

1 **CHD chromatin remodeling protein diversification yields novel clades and domains absent
2 in classic model organisms**

3

4 **Joshua T. Trujillo¹, Jiaxin Long¹, Erin Aboelnour^{1,2}, Joseph Ogas^{1*}, and Jennifer H. Wisecaver^{1*}**

5

6 ¹Center for Plant Biology and Department of Biochemistry, Purdue University, West Lafayette, Indiana
7 47907, USA

8 ²Current address: Helmholtz Pioneer Campus, Helmholtz Zentrum München, 85764 Neuherberg,
9 Germany

10

11 *Address correspondence to ogas@purdue.edu, jwisecav@purdue.edu.

12

13 ORCID IDs: 0000-0001-9817-4161 (J.T.T.), 0000-0003-3515-0706 (J.L.), 0000-0002-1730-9405 (E.A.),
14 0000-0002-1332-7729 (J.O.), 0000-0001-6843-5906 (J.H.W.)

15

16

1 **ABSTRACT**

2 Chromatin remodelers play a fundamental role in the assembly of chromatin, regulation of transcription,
3 and DNA repair. Biochemical and functional characterization of the CHD family of chromatin remodelers
4 from a variety of model organisms have shown that these remodelers participate in a wide range of
5 activities. However, because the evolutionary history of CHD homologs is unclear, it is difficult to predict
6 which of these activities are broadly conserved and which have evolved more recently in individual
7 eukaryotic lineages. Here, we performed a comprehensive phylogenetic analysis of 8,042 CHD homologs
8 from 1,894 species to create a model for the evolution of this family across eukaryotes with a particular
9 focus on the timing of duplications that gave rise to the diverse copies observed in plants, animals, and
10 fungi. Our analysis confirms that the three major subfamilies of CHD remodelers originated in the
11 eukaryotic last common ancestor, and subsequent losses occurred independently in different lineages.
12 Improved taxon sampling identified several subfamilies of CHD remodelers in plants that were absent or
13 highly divergent in the model plant *Arabidopsis thaliana*. Whereas the timing of CHD subfamily
14 expansions in vertebrates correspond to whole genome duplication events, the mechanisms underlying
15 CHD diversification in land plants appears more complicated. Analysis of protein domains reveals that
16 CHD remodeler diversification has been accompanied by distinct transitions in domain architecture,
17 contributing to the functional differences observed between these remodelers. This study demonstrates the
18 importance of proper taxon sampling when studying ancient evolutionary events to prevent
19 misinterpretation of subsequent lineage-specific changes and provides an evolutionary framework for
20 functional and comparative analysis of this critical chromatin remodeler family across eukaryotes.

21
22 **Keywords:** Gene duplication, gene loss, whole genome duplication, subfunctionalization, protein domain
23 prediction, evolutionary innovation

24

1 **Significance statement:**

2 Members of the CHD family of SNF2 chromatin remodelers are involved in DNA replication and in an
3 array of transcription regulatory and epigenetic processes associated with development. Previous studies
4 have focused on characterization in model organisms, and the conservation of homologs and their
5 molecular functions across the tree of life remains unclear. This study reveals that the three CHD
6 subfamilies are present in most eukaryotic lineages, but CHD evolution is highly dynamic with many
7 lineage-specific gain and loss events, domain diversification, and structural variants that suggest that
8 these remodelers have evolved to fulfill distinct chromatin-based roles. These findings provide the most
9 comprehensive phylogenetic and evolutionary analysis of CHD homologs across Eukarya, expanding our
10 understanding of the malleability of this ancient family of remodelers and reveal the existence of novel
11 forms and thus perhaps unknown chromatin-associated activities in non-model organisms.

12

1 **INTRODUCTION**

2 Chromatin packaging is the complex arrangement of DNA and proteins to form nucleosomes and other
3 higher order chromosome structure. It is one of the hallmarks of eukaryotic genomes. Complex packaging
4 comes with a cost, as the compact structure of chromatin can prevent access of proteins involved in
5 transcription, replication and repair. Various chromatin remodelers are involved in the dynamic regulation
6 of chromatin packaging and are therefore essential for organismal development (Clapier and Cairns 2009;
7 Ho and Crabtree 2010; Ojolo et al. 2018).

8 One important family of remodelers are the CHD proteins, which play an essential role in
9 chromatin homeostasis and exhibit a diverse range of biochemical activities with nucleosomes (Marfella
10 and Imbalzano 2007; Sims and Wade 2011). Like other ATP-dependent chromatin remodelers, CHDs
11 contain a conserved ATPase domain, composed of SNF2_N and Helicase_C PFAM domains, that acts as
12 a motor to power dynamic interactions with chromatin and nucleosome substrates (Clapier et al. 2017;
13 Nodelman and Bowman 2021). The acronym of 'CHD' is derived from the domains typically found in
14 these proteins (Woodage et al. 1997): two tandemly arranged chromo domains; the ATPase domain
15 (originally annotated as a helicase), and one or more domains associated with DNA-binding (Figure 1).

16 CHD remodelers are typically organized into three subfamilies that possess distinct domain
17 architectures (Flaus et al. 2006; Ho et al. 2013; Koster et al. 2015). Subfamily I is characterized by the
18 presence of C-terminal SANT and SLIDE DNA-binding domains (Ryan et al. 2011; Sharma et al. 2011).
19 In contrast, subfamily II CHDs typically contain one to two N-terminal PHD domains, that have been
20 shown to exhibit histone-binding activity and contributes to proper targeting of these remodelers
21 (Mansfield et al. 2011; Watson et al. 2012). The accessory domain architecture of subfamily III is more
22 variable, but often includes one or more BRK domains thought to act as a protein-protein interaction
23 domain (Allen et al. 2007).

24 Most investigations into the function of different CHDs have been done in model animals and
25 fungi. ScCHD1 is the only CHD remodeler present in the budding yeast *Saccharomyces cerevisiae* and
26 belongs to subfamily I (Figure 1). ScCHD1 exhibits two distinct chromatin-associated activities:

1 assembly of nucleosomes and nucleosome positioning (Torigoe et al. 2013). Functional characterization
2 of ScCHD1 revealed that it contributes to chromatin assembly associated with replication and
3 transcription (Gkikopoulos et al. 2011; Smolle et al. 2012; Zentner et al. 2013; Yadav and Whitehouse
4 2016). Biochemical characterization of DmCHD1 (the subfamily I remodeler from the fly *Drosophila*
5 *melanogaster*) suggests that the nucleosome assembly and nucleosome remodeling activities of ScCHD1
6 and DmCHD1 are conserved (Lusser et al. 2005; Konev et al. 2007). Similarly, functional analyses of
7 additional subfamily I remodelers from *Schizosaccharomyces pombe* (fission yeast) and *Mus musculus*
8 (mouse) suggest that chromatin assembly associated with replication and transcription are also conserved
9 (Hennig et al. 2012; de Dieuleveult et al. 2016).

10 However, in contrast to *Sa. cerevisiae* with its single CHD protein, mammals including *Homo*
11 *sapiens* contain 9 CHD remodelers: 2 in subfamily I (CHD1 and CHD2), 3 in subfamily II (CHD3,
12 CHD4, and CHD5), and 4 in subfamily III (CHD6, CHD7, CHD8, and CHD9) (Flaus et al. 2006; Sims
13 and Wade 2011) (Figure 1). There is considerable interest in understanding the respective contributions of
14 these remodelers to chromatin-associated processes due to the critical roles played by these factors in
15 development and disease (Alendar and Berns 2021). For example, CHD2 mutations are associated with
16 chronic lymphocytic leukemia in *H. sapiens* and *M. musculus* (Marfella et al. 2006; Nagarajan et al. 2009;
17 Rodríguez et al. 2015), CHD4 and CHD5 proteins in *H. sapiens* and *M. musculus* play an important role
18 in neurogenesis and tumor suppression (Kolla et al. 2014; Liu et al. 2021), and mutation of CHD7 and
19 CHD8 genes in *H. sapiens* and *M. musculus* results in the congenital disease known as CHARGE
20 syndrome and autism, respectively (Zentner et al. 2010; Liu et al. 2021). It is thus medically relevant to
21 understand how and when data derived from studying CHD remodelers in various other organisms can be
22 used to provide substantive insight into the function of their human homologs.

23 Characterization of CHDs in plants to date raises the prospect that the function of these proteins
24 may be more malleable than previously thought. The AtPKL remodeler of *Arabidopsis thaliana* is in
25 subfamily II (Figure 1) and contributes to repression of transcription much like subfamily II homologs in
26 vertebrates (Zhang et al. 2008; Ho et al. 2013; Carter et al. 2018). However, unlike vertebrate subfamily II

1 homologs, AtPKL primarily exists as a monomer and contributes to homeostasis of the transcriptionally-
2 repressive histone modification H3K27me3 (Zhang et al. 2012; Jing et al. 2013; Carter et al. 2018).
3 Moreover, recombinant AtPKL promotes prenucleosome maturation in addition to nucleosome
4 mobilization (Ho et al. 2013; Carter et al. 2018). These in vitro activities suggest that AtPKL, a subfamily
5 II remodeler, contributes to nucleosome assembly as well as mobility, biochemical properties previously
6 associated only with CHD remodelers in subfamily I (Lusser et al. 2005; Fei et al. 2015). In addition,
7 phylogenetic analyses suggest the existence of novel plant clades of CHD remodelers in subfamilies II
8 and III that are absent in *A. thaliana*, raising the prospect of novel remodeling activities/roles for CHD
9 proteins in this kingdom (Hu et al. 2013; Koster et al. 2015).

10 Understanding the contribution of a given CHD accessory domain can provide considerable
11 insight into the contribution of a CHD remodeler to a chromatin-associated process. For example, the
12 chromodomain of subfamily I CHDs contributes to both recognition of the correct nucleosomal substrate
13 and gating of the remodeling activity of the enzyme (Sims et al. 2005; Hauk et al. 2010). Similarly, the
14 PHD domains of CHD3/4/5 in vertebrates contribute to recognition/targeting of these remodelers
15 (Mansfield et al. 2011; Musselman et al. 2012; Egan et al. 2013). These observations strongly suggest that
16 the distinct domain architectures acquired by CHD remodelers in different lineages contribute to different
17 functions/roles, as well as infer molecular function of uncharacterized lineage-specific remodelers.

18 Previous phylogenetic analyses relied on sequences from a handful of representative taxa (Flaus
19 et al. 2006; Ho et al. 2013; Hu et al. 2013). A sequence similarity-based analysis performed by Koster et
20 al. (2015) identified putative CHD homologs from diverse eukaryotic taxa in all three subfamilies,
21 suggesting that these subfamilies were present in the last common ancestor of eukaryotes. The same
22 analysis also identified putative subfamily III homologs in plants and fungi (Koster et al. 2015), which
23 were previously thought to lack subfamily III. However, without a full-scale phylogenetic analysis of
24 CHDs, the taxonomic distribution of the different subfamilies as well as the timing of gene duplication
25 and loss remains unclear.

1 Thanks to the proliferation of genome and transcriptome data from non-model eukaryotes, a
2 phylogenetic reassessment of CHD remodeler evolution is now possible. Here, improved taxon sampling
3 from over 1,800 species identified several clades of CHD remodelers in plants and fungi that were absent
4 or highly derived in model species representatives *A. thaliana* and *Sa. cerevisiae*, respectively. Whole
5 genome duplication (WGD) drove CHD gene family expansion in vertebrates as well as in the cruciferous
6 family of plants (Brassicaceae). Our analysis also identified more recent, genus-specific gene duplication
7 events in *Schizosaccharomycotina* and *Drosophila* that were not WGD-derived. A hidden Markov model
8 (HMM) analysis identified novel conserved sequence motifs in some CHD clades in plants and animals,
9 suggesting that duplication of CHDs is often accompanied by diversification of domain architecture.

