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Abstract. We consider certain systems of three linked simultaneous diag-
onal equations in ten variables with total degree exceeding five. By means
of a complification argument, we obtain an asymptotic formula for the num-
ber of integral solutions of this system of bounded height that resolves the
associated paucity problem.

1. Introduction

In this note we investigate the simultaneous Diophantine equations

5∑
i=1

(xki − yki ) =
3∑
i=1

(xni − yni ) =
5∑
i=4

(xmi − ymi ) = 0, (1.1)

focusing our attention on the number Nk,m,n(B) of integral solutions x,y of
this system satisfying 1 6 xi, yi 6 B (1 6 i 6 5). These equations admit the
diagonal solutions with

{x1, x2, x3} = {y1, y2, y3} and {x4, x5} = {y4, y5},
contributing an amount

T (B) = (3!B3 +O(B2))(2!B2 +O(B)) = 12B5 +O(B4) (1.2)

to the total count Nk,m,n(B). Whether or not one should expect an abundance
of non-diagonal solutions to the system (1.1) depends on the triple (k,m, n).
Excluding from consideration the degenerate cases in which k ∈ {m,n}, the
goal of this paper is the characterisation of the triples (k,m, n) for which there
is a paucity of non-diagonal solutions.

Theorem 1.1. Suppose that (k,m, n) 6= (3, 1, 1), and further that neither
(k, n) = (2, 1) nor (k, n) = (1, 2). Then, for any positive number δ with
δ < 1/12, one has

Nk,m,n(B) = 12B5 +O(B5−δ).

In §2 we show that when (k, n) is either (2, 1) or (1, 2), one has

Nk,m,n(B)� B5 log(2B). (1.3)

Moreover, as a consequence of our earlier work [5], one may show that

N3,1,1(B)− T (B)� B5. (1.4)
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For all other triples (k,m, n) with k 6∈ {m,n}, it follows from Theorem 1.1
that

Nk,m,n(B) = T (B) + o(T (B)),

whence there is a paucity of non-diagonal solutions in the system (1.1).

It would be possible to extend our methods from the counting problem of
estimating Nk,m,n(B) to the associated problem of estimating the quantity
N±k,m,n(B), wherein the solutions of (1.1) are counted with |xi|, |yi| 6 B. By
weakening the condition 1 6 xi, yi 6 B so as to include also negative solutions
of (1.1), one encounters additional linear spaces of solutions, and thus the
asymptotic formula Nk,m,n(B) = 12B5 + O(B5−δ) must be replaced by the
relation

N±k,m,n(B) = ρk,m,nB
5 +O(B5−δ),

where ρk,m,n is a certain positive integer depending on the respective parities
of k, m and n. The exposition of our ideas would be significantly complicated
and lengthened by the associated combinatorial details, as much by additional
notation as anything of substance. Dedicated readers may check the details
for themselves.

Existing paucity results for a single equation in four variables, and for pairs
of equations in six variables, play a role in our proof of Theorem 1.1. However,
the ideas underlying such results would be insufficient by themselves to deliver
the conclusion of our theorem. We instead reach for the strategy described
in our recent work [5] concerning diagonal cubic equations with two linear
slices. This work, which addresses the case (k,m, n) = (3, 1, 1) of the system
(1.1), and yields an asymptotic formula confirming the lower bound (1.4),
involves an application of the Hardy-Littlewood method in combination with
a certain complification argument. Our approach in the present note once
again highlights the opportunity for powerful interplay between equations to
be exploited when analysing systems of many diagonal equations. We refer
the reader to [3] and [4] for earlier instances in which such an observation has
been utilised.

