertainties through a finite scenario set
2 := {&,...,{z|} with the probability distribution p1, ..., p|z|,
the approximate deterministic equivalent problem of SP in the
extensive form can be given as,

(SP-d): minimize Cy () + I;kaz(yk;ﬁk) (50a)
subject to hi(x) = (50b)

g1(z) <0 (50c)

ho(z,yk;&k) =0, k =1,...,[E]  (50d)

92, yk;&k) =0, k=1,..,|=]  (50e)

which is inherently an extensive MISOCP program that can
be also directly handled by conic programming solvers.

IV. NUMERICAL RESULTS

The proposed co-optimization methodologies are tested on a
modified IEEE 37-node test feeder (see Fig. 2) [25]. The SVR
has an operation range of [0.9,1.1] p.u. with £16 tap positions
(e, K™ = —16, K™ = 16 and ATap = 0.2/32). The
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Fig. 3. Load and solar generation profiles (1-h resolution). The thick lines
represent the predicted profiles while others are generated stochastic scenarios.
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Fig. 4. Day-ahead locational marginal price in central Iowa at July 3rd 2017
obtained from historical MISO market dataset.

Lithium Manganese Oxide battery is considered for the sim-
ulation with a cell price of 0.5/Wh and M = 10,000 cycles
when the average cycle depth of discharge is 60% [24]. Ac-
cordingly, SoC™" = 0.2 and SoC™®* = (.8. The per-unit
costs associated with operation of the tap changer and CB are
set as 1.40$/time and 0.24$/time which can be adjusted as per
the switching risk assessment of utilities [26]. The daily load
profile of a real distribution feeder in Iowa, U.S. and a solar
generation time series generated by a testbed [27] are used as
the predictions of load and maximum available solar genera-
tion (see Fig. 3). The locational marginal price obtained from
historical MISO market dataset [28] is used as the forecasted
electricity price in DAM (Fig. 4). For uncertainty modeling, as
discussed before, it is assumed the random load prediction er-
ror follows the truncated normal distribution where the mean
value is the forecasted load, the standard deviation is 5% and
the truncation bound is set as +15%, respectively; the solar ir-
radiance correction factor follows the normal distribution with
mean value . = 10% and standard deviation 0. = 5%. These
parameters can be tuned per the given real data.

A. Co-Optimization v.s. Successive Optimization

In this section, we perform a comparison between the pro-
posed co-optimization (cooperative peak shaving and volt/var
regulation) and the successive coordinated optimization pro-
posed in [19] to demonstrate the unlocked additional benefits
by the proposed co-operation. For the successive optimization,
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Fig. 5. Operational cost comparison with different operation strategies.
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Fig. 6. Peak load performance with different operation strategies. To conduct
a fair comparison (same peak load), the successive optimization strategy with
a peak limit (without line losses) of 5,700 MW is first tested and then the
resultant actual peak load after voltage regulation (6,100 MW, including line
losses) is set as the peak limit in the co-optimization.

the peak shaving and the volt/var optimization are performed
in a successive way; for the benchmark, the distribution system
operates without peak shaving and volt/var regulation. For the
sake of clarity, this comparison is performed on a determinis-
tic case. To better illustrate the effectiveness of the proposed
method, the benchmark load demand in [25] is scaled up by
four. As shown in Fig. 5, the operational costs with different
optimization strategies are compared. It shows that the co-
optimization strategy reduces the operational cost compared
with the successive optimization one with the same peak load
and voltage limits. Seen from Fig. 6, to achieve peak shaving,
the load during peak times will be shifted to 12:00 AM-06:00
AM with relatively low prices by scheduling the BESSs. Utili-
ties will thus purchase more electricity for this period. Besides,
as shown in Figs. 7 (b) and (c), the voltage profiles with the
two optimization methods are effectively regulated within the
limits [0.95,1.05] p.u. but by comparison, the co-optimization
results in smoother voltage variations. The benchmark has the
lower operational costs because it does not include any op-
erational costs of BESSs and voltage regulating devices but
most bus voltages significantly violate the lower limit while
the peak load stays high.