10 **RESULTS**

11 Our analysis identified 8,042 CHD homologs in 1,894 eukaryotic taxa from 18 eukaryotic lineages (Table
12 1; Table S1). No CHD homologs were identified outside of eukaryotes. Although the number of
13 subfamily homologs varied across different eukaryotic species, homologs from each of the three CHD
14 subfamilies were present in four eukaryotic supergroups: Amoebozoa; Archaeplastida (Glaucophyta,
15 Rhodophyta, and Viridiplantae); Opisthokonta (Choanoflagellata, Filasterea, Fungi, Ichyosporea,
16 Metazoa, and nucleariids); and SAR (Alveolata, Rhizaria, and Stramenopiles) (Table 1). If the position of
17 the root of the eukaryotic tree of life is as hypothesized by Derelle et al. (2015), the Last Common
18 Ancestor (LCA) of these four supergroups corresponds to the LCA of extant eukaryotes. This result is
19 consistent with prior work suggesting that three distinct CHD subfamilies were already present in the
20 eukaryotic LCA (Flaus et al. 2006; Koster et al. 2015). To infer the evolutionary history of each
21 subfamily, we constructed maximum-likelihood phylogenetic trees of the chromodomain-ATPase core of
22 CHD homologs. Our CHD phylogeny recovered three well-supported, monophyletic clades, representing
23 subfamilies I, II, and III (Figure 1).

24

1 **Subfamily I: the most conserved CHD subfamily in plants, animals and fungi**

2 Accessory domain architecture is tightly conserved in subfamily I and consists of three C-terminal
3 domains: SANT, SLIDE, and a domain of unknown function, DUF4208 (Figure 2). Most lineages
4 maintain a single subfamily I homolog, with a few notable exceptions.

5 Vertebrates have two subfamily I clades, CHD1 and CHD2 (Figure 2; Figure S1). The duplication
6 of CHD1/2 coincides with two rounds of whole genome duplication (WGD) in ancestral vertebrates
7 (Ohno et al. 1968; Abi-Rached et al. 2002; Dehal and Boore 2005). We searched the OHNOLOGS v2
8 database (Singh and Isambert 2020), which maintains a list of genes retained from WGD (i.e., ohnologs)
9 in vertebrate genomes, and found that *HsCHD1* and *HsCHD2* are indeed WGD-derived gene pairs
10 (weighted q-score from outgroup comparison 0.0006; weighted q-score from self-comparison 8.256E-29;
11 lower q-scores imply more statistically significant ohnolog pairs). CHD1 and CHD2 are likely to be at
12 least partially functionally redundant; they are recruited to common regions of the genome of mammalian
13 cells (Siggins et al. 2015), and a dominant negative mutation of CHD1 has a more severe phenotype than
14 a simple knockdown of CHD1 on nucleosome turnover at the promoter of transcribed genes (Skene et al.
15 2014).

16 The fission yeast *Sc. pombe* also has two subfamily I homologs, *ScHrp1* and *ScHrp3* (Jin et al.
17 1998; Jae Yoo et al. 2002). Our phylogenetic analysis indicates that this duplication event occurred in an
18 ancestor of the *Schizosaccharomyces* genus (Figure 2; Figure S2). The Hrp1 clade retains all three C-
19 terminal domains; whereas, the Hrp3 clade has either lost the region corresponding to DUF4208, or the
20 sequence has diverged to the point that it is no longer detected by sequence similarity search (Figure 1;
21 Table S1). In contrast to vertebrates, *Schizosaccharomyces* does not have a history of WGD, and a check
22 for shared synteny between *ScHrp1* and *ScHrp3* was negative. This indicates that the subfamily I copies
23 in *Schizosaccharomyces* arose through some other form of gene duplication, such as segmental
24 duplication.

25

26

1 **Subfamily II: independent expansions in plants and vertebrates**

2 Subfamily II is the largest CHD subfamily due to multiple duplications in vertebrates and green plants
3 (Figure 1; Figure S3). The most common accessory domain architecture in subfamily II is the presence of
4 one or tandem N-terminal PHD domains and three C-terminal domains: DUF1087, DUF1086, and SLIDE
5 (Figure 1; Figure 2). However, the accessory domains are noticeably more variable compared to
6 subfamily I, with one or more C-terminal domains frequently absent in different clades. Moreover, some
7 lineages within subfamily II have acquired novel accessory domains. The animal subfamily II homologs,
8 including *HsCHD3/4/5* in humans, have a unique N-terminal CHDNT domain (Figure 1; Figure S3).
9 Similarly, many ascomycota subfamily II homologs, including *ScMit1* from *Sc. pombe*, have a unique
10 MIT1 C-terminal accessory domain (Figure 1; Figure S4A). Investigation of *ScMit1* indicates that this
11 MIT1 domain overlaps with a region that plays a key role in formation of SHREC, the fission yeast
12 nucleosome remodeling and deacetylation complex (Job et al. 2016). The majority of ascomycota
13 subfamily II CHDs possess an MIT1 accessory domain (Figure S4A, Table S1), suggesting that the
14 SHREC complex is not limited to fission yeast, but is common in the ascomycota lineage. Interestingly,
15 ascomycota in the Saccharomycotina subdivision, including *Sa. cerevisiae*, have lost subfamily II
16 consistent with the absence of the heterochromatic features associated with the SHREC complex in the
17 Saccharomycotina.

18 As with CHD1/2, duplications that gave rise to ohnologs CHD3/4/5 in vertebrates can be traced
19 back to WGD in their common ancestor (weighted q-score for *HsCHD3/4/5* gene pairs was less than 1E-
20 05 for all comparisons). In contrast, two independent single gene duplications occurred in model
21 invertebrates *Drosophila* and *Caenorhabditis* giving rise to *DmMi-2* and *DmCHD3* in *D. melanogaster*
22 and *Celet-418* and *Cechd-3* in *C. elegans*, respectively. The *Celet-418* and *Cechd-3* paralogs in *C. elegans*
23 share the same accessory domain architecture. In contrast, sequences in the *Drosophila* dCHD3 clade are
24 truncated and missing both N- and C-terminal accessory domains (Figure 1; Figure S5). For clarity, and
25 in agreement with prior literature (Murawska et al. 2008), we refer to these *Drosophila* clades as dCHD3
26 and dMi-2 to differentiate dCHD3 from the vertebrate clade CHD3. Further analysis of *Drosophila*

1 subfamily II homologs revealed that not all *Drosophila* species possessed dCHD3 homologs, which was
2 only found in a subset of species from the melanogaster group. In addition, the dCHD3 clade contains
3 noticeably longer branches compared to the dMi-2 clade (Figure S5), which is suggestive of elevated rates
4 of evolution in the dCHD3 clade. We performed a PAML analysis to measure the rate of evolution within
5 the conserved chromo and ATPase domains following the duplication that gave rise to dCHD3 and dMi-2
6 subclades in *Drosophila*. Positive selection was not detected along the branches leading to either subclade
7 (p value > 0.05; Figure S5; Table S2). However, both subclades have a higher proportion of sites with an
8 elevated rate of evolution (w=0.37 and w=0.4 for dCHD3 and dMi-2, respectively) compared to
9 remaining *Drosophila* orthologs (Table S2). These results suggest that in addition to structural changes
10 (e.g., loss of accessory domains), relaxed selection within the core chromo and ATPase domain region
11 may have contributed to retention and functional differences between the two copies. Although both
12 DmCHD3 and DmMi-2 remodelers colocalize with RNA polymerase II in transcribed regions of polytene
13 chromosomes (Murawska et al. 2008), DmCHD3 exists as a monomer rather than in a multi-subunit
14 complex like DmMi-2 (Murawska et al. 2008; Kunert and Brehm 2009), suggesting that melanogaster
15 group dCHD3 proteins remodel in a context that is distinct from dMi-2.

16 Viridiplantae (plants and green algae) comprise four distinct clades in subfamily II: PKL, PKR1,
17 PKR4, and MOM (Figure 1). Unlike the WGD-based duplication of CHD3/4/5 in vertebrates, the origins
18 of the four Viridiplantae clades are less clear. They do not form a single monophyletic group, as would be
19 expected if they resulted from gene duplication in the last common ancestor of plants. Instead, the PKL
20 clade groups closest to animal CHDs, and PKR4 groups closest to fungi (Figure 1). To evaluate the
21 strength of these associations, we performed alternative topology tests. The maximum likelihood
22 phylogeny presented in Figure 1 was significantly better than alternative topologies that forced the plant
23 clades to be monophyletic (p-value < 1E-5 for all comparisons; Table S3). Horizontal gene transfer,
24 cryptic gene duplication and differential loss, convergent evolution, and methodological artifacts (e.g.,
25 long branch attraction) are all possible explanations for the lack of plant monophyly in subfamily II.

1 Additional sequenced genomes from the Viridiplantae sister lineages Rhodophyta and Glaucophyta could
2 help differentiate between these alternatives.

3 The PKL clade is present in all lineages of green plants (Table 2) and contains accessory domains
4 similar to animal subfamily II CHDs including an N-terminal PHD domain and three C-terminal domains
5 (DUF1087, DUF1086, and SLIDE) (Figure 2). Though functionally uncharacterized, DUF1086 contains a
6 region of sequence and structural similarity to the SANT domain in yeast CHD1, suggesting this domain
7 is involved in chromatin interactions, in particular nucleosomal DNA, similar to subfamily I members
8 (Ho et al. 2013). The two *A. thaliana* sequences (*AtPKL* and *AtPKR2*) present in this clade have shared
9 synteny, which, in addition to the taxonomic distribution present in both PKL and PKR2 subclades,
10 indicates that they are ohnologs resulting from WGD at the base of the Brassicaceae family (Bowers et al.
11 2003). Similar to the pattern observed between the dMi-2 and dCHD3 clades in *Drosophila*, the
12 Brassicaceae PKR2 sub clade was recovered in few species and is comprised of longer branches
13 compared to the Brassicaceae PKL sub clade (Figure S4B). PKL and PKR2 are both genetically linked to
14 homeostasis of the transcriptionally repressive histone modification H3K27me3 (Zhang et al. 2012; Jing
15 et al. 2013; Huang et al. 2017; Carter et al. 2018). However, *AtPKL* is expressed ubiquitously in *A.*
16 *thaliana* whereas expression of *AtPKR2* is restricted to the seed endosperm (Carter et al. 2016).

17 The PKR1 clade is also present in all lineages of green plants (Table 2; Table S1) and shares the
18 same accessory domains as PKL, except for DUF1086, which is absent. Given that DUF1086 shares
19 sequence similarity to the SANT domain of CHD1 (Ho et al. 2013), which in conjunction with the SLIDE
20 domain comprises the DNA-binding domain of CHD1 (Ryan et al. 2011; Sharma et al. 2011), the absence
21 of DUF1086 may imply a substantial alteration of the DNA interaction surface in PKR1 compared to
22 PKL. Additionally, a stretch of ~300 amino acids separate the PHD and Chromo domains in PKR1
23 (Figure 1; Figure 2). An IUPred3 scan of PKR1 homologs suggests that these extra inter-domain regions
24 of PKR1 homologs are composed primarily of disordered sequence rather than structural domains (Figure
25 S6). Although intrinsically disordered sequence lack predictable structure, interactions with other proteins
26 or cofactors may lead to the formation of secondary structure that influences protein function (Tompa

1 2002). Alternatively, the unstructured region may provide a flexible linker to extend the distance between
2 PHD and chromodomain targets/binding or regulatory site(s) for moderating function. Previous
3 characterization of intrinsically disordered regions is consistent with the possibility that these regions of
4 PKR1 serve as entropic linkers between different domains of these CHD remodelers (Wright and Dyson
5 2015; Berlow et al. 2018; Li et al. 2018; Huang et al. 2020). The pervasive presence of these regions in
6 PKR1 also raises the prospect that remodelers act as signal integration hubs and/or mediate scaffolding of
7 higher order chromatin-based structures.