This paper is organised as follows. In §2 we introduce the infrastructure
required for the subsequent discussion, justifying en passant the relations (1.3)
and (1.4). A paucity result involving four m-th powers in §3 handily disposes
of triples (k,m, n) with m > 3. We examine in §4 an upper bound for the
number of non-zero integers h represented by the trailing block

xk4 − yk4 + xk5 − yk5 = h

xm4 − ym4 + xm5 − ym5 = 0

in (1.1). Thus equipped, we dispose of triples (k,m, n) with n > 3. The com-
plification process comes into play in §§5-7. Here, an application of Cauchy’s
inequality relates non-diagonal solutions in the system (1.1) to the number
of solutions of a related system in 12 variables having respective degrees k,
n and n. The simplest application of this idea handles triples (k,m, n) in §5
with n = 2. Then, in §6, a similar argument takes care of triples (k,m, n)
with n = 1 and k > 4. Our final case awaits our attention in §7, namely that
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with (k,m, n) = (3, 2, 1). In this situation we are forced to apply a crude ver-
sion of the Hardy-Littlewood method in concert with complification, drawing
inspiration from aspects of our treatment of the case (k,m, n) = (3, 1, 1) in [5].

Our basic parameter is B, a sufficiently large positive number. Whenever ε
appears in a statement, either implicitly or explicitly, we assert that the state-
ment holds for each ε > 0. In this paper, implicit constants in Vinogradov’s
notation � and � may depend on ε, k, m and n. We make frequent use of
vector notation in the form x = (x1, . . . , xr). Here, the dimension r depends
on the course of the argument. Finally, we write e(z) for e2πiz.

Acknowledgements: The authors acknowledge support by Akademie der
Wissenschaften zu Göttingen and Deutsche Forschungsgemeinschaft Project
Number 255083470. The second author’s work is supported by NSF grants
DMS-1854398 and DMS-2001549. We thank the referee for useful comments.

2. Infrastructure and the excluded cases

We fix a triple (k,m, n) with k 6∈ {m,n}. Defining the exponential sum

fk1,k2(α1, α2) =
∑

16x6B

e(α1x
k1 + α2x

k2),

it follows via orthogonality that

Nk,m,n(B) =

∫
[0,1)3
|fk,n(α, β)6fk,m(α, γ)4| dα, (2.1)

where we use α to denote (α, β, γ).

For the time-being, it suffices to decompose the mean value (2.1) by in-
troducing the auxiliary integrals u(h) = uk,n(h) and v(h) = vk,m(h), defined
by

u(h) =

∫
[0,1)2
|fk,n(α, β)|6e(−hα) dα dβ (2.2)

and

v(h) =

∫
[0,1)2
|fk,m(α, γ)|4e(−hα) dα dγ. (2.3)

Here, by orthogonality, one sees that u(h) counts the representations of the
integer h in the form

3∑
i=1

(xki − yki ) = h (2.4)

subject to
3∑
i=1

(xni − yni ) = 0, (2.5)

with 1 6 xi, yi 6 B (1 6 i 6 3). Likewise, we find from (2.3) that v(h) counts
the number of solutions of the system

xk1 + xk2 − yk1 − yk2 = h, (2.6)

xm1 + xm2 − ym1 − ym2 = 0, (2.7)
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with 1 6 xi, yi 6 B (i = 1, 2). Thus, since u(h) = u(−h), we see that

Nk,m,n(B) =
∑
|h|62Bk

u(h)v(h). (2.8)

We pause at this point to remark that, as a consequence of the work of the
first author joint with Blomer [1], one has the asymptotic formula

u2,1(0) = u1,2(0) =
18

π2
B3 logB +O(B3).

Moreover, when m 6= k, it follows that whenever x,y ∈ N2 and

xk1 + xk2 = yk1 + yk2
xm1 + xm2 = ym1 + ym2 ,

then {x1, x2} = {y1, y2}. This assertion may be confirmed either by elementary
arguments, or by reference to [10]. It follows that one has the asymptotic
relation

vk,m(0) = 2B2 +O(B). (2.9)

By substituting these estimates into (2.8), we conclude that

N2,m,1(B) > u2,1(0)v2,m(0)� B5 log(2B),

and likewise
N1,m,2(B) > u1,2(0)v1,m(0)� B5 log(2B).

The lower bound (1.3) follows.

