A PAUCITY PROBLEM FOR CERTAIN TRIPLES OF
DIAGONAL EQUATIONS

JORG BRUDERN AND TREVOR D. WOOLEY

ABSTRACT. We consider certain systems of three linked simultaneous diag-
onal equations in ten variables with total degree exceeding five. By means
of a complification argument, we obtain an asymptotic formula for the num-
ber of integral solutions of this system of bounded height that resolves the
associated paucity problem.

1. INTRODUCTION

In this note we investigate the simultaneous Diophantine equations
5 3 5
b=y =D -y =D @' —y") =0, (1.1)
i=1 i=1 i=4
focusing our attention on the number Ny, ,(B) of integral solutions x,y of
this system satisfying 1 < z;,y; < B (1 < i < 5). These equations admit the
diagonal solutions with

{xlvx%x?)} = {3/171/2793} and {.’I’4,QZ5} = {y47y5}7
contributing an amount
T(B) = (3!B* + O(B*)(2!'B* + O(B)) = 12B° + O(B*) (1.2)

to the total count Ny, ,,(B). Whether or not one should expect an abundance
of non-diagonal solutions to the system (1.1) depends on the triple (k, m,n).
Excluding from consideration the degenerate cases in which k£ € {m,n}, the
goal of this paper is the characterisation of the triples (k, m,n) for which there
is a paucity of non-diagonal solutions.

Theorem 1.1. Suppose that (k,m,n) # (3,1,1), and further that neither
(k,n) = (2,1) nor (k,n) = (1,2). Then, for any positive number o with
§ < 1/12, one has

Ninn(B) = 12B° + O(B>™).

In §2 we show that when (k, n) is either (2,1) or (1,2), one has

Nimn(B) > B®log(2B). (1.3)
Moreover, as a consequence of our earlier work [5], one may show that
N311(B) —T(B) > B°. (1.4)
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For all other triples (k,m,n) with k & {m,n}, it follows from Theorem 1.1
that

Niema(B) =T(B) + o(T(B)),
whence there is a paucity of non-diagonal solutions in the system (1.1).

It would be possible to extend our methods from the counting problem of
estimating Nj ,,,(B) to the associated problem of estimating the quantity
N,fm’n(B), wherein the solutions of (1.1) are counted with |z;|, |y;| < B. By
weakening the condition 1 < x;,y; < B so as to include also negative solutions
of (1.1), one encounters additional linear spaces of solutions, and thus the
asymptotic formula Ny,,.(B) = 12B° + O(B>7%) must be replaced by the
relation

NE  (B) = prmnB® +O(B*7?),

k,m,n
where py . 15 a certain positive integer depending on the respective parities
of £, m and n. The exposition of our ideas would be significantly complicated
and lengthened by the associated combinatorial details, as much by additional
notation as anything of substance. Dedicated readers may check the details
for themselves.

Existing paucity results for a single equation in four variables, and for pairs
of equations in six variables, play a role in our proof of Theorem 1.1. However,
the ideas underlying such results would be insufficient by themselves to deliver
the conclusion of our theorem. We instead reach for the strategy described
in our recent work [5] concerning diagonal cubic equations with two linear
slices. This work, which addresses the case (k,m,n) = (3,1,1) of the system
(1.1), and yields an asymptotic formula confirming the lower bound (1.4),
involves an application of the Hardy-Littlewood method in combination with
a certain complification argument. Our approach in the present note once
again highlights the opportunity for powerful interplay between equations to
be exploited when analysing systems of many diagonal equations. We refer
the reader to [3] and [4] for earlier instances in which such an observation has
been utilised.

This paper is organised as follows. In §2 we introduce the infrastructure
required for the subsequent discussion, justifying en passant the relations (1.3)
and (1.4). A paucity result involving four m-th powers in §3 handily disposes
of triples (k,m,n) with m > 3. We examine in §4 an upper bound for the
number of non-zero integers h represented by the trailing block

xy =Yy + a5 —ys =h

vy =yl g =y =0
n (1.1). Thus equipped, we dispose of triples (k,m,n) with n > 3. The com-
plification process comes into play in §§5-7. Here, an application of Cauchy’s
inequality relates non-diagonal solutions in the system (1.1) to the number
of solutions of a related system in 12 variables having respective degrees k,
n and n. The simplest application of this idea handles triples (k,m,n) in §5