8 Previous analyses have had difficulty placing the *OsPKR4* CHD homolog in *O. sativa* in the
9 evolutionary context of other CHD sequences (synonyms *OsCHR703*, Os01g65850; see Table S4
10 regarding varying nomenclature for rice CHD remodelers). One phylogenetic analysis of *O. sativa* and *A. thaliana* homologs showed *OsPKR4* grouping sister to all other plant CHDs (Hu et al. 2013). A follow up
12 analysis with additional sequences from *Sa. cerevisiae*, *D. melanogaster*, and humans had *OsPKR4*
13 grouping sister to animal subfamily III homologs, albeit with weak bootstrap support (Hu et al. 2014). In
14 our analysis, *OsPKR4* is located within a distinct Viridiplantae clade of subfamily II homologs, which we
15 refer to as PKR4 (PICKLE related 4; Figure 1; Figure S4A). The PKR4 clade is present in diverse
16 Viridiplantae from green algae (e.g. *Micromonas pusilla*) to flowering plants including *Amborella*
17 *trichopoda* and *O. sativa* (Figure S4A; Table S1). However, PKR4 is noticeably absent in eudicots
18 (including *A. thaliana*) and ferns (Table 2; Table S1), suggesting that the PKR4 gene was secondarily lost
19 in those lineages. The accessory domains of PKR4 are similar to PKL and PKR1, having an N-terminal
20 PHD domain and C-terminal DUF1087 domain (Figure 2; Figure S4A). An analysis of transcript levels of
21 ATP-dependent chromatin remodelers in rice (Hu et al. 2013) revealed that *OsPKR4* exhibits an
22 expression profile that is distinct from *OsPKL*, with tissue-specific expression highest in the endosperm
23 (Figure S7). In an interesting convergence of tissue-specific expression, PKR2 in *A. thaliana* is also
24 expressed highest in seed unlike other CHD homologs (Figure S8). Differing expression profiles between
25 the CHD different remodelers in plants is consistent with the possibility that PKR4 and PKR2 each play a
26 role that is distinct from that of PKL.

1

2 **MOM1 is a highly divergent subfamily II CHD protein**

3 The final plant clade within subfamily II is comprised of *MORPHEUS' MOLECULE*

4 (*MOM*) sequences, a gene family linked to DNA-methylation-independent transcriptional gene silencing

5 based on characterization of AtMOM1 in *A. thaliana* (Amedeo et al. 2000; Vaillant et al. 2006). Most

6 homologs in the MOM clade contain a N-terminal PHD domain, tandem chromodomains, and full-length

7 ATPase domain (Figure 2; Figure S4B), including those MOM homologs in rice (*OsMOM1*,

8 *Os06g01320*; *OsMOM2*, *Os02g02050*) and poplar (PtMOM1, eugene3.00130053; PtMOM2,

9 eugene3.00660276) as previously characterized (Čaikovski et al. 2008). However, the single *A. thaliana*

10 sequence (*AtMOM1*) present in this clade bears little resemblance to other CHDs, possessing only a

11 truncated portion of the ATPase binding domain and no canonical accessory domains (Figure 1). Loss or

12 divergence of the N-terminal region in MOM homologs has occurred independently in different plant

13 lineages including in Brassicales order that includes *A. thaliana* as well as the Phaseoleae tribe of legumes

14 (e.g. soybean) (Figure S4B).

15 Most MOM homologs contain on average 1037 amino acids of additional sequence downstream

16 of the conserved ATPase domain that lacks similarity to any of the known CHD accessory domains

17 (Figure 2; Figure S4B). An earlier analysis, compared the MOM homologs of four species of model

18 plants and noted the presence of conserved regions they termed conserved MOM motifs (CMMs) in this

19 downstream region (Čaikovski et al. 2008). We performed an IUPred3 scan of all MOM homologs in our

20 analysis to *de novo* identify CMMs that may correspond to uncharacterized structural domains in MOM

21 sequences and successfully recovered CMM1 and CMM2 as described by Čaikovski et al. (2008). CMM1

22 spans amino acids 951-1055 in *AtMOM1* (Figure 3A). This first conserved motif has an average length of

23 97 amino acids and was present in 304/323 (94%) of sequences in the MOM clade (Figure S9A; Table

24 S1) with an average amino acid pairwise identity of 47.9%. CMM2 spans 1773-1812 amino acids in

25 *AtMOM1* (Figure 3A). This second conserved motif has an average length of 37.2 amino acids and was

1 identified in 225/323 (70%) of sequences in the MOM clade (Figure S9A; Table S1) with an average
2 pairwise identity of 41.6%.

3 We queried the new custom CMM1 and CMM2 hidden Markov models (HMMs) against our
4 comprehensive protein database (see Methods) and identified 14 additional homologs from ferns,
5 lycophytes, and a single liverwort (*Pellia neesinia*) (Table S1), which were previously excluded from our
6 analysis due to low sequence similarity to known CHD domains. Therefore, we constructed a revised
7 phylogeny for PKR1 and MOM homologs that included these additional 14 sequences (Figure S9A). In
8 the revised analysis, MOM sequences (i.e., those CHDs containing at least CMM1) were nested within
9 the PKR1 clade (Figure S9B). Moreover, 10 of the new sequences had significant hits to the canonical
10 CHD accessory domain DUF1087 (Figure S9B). This suggests that MOM arose via duplication early in
11 the evolution of embryophytes from a PKR1-like progenitor, and that loss of the canonical C-terminal
12 CHD accessory domains and gain of the MOM-specific CMM1/2 domains was a stepwise process.
13 However, it is important to note that most CHD sequences from non-seed plants comes from the oneKP
14 transcriptome sequencing initiative (Leebens-Mack et al. 2019). These predicted proteomes from *de novo*
15 transcriptome assemblies are less complete than those from genome assemblies, and discrete loci may be
16 fragmented or collapsed. Additional whole genome sequencing of non-seed plants is required to fully
17 resolve the evolutionary history of MOM.

18
19 **Subfamily III: evolution of novel accessory domains in animals**
20 The majority (82%) of subfamily III sequences are from metazoans due to extensive gene family
21 expansion in vertebrates. As in subfamilies I and II, duplications that gave rise to vertebrate CHD6/7/8/9
22 can be traced back to WGD in their common ancestor (Figure S10; maximum weighted q-score for all
23 *HsCHD6/7/8/9* gene pairs = 0.0052). In addition to vertebrates, subfamily III has expanded in
24 stramenopiles and amoebozoans; most stramenopile and amoebozoan sequences are found in three
25 separate clades (Figure S11).

1 In contrast to the extensive expansion in animals, subfamily III is noticeably absent in model
2 plants and fungi (Figure 1). In plants, subfamily III is present in green algae, mosses, lycophytes, and
3 ferns (Table 1; Figure S11), indicating that the subfamily was lost in the ancestor of seed plants.
4 Similarly, subfamily III is present in some fungal lineages including Microsporidia, Chytridiomycota, and
5 Mucoromycotina (Table 1; Figure S11), which suggests the subfamily was independently lost in the
6 ancestor of Dikarya (the largest subkingdom of fungi).

7 The accessory domain architecture of subfamily III is more variable compared to the other two
8 subfamilies. Most subfamily III homologs contain a SLIDE and one or more BRK domains (Figure 2).
9 DUF1086 was recovered in only 20% (498/2262) of homologs (Table S1). However, there were several
10 vertebrate clades (e.g., CHD6/8 in fish, CHD7/9 in mammals) where DUF1086 is more common (Figure
11 2; Figure S10).

12 Subfamily III homologs in animals are notable for long stretches of sequence outside of the
13 canonical structural domains (Figure 1), which could correspond to inherently disordered regions (e.g., as
14 in PKR1 in plants) or could contain novel subfamily specific structural domains (e.g., as in MOM). We
15 performed an IUPred3 scan of subfamily III and identified six predicted globular domains, which we refer
16 to as SF3Ms for subfamily III motifs (Figure 3). SF3M1 has an average length of 133 amino acids and is
17 present in 1774/1859 (95.4%) of metazoan subfamily III homologs (Table S1). SF3M1 frequently
18 overlaps with known BRK domains, but not always. For example, the PFAM-based BRK domain was not
19 recovered in mammal CHD6s; yet, SF3M1 is present (Figure 3; Figure S9; Figure S12). This suggests
20 that the BRK domain, as characterized by PFAM domain PF07533, is likely too conservative to recover
21 the full diversity of BRK-like sequences in subfamily III. Interestingly, sequence similarity to SF3M1 is
22 also found in the related SWI/SNF transcription factor family proteins (Table S5).

23 The remaining SF3Ms do not overlap with canonical accessory domain predictions and represent
24 new regions of interest for further investigation. SF3M2 has an average length of 73 amino acids and is
25 also present in the majority of subfamily III (present in 1789/1859 (96.2%) of metazoan sequences; Table
26 S1). SF3M3 is 38 amino acids on average and present at the N-terminus of 970/1076=90% of vertebrate

1 CHD7/8/9s (Figure 3; Table S1). Vertebrate CHD6 contains a shorter N-terminal region upstream of the
2 helicase core suggesting the last common ancestor of this clade secondarily lost SF3M3 (Figure S12). The
3 last three motifs SF3M4, SF3M5, and SF3M5 are unique to specific clades within subfamily III (Figure 3;
4 Figure S12; Table S1). SF3M4 has an average length of 103 amino acids and is unique to mammal
5 CHD6. SF3M5 has an average length of 77 amino acids and is present in the N-terminal region of
6 vertebrate CHD8. Lastly, SF3M6 is 77 amino acids on average and is unique to arthropods.

7 We checked if any of the newly predicted SF3Ms contained mutations associated with human
8 diseases. Human CHD7 was the only subfamily III homolog with significant single nucleotide variants
9 (SNVs) resulting in nonsynonymous substitutions. CHD7 SNVs were associated with CHARGE
10 syndrome and Hypogonadotropic Hypogonadism 5 with or without anosmia (HH5). The majority of these
11 mutations were located in two hotspots located within the two SLIDE domains (Figure S13). Some
12 disease associated SNVs overlapped with the newly predicted SF3M1/2/3, although the impact of these
13 mutations on protein function is unclear.

14

15 **DISCUSSION**

16 Several evolutionary mechanisms contribute to the retention of gene duplicates including dosage
17 sensitivity (Edger and Chris Pires 2009), subfunctionalization (Hughes 1994; Force et al. 1999), and
18 neofunctionalization (Lewis 1951; Ohno 1970); all three mechanisms appear to have played a role in the
19 evolution of CHDs. Gene dosage is particularly important to the evolution of protein complexes as
20 imbalanced levels of gene product (i.e. proteins) may be detrimental to the formation of the complex.
21 Following whole genome duplications, proteins that function in macromolecular complexes tend to be
22 over-retained in duplicate, because the dosage of all genes in the complex are equivalently and
23 simultaneously increased (Edger and Pires 2009). It is thus tempting to speculate that dosage sensitivity
24 may have been the primary driver behind the expansion of CHDs in vertebrates following WGD as these
25 proteins are frequently components of multiprotein remodeler complexes. However, subfunctionalization
26 has also likely played a role in the retention of multiple vertebrate CHD paralogs. For example, human

1 subfamily II paralogs, which are known to be components of the Mi-2/NuRD complex, have also evolved
2 different tissue specificity, with *HsCHD3/4* expressed in all tissues and *HsCHD5* expressed more
3 exclusively in the brain, pituitary gland, and testis (Alendar and Berns 2021) (Figure S14). In addition,
4 the evolution of novel protein motifs in subfamily III (Figure 3; Figure S12; Table S1) is suggestive of
5 neofunctionalization, although further analysis of these domains is necessary to determine their specific
6 role.

7 In contrast to the biased retention of dosage-sensitive protein duplicates following WGD, proteins
8 with less connectivity or dosage-sensitivity are more often retained following smaller scale tandem or
9 segmental duplications (Edger and Pires 2009). The duplication that gave rise to dMi-2 and dCHD3 in
10 *Drosophila*, which was not WGD-derived, fits this pattern; following the duplication, DmCHD3 evolved
11 to function as a monomer with presumably less dosage-sensitivity compared to DmMi-2 (Murawska et al.
12 2008). In plants, AtPKL also primarily exists as a monomer (Ho et al. 2013) in distinct contrast to the
13 animal members of subfamily II such as CHD3/4/5 from vertebrates. With regards to the other plant
14 clades of subfamily II, gel filtration data indicates that AtMOM1 is part of a complex (Han et al. 2016),
15 and it is unknown if the proteins in the remaining plant clades, PKR1 and PKR4, function as a monomer
16 or as part of a complex. It is possible that plant CHD remodelers in subfamily II typically exist as
17 monomers, in contrast to their vertebrate homologs, thereby relaxing the evolutionary constraint of
18 dosage-sensitivity and enabling the numerous duplications and expansion of plant CHD homologs in
19 subfamily II.