The relation (1.4), though essentially immediate from [5], merits some dis-
cussion. In the latter source, it is shown that

N±3,1,1(B) = (45 + C)(2B)5 +O(B5−1/200),

where C > 0 is a product of local densities. Here, the constant 45 is associ-
ated with the number of linear spaces of solutions of the system (1.1) in the
case (k,m, n) = (3, 1, 1) generalising the diagonal solutions relevant to our
examination of N3,1,1(B). Excluding solutions of (1.1) involving negative in-
tegers simplifies the analysis of [5] somewhat, and thus one may proceed at a
pedestrian pace to obtain the asymptotic formula

N3,1,1(B) = (12 + C ′)B5 +O(B5−1/200),

where C ′ > 0 is the product of local densities associated with the system (1.1)
in the positive sector. In particular, in view of (1.2), one has the relation

N3,1,1(B)− T (B) ∼ C ′B5,

confirming the lower bound (1.4).

Having discussed the excluded cases, we proceed in the remainder of the
paper under the assumption that

(k, n) 6∈ {(2, 1), (1, 2)} and (k,m, n) 6= (3, 1, 1). (2.10)

Since also k 6∈ {m,n}, we may assume that one of the following holds:

(i) m > 3;
(ii) m ∈ {1, 2} and n > 3;
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(iii) m ∈ {1, 2}, n = 2 and k > 3;
(iv) m ∈ {1, 2}, n = 1 and k > 4;
(v) (k,m, n) = (3, 2, 1).

Notice that the first condition in (2.10) ensures, via available paucity results,
that

uk,n(0) = 6B3 +O(B8/3). (2.11)

A convenient reference for a result of this strength may be obtained by com-
bining [12, Theorem 1.2], when (k, n) = (3, 1), with [13, Theorem 1], when
(k, n) = (3, 2), and [8, Corollary 0.3], when k > 4. By combining this conclu-
sion with (2.9), we see from (2.8) that

Nk,m,n(B) = uk,n(0)vk,m(0) +
∑

16|h|62Bk

uk,n(h)vk,m(h)

= 12B5 +
∑

16|h|62Bk

uk,n(h)vk,m(h) +O(B14/3). (2.12)

Our task in the remaining sections is to analyse the sum on the right hand
side of (2.12). We claim that for the triples (k,m, n) classified in the cases (i)
to (v) above, for any positive number η < 1/12, one has∑

16|h|62Bk

uk,n(h)vk,m(h)� B5−η.

By substituting this estimate into (2.12), we infer that

Nk,m,n(B) = 12B5 +O(B5−η), (2.13)

and the conclusion of Theorem 1.1 follows.

3. Paucity for four m-th powers

Our first step towards the proof of Theorem 1.1 is the discussion of triples
(k,m, n) of type (i), with m > 3. Here we make use of available upper bounds
for the number wm(B) of solutions x,y of the equation

xm1 + xm2 = ym1 + ym2 ,

with {x1, x2} 6= {y1, y2} and 1 6 xi, yi 6 B (i = 1, 2).

Lemma 3.1. When m > 3, one has wm(B)� B5/3+ε.

Proof. Perhaps the most convenient references for this conclusion are the pa-
pers [6] and [7], respectively dealing with odd and even exponents m. More
recent developments can be perused in [9, Corollary 0.2] and the associated
discussion. �

We are now equipped to establish the main conclusion of this section.

Lemma 3.2. Suppose that (k, n) 6∈ {(2, 1), (1, 2)} and k 6∈ {m,n}. Then
whenever m > 3, one has

Nk,m,n(B)− 12B5 � B14/3+ε.
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Proof. Suppose that x,y is a solution of the equations (2.6) and (2.7) with
1 6 xi, yi 6 B (i = 1, 2). When {x1, x2} = {y1, y2}, one must have h = 0.
Thus, when h 6= 0, it follows that {x1, x2} 6= {y1, y2}, whence x,y is counted
by wm(B). In particular, one has∑

16|h|62Bk

vk,m(h) 6 wm(B)� B5/3+ε,

and consequently,∑
16|h|62Bk

uk,n(h)vk,m(h) 6

(
sup
h
uk,n(h)

) ∑
16|h|62Bk

vk,m(h)

� B5/3+ε sup
h
uk,n(h). (3.1)

By the triangle inequality, it follows from (2.2) that

sup
h
uk,n(h) 6

∫
[0,1)2
|fk,n(α, β)|6 dα dβ = uk,n(0).

