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Abstract—Over the past decades, the increasing penetration of
distributed energy resources (DERs) has dramatically changed
the power load composition in the distribution networks. The
traditional static and dynamic load models can hardly capture
the dynamic behavior of modern loads especially for fault-
induced delayed voltage recovery (FIDVR) events. Thus, a more
comprehensive composite load model with combination of static
load, different types of induction motors, single-phase A/C
motor, electronic load and DERs has been proposed by Western
Electricity Coordinating Council (WECC). However, due to the
large number of parameters and model complexity, the WECC
composite load model (WECC CMLD) raises new challenges to
power system studies. To overcome these challenges, in this paper,
a cutting-edge parameter reduction (PR) approach for WECC
CMLD based on active subspace method (ASM) is proposed.
Firstly, the WECC CMLD is parameterized in a discrete-time
manner for the application of the proposed method. Then,
parameter sensitivities are calculated by discovering the active
subspace, which is a lower-dimensional linear subspace of the
parameter space of WECC CMLD in which the dynamic response
is most sensitive. The interdependency among parameters can be
taken into consideration by our approach. Finally, the numerical
experiments validate the effectiveness and advantages of the
proposed approach for WECC CMLD model.

Index Terms—WECC composite load model, parameter reduc-
tion, active subspace, dimension reduction.

I. INTRODUCTION

OAD modeling is significant for power system studies

such as parameter identification, optimization and sta-
bility analysis, which has been widely studied [1]. It can
be classified into static and dynamic load models. Constant
impedance-current-power (ZIP) model, exponential model and
frequency dependent model are typical static loads models, and
traditional dynamic load models include induction motor (IM)
and exponential recovery load model [2]. To provide more
accurate responses, composite load models are developed by
combining static and dynamic load models. Motivated by the
1996 blackout reported by the Western Systems Coordinating
Council (WSCC), the classic ZIP+IM composite load model
was developed to model highly stressed loading conditions

This work was supported in part by Advanced Grid Modeling Program
at the U.S. Department of Energy Office of Electricity under Grant DE-
OE0000875, and in part by the National Science Foundation under CMMI
1745451. (Corresponding author: Zhaoyu Wang)

Z. Ma, and Z. Wang are with the Department of Electrical and Com-
puter Engineering, Iowa State University, Ames, IA 50011, USA (email:
zma@iastate.edu; wzy @iastate.edu). (Corresponding author: Zhaoyu Wang)

Bai Cui is with National Renewable Energy Laboratory, Golden, CO 80401,
USA (email: bcui@nrel.gov).

Dongbo Zhao is with Argonne National Laboratory, Argonne, IL 60439,
USA (email: dongbo.zhao@anl.gov).

in summer peak hours [3]. However, this interim load model
was unable to capture the fault-induced delayed voltage re-
covery (FIDVR) events [4]. Therefore, a more comprehensive
composite load model was proposed by Western Electricity
Coordinating Council (WECC) that contains substation trans-
former, shunt reactance, feeder equivalent, induction motors,
single-phase AC motor, ZIP load, electronic load, and DER
[5]. WECC composite load model (WECC CMLD) produces
accurate responses, nevertheless, the large number of param-
eters and high model complexity raise new challenges for
power system studies. Name parameter identification as one
significant example, where the large number of parameters
brings great difficulties to search for global optimum when
performing parameter identification. The reason is twofold:
firstly, the large number of parameters result in a large search
space that reduces the optimization efficiency; secondly, the
insensitive parameters and parameter interdependencies usual-
ly result in a large number of local optima, which increases
the difficulty of achieving global optimum [6]. Although
the parameters have physical meanings, some of them only
have marginal impacts on the model response altogether or
along certain parameter variation directions [7]. Moreover,
considering full load model parameter set could significantly
increase the complexity of power system studies. Therefore, it
is imperative to develop a method to screen out the insensitive
parameters. Then, only the sensitive parameters are to be
determined in the parameter identification problem while the
others can be kept at their respective default values. In this
way, the dimension of search space of load model parameters
can be significantly reduced. Thus, lower computational cost
(less model runs) and higher accuracy (easier to find the
optimum) can be achieved when conducting power system
studies such as parameter identification without compromising
fidelity of the load model.

The above problem can be resolved by dimension reduc-
tion in parameter space based on sensitivity analysis of a
parameterized model whose inputs are system parameters. As
discussed in [8], parameter reduction (PR) methods can be
classified into local and global ones. Local PR methods are
suitable for known parameters with small uncertainties, in
which partial derivatives of output with respect to the model
parameters are computed to evaluate the relative variation of
output with respect to each parameter. Nonetheless, the input
parameters are subject to a range in typical load modeling
problems. Therefore, a global sensitivity metric is necessary
to measure the sensitivity of output with respect to parameters.