20 The MOM1 clade is notably divergent from other subfamily II clades, possessing two unique
21 structural domains not found in any other CHD homologs, suggesting neofunctionalization is involved in
22 its retention. Indeed, AtMOM1 has a distinct role compared to other CHD homologs in *A. thaliana*
23 (Čaikovski et al. 2008; Hu et al. 2014). However, it is important to remember that the Brassicales MOM
24 sequences, including those in *A. thaliana*, have diverged substantially from other plant MOMs with the
25 loss of additional N terminal accessory domains as well as the majority of the ATPase domain that drives
26 nucleosome remodeling activity (Figure S9), and therefore are not representative of the larger MOM

1 clade. Further investigation of the function of non-Brassicaceae MOM as well as PKR4 in monocots and
2 PKR1 in *A. thaliana* and other plants is necessary to resolve the complex evolutionary history of plant
3 subfamily II homologs.

4 In contrast to the numerous expansions of CHD subfamilies in animals and plants, some lineages
5 appear to have lost specific subfamily homologs entirely. Independent losses of subfamily III in dikarya
6 fungi and seed plants are the most notable, but the implications of these losses are unclear. In animals,
7 subfamily III homologs are present at promoters and enhancers (Schnetz et al. 2010; Payne et al. 2015;
8 Shen et al. 2015; de Dieuleveult et al. 2016) and/or interact with CTCF (Ishihara et al. 2006; Allen et al.
9 2007; Nguyen et al. 2008: 3) and contribute to a diverse array of processes in embryonic development
10 (Bosman et al. 2005; Hurd et al. 2007; Nishiyama et al. 2009; Gaspar-Maia et al. 2011). These molecular
11 phenotypes and developmental traits vary greatly or do not exist in fungi and plants, making it difficult to
12 infer the function of subfamily III CHDs in early fungi and plants. It is possible that the molecular
13 function(s) of these lost homologs has been compensated for through the expansion of another CHD
14 subfamily or different chromatin remodeling family during the evolution of dikarya fungi and seed plants.
15 Molecular characterization of additional CHD homologs from all three subfamilies in fungi and plants
16 could help to clarify the evolution of subfamily III and changes in remodeling activities and/or machinery
17 accompanying these loss events. Outside of plants and fungi, nine additional lineages of eukaryotes in our
18 analysis are also missing one or more CHD subfamilies (Table 1). However, we are cautious not to draw
19 conclusions regarding gene loss in these cases, because these lineages are underrepresented in the NCBI
20 Refseq and Taxonomy databases used in our analysis. Ongoing genome and transcriptome surveys of
21 under sampled taxa (Richter et al. 2018; Brunet et al. 2019; Gawryluk et al. 2019; Grau-Bové et al. 2021;
22 Van Vlierberghe et al. 2021) as well as advances in single-celled genome sequencing (Schön et al. 2021)
23 and efforts to resolve the evolutionary relationship between eukaryotic groups (Tice et al. 2021; Irisarri et
24 al. 2022) are enabling future investigations into the evolution and function of CHDs in these diverse
25 eukaryotic lineages.

1 Analysis of predicted structural domains and disordered regions provided additional support for
2 the role of neofunctionalization in evolution of CHD remodelers and emphasizes the potential for
3 disordered regions in enabling this process. Our analysis identified several regions of high disorder in
4 different clades of CHD remodelers (Figure 3; Figure S6). These regions were particularly striking in the
5 subfamily II PKR1 clade in plants, which maintains similar accessory domain architecture to the PKL
6 clade interspersed with long stretches of disordered sequence (Figure S6). Similar analysis of the plant
7 MOM clade in subfamily II and the animal clades in subfamily III revealed disordered regions that
8 surround small, previously unpredicted structural domains (Figure 3). The function of these novel
9 domains remains to be determined, but the sequence conservation suggests acquisition of shared
10 properties by the respective clades of CHD remodelers. Similarly, the conserved acquisition of disordered
11 regions in CHD remodelers has functional implications. Such regions may act as flexible linkers,
12 separating other domains by a specific distance for proper function of the remodeler and have the capacity
13 to enable allosteric regulation of multidomain proteins (Berlow et al. 2018; Armache et al. 2019; Huang et
14 al. 2020) and thereby enable recognition of the desired chromatin context by CHD proteins to enable
15 remodeling activity or specify a particular remodeling outcome. Another possible role suggested by the
16 presence of these domains, not necessarily exclusive, is that these remodelers play a scaffolding role in
17 generating higher order chromatin-associated complexes (Cortese et al. 2008; Uversky 2015; Cho et al.
18 2021). In this light, it is intriguing to note that loss of AtMOM1 results in a chromatin-associated
19 phenotype despite the absence of an intact ATPase domain (Čaikovski et al. 2008) (Figure S9).

20 CHD proteins play a foundational role in chromatin-based processes in eukaryotes and a better
21 understanding of their various roles is relevant to human health (Alendar and Berns 2021). Our
22 comprehensive phylogenetic analysis has revealed new sequence features of CHD remodelers that are
23 likely to contribute to our understanding of their function. In addition, our analysis highlights both the
24 advantages and potential perils of using model organisms as the basis for inferring the function of proteins
25 sharing a common ancestry. We observed that CHD evolution is highly dynamic and that the CHD
26 repertoires of commonly used model organisms are the result of lineage-specific changes that may make

1 it more challenging to infer the function and chromatin remodeling mechanisms of CHDs in other species.
2 For example, due to the extensive divergence in both the accessory and core domain architecture of
3 MOMs in the Brassicaceae, the functional characterization of AtMOM1 in *A. thaliana* is likely not
4 representative of MOM function across seed plants. Similarly, PKR4 from subfamily II has been lost in
5 eudicots, and its absence in *A. thaliana* precludes the characterization of this novel clade in this model
6 system and further highlights the opportunities associated with studying chromatin-associated processes
7 in additional model systems. Similarly, the full diversity of remodelers in subfamily III has likely been
8 underappreciated due to its absence in model plants and fungi. In short, our study identifies new contexts
9 for functional characterization of these architects of genome-based traits and expand our awareness of the
10 functional potential associated with their modular structure. Broadening the organismal scope for
11 functional characterization of these remodelers will greatly advance our knowledge of their properties and
12 the chromatin-based processes in which they participate.

13

14 MATERIALS AND METHODS

15 Identification of CHD homologs

16 The *A. thaliana* CHD homolog PKL (AT2G25170) was queried against a custom protein database using
17 phmmmer, part of the HMMER v3.3.1 software package (Eddy 2009), with the following parameters: -E
18 0.001 --domE 1 --incE 0.01 --incdomE 0.03 --mx BLOSUM62 --pextend 0.4 --popen 0.02. The custom
19 database primarily consisted of NCBI RefSeq (release 98) (O’Leary et al. 2016) and was supplemented
20 with additional predicted protein sequences from the Marine Microbial Eukaryotic Transcriptome
21 Sequencing Project (MMETSP) (Keeling et al. 2014) and the 1000 Plants transcriptome sequencing
22 project (OneKP) (Matasci et al. 2014). This initial search returned 97,035 sequences (Table S6), which
23 were queried against the two PFAM domains (SNF2_N, PF00176; Helicase_C, PF00271) corresponding
24 to the conserved ATPase domain of chromatin remodelers using hmmsearch v3.3.1 (Eddy 2009) with
25 default parameters. Sequences with one or more ATPase domains were retained, and the conserved
26 sequence region was extracted. Sequences were aligned using MAFFT version v7.407 using --auto to

1 select the best alignment strategy (Katoh and Standley 2013). FastTree v2.1.7 using default methods was
2 used to construct an approximately maximum-likelihood phylogenetic tree (Price et al. 2010). The tree
3 was midpoint rooted and the subtree containing known CHD homologs was retained.

4 Preliminary analysis of CHD homologs revealed that some sequences (e.g., XP_015643423 from
5 *Oryza sativa*) had a top hit in *A. thaliana* to *AtMOM1*. However, *AtMOM1* itself had been excluded
6 earlier because it did not have a significant hit to either ATPase PFAM domains. Further investigation
7 indicated that *AtMOM1* has homologous sequence corresponding to the ATPase domains of CHDs but
8 that the *MOM1* sequence was too divergent to be detected using the PFAM ATPase domains. Therefore,
9 full-length sequences with a significant hit to *AtMOM1* (phmmmer full sequence bitscore > 50) but lacking
10 a significant hit to ATPase PFAM domains were added back into the analysis at this stage.

11 We performed a second round of tree building on this reduced sequence set using MAFFT and
12 FastTree as described above. The second tree was midpoint rooted and sequences within the clade
13 containing known CHD sequences were considered CHD homologs and retained for downstream
14 analysis.

15

16 **Protein domain annotation**

17 Conserved protein domains were identified in CHD homologs using an iterative process. First, the PFAM
18 web portal was used to annotate PFAM domains present in model CHD homologs from *A. thaliana*, *O.*
19 *sativa*, *H. sapiens*, *C. elegans*, *D. melanogaster*, *Sa. cerevisiae*, and *Sc. pombe* (see Table S1), which
20 identified the following domains of interest: Chromodomain (PF00385), SNF2_N (PF00176), Helicase_C
21 (PF00271), PHD (PF00628), CHDNT (PF08073), MIT1 (PF18585), DUF1086 (PF06461), DUF1087
22 (PF06465), DUF4208 (PF13907), SANT (PF18375), SLIDE (PF09111), HAND (PF09110), and BRK
23 (PF07533). Second, the representative proteome (rp15) for each PFAM domain was downloaded and
24 queried against CHD homologs using hmmsearch v3.3.1 (Eddy 2009). Third, sequence regions in all
25 CHD homologs corresponding to these PFAM domains (E-value cutoff 1e-5) were aligned using MAFFT
26 (--auto) to construct custom, CHD-specific HMM protein domains using hmmbuild v3.3.1 (Eddy 2009).

1 Last, all CHD homologs were annotated with the custom CHD HMM domains using hmmsearch (E-value
2 cutoff 1e-5) (Table S1).

3 IUPred structural domain predictions for all CHD homologs was performed with the command
4 line version of IUPred3 using the glob analysis type and default parameters (Erdős et al. 2021). Regions
5 corresponding to globular (i.e. structural) domains were extracted using a custom python script. Similar
6 IUPred-predicted globular domains were identified using an all-by-all blastp search (BLAST v2.11.0+)
7 and clustered into homologous groups with MCL v14-137 using an inflation parameter of 1.4 (Enright et
8 al. 2002). Clustered domain sequences were aligned with MAFFT version v7.407 using the E-INS-i
9 alignment strategy (Katoh and Standley 2013). Poorly aligned sequences were identified manually, and
10 the alignment was repeated. The second alignment was trimmed with TrimAL v1.4.rev15 using the
11 gappyout and terminalonly options (Capella-Gutierrez et al. 2009). Lastly, custom HMMs were
12 constructed from the trimmed alignments and HMMs were searched against the custom protein database
13 (see above) using hmmbuild and hmmsearch v3.3.1 (Eddy 2009). All CHD homologs were annotated
14 with the IUPred HMM domains using an E-value cutoff of 1e-5 (Table S1).