Thus, on substituting this estimate into (3.1) and recalling (2.11), we find that∑
16|h|62Bk

uk,n(h)vk,m(h)� B5/3+ε ·B3 = B14/3+ε.

The conclusion of the lemma is now immediate from (2.12). �

4. An upper bound for v(h)

We next consider triples (k,m, n) of type (ii), with m ∈ {1, 2} and n > 3.
Our strategy applies bounds for vk,m(h) going beyond square-root cancellation.

Lemma 4.1. Suppose that h 6= 0. Then

(i) when k > 2, one has vk,1(h)� |h|ε;
(ii) when k 6= 2, one has vk,2(h)� B1+ε;
(iii) one has v2,1(h)� |h|εB.

Proof. When m = 1 and k > 2, the validity of equations (2.6) and (2.7) implies
first that

x2 = y1 + y2 − x1, (4.1)

and hence that
(y1 + y2 − x1)k − (yk1 + yk2 − xk1) = h. (4.2)

The polynomial on the left hand side here has factors y1−x1 and y2−x1, and
hence there is a polynomial Ψ1 ∈ Z[s1, s2, s3] of degree k − 2 for which

(y1 − x1)(y2 − x1)Ψ1(y1, y2, x1) = h.

We therefore see that y1 − x1, y2 − x1 and Ψ1(y1, y2, x1) are all divisors of
the non-zero integer h. There are O(|h|ε) such divisors, say d1 = y1 − x1,
d2 = y2 − x1 and d3 = Ψ1(y1, y2, x1), whence

y1 = x1 + d1, y2 = x1 + d2 and Ψ1(x1 + d1, x1 + d2, x1) = d3. (4.3)
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An examination of (4.2) reveals that

(x1 + d1 + d2)
k − (x1 + d1)

k − (x1 + d2)
k + xk1 = d1d2Ψ1(x1 + d1, x1 + d2, x1),

and so a consideration of the second forward difference polynomial associated
with xk reveals that Ψ1(x1 + d1, x1 + d2, x1) is non-constant as a polynomial in
x1. For each fixed one of the O(|h|ε) possible choices for d1, d2, d3, it therefore
follows from the final equation in (4.3) that there are O(1) possible choices for
x1. From here, by back substituting first into (4.3), and thence into (4.1), we
find that x1, x2, y1, y2 are all fixed. Thus indeed vk,1(h)� |h|ε, and the proof
of the lemma is complete in case (i).

In case (iii) we may proceed in like manner, though in this case we find that
Ψ1 = 2. We therefore have as many as O(B) choices remaining available for
x1, and so we arrive at the weaker upper bound v2,1(h)� |h|εB.

Finally, we examine the situation with m = 2. Notice first that when x1 = x2
and 2xk1 = h, then equation (2.6) simplifies to yk1+yk2 = 0, and this is impossible
because y1, y2 ∈ N. It follows that either 2xk1 6= h or 2xk2 6= h, and we may
assume the latter by symmetry. We now substitute the equation

x22 = y21 + y22 − x21 (4.4)

for (4.1), and thus infer that in place of (4.2) we have the equation

(y21 + y22 − x21)k − (yk1 + yk2 − xk1)2 = (x22)
k − (xk2 − h)2

= h(2xk2 − h).

The polynomial on the left hand side here has factors y1−x1 and y2−x1, and
hence there is a polynomial Ψ2 ∈ Z[s1, s2, s3] of degree 2k − 2 for which

(y1 − x1)(y2 − x1)Ψ2(y1, y2, x1) = h(2xk2 − h). (4.5)

Observe from (2.6) that vk,2(h) = 0 unless |h| 6 2Bk. Thus, for each fixed
choice of x2 with 1 6 x2 6 B in question, we may suppose that the right hand
side of (4.5) is a fixed non-zero integer N with N � B2k. The integers y1−x1,
y2 − x1 and Ψ2(y1, y2, x1) are each divisors of N , and hence there are O(|N |ε)
such divisors, say

d1 = y1 − x1, d2 = y2 − x1 and d3 = Ψ2(y1, y2, x1). (4.6)

We now find from (4.4) that

(x1 + d1)
2 + (x1 + d2)

2 − x21 = x22,

whence

(x1 + d1 + d2)
2 = x22 + 2d1d2.