There are many existing global PR approaches. One of



the most common and simplest techniques in engineering
is the so-called “One-At-A-Time” (OAT) method that varies
one parameter while fixing the others. However, this method
can only provide a rough qualitative approximation of the
parameter sensitivities and cannot fully reveal the nonlinearity
and interdependency among the parameters due to its low
exploration of the parameter space. In [9], the OAT method
was improved by proposing two sensitivity measures, mean
w1 and standard deviation o based on the elementary effects
methods. This method has higher exploration rate of the
parameter space and can qualitatively analyze which parameter
may have influence on nonlinear and/or interaction effects.
This method is further extended by supersaturated design [10],
screening by groups [11], sequential bifurcation method [12]
and factorial fractional design [13] based on the number of
parameters and experiments in a particular scenario [14].

To quantitatively study the comprehensive parameter sen-
sitivity patterns and their interdependencies, variance-based
approaches such as Sobel indices [15] were proposed for
nonlinear and non-monotonic models. However, to precisely
estimate the sensitivity indices with arbitrary order interactions
between parameters, these approaches require a formidably
large number of experiments [16]. In [17], a total-effect index
was introduced, which can measure the contribution to the out-
put variance of parameters, including all variance caused by its
interactions of any order with any other parameters, as well as
reducing the requirement of the number of experiments. These
indices are usually estimated by Monte Carlo methods [18].
Such methods are accurate but suffer from high computational
cost when large sample size is required. Thus, it motivates the
recent research on exploring efficient numerical algorithms in-
cluding the analysis of variance (ANOVA) decomposition [19],
Fourier Amplitude Sensitivity Test (FAST) [20] and least ab-
solute shrinkage and selection operator (LASSO) [21]. Despite
the relative reduction in computational cost by these methods,
they can result in instability and inaccuracy when the number
of parameters increases (larger than 10) [14], [22]. Some
researches delve into the trajectory sensitivity analysis, e.g.,
in [23], the time-varying parameter sensitivities of ZIP+IM
model are derived based on perturbation and Taylor expansion
method. However, such methods need explicit mathematical
model and require the model output to be differentiable with
respect to the parameters for the Jacobian matrices to exist,
which makes it inapplicable for WECC CMLD. Different from
OAT and and variance-based approaches, the active subspace
method (ASM) is based on gradient evaluations for detecting
and exploiting the most influential direction in the parameter
space of a given model to construct an approximation on a
low-dimensional subspace of the model’s parameters as well
as quantify the interdependencies among parameters [24]. As
a Monte Carlo sampling based method, ASM also requires
multiple experiments, but it has better accuracy and requires
relatively lower sample size.

There are limited studies on the PR problem of WECC
CMLD. In [1], the parameter sensitivity and interdependen-
cies among parameters are analyzed using OAT method and
clustering techniques, motivated by observing that different
parameter combinations can give the same data fitting results

in measurement-based load modeling. As discussed above, the
OAT method suffers from low accuracy and low exploration
rate of the parameter space. Moreover, the interdependency is
simply determined by whether parameters have similar trajec-
tory sensitivities in this work. In addition, the newly-approved
aggregated distributed energy resources (DER_A) model in
WECC CMLD has not been considered. PR was conducted by
means of data-driven feature-wise kernelized LASSO (FWKL)
in [21], which uses multiple randomly-generated parameter
vectors and corresponding output residuals to compute param-
eter sensitivities by solving a LASSO optimization problem.
This approach avoids utilizing analytical gradient and can
obtain the optimal sensitivity. In addition, the employment of
LASSO ensures parameter interdependency is captured in a
feature-wise manner. However, due to high non-convexity of
WECC CMLD, the result is very sensitive to parameter setting
of the algorithm and the distribution of the dataset. Also, the
large number of experiments and optimization process greatly
increase its computational cost.

In this paper, a novel PR approach is proposed by leveraging
the ASM. As an alternative PR technique, ASM is a relatively
new dimension reduction tool that has shown its effectiveness
in many fields such as bioengineering [25] and aerospace
engineering [26]. The outstanding advantages of ASM include
relatively low computational cost, high accuracy and the ability
to quantify the parameter interdependency.

The novelty and main contributions of our paper are sum-
marized as follows. Motivated by the fact that the WECC
CMLD is a differential-algebraic system and ASM can only
deal with algebraic functions, we first cast the WECC CMLD
as a discrete-time system for parameterization. Secondly, a
comprehensive PR approach tailored for WECC CMLD based
on ASM is proposed. Thirdly, factors influencing accuracy of
PR results are rigorously analyzed. Finally, statistical and nu-
merical experiments are conducted to validate the effectiveness
of the proposed method. Comparative case studies with three
classical PR methods are also conducted and discussed.

The rest of the paper is organized as follows. Section II
introduces the WECC CMLD and develops its parameterized
model. Section III proposes the PR algorithm and conducts
accuracy analysis. Case studies are carried out in Section IV to
demonstrate the effectiveness of the proposed method, which
is followed by conclusions.

II. PROBLEM STATEMENT

In this section, the structure and function of WECC CMLD
are introduced, then a parameterized model of the composite
load is established for PR.