15 **Phylogenetic analysis**

16 To construct robust phylogenies of CHD homologs, protein sequences corresponding to the custom
17 chromo, ATPase N-terminus, and ATPase C-terminus domains were trimmed to +/- 20 residues around
18 the conserved region. For the full CHD phylogeny, vertebrate sequences from the ALC sister family (Hu
19 et al. 2013) were included as an outgroup. Trimmed sequences were aligned with MAFFT version v7.407
20 using the following parameters --bl 30 --maxiterate 0 --6merpair (Katoh and Standley 2013). FastTree
21 v2.1.7 using default methods was used to construct an approximately maximum-likelihood phylogenetic
22 tree (Price et al. 2010). Potentially spurious homologs (n=132) on long terminal branches or those that
23 grouped outside of the taxon's established lineage (i.e., suspected contamination) were identified
24 manually and removed from the analysis (See Table S1). The alignment and tree building were repeated
25 as described above until no more long terminal branches remained.

1 Due to the large number of sequences in the full CHD sequence set, we also created pruned CHD
2 phylogenies containing a reduced taxa set. To select taxa for the pruned CHD sequence set, the species
3 phylogeny of all CHD-containing organisms was extracted from the NCBI taxonomy database using
4 phyloT (<https://phylot.biobyte.de/>) (Figure S15A). A subset of 302 species were selected to maximize
5 taxonomic diversity while reducing polytomies (Figure S15C). All CHD homologs within these 302
6 species (2,179 sequences) were extracted and aligned with MAFFT version v7.407 using the following
7 parameters: --bl 30 --maxiterate 0 --6merpair (Katoh and Standley 2013). A maximum-likelihood (ML)
8 phylogenetic tree was constructed using IQ-TREE v1.6.10 (Nguyen et al. 2015) using the built in
9 ModelFinder (Kalyaanamoorthy et al. 2017) to determine the best-fit amino acid substitution model and
10 performing SH-aLRT and ultrafast bootstrapping analyses with 1000 replicates each.

11 For both the full and pruned CHD sequence sets, clades corresponding to the three subfamilies
12 were extracted and aligned separately with MAFFT version v7.407 using the following parameters: --bl
13 30 --maxiterate 1000 --retree 1 --genafpair. ML trees for each subfamily were constructed using IQ-TREE
14 v1.6.10 (Nguyen et al. 2015) using the built in ModelFinder (Kalyaanamoorthy et al. 2017) to determine
15 the best-fit amino acid substitution model and performing SH-aLRT and ultrafast bootstrapping analyses
16 with 1000 replicates each. Trees were visualized using iTOL v5.7 (Letunic and Bork 2019).

17 Tests of positive selection among Diptera subfamily II homologs were evaluated using codeml
18 within the PAML v4.9 software suite (Yang 2007). Rates of evolution were defined by omega (ω), which
19 is the rate ratio of synonymous (dS) and non-synonymous substitutions (dN). Three models were
20 evaluated. Model 0 determined a global ω across the whole tree (e.g. Figure S5B). The Branch-Sites Test,
21 Model 2 with NS_sites = 2, was performed with ω estimated or fixed at 1, representing the alternative
22 (L1) and null (L0) hypotheses, respectively. Positive selection along the dMi-2 or dCHD3 branch was
23 inferred by calculating the Likelihood Ratio Test (LRT=2(lnL1-lnL0)) for each branch and using χ^2
24 distribution to determine the significance thresholds for the given degrees of freedom. Initial ω values of
25 0.2, 0.4, 0.6, 0.8, 1, 1.2, 1.4, 1.6, 1.8, and 5 were used to evaluate the effect on likelihood calculations, but
26 results were identical regardless of initial value.

1 IQ-TREE v1.6.10 (Nguyen et al. 2015) was used to perform topology tests on subfamily II
2 homologs, specifically the topology/relationship among clades of plant homologs. Four alternative
3 topologies were evaluated, constraining different clades of plant homologs to be monophyletic: 1) All
4 plant subfamily II homologs, 2) PKL, PKR1, and MOM1, 3) PKR4, PKR1, and MOM1, and 4) PKR4
5 and PKL. RELL approximation (Kishino et al. 1990) was used to determine if any of the constrained trees
6 were significantly worse than the unconstrained tree and could be rejected (Table S3).

7 **Ortholog detection**

8 To determine if human CHD paralogs were derived from WGD, we used the OHNOLOGS v2 database
9 (Singh and Isambert 2020). For all other species, regions of synteny were first detected using SynMap2
10 on the online Comparative Genomics Platform (CoGe; <https://genomevolution.org/coge/>) using the CoGe
11 recommended genome for each species. SynMap2 default settings were used with the exception that the
12 merge syntenic blocks algorithm was set to Quota Align Merge and the syntenic depth algorithm was set
13 to Quota Align. CHD paralogs of interest were checked to see if they resided within syntenic blocks.

14 **Data Availability**

15 All sequence alignments, tree files, and custom PFAM and IUPRED-based domain hmms are available
16 through FigShare (<https://doi.org/10.6084/m9.figshare.19350698.v1>). Scripts are available through
17 GitHub (https://github.com/JenWisecaver/CHD_evolution). iTOL phylogenies can be viewed online at:
18 <https://itol.embl.de/shared/WisecaverLab>. The custom protein database used in this analysis is available
19 from the authors as well as through the following link:
20 <https://www.datadepot.rcac.purdue.edu/jwisecav/custom-refseq/2020-02-15/>.

21 **Acknowledgments**

22 We thank members of the Wisecaver lab for helpful discussions. This work was conducted in part using
23 the resources of the Rosen Center for Advanced Computing at Purdue University. This work was
24 supported by the National Science Foundation (<http://www.nsf.gov>) under grants IOS-1401682 to JTT,
25 MCB-1951698 to JO, and DEB-1831493 to JHW. The authors gratefully acknowledge the Walther
26 Cancer Foundation and support from the Purdue University Center for Cancer Research, P30CA023168.

1 **REFERENCES**

2 Abi-Rached L, Gilles A, Shiina T, Pontarotti P, Inoko H. 2002. Evidence of en bloc duplication in
3 vertebrate genomes. *Nat. Genet.* 31:100–105.

4 Alendar A, Berns A. 2021. Sentinels of chromatin: chromodomain helicase DNA-binding proteins in
5 development and disease. *Genes Dev.* 35:1403–1430.

6 Allen MD, Religa TL, Freund SMV, Bycroft M. 2007. Solution structure of the BRK domains from
7 CHD7. *J Mol Biol* 371:1135–1140.

8 Amedeo P, Habu Y, Afsar K, Mittelsten Scheid O, Paszkowski J. 2000. Disruption of the plant gene
9 MOM releases transcriptional silencing of methylated genes. *Nature* 405:203–206.

10 Armache JP, Gamarra N, Johnson SL, Leonard JD, Wu S, Narlikar GJ, Cheng Y. 2019. Cryo-EM
11 structures of remodeler-nucleosome intermediates suggest allosteric control through the
12 nucleosome. *eLife* 8:e46057.

13 Berlow RB, Dyson HJ, Wright PE. 2018. Expanding the paradigm: intrinsically disordered proteins and
14 allosteric regulation. *Journal of Molecular Biology* 430:2309–2320.

15 Bosman EA, Penn AC, Ambrose JC, Kettleborough R, Stemple DL, Steel KP. 2005. Multiple mutations
16 in mouse Chd7 provide models for CHARGE syndrome. *Hum Mol Genet* 14:3463–3476.

17 Bowers JE, Chapman BA, Rong J, Paterson AH. 2003. Unravelling angiosperm genome evolution by
18 phylogenetic analysis of chromosomal duplication events. *Nature* 422:433–438.

19 Brunet T, Larson BT, Linden TA, Vermeij MJA, McDonald K, King N. 2019. Light-regulated collective
20 contractility in a multicellular choanoflagellate. *Science* 366:326–334.

21 Čaikovski M, Yokthongwattana C, Habu Y, Nishimura T, Mathieu O, Paszkowski J. 2008. Divergent
22 evolution of CHD3 proteins resulted in MOM1 refining epigenetic control in vascular plants.
23 *PLOS Genetics* 4:e1000165.

24 Capella-Gutierrez S, Silla-Martinez JM, Gabaldon T. 2009. trimAl: a tool for automated alignment
25 trimming in large-scale phylogenetic analyses. *Bioinformatics* 25:1972–1973.

26 Carter B, Bishop B, Ho KK, Huang R, Jia W, Zhang H, Pascuzzi PE, Deal RB, Ogas J. 2018. The
27 chromatin remodelers PKL and PIE1 act in an epigenetic pathway that determines H3K27me3
28 homeostasis in *Arabidopsis*. *Plant Cell* 30:1337–1352.

29 Carter B, Henderson JT, Svedin E, Fiers M, McCarthy K, Smith A, Guo C, Bishop B, Zhang H, Riksen T,
30 et al. 2016. Cross-talk between sporophyte and gametophyte generations is promoted by CHD3
31 chromatin remodelers in *Arabidopsis thaliana*. *Genetics* 203:817–829.

32 Cho B, Choi J, Kim R, Yun JN, Choi Y, Lee HH, Koh J. 2021. Thermodynamic models for assembly of
33 intrinsically disordered protein hubs with multiple interaction partners. *J. Am. Chem. Soc.*
34 143:12509–12523.

35 Clapier CR, Cairns BR. 2009. The biology of chromatin remodeling complexes. *Annu. Rev. Biochem.*
36 78:273–304.

1 Clapier CR, Iwasa J, Cairns BR, Peterson CL. 2017. Mechanisms of action and regulation of ATP-
2 dependent chromatin-remodelling complexes. *Nat. Rev. Mol. Cell Biol.* 18:407–422.

3 Cortese MS, Uversky VN, Dunker AK. 2008. Intrinsic disorder in scaffold proteins: getting more from
4 less. *Prog Biophys Mol Biol* 98:85–106.

5 Dehal P, Boore JL. 2005. Two rounds of whole genome duplication in the ancestral vertebrate. *PLoS*
6 *Biology* 3:e314.

7 Derelle R, Torruella G, Klimeš V, Brinkmann H, Kim E, Vlček Č, Lang BF, Eliáš M. 2015. Bacterial
8 proteins pinpoint a single eukaryotic root. *Proc Natl Acad Sci U S A* 112:E693-699.

9 de Dieuleveult M, Yen K, Hmitou I, Depaux A, Boussouar F, Dargham DB, Jounier S, Humbertclaude H,
10 Ribierre F, Baulard C, et al. 2016. Genome-wide nucleosome specificity and function of
11 chromatin remodelers in ES cells. *Nature* 530:113–116.

12 Eddy SR. 2009. A new generation of homology search tools based on probabilistic inference. *Genome*
13 *Inform.* 23:205–211.

14 Edger PP, Chris Pires J. 2009. Gene and genome duplications: the impact of dosage-sensitivity on the fate of
15 nuclear genes. *Chromosome Research* 17:699–717.

16 Edger PP, Pires JC. 2009. Gene and genome duplications: The impact of dosage-sensitivity on the fate of
17 nuclear genes. *Chromosome Research* 17:699–717.

18 Egan CM, Nyman U, Skotte J, Streubel G, Turner S, O'Connell DJ, Rraklli V, Dolan MJ, Chadderton N,
19 Hansen K, et al. 2013. CHD5 is required for neurogenesis and has a dual role in facilitating gene
20 expression and polycomb gene repression. *Dev. Cell* 26:223–236.

21 Enright AJ, Van Dongen S, Ouzounis CA. 2002. An efficient algorithm for large-scale detection of
22 protein families. *Nucleic Acids Res* 30:1575–1584.

23 Erdős G, Pajkos M, Dosztányi Z. 2021. IUPred3: prediction of protein disorder enhanced with
24 unambiguous experimental annotation and visualization of evolutionary conservation. *Nucleic*
25 *Acids Research* 49:W297–W303.

26 Fei J, Torigoe SE, Brown CR, Khuong MT, Kassavetis GA, Boeger H, Kadonaga JT. 2015. The
27 prenucleosome, a stable conformational isomer of the nucleosome. *Genes Dev* 29:2563–2575.

28 Flaus A, Martin DMA, Barton GJ, Owen-Hughes T. 2006. Identification of multiple distinct Snf2
29 subfamilies with conserved structural motifs. *Nucleic Acids Res.* 34:2887–2905.