With x2 already fixed, it follows that for each fixed one of the O(Bε) possible
choices for d1, d2 and d3, the choice for x1 is fixed by this last equation. The
variables y1 and y2 are then fixed via (4.6), and we conclude that vk,2(h) �
B1+ε. This completes the proof of part (ii), and hence also the lemma. �

The conclusion of Theorem 1.1 in case (ii) is now obtained in a straightfor-
ward manner by appealing to Hua’s lemma.
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Lemma 4.2. Suppose that m ∈ {1, 2}, k 6∈ {m,n} and n > 3. Then one has

Nk,m,n(B)− 12B5 � B14/3.

Proof. It follows from Lemma 4.1 that

max
16|h|62Bk

vk,m(h)� B1+ε.

On substituting this estimate into (2.12), we infer that

Nk,m,n(B)− 12B5 � B14/3 +B1+ε
∑
h∈Z

uk,n(h). (4.7)

The last sum here counts the number of integral solutions of the equation

3∑
i=1

(xni − yni ) = 0,

with 1 6 xi, yi 6 B (1 6 i 6 3). By orthogonality, an application of Schwarz’s
inequality, and the invocation of Hua’s lemma (see [11, Lemma 2.5]), we obtain
the standard estimate ∫ 1

0

∣∣∣ ∑
16x6B

e(αxn)
∣∣∣6 dα� B7/2+ε

for this quantity. On substituting this upper bound into (4.7), we conclude
that

Nk,m,n(B)− 12B5 � B14/3 +B1+ε ·B7/2+ε � B14/3,

and the proof of the lemma is complete. �

5. A cheap complification argument when n = 2

Our purpose in this section is to handle triples of type (iii), wherein we
may suppose that m ∈ {1, 2}, n = 2 and k > 3. This we achieve through
a complification argument the prosecution of which requires several auxiliary
mean value estimates. We now supply these estimates.

Lemma 5.1. Suppose that m ∈ {1, 2} and k > 3. Then one has∑
16|h|62Bk

vk,m(h)2 � B3+ε.

Proof. By Lemma 4.1, one has∑
16|h|62Bk

vk,m(h)2 � Bm−1+ε
∑
h∈Z

vk,m(h). (5.1)

On recalling (2.6) and (2.7), we see that the sum on the right hand side here
is bounded above by the number of solutions of the equation

xm1 + xm2 = ym1 + ym2 ,

with 1 6 xi, yi 6 B. When m = 1 this is plainly O(B3), whilst for m = 2 it
follows from Hua’s lemma that the number of solutions is O(B2+ε) (see [11,



A PAUCITY PROBLEM 9

Lemma 2.5]). Thus, in either case, the number of solutions is O(B4−m+ε), and
we conclude from (5.1) that∑

16|h|62Bk

vk,m(h)2 � Bm−1+ε ·B4−m+ε � B3+2ε.

This completes the proof of the lemma. �

Next we record an upper bound available from recent work associated with
Vinogradov’s mean value theorem.

Lemma 5.2. Suppose that k > 3. Then one has∫ 1

0

∫ 1

0

|fk,2(α, β)|12 dα dβ � B7+ε.

Proof. This is a special case of [14, Theorem 14.1], though the proof is simple
and transparent enough to provide here in full. Write

c(α) =
∑

16x6B

e(αxk + βx2 + γx).

Then we deduce via the triangle inequality and orthogonality that∫ 1

0

∫ 1

0

|fk,2(α, β)|12 dα dβ =
∑
|l|66B

∫
[0,1)3
|c(α)|12e(−lγ) dα

� B

∫
[0,1)3
|c(α)|12 dα.