A. Introduction of WECC CMLD

As shown in Fig. 1, WECC CMLD consists of three 3-
phase motors, one single-phase motor, one ZIP load, one
electronic load and one DER_A model. Three 3-phase motors
represent three different types of dynamic components. Motor
A represents three-phase induction motors with low inertia
driving constant torque loads, e.g. air conditioning compressor
motors and positive displacement pumps. Motor B represents
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Fig. 1. A schematic diagram of the WECC CMLD [28].

three-phase induction motors with high inertia driving variable
torque loads such as commercial ventilation fans and air
handling systems. Motor C represents three-phase induction
motors with low inertia driving variable torque loads such
as the common centrifugal pumps. Single-phase motor D
captures behaviors of single-phase air with reciprocating com-
pressors. However, it is challenging to model the fault point-
on-wave and voltage ramping effects [5]. Moreover, new A/C
motors are mostly equipped with scroll compressors and/or
power electronic drives, making their dynamic characteristics
significantly different than conventional motors. Therefore,
WECC uses a performance-based model to represent single-
phase motors. As increasing percentage of end-uses become
electronically connected [3], the WECC CMLD adopts a
simplistic representation of power electronic loads as constant
power loads with unity power factor. A ZIP load is used as
static one in this model. The DER model is specified as the
newly-approved DER_A model presented in [27].

B. Motivation for PR

The WECC CMLD contains 183 parameters, which pose
significant challenges for power system studies such as pa-
rameter identification, optimization and control. By observing
that part of the parameters can be determined by engineering
judgment, we can filter out them according to the analysis
in [21]. In particular, the parameters of transformer, feeder,
and the stalling and restarting of induction motors can be
excluded since they have small range of uncertainties and
are usually pre-determined by their default values to meet
practical engineering requirements. In this way, 64 parameters
are screened out a priori. Nonetheless, the number of param-
eters that remains is still too large for power system studies.
Therefore, in this paper, we use ASM to further reduce the
number of parameters. The WECC CMLD is a differential-
algebraic system which is usually represented as a continuous-
time state space model [4]. Considering that ASM requires
a scalar function with domain as parameters and range as
active or reactive power, in this section, we parameterize the
WECC CMLD in a discretization manner. The parameterized
model produces similar responses as the original one with
high-fidelity as long as the Nyquist-Shannon sampling theorem
is satisfied.

C. Parameterized WECC CMLD

The WECC CMLD is a hybrid model with dynamic and
static components. The state vector £ € R"¢ of three-phase

motors and DER is governed by the following differential
equation

:l:(t) = f(m(t),@(t),u(t)), (D

where 0(t) € R" denotes the parameter vector; u(t) =
[[V(t)|,6(t), Af(t)]T is the input vector consisting of voltage
magnitude, voltage angle and frequency deviation, respective-
ly; £ : R% x R™ x R® — R"™ represents the dynamic
model of three-phase motors, and DER; ng and n, are the
total number of dynamic states and parameters. The active and
reactive power output of the dynamic components, yq(t) =

[Pa(t),Qq(t)]T is given by
ya(t) = ga(x(t), 6(t), u(t)). )

In PR using ASM, a mapping between parameters and
active/reactive power is required for PR. Based on the fact
that the input of load model w is usually sampled every T’
seconds, we can discretize (1) as

x(k) = f(x(k —1),0(k — 1), u(k — 1)), 3)

where f is the discretized function of f, k=1,2,...,N, N
is the total number of measurements. Note that the sampling
rate should satisfy Nyquist-Shannon sampling theorem to
guarantee that discrete sequence of samples can capture all
the information from a continuous-time signal. Then, (k)
can be calculated from the initial state a(0) by iteratively
evaluating f using past sequences of parameters and inputs,
O(k—1),...,0(0),u(k—1),...,u(0)]. Finally, by substitut-
ing (3) iteratively into (2), we can obtain the desired mapping
using some algebraic function gg:

ya(k) = ga(0(k), ...

Regarding = and w as constants, Eq. (4) depicts the relation-
ship between active/reactive power of dynamic components
and parameters.

As for the static components such as single-phase motor,
electronic load, and static ZIP load, the mapping from param-
eters to active and reactive power outputs can be represented
as

,0(0), w(k), ..., u(0),z(0)). 4

ys(k) = gs(0(k), u(k)). ®))

The total power output y(k) of the WECC CMLD can be
calculated by adding the dynamic and static parameterized
model together. For ease of deriving PR approach for the
composite load model, we define the parameterized model as
g in the form of

y(k) = ya(k) + ys(k)
=g(8(k),...,0(0), u(k),. ..

If the parameters are considered as time-invariant during a
short time period, Eq. (6) can be simplified as

where y(k) = [P(k), Q(k)]T, and g = [gp, g0]" -

;u(0),2(0)).  (6)



III. PR APPROACH FOR WECC CMLD USING ASM

In this section, we will use ASM to reduce the parameters
of the WECC CMLD. Firstly, the preliminaries of ASM are
introduced. Then, the application of ASM to WECC CMLD is
elaborated in steps. Finally, the factors affecting the accuracy
of PR is analyzed theoretically.