30 Force A, Lynch M, Pickett FB, Amores A, Yan YL, Postlethwait J. 1999. Preservation of duplicate genes
31 by complementary, degenerative mutations. *Genetics* 151:1531–1545.

32 Gaspar-Maia A, Alajem A, Meshorer E, Ramalho-Santos M. 2011. Open chromatin in pluripotency and
33 reprogramming. *Nat Rev Mol Cell Biol* 12:36–47.

34 Gawryluk RMR, Tikhonenkov DV, Hehenberger E, Husnik F, Mylnikov AP, Keeling PJ. 2019. Non-
35 photosynthetic predators are sister to red algae. *Nature* 572:240–243.

1 Gkikopoulos T, Schofield P, Singh V, Pinskaya M, Mellor J, Smolle M, Workman JL, Barton GJ, Owen-
2 Hughes T. 2011. A role for Snf2-related nucleosome-spacing enzymes in genome-wide
3 nucleosome organization. *Science* 333:1758–1760.

4 Grau-Bové X, Navarrete C, Chiva C, Pribasník T, Antó M, Torruella G, Galindo LJ, Lang BF, Moreira D,
5 López-García P, et al. 2021. Comparative proteogenomics deciphers the origin and evolution of
6 eukaryotic chromatin. :2021.11.30.470311. Available from:
7 <https://www.biorxiv.org/content/10.1101/2021.11.30.470311v1>

8 Han Y-F, Zhao Q-Y, Dang L-L, Luo Y-X, Chen S-S, Shao C-R, Huang H-W, Li Y-Q, Li L, Cai T, et al.
9 2016. The SUMO E3 ligase-like proteins PIAL1 and PIAL2 interact with MOM1 and form a
10 novel complex required for transcriptional silencing. *Plant Cell* 28:1215–1229.

11 Hauk G, McKnight JN, Nodelman IM, Bowman GD. 2010. The chromodomains of the Chd1 chromatin
12 remodeler regulate DNA access to the ATPase motor. *Mol. Cell* 39:711–723.

13 Hennig BP, Bendrin K, Zhou Y, Fischer T. 2012. Chd1 chromatin remodelers maintain nucleosome
14 organization and repress cryptic transcription. *EMBO Rep.* 13:997–1003.

15 Ho KK, Zhang H, Golden BL, Ogas J. 2013. PICKLE is a CHD subfamily II ATP-dependent chromatin
16 remodeling factor. *Biochim. Biophys. Acta* 1829:199–210.

17 Ho L, Crabtree GR. 2010. Chromatin remodelling during development.

18 Hu Y, Lai Y, Zhu D. 2014. Transcription regulation by CHD proteins to control plant development.
19 *Frontiers in Plant Science* 5:223.

20 Hu Y, Zhu N, Wang X, Yi Q, Zhu D, Lai Y, Zhao Y. 2013. Analysis of rice Snf2 family proteins and
21 their potential roles in epigenetic regulation. *Plant Physiol Biochem* 70:33–42.

22 Huang F, Zhu Q, Zhu A, Wu Xiaoba, Xie L, Wu Xianjun, Helliwell C, Chaudhury A, Finnegan EJ, Luo
23 M. 2017. Mutants in the imprinted PICKLE RELATED 2 gene suppress seed abortion of
24 fertilization independent seed class mutants and paternal excess interploidy crosses in
25 *Arabidopsis*. *The Plant Journal* 90:383–395.

26 Huang Q, Li M, Lai L, Liu Z. 2020. Allostery of multidomain proteins with disordered linkers. *Current
27 Opinion in Structural Biology* 62:175–182.

28 Hughes AL. 1994. The evolution of functionally novel proteins after gene duplication. *Proceedings of the
29 Royal Society of London. Series B: Biological Sciences* 256:119–124.

30 Hurd EA, Capers PL, Blauwkamp MN, Adams ME, Raphael Y, Poucher HK, Martin DM. 2007. Loss of
31 Chd7 function in gene-trapped reporter mice is embryonic lethal and associated with severe
32 defects in multiple developing tissues. *Mamm Genome* 18:94–104.

33 Irisarri I, Strassert JFH, Burki F. 2022. Phylogenomic Insights into the Origin of Primary Plastids.
34 *Systematic Biology* 71:105–120.

35 Ishihara K, Oshimura M, Nakao M. 2006. CTCF-dependent chromatin insulator is linked to epigenetic
36 remodeling. *Mol Cell* 23:733–742.

1 Jae Yoo E, Kyu Jang Y, Ae Lee M, Bjerling P, Bum Kim J, Ekwall K, Hyun Seong R, Dai Park S. 2002.
2 Hrp3, a chromodomain helicase/ATPase DNA binding protein, is required for heterochromatin
3 silencing in fission yeast. *Biochem. Biophys. Res. Commun.* 295:970–974.

4 Jin YH, Yoo EJ, Jang YK, Kim SH, Kim MJ, Shim YS, Lee JS, Choi IS, Seong RH, Hong SH, et al.
5 1998. Isolation and characterization of *hrp1+*, a new member of the SNF2/SWI2 gene family
6 from the fission yeast *Schizosaccharomyces pombe*. *Molecular genetics and genomics* 257:319–
7 329.

8 Jing Y, Zhang D, Wang X, Tang W, Wang W, Huai J, Xu G, Chen D, Li Y, Lin R. 2013. Arabidopsis
9 chromatin remodeling factor PICKLE interacts with transcription factor HY5 to regulate
10 hypocotyl cell elongation. *Plant Cell* 25:242–256.

11 Job G, Brugger C, Xu T, Lowe BR, Pfister Y, Qu C, Shanker S, Baños Sanz JI, Partridge JF, Schalch T.
12 2016. SHREC silences heterochromatin via distinct remodeling and deacetylation modules. *Mol.*
13 *Cell* 62:207–221.

14 Kalyaanamoorthy S, Minh BQ, Wong TKF, Von Haeseler A, Jermiin LS. 2017. ModelFinder: Fast model
15 selection for accurate phylogenetic estimates. *Nature Methods*.

16 Katoh K, Standley DM. 2013. MAFFT multiple sequence alignment software version 7: Improvements in
17 performance and usability. *Molecular Biology and Evolution* 30:772–780.

18 Keeling PJ, Burki F, Wilcox HM, Allam B, Allen EE, Amaral-Zettler LA, Armbrust EV, Archibald JM,
19 Bharti AK, Bell CJ, et al. 2014. The Marine Microbial Eukaryote Transcriptome Sequencing
20 Project (MMETSP): illuminating the functional diversity of eukaryotic life in the oceans through
21 transcriptome sequencing. *PLoS Biol.* 12:e1001889.

22 Kolla V, Zhuang T, Higashi M, Naraparaju K, Brodeur GM. 2014. Role of CHD5 in human cancers: 10
23 years later. *Cancer Res.* 74:652–658.

24 Konev AY, Tribus M, Park SY, Podhraski V, Lim CY, Emelyanov AV, Vershilova E, Pirrotta V,
25 Kadonaga JT, Lusser A, et al. 2007. CHD1 motor protein is required for deposition of histone
26 variant H3.3 into chromatin in vivo. *Science* 317:1087–1090.

27 Koster MJE, Snel B, Timmers HTM. 2015. Genesis of chromatin and transcription dynamics in the origin
28 of species. *Cell* 161:724–736.

29 Kunert N, Brehm A. 2009. Novel Mi-2 related ATP-dependent chromatin remodelers. *Epigenetics* 4:209–
30 211.

31 Letunic I, Bork P. 2019. Interactive Tree Of Life (iTOL) v4: recent updates and new developments.
32 *Nucleic Acids Res.* 47:W256–W259.

33 Lewis E. 1951. Pseudoallelism and gene evolution. *Cold Spring Harbor Symposia on Quantitative*
34 *Biology*:159–174.

35 Li M, Cao H, Lai L, Liu Z. 2018. Disordered linkers in multidomain allosteric proteins: Entropic effect to
36 favor the open state or enhanced local concentration to favor the closed state? *Protein Sci*
37 27:1600–1610.

1 Liu C, Kang N, Guo Y, Gong P. 2021. Advances in Chromodomain Helicase DNA-Binding (CHD)
2 Proteins Regulating Stem Cell Differentiation and Human Diseases. *Front Cell Dev Biol*
3 9:710203.

4 Lusser A, Urwin DL, Kadonaga JT. 2005. Distinct activities of CHD1 and ACF in ATP-dependent
5 chromatin assembly. *Nat. Struct. Mol. Biol.* 12:160–166.

6 Mansfield RE, Musselman CA, Kwan AH, Oliver SS, Garske AL, Davrazou F, Denu JM, Kutateladze
7 TG, Mackay JP. 2011. Plant homeodomain (PHD) fingers of CHD4 are histone H3-binding
8 modules with preference for unmodified H3K4 and methylated H3K9. *J. Biol. Chem.* 286:11779–
9 11791.

10 Marfella CGA, Imbalzano AN. 2007. The Chd family of chromatin remodelers. *Mutat Res* 618:30–40.

11 Marfella CGA, Ohkawa Y, Coles AH, Garlick DS, Jones SN, Imbalzano AN. 2006. Mutation of the
12 SNF2 family member Chd2 affects mouse development and survival. *J. Cell. Physiol.* 209:162–
13 171.

14 Matasci N, Hung LH, Yan Z, Carpenter EJ, Wickett NJ, Mirarab S, Nguyen N, Warnow T,
15 Ayyampalayam S, Barker M, et al. 2014. Data access for the 1,000 Plants (1KP) project.
16 *GigaScience* 3:1–10.

17 Murawska M, Kunert N, van Vugt J, Längst G, Kremmer E, Logie C, Brehm A. 2008. dCHD3, a novel
18 ATP-dependent chromatin remodeler associated with sites of active transcription. *Mol Cell Biol*
19 28:2745–2757.

20 Musselman CA, Lalonde M-E, Côté J, Kutateladze TG. 2012. Perceiving the epigenetic landscape
21 through histone readers. *Nat. Struct. Mol. Biol.* 19:1218–1227.

22 Nagarajan P, Onami TM, Rajagopalan S, Kania S, Donnell R, Venkatachalam S. 2009. Role of
23 chromodomain helicase DNA-binding protein 2 in DNA damage response signaling and
24 tumorigenesis. *Oncogene* 28:1053–1062.

25 Nguyen LT, Schmidt HA, Von Haeseler A, Minh BQ. 2015. IQ-TREE: A fast and effective stochastic
26 algorithm for estimating maximum-likelihood phylogenies. *Molecular Biology and Evolution*
27 32:268–274.

28 Nguyen P, Bar-Sela G, Sun L, Bisht KS, Cui H, Kohn E, Feinberg AP, Gius D. 2008. BAT3 and SET1A
29 form a complex with CTCFL/BORIS to modulate H3K4 histone dimethylation and gene
30 expression. *Molecular and Cellular Biology* 28:6720–6729.

31 Nishiyama M, Oshikawa K, Tsukada Y, Nakagawa T, Iemura S, Natsume T, Fan Y, Kikuchi A, Skoultchi
32 AI, Nakayama KI. 2009. CHD8 suppresses p53-mediated apoptosis through histone H1
33 recruitment during early embryogenesis. *Nat Cell Biol* 11:172–182.

34 Nodelman IM, Bowman GD. 2021. Biophysics of chromatin remodeling. *Annu. Rev. Biophys.* 50:73–93.

35 Ohno S. 1970. Evolution by gene duplication. Springer Berlin Heidelberg

36 Ohno S, Wolf U, Atkin NB. 1968. Evolution from fish to mammals by gene duplication. *Hereditas*
37 59:169–187.

1 Ojolo SP, Cao S, Priyadarshani SVGN, Li W, Yan M, Aslam M, Zhao H, Qin Y. 2018. Regulation of
2 plant growth and development: a review from a chromatin remodeling perspective. *Front. Plant
3 Sci.* 9:1232.