with m = 2. Then, in §6, a similar argument takes care of triples (k,m,n)
with n = 1 and k£ > 4. Our final case awaits our attention in §7, namely that
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with (k,m,n) = (3,2,1). In this situation we are forced to apply a crude ver-
sion of the Hardy-Littlewood method in concert with complification, drawing
inspiration from aspects of our treatment of the case (k,m,n) = (3,1,1) in [5].
Our basic parameter is B, a sufficiently large positive number. Whenever ¢
appears in a statement, either implicitly or explicitly, we assert that the state-
ment holds for each € > 0. In this paper, implicit constants in Vinogradov’s
notation < and > may depend on ¢, k, m and n. We make frequent use of
vector notation in the form x = (z1,...,x,). Here, the dimension r depends
on the course of the argument. Finally, we write e(z) for e?™=.
Acknowledgements: The authors acknowledge support by Akademie der
Wissenschaften zu Gottingen and Deutsche Forschungsgemeinschaft Project
Number 255083470. The second author’s work is supported by NSF grants
DMS-1854398 and DMS-2001549. We thank the referee for useful comments.

2. INFRASTRUCTURE AND THE EXCLUDED CASES

We fix a triple (k,m,n) with & € {m,n}. Defining the exponential sum
frr o (01, 02) = Z el + ana™),

1<x<B
it follows via orthogonality that
Newn(B) = [ a0 8) fin(o,7)' de, 1)
0,1

where we use ¢ to denote (a, 3,7).

For the time-being, it suffices to decompose the mean value (2.1) by in-
troducing the auxiliary integrals u(h) = uy,(h) and v(h) = vi,(h), defined
by

ulh) = [ |fenlar )e(~ha) dads (22)
[0,1)2
and

o(h) = /[ | Vnfao )l e(—ha) da (23)

Here, by orthogonality, one sees that u(h) counts the representations of the

integer h in the form
3

S @k -y =h (2.4)
i=1
subject to

(i —yi') =0, (2.5)

agl

with 1 < 2, 9; < B (1 <4 < 3). Likewise, we find from (2.3) that v(h) counts
the number of solutions of the system

oy +ah —yf —yk =h,

o' +ay —yt —yy =0, (2.7)
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with 1 < z;,y; < B (i = 1,2). Thus, since u(h) = u(—h), we see that
Nema(B) = > u(h)v(h). (2.8)
|h|<2B*
We pause at this point to remark that, as a consequence of the work of the
first author joint with Blomer [1], one has the asymptotic formula
18 . .
Ug}l(O) = U/LQ(O) = FBJ IOg B+ O(Bd)
Moreover, when m # k, it follows that whenever x,y € N? and
R S T
o oy =yt
then {x1, 22} = {y1,y2}. This assertion may be confirmed either by elementary
arguments, or by reference to [10]. It follows that one has the asymptotic
relation
Ve.m(0) = 2B + O(B). (2.9)
By substituting these estimates into (2.8), we conclude that
Nomi(B) = ug,1(0)vgm,(0) > B log(2B),
and likewise
Nim2(B) = u12(0)v1,,(0) > B®log(2B).
The lower bound (1.3) follows.

The relation (1.4), though essentially immediate from [5], merits some dis-
cussion. In the latter source, it is shown that

N3 1(B) = (45 +C)(2B)° + O(B51/200y,

where C > 0 is a product of local densities. Here, the constant 45 is associ-
ated with the number of linear spaces of solutions of the system (1.1) in the
case (k,m,n) = (3,1,1) generalising the diagonal solutions relevant to our
examination of N3, 1(B). Excluding solutions of (1.1) involving negative in-
tegers simplifies the analysis of [5] somewhat, and thus one may proceed at a
pedestrian pace to obtain the asymptotic formula

N311(B) = (12+C)B® + O(B*~'/?%),
where C' > 0 is the product of local densities associated with the system (1.1)
in the positive sector. In particular, in view of (1.2), one has the relation
N311(B)—T(B) ~C'B,
confirming the lower bound (1.4).

Having discussed the excluded cases, we proceed in the remainder of the
paper under the assumption that

(k,m) ¢ {(2,1),(1,2)} and  (k,m,n) # (3,1,1). (2.10)
Since also k € {m,n}, we may assume that one of the following holds:

(i) m > 3;
(ii) m € {1,2} and n > 3;
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(i) m € {1,2}, n =2 and k > 3;

(iv) me {1,2},n=1and k > 4;

(v) (k,m,n) = (3,2,1).