A. Preliminaries of ASM

An active subspace is a lower-dimensional linear subspace
of the parameter space, along which input perturbations alter
the model’s predictions more than the perturbations along the
directions which are orthogonal to the subspace on average.
This subspace allows for a global measurement of sensitivity
of output variables with respect to parameters, and is often
used to decrease the dimension of the parameter space. Con-
sider a parameterized function g : x — R that maps the
parameters of a system, 8 € y := {x € R™| -1 < 2; <
1,4 = 1,...,m}, to a scalar output of interest, e.g., active
power P or reactive power (), where x indicates a normalized
set of parameter values.

To discover the active subspace, we define the following C
matrix,

C = [ (Vosl®)(Tos®) p()06. &
X

where p(0) : x — R, is the joint probability function of
parameters satisfying

/ (646 = 1. ©)
X
For any smooth function ¢(8), the matrix C is called average
derivative functional in the context of dimension reduction,
which weights input values according to the density p(8). Note
that a single normalized parameter is a random variable taking
values in [—1, 1], which when appropriately scaled represents
a parameter in the original model (7). Since the dimension
of the parameter space in this model is 64, we take m = 64
throughout. The matrix C'is the average of the outer product of
the gradient of g(8) with itself and has some useful properties
that will allow us to deduce information about how g(8) is
altered by perturbations in its arguments.

Remark I: From (8), each element of C' is the average of
the product of partial derivatives (which can be regarded as
parameter sensitivity)

Jdyg dg =
i = = — | pdO, i,5=1,...
G ~/X(89i) <89j>p "

where C; is the (7, j) element of C, and m is the number of
parameters. If we consider Vgg(8) to be a random vector by
virtue of @’s density p, then C is the uncentered covariance
matrix of the gradient of output with respect to the parameters
[24]. This allows us to use the covariance matrix C' to measure
the correlation between each pair of parameter gradients. For
simplicity, denote E%gi as s;, denote the mean and standard
deviation of gradient of ith parameter as us, and o;,, respec-

tively. Then, the correlation between (i, j) parameter gradients

(10)

’m7

is

E [(Sl - ILLSi)(Sj - :u‘Sj)]
O.Sio-sj'
_ Gy — st (11

05,05,

Eq. (11) shows that the C' matrix encodes the correlation infor-
mation between parameter gradients, which means the ASM
takes into consideration the interdependency of parameters.
This is one of the advantages compared to other PR methods.

The matrix C' is symmetric, and thus permitting the spectral
eigendecomposition

C=WAWT. (12)

where W is an orthogonal matrix whose columns w;, (i =
1,...,m) are the orthonormal eigenvectors of C. A =
diag([A1,-. -, m]), and Ay =,..., > A

Since W is orthogonal, from the definition of eigenvectors
and (8), the eigenvalues of C can be calculated as

T
/\i = w; Cwi

— o / <vog<é>><veg<é>>%<e‘>dé) w,

Z/((Vgg(é))Twi)Qp(é)de, i=1,...,m. (13)

From (13) we see that the eigenvalues of the C' matrix
are the mean squared directional derivatives of g() in the
direction of the corresponding eigenvector. If an eigenvalue is
small, then (13) shows that g() is insensitive in the direction
of the corresponding eigenvector on average. On the contrary,
a large eigenvalue indicates that g(@) changes significantly in
the direction of the corresponding eigenvector.

After determining the eigendecomposition (12), the eigen-
values and eigenvectors can be separated according to the

magnitudes of eigenvalues:

AL 0 w0
A=y n) W=

where A; and W contain the first n larger eigenvalues and
corresponding eigenvectors, Ao and W5 contain the other m —
n smaller ones. To determine such separation, one can find the
spectral gap between the nth and (n + 1)th eigenvalues on a
log plot in the order of magnitudes. It is worth noting that the
existence of a significant spectral gap directly indicates the
existence of active subspace [24].

Keeping in mind that W is orthogonal, from (14), any
parameter vector 8 can be represented as

6=ww'e
=W, Wie+WwW,Wye
= W10, + W50,

(14)

(15)
Then, an output of interest with any parameter vector 6 is

g(0) = g(W16, + W30,). (16)
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Fig. 2. The block diagram of the proposed PR algorithm based on ASM.

From the definition of W7 and W5, we know that small
perturbations on #; have low impact on the value of g.
Conversely, small perturbations on 8, will alter g significantly.
According to this property, the range of Wj is defined as
the active subspace, and on the contrary, the range of W
as the corresponding inactive subspace of the model. These
subspaces describe the sensitivity of the output of interest with
respect to parameter variations.

It is worth noting that, though both ASM and principal
components analysis (PCA) include the process of eigende-
composition, they are intrinsically different. The PCA eigen-
decomposed the covariance matrix of the parameter vector
0, whereas the matrix to be eigendecomposed in the active
subspace is defined as (8).