4 O'Leary NA, Wright MW, Brister JR, Ciufo S, Haddad D, McVeigh R, Rajput B, Robbertse B, Smith-
5 White B, Ako-Adjei D, et al. 2016. Reference sequence (RefSeq) database at NCBI: Current
6 status, taxonomic expansion, and functional annotation. *Nucleic Acids Research* 44:D733–D745.

7 Payne S, Burney MJ, McCue K, Popal N, Davidson SM, Anderson RH, Scambler PJ. 2015. A critical role
8 for the chromatin remodeller CHD7 in anterior mesoderm during cardiovascular development.
9 *Dev Biol* 405:82–95.

10 Price MN, Dehal PS, Arkin AP. 2010. Fasttree 2 - approximately maximum-likelihood trees for large
11 alignments. *PLoS ONE* 5:e9490.

12 Richter DJ, Fozouni P, Eisen MB, King N. 2018. Gene family innovation, conservation and loss on the
13 animal stem lineage. Telford MJ, editor. *eLife* 7:e34226.

14 Rodríguez D, Bretones G, Quesada V, Villamor N, Arango JR, López-Guillermo A, Ramsay AJ,
15 Baumann T, Quirós PM, Navarro A, et al. 2015. Mutations in CHD2 cause defective association
16 with active chromatin in chronic lymphocytic leukemia. *Blood* 126:195–202.

17 Ryan DP, Sundaramoorthy R, Martin D, Singh V, Owen-Hughes T. 2011. The DNA-binding domain of
18 the Chd1 chromatin-remodelling enzyme contains SANT and SLIDE domains: Identification of
19 SANT and SLIDE domains in Chd1. *EMBO J.* 30:2596–2609.

20 Schnetz MP, Handoko L, Akhtar-Zaidi B, Bartels CF, Pereira CF, Fisher AG, Adams DJ, Flicek P,
21 Crawford GE, LaFramboise T, et al. 2010. CHD7 targets active gene enhancer elements to
22 modulate ES cell-specific gene expression. *PLOS Genetics* 6:e1001023.

23 Schön ME, Zlatogursky VV, Singh RP, Poirier C, Wilken S, Mathur V, Strassert JFH, Pinhassi J, Worden
24 AZ, Keeling PJ, et al. 2021. Single cell genomics reveals plastid-lacking Picozoa are close
25 relatives of red algae. *Nat Commun* 12:6651.

26 Sharma A, Jenkins KR, Héroux A, Bowman GD. 2011. Crystal structure of the chromodomain helicase
27 DNA-binding protein 1 (Chd1) DNA-binding domain in complex with DNA. *J. Biol. Chem.*
28 286:42099–42104.

29 Shen C, Ipsaro JJ, Shi J, Milazzo JP, Wang E, Roe J-S, Suzuki Y, Pappin DJ, Joshua-Tor L, Vakoc CR.
30 2015. NSD3-Short Is an adaptor protein that couples BRD4 to the CHD8 chromatin remodeler.
31 *Molecular Cell* 60:847–859.

32 Siggens L, Cordeddu L, Rönnerblad M, Lennartsson A, Ekwall K. 2015. Transcription-coupled
33 recruitment of human CHD1 and CHD2 influences chromatin accessibility and histone H3 and
34 H3.3 occupancy at active chromatin regions. *Epigenetics Chromatin* 8:4.

35 Sims JK, Wade PA. 2011. SnapShot: Chromatin remodeling: CHD. *Cell* 144:626-626.e1.

36 Sims RJ 3rd, Chen C-F, Santos-Rosa H, Kouzarides T, Patel SS, Reinberg D. 2005. Human but not yeast
37 CHD1 binds directly and selectively to histone H3 methylated at lysine 4 via its tandem
38 chromodomains. *J. Biol. Chem.* 280:41789–41792.

1 Singh PP, Isambert H. 2020. OHNOLOGS v2: a comprehensive resource for the genes retained from
2 whole genome duplication in vertebrates. *Nucleic Acids Res.* 48:D724–D730.

3 Skene PJ, Hernandez AE, Groudine M, Henikoff S. 2014. The nucleosomal barrier to promoter escape by
4 RNA polymerase II is overcome by the chromatin remodeler Chd1. *Elife* 3:e02042.

5 Smolle M, Venkatesh S, Gogol MM, Li H, Zhang Y, Florens L, Washburn MP, Workman JL. 2012.
6 Chromatin remodelers Isw1 and Chd1 maintain chromatin structure during transcription by
7 preventing histone exchange. *Nat. Struct. Mol. Biol.* 19:884–892.

8 Tice AK, Žihala D, Pánek T, Jones RE, Salomaki ED, Nenarokov S, Burki F, Eliáš M, Eme L, Roger AJ,
9 et al. 2021. PhyloFisher: A phylogenomic package for resolving eukaryotic relationships. *PLOS
10 Biology* 19:e3001365.

11 Tompa P. 2002. Intrinsically unstructured proteins. *Trends in Biochemical Sciences* 27:527–533.

12 Torigoe SE, Patel A, Khuong MT, Bowman GD, Kadonaga JT. 2013. ATP-dependent chromatin
13 assembly is functionally distinct from chromatin remodeling. *Elife* 2:e00863.

14 Uversky VN. 2015. The multifaceted roles of intrinsic disorder in protein complexes. *FEBS Letters*
15 589:2498–2506.

16 Vaillant I, Schubert I, Tourmente S, Mathieu O. 2006. MOM1 mediates DNA-methylation-independent
17 silencing of repetitive sequences in *Arabidopsis*. *EMBO Rep* 7:1273–1278.

18 Van Vlierberghe M, Di Franco A, Philippe H, Baurain D. 2021. Decontamination, pooling and
19 dereplication of the 678 samples of the Marine Microbial Eukaryote Transcriptome Sequencing
20 Project. *BMC Research Notes* 14:306.

21 Watson AA, Mahajan P, Mertens HDT, Deery MJ, Zhang Wenchao, Pham P, Du X, Bartke T, Zhang
22 Wei, Edlich C, et al. 2012. The PHD and chromo domains regulate the ATPase activity of the
23 human chromatin remodeler CHD4. *J. Mol. Biol.* 422:3–17.

24 Woodage T, Basrai MA, Baxevanis AD, Hieter P, Collins FS. 1997. Characterization of the CHD family
25 of proteins. *Proc. Natl. Acad. Sci. U. S. A.* 94:11472–11477.

26 Wright PE, Dyson HJ. 2015. Intrinsically disordered proteins in cellular signalling and regulation. *Nat
27 Rev Mol Cell Biol* 16:18–29.

28 Yadav T, Whitehouse I. 2016. Replication-coupled nucleosome assembly and positioning by ATP-
29 dependent chromatin-remodeling enzymes. *Cell Rep.* 15:715–723.

30 Yang Z. 2007. PAML 4: Phylogenetic analysis by maximum likelihood. *Molecular Biology and
31 Evolution* 24:1586–1591.

32 Zentner GE, Hurd EA, Schnetz MP, Handoko L, Wang C, Wang Z, Wei C, Tesar PJ, Hatzoglou M,
33 Martin DM, et al. 2010. CHD7 functions in the nucleolus as a positive regulator of ribosomal
34 RNA biogenesis. *Hum. Mol. Genet.* 19:3491–3501.

35 Zentner GE, Tsukiyama T, Henikoff S. 2013. ISWI and CHD chromatin remodelers bind promoters but
36 act in gene bodies. *PLoS Genet.* 9:e1003317.

37 Zhang H, Bishop B, Ringenberg W, Muir WM, Ogas J. 2012. The CHD3 remodeler PICKLE associates
38 with genes enriched for trimethylation of histone H3 lysine 27. *Plant Physiol.* 159:418–432.

39 Zhang H, Rider SD Jr, Henderson JT, Fountain M, Chuang K, Kandachar V, Simons A, Edenberg HJ,
40 Romero-Severson J, Muir WM, et al. 2008. The CHD3 remodeler PICKLE promotes
41 trimethylation of histone H3 lysine 27. *J. Biol. Chem.* 283:22637–22648.

TABLES

Table 1. Summary counts of all CHD homologs.

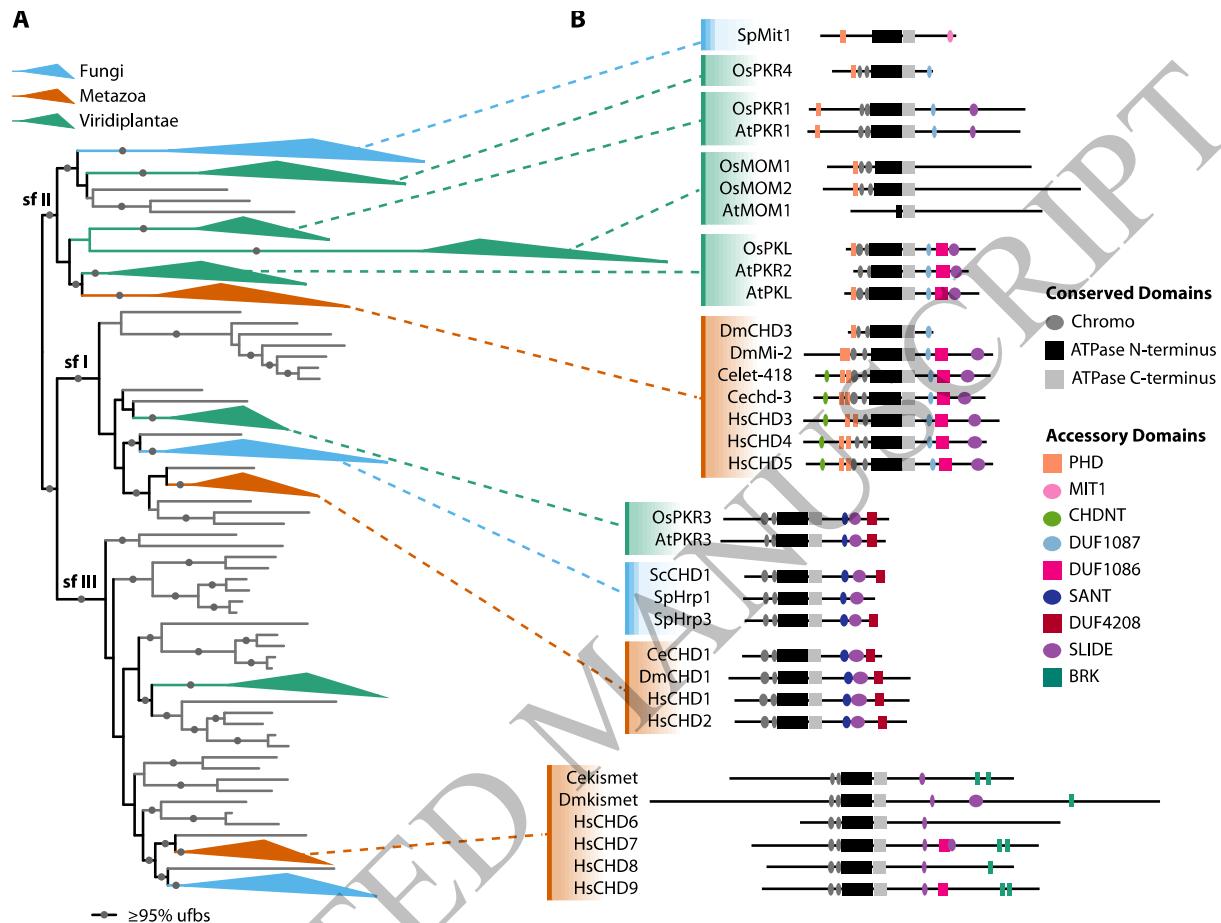
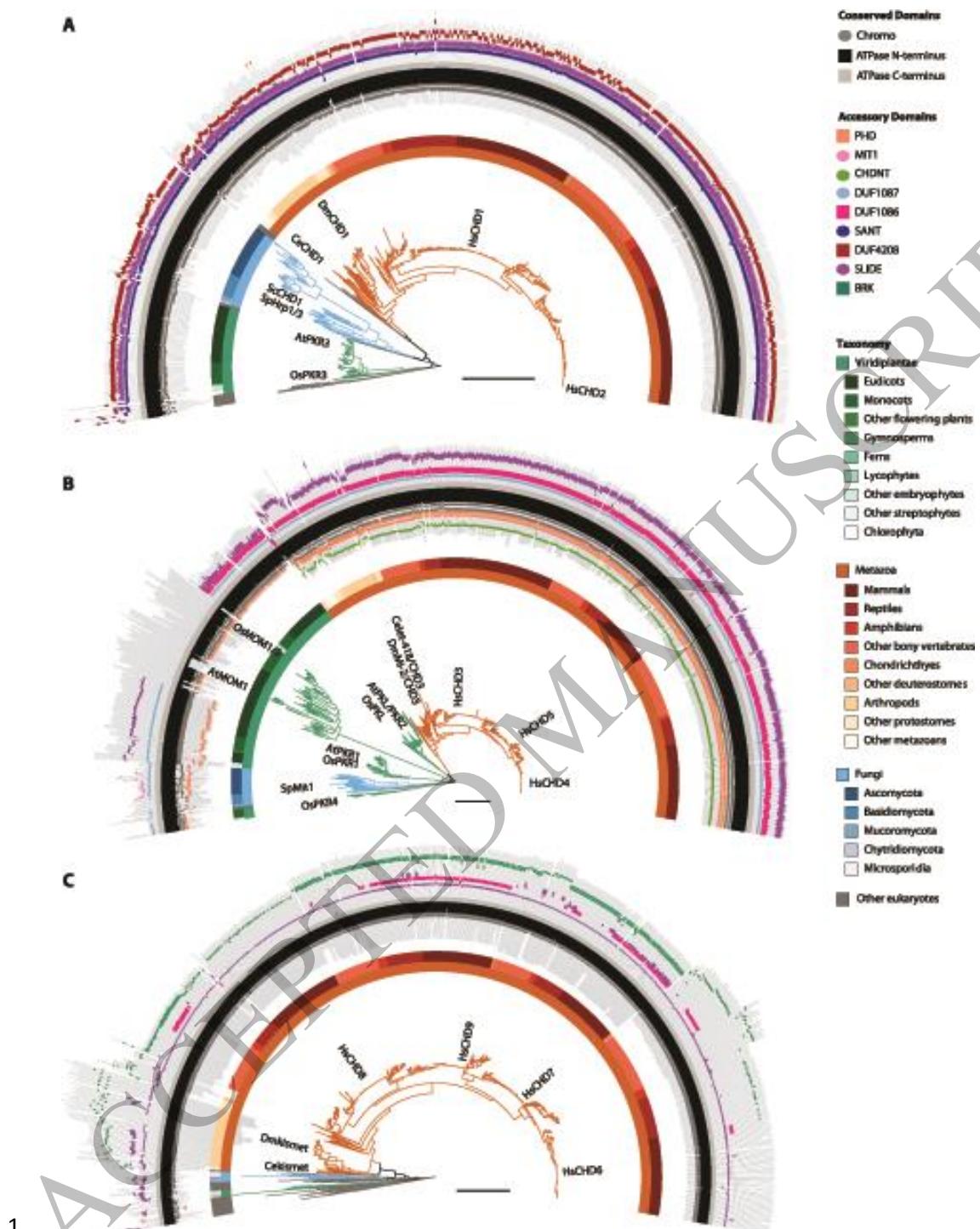