By [14, Corollary 1.2], the last integral is O(B6+ε), and so the desired conclu-
sion follows at once. �

Now we come to the proof of Theorem 1.1 in the case (iii).

Lemma 5.3. Suppose that m ∈ {1, 2} and k > 3. Then one has

Nk,m,2(B)− 12B5 � B14/3+ε.

Proof. An application of Cauchy’s inequality in combination with Lemma 5.1
yields the bound∑

16|h|62Bk

uk,2(h)vk,m(h) 6
( ∑
16|h|62Bk

vk,m(h)2
)1/2(∑

h∈Z

uk,2(h)2
)1/2

� (B3+ε)1/2
(∑
h∈Z

uk,2(h)2
)1/2

. (5.2)

On recalling (2.4) and (2.5), the sum on the right hand side here may be reinter-
preted in terms of a Diophantine equation. Thus, it follows via orthogonality,
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Schwarz’s inequality and symmetry that∑
h∈Z

uk,2(h)2 =

∫
[0,1)3
|fk,2(α, β)fk,2(α, γ)|6 dα

6
∫
[0,1)3
|fk,2(α, β)8fk,2(α, γ)4| dα. (5.3)

Observe that by orthogonality in league with the triangle inequality,

sup
α∈R

∫ 1

0

|fk,2(α, γ)|4 dγ 6
∫ 1

0

|fk,2(0, γ)|4 dγ � B2+ε,

wherein we interpreted the second integral as the number of solutions of the
equation x21 + x22 = y21 + y22 with 1 6 xi, yi 6 B, and applied Hua’s lemma.
Returning to (5.3) and applying Hölder’s inequality, therefore, we find that∑

h∈Z

uk,2(h)2 � B2+ε

∫ 1

0

∫ 1

0

|fk,2(α, β)|8 dα dβ

� B2+εI
2/3
6 I

1/3
12 ,

where

It =

∫ 1

0

∫ 1

0

|fk,2(α, β)|t dα dβ.

By orthogonality, we see from (2.11) that

I6 = uk,2(0)� B3,

whilst Lemma 5.2 delivers the bound I12 � B7+ε. Thus we deduce that∑
h∈Z

uk,2(h)2 � B2+ε(B3)2/3(B7+ε)1/3 � B19/3+2ε.

Finally, by substituting the last bound into (5.2), we arrive at the estimate∑
16|h|62Bk

uk,2(h)vk,m(h)� (B3+ε)1/2(B19/3+ε)1/2 � B14/3+ε.

This, when substituted into (2.12), delivers the relation

Nk,m,2(B)− 12B5 � B14/3+ε,

and this completes the proof of the lemma. �

6. A cheap complification argument when n = 1 and k > 4

The analysis of triples of type (iv) is similar to that applied in the previous
section for triples of type (iii). We now suppose that n = 1 and k > 4, however,
which prevents appeal to the relatively powerful mean value estimates for
quadratic Weyl sums available when n = 2. We again begin with an auxiliary
mean value estimate.
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Lemma 6.1. Suppose that k > 4. Then one has∫
[0,1)3
|fk,1(α, β)6fk,1(α, γ)14| dα� B14+ε.

Proof. Write
F (α) = |fk,1(α, β)6fk,1(α, γ)14|.

Then by applying the elementary inequality |z41z122 | 6 |z1|16 + |z2|16, we obtain

F (α) 6 |fk,1(α, β)18fk,1(α, γ)2|+ |fk,1(α, β)2fk,1(α, γ)18|.
Thus, by symmetry and orthogonality, we find that∫

[0,1)3
F (α) dα 6 2

∫ 1

0

∫ 1

0

|fk,1(α, β)|18
∫ 1

0

|fk,1(α, γ)|2 dγ dβ dα

6 2B

∫ 1

0

∫ 1

0

|fk,1(α, β)|18 dα dβ.

The last integral is the subject of [2, Lemma 5], which shows that∫ 1

0

∫ 1

0

|fk,1(α, β)|2j+2 dα dβ � B2j−j+1+ε (2 6 j 6 k).