Notice that the first condition in (2.10) ensures, via available paucity results,
that

up,(0) = 683 + O(B%?). (2.11)

A convenient reference for a result of this strength may be obtained by com-
bining [12, Theorem 1.2], when (k,n) = (3,1), with [13, Theorem 1], when
(k,n) = (3,2), and [8, Corollary 0.3], when k£ > 4. By combining this conclu-
sion with (2.9), we see from (2.8) that

Nk,m,n(B) = ukz,n(o)vk,m(o) + Z uk,n(h)vk,m(h)
1<|h|<2Bk
=12B°+ ) wpn(h)vem(h) + O(B™?). (2.12)
1<|h|<2Bk

Our task in the remaining sections is to analyse the sum on the right hand
side of (2.12). We claim that for the triples (k,m,n) classified in the cases (i)
to (v) above, for any positive number 7 < 1/12, one has

Z uk,n(h)vk,m(h) < B5—77.
1<|h|<2Bk
By substituting this estimate into (2.12), we infer that
Nimn(B) = 12B° + O(B>™), (2.13)

and the conclusion of Theorem 1.1 follows.

3. PAUCITY FOR FOUR m-TH POWERS

Our first step towards the proof of Theorem 1.1 is the discussion of triples
(k,m,n) of type (i), with m > 3. Here we make use of available upper bounds
for the number w,,(B) of solutions x,y of the equation

'+ xy =y + Yy
with {z1, 22} # {1, 92} and 1 < z;,y; < B (i = 1,2).
Lemma 3.1. When m > 3, one has w,,(B) < B*/3*<.

Proof. Perhaps the most convenient references for this conclusion are the pa-
pers [6] and [7], respectively dealing with odd and even exponents m. More
recent developments can be perused in [9, Corollary 0.2] and the associated
discussion. 0J

We are now equipped to establish the main conclusion of this section.

Lemma 3.2. Suppose that (k,n) & {(2,1),(1,2)} and k & {m,n}. Then
whenever m > 3, one has

Nimn(B) — 12B° < BY/3+<,
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Proof. Suppose that x,y is a solution of the equations (2.6) and (2.7) with
1 <,y < B (i =1,2). When {z1,22} = {y1,92}, one must have h = 0.
Thus, when h # 0, it follows that {x1, 22} # {y1,y2}, whence x,y is counted
by wy,(B). In particular, one has

> vgm(h) < wp(B) < B3,
1<|h|<2B*
and consequently,
> upn(B)vkm(h) < (supukm(h)) > vm(h)
1<|h|<2Bk h 1<|h|<2Bk

< B3 supuy,,(h). (3.1)
h
By the triangle inequality, it follows from (2.2) that

sup o n(h) < / il B)]° dadB = wgn (0).
h [0,1)2

Thus, on substituting this estimate into (3.1) and recalling (2.11), we find that
Z U (W)U (h) < B35 . B3 = Bl4/3+¢,
1<|h|<2Bk*

The conclusion of the lemma is now immediate from (2.12). O

4. AN UPPER BOUND FOR v(h)

We next consider triples (k,m,n) of type (ii), with m € {1,2} and n > 3.
Our strategy applies bounds for vy ,, (k) going beyond square-root cancellation.

Lemma 4.1. Suppose that h # 0. Then
(i) when k > 2, one has vi1(h) < |h|°;
(ii) when k # 2, one has vg2(h) < B¢,
(ili) one has va1(h) < |h|°B.
Proof. When m = 1 and k > 2, the validity of equations (2.6) and (2.7) implies
first that
Ty = Y1+ Y2 — T, (4.1)
and hence that
(1 + 42 —21)" — (uf + 5 — 2f) = h. (4.2)
The polynomial on the left hand side here has factors y; — x; and y, — 1, and
hence there is a polynomial W € Z[sq, s9, s3] of degree k — 2 for which

(yl - 551)(92 - 331)‘111(3/1, Ya, IB1) = h.

We therefore see that y; — x1, yo — x1 and Uy (y1,y2,z1) are all divisors of
the non-zero integer h. There are O(|h|?) such divisors, say dy = y1 — 1,
dy = yo — 1 and d3 = ‘1’1(2/17312,961)7 whence

y=x1+di, Ye=2x1+ds and Vy(x;+dy,x1+do, 1) = ds. (4.3)
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An examination of (4.2) reveals that
(1 4 dy + do)¥ — (21 + d1)* — (21 + do)* + 2} = didy Wy () + dy, 21 + da, 1),

and so a consideration of the second forward difference polynomial associated
with ¥ reveals that Uy (21 +dq, x1 + da, 1) is non-constant as a polynomial in
x1. For each fixed one of the O(|h|%) possible choices for dy, ds, ds, it therefore
follows from the final equation in (4.3) that there are O(1) possible choices for
x1. From here, by back substituting first into (4.3), and thence into (4.1), we
find that x1, z2, y1, Yo are all fixed. Thus indeed vy 1(h) < |h|%, and the proof
of the lemma is complete in case (i).