B. PR Algorithm based on ASM

The overall algorithm for PR of WECC CMLD using ASM
is summarized in Fig. 2. The key idea of the algorithm is
elaborated in details as follows:

Step 1: Construct the parameter set x = [—1,1]™,m = 64
as the normalized parameter space for all the selected pa-
rameters of WECC CMLD, and draw M samples {0;},] =
1,..., M from y according to some probability density func-
tion satisfying (9). Usually, uniform distribution is chosen for
simplicity.

Step 2: For each sampled parameter vector éj, approximate
the gradient Vgg; = Vgg(0;) using first order forward finite
differences method as follows:

dg 9(05,1+85,1)—9g(05,1)
Vog(0))=| @ |= : Ji=1,...,M,
dg 905 m+8;.m)—g(0;,m)
90 m Sj,m
(17)

where d; is an arbitrarily small positive vector perturbation
from the sampled parameter values. When ¢ is a practical
system, e.g., WECC CMLD, one needs to transform the
normalized parameter vector 6 to 6, that is in the standard
range of parameters, using the following linear mapping,

1, . _
0j = i(dlag(gupper - Blower)gj + (Oupper - Olower))- (18)

where @ypper and Ooyer are upper and lower bounds of the
parameter vectors, respectively. Thus, 8; in (18) denotes the
vector of real parameter values of the WECC CMLD.

arg max
i=l,..,m
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Step 3: Approximate the average derivative functional C'
using Monte Carlo simulation as

) 1JV[

C=Cx j;(végj)(végj)T‘ 19)

Step 4: Compute the eigendecomposition of approximate
matrix C:

C =WAWT, (20)
which is equivalent to calculating the singular value decom-
position of the matrix
L [Vggl, R v.gg]u] = W\/XVT,
vM
where the singular values are the square roots of the eigen-
values of C and the left singular vectors are the eigenvectors
of C. The singular value decomposition perspective was first
used in [29] to determine the active subspace that is related
to the principal components of a collection of gradients.

Step 5: After the decomposition (21), one needs to search
for the largest spectral gap among eigenvalues in A for
subspace separation. The existence of a larger spectral gap
indicates a more accurate determination of active subspace.
To automatically find the optimal separation, we can use the
following equation,

21

CAA
Al =22 i1 m—1 (22)
A1
Then, the dimension of the active subspace is
dim(range(W7)) = argmax AN (23)

i=1,...,m—1

From (23), we know that the index of the largest value
of A); indicates the location of the largest spectral gap. In
the dimension reduction context, often only the first value
A;\l is considered such that the dimension of the active
subspace is limited to one, which makes it more convenient for
visualization of the output as a function of the active subspace
[24]. Then, the magnitudes of elements in the first eigenvector
describe the weights of parameters.

Remark 2: The active subspace describes the most sensitive
direction in the parameter space along which the output
of interest evolves fastest. Thus, from (16) the output of



parameterized model can be approximated by only the active
subspace of parameter space, i.e.,

9(0) =~ g(W16,), 6, = W/6. (24)

Eq. (24) indicates that g is related to €7 which is a linear
combination of original parameters 6. This linear combination
reflects the weight of each parameter and their collective
influence on the output of interest.

The accuracy of the approximation (24) depends mainly
on two factors which will be further discussed in the next
subsection.

C. Accuracy Analysis of PR Based on ASM

In this subsection, two main factors affecting the accuracy
of PR using ASM introduced above will be discussed.

1) Sample size M : In the above algorithm, the most costly
computation processes are eigendecomposition and computing
gradient for M times. In our case, the number of parameters
is m = 64, so the computational cost of eigendecomposition
is negligible compared to the computation of gradient. Thus,
the selection of M that is large enough for approximating A
and W while minimizing the computational cost is of vital
importance. To estimate the first n eigenvalues of matrix C,
the sample size M can be chosen as

M = Bnlog(m), (25)

where [ is an oversampling factor, which is usually selected
between 70 and 120. In the next section, we will verify that
this range of ( is sufficient in the PR of WECC CMLD
by experiment. The logarithm term log(m) follows from the
bounds in the theorem proposed in [29].

2) Gradient approximation: The WECC CMLD suffers
from high nonlinearity and complexity that render it difficult
to derive a closed-form expression of gradient of output
of interest with respect to the parameters. In view of the
simulating g is not too expensive nor too noisy and m is not
too large, we can utilize finite difference method to estimate
the gradient. We know that, a smaller § produces a more
accurate approximation but with increased computational cost
and vice versa. This relationship can be expressed as the
following inequality by using (17),

9(0;+6;)—9(8))

Va9(6;)— 5
J

‘g\/ﬁa(éj), j=1,..., M,
(26)
where lim «(d;) = 0.
5j—>0
In the following, we will give a criterion for the selection
of finite difference perturbation §; by restating Theorem 3.13
from [24].