Thus, by applying this estimate with j = 4, we deduce that∫
[0,1)3
|fk,1(α, β)6fk,1(α, γ)14| dα� B ·B13+ε = B14+ε.

This completes the proof of the lemma. �

We may now tackle the main conclusion of this section.

Lemma 6.2. Suppose that m ∈ {1, 2} and k > 4. Then one has

Nk,m,1(B)− 12B5 � B49/10+ε.

Proof. Just as in the initial stages of the proof of Lemma 5.3, an application
of Cauchy’s inequality in combination with Lemma 5.1 yields the bound∑

16|h|62Bk

uk,1(h)vk,m(h)� (B3+ε)1/2
(∑
h∈Z

uk,1(h)2
)1/2

. (6.1)

The sum on the right hand side here may be again reinterpreted as the number
of solutions of a Diophantine system, and thence by orthogonality and Hölder’s
inequality we obtain∑

h∈Z

uk,1(h)2 =

∫
[0,1)3
|fk,1(α, β)fk,1(α, γ)|6 dα 6 T

4/5
1 T

1/5
2 , (6.2)

where

T1 =

∫
[0,1)3
|fk,1(α, β)6fk,1(α, γ)4| dα

and

T2 =

∫
[0,1)3
|fk,1(α, β)6fk,1(α, γ)14| dα.
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By orthogonality, one sees that T1 = Nk,1,1(B), whilst by Lemma 6.1 we
have T2 � B14+ε. On substituting these estimates into (6.2) and thence into
(6.1), we see that∑

16|h|62Bk

uk,1(h)vk,m(h)� (B3+ε)1/2 (Nk,1,1(B))2/5 (B14+ε)1/10,

so that, as a consequence of (2.12),

Nk,m,1(B)− 12B5 � B14/3 +B29/10+ε (Nk,1,1(B))2/5 . (6.3)

This estimate applies when m = 1, and hence in particular one finds that

Nk,1,1(B)� B5 +B29/10+ε (Nk,1,1(B))2/5 ,

whence Nk,1,1(B)� B5. By substituting this upper bound back into (6.3), we
infer that

Nk,m,1(B)− 12B5 � B14/3 +B29/10+ε(B5)2/5 � B49/10+ε.

This completes the proof of the lemma. �

7. An application of the Hardy-Littlewood method

The final case (v) concerns the only remaining triple not already covered
in cases (i) to (iv), namely the triple (k,m, n) = (3, 2, 1). For this we must
modify the treatment of §6 by introducing some crude estimates pertaining to
the minor arcs of a Hardy-Littlewood dissection.

We define our Hardy-Littlewood dissection as follows. Take δ to be any
positive number with δ < 1/3, and let M denote the union of the intervals

M(q, a) = {α ∈ [0, 1) : |qα− a| 6 Bδ−3}, (7.1)

with 0 6 a 6 q 6 Bδ and (a, q) = 1. The complementary set of minor arcs is
then m = [0, 1) \M. On writing

N(B;B) =

∫
B

∫ 1

0

∫ 1

0

|f3,1(α, β)6f3,2(α, γ)4| dγ dβ dα, (7.2)

we see that

N3,2,1(B) = N(B;M) +N(B;m). (7.3)

We also define the auxiliary integral

u(h;B) =

∫
B

∫ 1

0

|f3,1(α, β)|6e(−hα) dβ dα.

In view of the definition of v(h) = v3,2(h) via (2.6) and (2.7), we then have∑
|h|62B3

u(h;B)v(h) =
∑
x,y

∫
B

∫ 1

0

|f3,1(α, β)|6e(−(x31 + x32 − y31 − y32)α) dβ dα,
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where the summation over x and y is subject to the conditions 1 6 xi, yi 6 B
(i = 1, 2) and x21+x22 = y21+y22. Thus, by employing orthogonality and recalling
(7.2), we discern that

N(B;B) =
∑
|h|62B3

u(h;B)v(h). (7.4)

In general terms, our strategy makes use of a complification step resembling
that used in both §§5 and 6. However, our use of a Hardy-Littlewood dissec-
tion necessitates that special attention be paid to the diagonal contribution
restricted to minor arcs.