B. Merit of an Explicit Peak Load Constraint

In this subsection, we examine the necessity of a hard and
explicit peak load limit constraint in the co-optimization. As
shown in Fig. 8, only relying on the cost reduction (Case B)
does not effectively lower the peak load because the imposed
operational cost of BESSs is more expensive than cost savings
by leveraging the ToU price, though it does reduce the overall
operational costs of the system. Without considering BESS
costs in the optimization, it is observed that the peak load can
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Fig. 7. Voltage performance with different operation strategies. (a) Bench-
mark; (b) successive optimization; (c) co-optimization. Each line represents a
phase-wise voltage magnitude of a bus. The thick lines highlight the lowest
and highest bus voltages within a day.
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Fig. 8. Peak load performance with different operation strategies where in
Case A, the co-optimization strategy is carried out with a peak load limit of
5,800 MW; in Case B, the peak load limit is relaxed; and in Case C, the peak
load limit and the operational costs of BESSs are both relaxed.

be slight reduced. But, consider, if we have sufficient available
load shifting capability, there will be a trend that all the load
will be shifted/aggregated to the periods with the lowest price.
Therefore, there will be a new (and higher) peak at 04:00 AM.
This demonstrates the merit of an explicit constraint on peak
load in the optimization problem.

C. Deterministic Optimization v.s. Stochastic Optimization

Here, the comparison between the deterministic optimiza-
tion and (singe-stage and two-stage) stochastic optimization
methods is carried out to demonstrate the value of stochas-
tic programming. 1,000 random scenarios of load and solar
power time-series are generated as shown in Fig. 3 and are
then reduced to 15 representative scenarios, which strives for
a balance between performance and computational complex-
ity. Fig. 9 compares the voltage performance among different
optimization methods. 100 new scenarios are generated to test
the performance of different methods under uncertainties and
we record the highest and lowest value voltage magnitude of
all buses after 100 random Monte-Carlo simulations. It can be
observed that some voltage buses (especially for Phase C) with
the deterministic optimization (DP) violate the lower limit un-
der some scenarios since it does not consider the uncertainties
in the optimization. The single-stage stochastic optimization
strategy schedules all the controllable devices in one stage
together considering the uncertain prediction errors and there-
fore, it alleviates the voltage violations in Phase C but there

Voltage (p.u.)

1.05

Voltage (p.u.)

0.95

Bus
(b)

RN

S

(9]

50

8

G

> .

| 1~36: Phase A | 1~36:Phase B | 1~36:Phase C |

Bus
(©)

Fig. 9. Voltage performance (min./max. magnitude) with (a) deterministic op-
timization, (b) singe-stage stochastic optimization and (c) two-stage stochastic
optimization where the maximum and minimum values of all (phase-wise) bus
voltages during a day among the 100 test scenarios are presented.

are still several bus voltages lower than 0.95 p.u. In compari-
son, the two-stage stochastic optimization framework regulates
all the bus voltages within the ANSI limit since it considers
the uncertainties and allows a re-scheduling of reactive powers
of BESSs and solar inverters, thereby exhibiting better robust-
ness. This justifies the necessity of the intra-day re-scheduling
of available controllable devices.

Fig. 10 gives the comparison in terms of peak shaving per-
formance. It can be observed that, with the deterministic opti-
mization, the peak load violates 6,000 kW in most of scenarios
with the highest peak of 6,856.4 kW; the single-stage stochas-
tic optimization alleviates the violation with the highest peak
of 6,450.1 kW. By contrast, the two-stage optimization can ef-
fectively regulate the peak load (maximum peak load 6,087.5
kW) because it effectively reduces the network losses under
a given case by re-dispatching the reactive power of BESSs
and solar inverters. This again validates the merit of stochastic
optimization and the necessity of re-dispatch.

V. CONCLUSION

This paper addresses the day-ahead cooperative operation of
peak shaving and voltage regulation in an unbalanced distri-
bution through a joint optimization framework. We then con-
sider the uncertainties of load and solar by converting the
co-optimization model into a two-stage stochastic program.
The numerical results show that the proposed co-optimization
framework brings more cost benefits than the successive opti-
mization method while effectively regulating the voltages and
peak load within the limits. Further, due to the consideration
of uncertainties and the enabled re-dispatch, the proposed two-
stage stochastic programming method facilitates robust opera-
tions. Besides, we also verify the necessity of an explicit peak
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10. Peak load performance with deterministic, one-stage stochastic and

two-stage stochastic optimization. (a) deterministic; (b) one-stage stochastic
optimization; (c) two-stage stochastic optimization. Each line represents the
real power load of distribution system under a given stochastic scenario. The
thick line represents the scenario with the highest peak load.

load constraint in the optimization for effective peak shaving.
The future work will focus on the intra-day real-time dispatch
to better track the system variations.
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