Theorem 1 (Accuracy criterion of estimated active subspace
[Thm. 3.13 in [24]]): Assume that |[V4g(0;)|| < L for

j =1,...,M, and choose small parameter ¢ and 3 in (25)
satisfying
)\n - )\nJrl
l<e —, 27
€ W 27

2
5>maxL{)\1 1}. (28)

2 ) )27
ne )‘n /\1

If the finite difference perturbation is small enough such that
5ma(8;)2+10Lyvma(d;) < Ap—Apa, j=1,..., M, (29)

then, the distance between real active subspace W; and the
approximated one W; using Monte Carlo and finite difference
approximation method is bounded by

4ma(d;)* + 8Ly/ma(8;)

dist (range(W;), range(W7)) <

(1 - 5))\77, - (1 + 5))‘11—0—1
48)\1
_ 30
A’rL - )\n-‘rl ( )

for j =1,..., M, with high probability.
Proof: The proof follows the similar steps as in [24] by
simply combining (25) and (28). |
We choose §; = 1 x 1075, L = 1, m = 64, ¢ = 0.1,
B = 100 and «(d;) = &; such that (27)-(29) hold. Then,
based on Theorem 1, the error of active subspace estimate is
bounded by 0.8 and the simulation result is not too far off.
Remark 2: When the two factors are appropriately set,
another most influential factor is the normalized eigenvalue
separation A1/, — A,+1 in (30), which depends on the sys-
tem characteristics only. The existence of significant spectral
gap indicates a clear active subspace and accurate estimation.

IV. CASE STUDIES

In this section, the proposed ASM is applied to analyze
the sensitivities of the parameters of WECC CMLD. Firstly,
a basic case study is conducted to show the implementation
process and how to interpret the result. Then, the proposed
method is also applied to the FIVDR case to show its effec-
tiveness on more complicated voltage profile. Finally, three
classical PR techniques are applied to the WECC CMLD for
comparison with the proposed method.

A. Case I: Apply ASM to WECC CMLD and Result Analyses

1) Simulation Setup: We first provide the simulation setup
for the case studies. The range of parameters [Bower; Qupper] 15
set by adding plus and minus fifty percent of perturbations on
the standard values given in the guideline of WECC CMLD
[28] as shown in Table I. Using (25) with m = 64, n = 1
and 8 = 120, the sample size is calculated as Magy = 500.
In Section IV-C, we will show the convergence of parameter
sensitivity with respect to increasing sample size, from which
we can conclude that Mgy = 500 is a good balance between
accuracy and computational cost. Then, the samples are drawn
uniformly from y. When approximating the gradient using
(17), the finite difference perturbation & is chosen as 1 x 1076,
which is small enough to satisfy (29). Since ASM assumes
scalar function g, we conduct the simulation by selecting active
and reactive power as output of interest separately. The voltage
and power measurements for PR in this simulation is generated
by the Power System Simulator for Engineering (PSS/E) and
the ACTIVSg500 test case with a line-to-ground fault [21] as
shown in Fig. 3. The case study is conducted on a standard
PC with an Intel(R) Xeon(R) CPU running at 3.70 GHz and
with 32.0 GB of RAM using MATLAB.



TABLE I
NUMERICAL RANGE OF LOAD PARAMETERS OF WECC CMLD

Parameter LB UB Parameter LB UB Parameter LB UB Parameter LB UB
Motor A EtrgB 1 3 Np2 1.6 4.8 Trf 0.015  0.06
TpoA 0.046 0.184 DB 0.5 2.0 Nql 1 Kqv 0.5 2.0
TppoA 0.001 0.004 Motor C Nq2 1.25 5 Tp 0.01 0.04
LpA 0.05 0.20 TpoC 0.05 0.20 CmpKpf 0 Tiq 0.01 0.04
LppA 0.042 0.168 TppoC 0.0013  0.0052 CmpKqf -6.6  -1.65 Tpord 2.5 10
LsA 0.9 3.6 LpC 0.08 0.32 Static Load Kpg 50 200
RsA 0.02 0.08 LppC 0.06 0.24 Plc 0 0.4 Kig 5 20
HA 0.05 0.20 LsC 0.9 3.6 P2c 0 0.6 Tg 0.01 0.04
EtrqA 0.5 2.0 RsC 0.015 0.06 Qlc 0 0.4 Tv 0.01 0.04
DA 0.5 2.0 HC 0.1 0.4 Q2c 0 0.6 Xe 0.125 05
Motor B EtrqC 1.8 22 Pfreq -0.2 0.2 Load Fraction
TpoB 0.05 0.20 DC 0.5 2.0 Qfreq -2 -0.5 Fma 0 0.5
TppoB 0.0013  0.0052 Motor D Electronic Load Fmb 0 0.5
LpB 0.08 0.32 Kpl 0 1 Frcel 0 0.375 Fmc 0 0.5
LppB 0.06 0.24 Kp2 6 24 Vdl 0.5 1.5 Fmd 0 0.5
LsB 0.9 3.6 Kql 3 12 Vd2 0.25 1 Fel 0 0.5
RsB 0.015 0.06 Kq2 5.5 22 DER_A Fzip 0 0.5
HB 05 2.0 Npl 0.5 2 Tv [ 001 004 Fdg 0.5 0

Voltage angle (rad) Voltage magnitude (p.u.)
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Fig. 3. The load bus input profile: (a) voltage magnitude; (b) voltage angle;

(c) frequency.