Lemma 7.1. One has u(0;m) = 6B3 +O(B8/3).

Proof. On recalling (2.11), we find that

u(0; [0, 1)) = u3,1(0) = 6B3 +O(B8/3).

In view of (7.1), we see that mes(M) = O(B2δ−3), meanwhile, and hence we
deduce via orthogonality that

u(0;M) =

∫
M

∑
16xi,yi6B

x1+x2+x3=y1+y2+y3

e(α(x31 + x32 + x33 − y31 − y32 − y33)) dα

� B5mes(M)� B2+2δ.

Thus we conclude that

u(0;m) = u(0; [0, 1))− u(0;M) = 6B3 +O(B8/3).

This completes the proof of the lemma. �

A similarly crude estimate for the major arc contribution handles N(B;M).

Lemma 7.2. One has N(B;M)� B4+2δ+ε.

Proof. By orthogonality, it follows from (7.2) that

N(B;M) =
∑
x,y

∫
M

e
(
α

5∑
i=1

(x3i − y3i )
)

dα,

where the summation is over 5-tuples x, y with 1 6 xi, yi 6 B subject to the
conditions

3∑
i=1

(xi − yi) =
5∑
i=4

(x2i − y2i ) = 0.

The number of choices for xi and yi (1 6 i 6 3) is plainly O(B5). Meanwhile,
by applying Hua’s lemma (see [11, Lemma 2.5]) on a by now well-trodden
path, the number of choices for xj, yj (j = 4, 5) is O(B2+ε). Thus we deduce
via the triangle inequality that

N(B;M)� B5 ·B2+εmes(M)� B7+ε ·B2δ−3,

and the conclusion of the lemma follows. �
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We are now equipped to establish the final case of Theorem 1.1.

Lemma 7.3. One has

N3,2,1(B)− 12B5 � B5−δ/4+ε.

Proof. In view of (7.3) and Lemma 7.2, we have

N3,2,1(B) = N(B;m) +O(B4+2δ+ε).

Then by (7.4), we deduce that

N3,2,1(B) = u(0;m)v(0) + Ξ +O(B4+2δ+ε),

where
Ξ =

∑
16|h|62B3

u(h;m)v(h).

By wielding (2.9) in combination with Lemma 7.1, we may conclude thus far
that

N3,2,1(B) = (6B3 +O(B8/3))(2B2 +O(B)) +O(B4+2δ+ε) + Ξ,

whence
N3,2,1(B)− 12B5 � B14/3 + Ξ. (7.5)

Next we recall Lemma 5.1 and apply the inequalities of Cauchy and Bessel
to obtain the upper bound

Ξ2 � B3+ε
∑
|h|62B3

|u(h;m)|2 � B3+ε

∫
m

(∫ 1

0

|f3,1(α, β)|6 dβ
)2

dα. (7.6)

As a consequence of Weyl’s inequality (see [11, Lemma 2.4]), one has

sup
α∈m

sup
β∈R
|f3,1(α, β)| � B1−δ/4+ε.

Thus, by making use of orthogonality and [5, Theorem 1.1], we obtain the
bound∫

m

(∫ 1

0

|f3,1(α, β)|6 dβ
)2

dα� (B1−δ/4+ε)2
∫
[0,1)3
|f3,1(α, β)6f3,1(α, γ)4| dα

= B2−δ/2+2εN3,1,1(B)

� B7−δ/2+2ε.

By substituting this estimate into (7.6), we arrive at the bound Ξ� B5−δ/4+ε,
and hence (7.5) delivers the relation

N3,2,1(B)− 12B5 � B14/3 +B5−δ/4+ε.

The conclusion of the lemma follows on recalling our hypothesis that δ is any
positive number smaller than 1/3. �

This completes the proof of the last case of Theorem 1.1, namely case (v).
We now discern via Lemmata 3.2, 4.2, 5.3, 6.2 and 7.3 that in cases (i) to (v)
we have the estimate (2.13). Thus, as discussed in the sequel to that equation,
the conclusion of Theorem 1.1 is confirmed.
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