Lineage	Subfamily I Counts		Subfamily II Counts		Subfamily III Counts		Combined Counts	
	Species	Sequences	Species	Sequences	Species	Sequences	Species	Sequences
Alveolata	35	35	---	---	4	6	38	41
Amoebozoa	11	11	2	2	17	30	18	43
Apusozoa	---	---	---	---	1	1	1	1
Choanoflagellata	2	2	2	2	---	---	2	4
Cryptophyta	---	---	4	4	5	6	7	10
Discoba	1	2	---	---	4	8	4	10
Filasterea	1	1	1	1	1	1	1	3
Fungi	281	287	203	206	16	18	292	511
Microsporidia	---	---	---	---	10	10	10	10
Chytridiomycota	3	3	---	---	3	3	3	6
Mucoromycota	4	4	3	3	3	5	4	12
Basidiomycota	53	53	30	31	---	---	53	84
Ascomycota	221	227	170	172	---	---	222	399
Glauccystophyceae	2	2	1	2	1	1	2	5
Haptophyta	---	---	3	3	10	26	11	29
Ictyosporea	1	1	---	---	1	1	1	2
Metamonada	---	---	---	---	1	13	1	13
Metazoa	488	1123	495	1526	483	1859	498	4508
other Metazoans	10	10	12	18	12	12	12	40
other Protostomes	22	30	23	40	21	27	24	97
Arthropods	146	166	147	167	138	277	149	610
other Deuterostomes	5	6	6	6	5	5	6	17
Chondrichthyes	2	5	2	3	2	7	2	15
Other Bony Vertebrates	78	231	79	376	79	425	79	1032
Amphibians	5	14	5	18	5	29	5	61
Reptiles	91	231	91	221	91	371	91	823
Mammals	129	430	130	677	130	706	130	1813
nucleariids	1	1	---	---	---	---	1	1
Rhizaria	5	9	---	---	9	13	9	22
Rhodophyta	27	27	5	5	12	12	31	44
Stramenopiles	---	---	8	8	85	167	86	175
Viridiplantae	560	610	832	1910	72	100	891	2620
Chlorophyta	71	76	45	54	30	52	94	182
Other Streptophytes	18	18	21	25	1	1	27	44
Other Embryophytes	37	40	55	139	26	31	55	210
Lycophytes	11	11	13	29	2	2	15	42
Ferns	20	20	47	68	13	14	47	102
Gymnosperms	37	37	59	112	---	---	59	149
Other Flowering Plants	29	29	47	101	---	---	47	130
Monocots	58	62	91	229	---	---	92	291
Eudicots	279	317	454	1153	---	---	455	1470
Total	1415	2111	1556	3669	722	2262	1894	8042

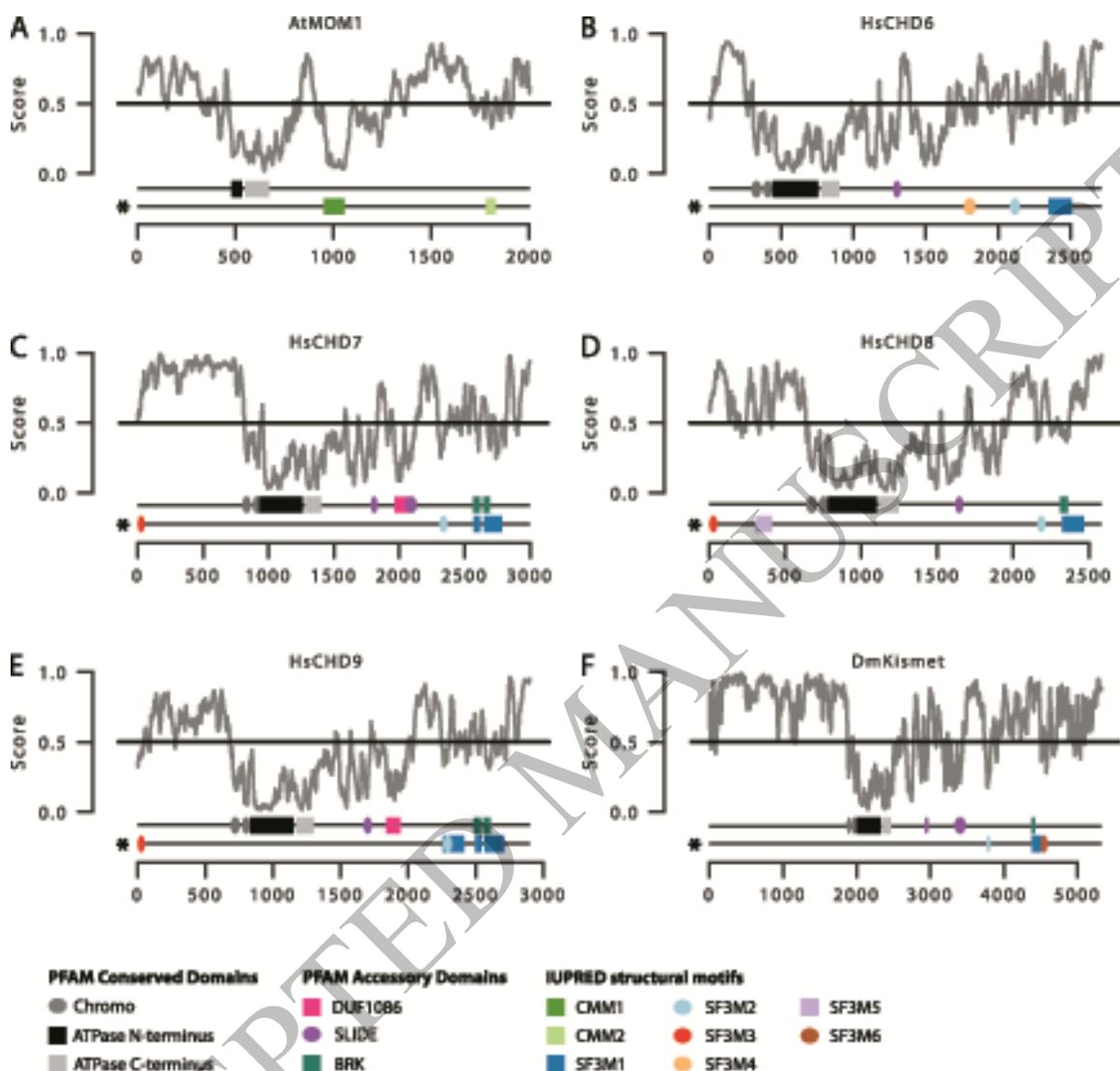
Table 2. Summary counts of Viridiplantae sequences in subfamily II.

Lineage	PKL Counts		PKR1 Counts		PKR4 Counts		MOM Counts	
	Species	Sequences	Species	Sequences	Species	Sequences	Species	Sequences
Chlorophyta	41	47	4	4	3	3	---	---
Other Streptophytes	16	16	8	8	1	1	---	---
Other Embryophytes	54	70	26	30	37	39	1*	1*
Lycophytes	12	18	9	9	2	2	5*	5*
Ferns	47	47	21	21	---	---	6*	7*
Other Flowering Plants	46	51	23	25	2	2	15	23
Gymnosperms	59	62	18	19	25	25	6	6
Monocots	90	107	53	62	13	15	27	45
Eudicots	440	587	262	317	---	---	164	249

1 **FIGURES**


2

3


4

5 **Figure 1. Distribution of CHD gene family across eukaryotes and model domain architecture. A)**
6 Maximum-likelihood phylogeny of CHD homologs. Branches corresponding to subfamily (sf) I, II and III
7 are indicated. Grey circles indicate branches with ultrafast bootstrap support ≥ 0.95 . Clades of animal
8 (red), plant (green), or fungi (blue) are collapsed. B) PFAM domain architecture of CHD homologs from
9 model eukaryotes. Width of ovals and rectangles are proportional to the width of the protein domain.

1
2 **Figure 2. Detailed subfamily phylogenies with domains.** Maximum likelihood phylogenies for A)
3 subfamily I, B) subfamily II, and C) subfamily III. Location of CHD homologs from model eukaryotes
4 are indicated. Branches are colored as in Figure 1. Additional taxonomic resolution is provided by the
5 color bars. The outer track indicates the PFAM domain architecture for each homolog.

1

2

Figure 3. Novel conserved motifs and disordered regions in CHD proteins. IUPred score denotes the disorder tendency of each residue in the given protein, where higher values correspond to a higher probability of disorder. The top domain track for each protein indicates the location of the canonical PFAM conserved and accessory structural domains. The bottom track (*) indicates the location of predicted IUPred-derived structural domains in MOM (CMM1/2) and subfamily III (SF3M1-6). Width of ovals and rectangles are proportional to the width of the protein domain.