2) Discovering Active Subspace and Parameter Sensitiv-
ities: To discover the active subspace, we can follow the
algorithm provided in Section III.B. Given the simulation setup
as above, we firstly approximate the matrix C' by Monte
Carlo simulation (19) for Masy = 500 with the gradient
estimated by finite difference method (17). In this case study,
the g(0;+4;) and g(0,) before transient are obtained using the
mathematical model of WECC composite load developed in
[30] for faster calculation of the gradient. Instead, one can also
use other commercial software such as PSS/E or PSLF with
potentially longer simulation time. Once the approximate C

is constructed, the singular value decomposition is applied to
abstract the eigenvalues and corresponding eigenvectors. The
eigenvalues of C are shown in Fig. 4 in descending order.
Recall that a significant spectral gap indicates the existence
of active subspace, so it is important to look into the gaps
of eigenvalues in Fig. 4. Note that the largest spectral gap
exists between the first and second ones even though it seems
that the one between the 45th and 46th ones is larger since it
is a semilog plot. To clearly show the largest spectral gap,
we conduct the normalized eigenvalue separation (22) and
the result in Fig. 5 clearly shows the dominance of the gap
between the first and second eigenvalues.

Then, the first eigenvector forms the active subspace of
C and the magnitude of each element of the eigenvector
describes the sensitivity of each corresponding parameter and
their interdependency. The weights of parameters with respect
to the real and reactive power are shown in Fig. 6 and Fig. 7,
respectively. The parameters in the red rectangles that have the
largest weights imply the reduced parameter space. However,
noting that the weights of parameters in the green rectangle
though dominated by those in the red, are still larger than
those that are almost zero. Thus, one may wonder whether
these parameters also have significant impacts on the output
of the interest as well. To verify the PR result, we will perform
further studies in the following subsections.

3) Sufficient Summary Plot: In this subsection, we utilize
sufficient summary plot to empirically validate the active
subspace discovered in the last subsection. Sufficient summary
plot was originally developed as a visualization tool for deter-
mining low-dimensional combination of inputs in regression
graphics. In the context of PR, it is often used to verify the
active subspace, because it reveals the relationship between the
output of interest P or @, and the linear combination of input
parameters Wi 0;. If the relationship presents evidently tight
and univariate trend, then one can conclude that the discovered
active subspace is validated.
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Fig. 4. The semilog plot of the magnitudes of eigenvalues of matrix C with

respect to (a) real power and (b) reactive power.
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Fig. 5. The normalized eigenvalue separation of the magnitudes of eigen-
values of matrix C' with respect to (a) real power and (b) reactive power.
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Fig. 7. The magnitudes of first eigenvector denoting the sensitivities of
parameters of WECC CMLD with respect to reactive power.

Fig. 8 shows the sufficient summary plots of real and
reactive power with respect to Wi 0;. The obvious linear
trends verify the effectiveness of active subspace.

4) PR Result Validation: To finally determine the dimen-
sion of reduced parameter space, we conduct the following

[

Real Power Output (P)

Reactive Power Output (Q)

Fig. 8.  Sufficient summary plots of (a) real and (b) reactive power with
respect to the active subspace using Mgy = 500 samples.

2.5 T T T T
2 - .
ALSH 1
S S iy
=" ~
= 1F J
Q
~
05k —Original i
- Perturbed (35 parameters with lowest weights)
Perturbed (49 parameters with lower weights)
—Perturbed (11 parameters with highest weights)
0 . ; T T
0.5 1 1.5 2
Time (s)

Fig. 9. Validation of PR result for real power of WECC CMLD, with different
combinations of parameters perturbed by twenty percent.

simulations on the WECC CMLD. We first add 20% of
positive perturbations to the insensitive parameters outside
the red rectangles of Fig. 6 and Fig. 7. The results are
shown as red lines in Fig. 9 and Fig. 10, respectively. Then,
we add same perturbations to the parameters outside both
rectangles to test whether restricting the PR result will lead
to significant accuracy improvement. The results are shown in
green dashed lines in Fig. 9 and Fig. 10. Finally, we add the
same perturbations to the most sensitive parameters in the red
rectangles, and the results are denoted in blue dotted lines.

From Fig. 9 and Fig. 10, we find that the real and reactive
power are sensitive to the parameters inside the red rectangles
and insensitive to the others. Moreover, including the parame-
ters inside the green rectangles as sensitive ones does not have
a noticeable impact on accuracy. Therefore, we can conclude
that the parameters of the WECC CMLD can be reduced to the
ones in the red rectangles only with almost the same dynamic
response, which verifies the effectiveness of ASM.

B. Case II: Influence of FIDVR on Reduction Result

In this subsection, we will test the performance of the
proposed method on FIDVR case which is obtained from real
utility data, as shown in Fig. 11. This case contains multi-phase
faults, including phase-to-phase, phase-to-phase-to-ground and
three-phase-to-ground faults. The other simulation setup is the
same as that in Case I.

Comparing the parameter sensitivity results in Fig. 12 and
Fig. 13 with Case I, we can find that the parameters of single-
phase motor become sensitive. This can be attributed to that
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Fig. 11. The load bus input profile of FIDVR case: (a) voltage magnitude;
(b) voltage angle; (c) frequency.

the single-phase motor plays an important role in capturing
the dynamics during the delayed-recovery stage. Same as in
Case I, 20% of perturbation is added to three parameter sets:
parameters with lowest sensitivities (outside all the rectangles
in Fig. 12 and Fig. 13), parameters with lower sensitivities
(outside the red rectangles), and most sensitive parameters
(inside the red rectangles). The comparison results in Fig.
14 and Fig. 15 show that the output of interest is altered
significantly in the calculated sensitive direction but is almost
not influenced when perturbing the insensitive parameters.
This verifies the effectiveness of our method on FIDVR case.

C. Case IlI: Comparison with Three Classical PR methods

In this subsection, the proposed ASM method is compared
with three representative and widely-used methods: FWKL
method [21], Sobel method [17] and Morris method In [9]. The
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Fig. 12. The parameter sensitivities of WECC CMLD with respect to active
power in FIDVR case.
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Fig. 13. The parameter sensitivities of WECC CMLD with respect to reactive
power in FIDVR case.
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Fig. 14. Validation of PR result for real power of WECC CMLD, with

different combinations of parameters perturbed by twenty percent

regularization parameter A of FWKL is chosen as 100. The
sample size of Monte Carlo simulation for Sobel method is
selected as Mgonel = 1500. The times of repetition for Morris
method is selected as Mpyiorris = 15. The other simulation
setups are the same as in Case L. Since the results of active and
reactive power are consistent, for simplicity, only the results
of active power are shown here.

The parameter sensitivities calculated by three methods are
shown in Fig. 16-18, respectively. We can observe that, Morris
method reduces least number of parameters, while Sobel
method reduces the most. Moreover, the identified sensitive
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parameter indices by Sobel are the most similar to those by
ASM. The result validation is conducted by adding 20% on
all sensitive and insensitive parameters sets, respectively. From
Fig. 19, we can observe that, the blue line (ASM) deviates
farthest away from the black line (original) in the sensitive
direction, and is closest to that in the insensitive one. This
indicates that ASM is the most accurate among the four
methods for this case.

Some key features of the four methods can be concluded as
Table. II. Note that the computational cost of ASM, Sobel and
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Fig. 19. Comparison of results validation of four methods by adding 20%
perturbation on: (a) sensitive parameters; (b) insensitive parameters.

Morris are considered in terms of the number of experiments.
FWKL is optimization-based, thus its computational cost
depends on the numbers of both iterations and experiments,
which makes it take more time than the other three methods.
To further compare the computational cost of ASM and Sobel
methods, we sequentially increase the Monte Carlo sample
sizes to observe the converge rate of parameter sensitivities.
Fig. 20 shows that the sensitivities obtained by ASM converge
after 500 samples, while Sobel needs about 1500 ones. As a
conclusion, the ASM is the most accurate with relatively lower
computational cost (than Sobel and FWKL methods).

V. CONCLUSIONS

A novel PR approach for the WECC CMLD is proposed
based on ASM. With this approach, the sensitivities of param-



TABLE II
COMPARISON OF KEY FEATURES OF THE FOUR PR METHODS.

Category Accuracy Interaction Computation
ASM Gradient, Accurate  Quantitative 2mMagm
Monte Carlo
FWKL  Optimization Rough Qualitative Depends
Sobel Variance, Accurate  Quantitative Mgopel (m+2)
Monte Carlo
Morris  OAT Rough Qualitative  Myrorris(m+1)
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eters are computed while the interdependency among the pa-
rameters is taken into consideration. By applying the proposed
algorithm to the WECC CMLD, the dimensions of parameter
spaces can be significantly reduced. The PR result is validated
by sufficient summary plot and perturbation tests with different
voltage cases. The comparison with other classical methods
has shown the advantages of the proposed method.

Note that the ASM requires scalar function which limits

its

application to vector-valued parameterized model whose

output is [P,Q]T. Therefore, it cannot be directly used to
analyze the parameter sensitivity for both real and reactive
power simultaneously. One may use a scalar to combine
them, however such output of interest may lack the physical
meaning. We would like trying to extend the scalar ASM to
deal with vector-valued functions in the future work.
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