In case (iii) we may proceed in like manner, though in this case we find that
U, = 2. We therefore have as many as O(B) choices remaining available for
z1, and so we arrive at the weaker upper bound vy (h) < |h|°B.

Finally, we examine the situation with m = 2. Notice first that when z; = x4
and 22% = h, then equation (2.6) simplifies to y¥+y5 = 0, and this is impossible
because y1,y € N. It follows that either 22% # h or 225 # h, and we may
assume the latter by symmetry. We now substitute the equation

v =y Y — (4.4)
for (4.1), and thus infer that in place of (4.2) we have the equation
(Wi + 95— 29)" — (h + 95 — 21)? = (23)" — (a5 — h)?
= h(2z5 — h).

The polynomial on the left hand side here has factors y; — x; and y, — 1, and
hence there is a polynomial Wy € Z[sq, sq, s3] of degree 2k — 2 for which

(1 — 1) (Y2 — 21)Waly1, y2, 1) = h(2$l§ — h). (4.5)

Observe from (2.6) that vy 2(h) = 0 unless |h| < 2B*. Thus, for each fixed
choice of x5 with 1 < x5 < B in question, we may suppose that the right hand
side of (4.5) is a fixed non-zero integer N with N < B?*. The integers y; — 71,
y2 — o1 and Wy(y1, ye, 1) are each divisors of N, and hence there are O(|N|?)
such divisors, say

dy=y1—x1, dy=ys—x1 and ds=Vy(y1,y2,71). (4.6)
We now find from (4.4) that
(21 + d1)* + (21 + do)* — 2] = a3,
whence
(z1 + dy + do)* = 23 + 2d,ds.
With x4 already fixed, it follows that for each fixed one of the O(B¢) possible
choices for dy, dy and d3, the choice for z; is fixed by this last equation. The

variables y; and y, are then fixed via (4.6), and we conclude that vgo(h) <
B*¢. This completes the proof of part (ii), and hence also the lemma. O

The conclusion of Theorem 1.1 in case (ii) is now obtained in a straightfor-
ward manner by appealing to Hua’s lemma.
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Lemma 4.2. Suppose that m € {1,2}, k & {m,n} and n > 3. Then one has
Niman(B) — 12B° < B/,
Proof. Tt follows from Lemma 4.1 that

max vy, (h) < B'te.
1<|h|<2Bk

On substituting this estimate into (2.12), we infer that
Neman(B) = 12B° < BY + B "y, (h). (4.7)
hez

The last sum here counts the number of integral solutions of the equation
3

> (@i =y =0,

i=1
with 1 < z;,4; < B (1 <7 < 3). By orthogonality, an application of Schwarz’s
inequality, and the invocation of Hua’s lemma (see [11, Lemma 2.5]), we obtain

the standard estimate
1
/ Z e(az™)
0

1<x<B
for this quantity. On substituting this upper bound into (4.7), we conclude
that

GdOé < B7/2+€

Nimn(B) — 1285 « BY/3 1 plite. gi/2te o 314/3’

and the proof of the lemma is complete. O

5. A CHEAP COMPLIFICATION ARGUMENT WHEN 71 = 2

Our purpose in this section is to handle triples of type (iii), wherein we
may suppose that m € {1,2}, n = 2 and k > 3. This we achieve through
a complification argument the prosecution of which requires several auxiliary
mean value estimates. We now supply these estimates.

Lemma 5.1. Suppose that m € {1,2} and k > 3. Then one has
> ()’ < B
1<|h|<2B¥
Proof. By Lemma 4.1, one has
S k(R << BTN (), (5.1)
1<|h|<2Bk heZ

On recalling (2.6) and (2.7), we see that the sum on the right hand side here
is bounded above by the number of solutions of the equation

e R
with 1 < x;,9; < B. When m = 1 this is plainly O(B?), whilst for m = 2 it
follows from Hua’s lemma that the number of solutions is O(B*™) (see [11,
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Lemma 2.5]). Thus, in either case, the number of solutions is O(B*™¢) and
we conclude from (5.1) that

Z Uk,m(h)z < Bm71+s . B4fm+z-: < B3+2€.

1<|h|<2Bk

This completes the proof of the lemma. O

Next we record an upper bound available from recent work associated with
Vinogradov’s mean value theorem.

Lemma 5.2. Suppose that k > 3. Then one has

/ / |fk2 |12dadﬁ<<B7+a

Proof. This is a special case of [14, Theorem 14.1], though the proof is simple
and transparent enough to provide here in full. Write

cla) = Z e(ax® + pa* 4 yr).
1<z<B
Then we deduce via the triangle inequality and orthogonality that

//!sz B)[12dadf = Z/W o)[2e(—17) dax

lI|<6B
<<B/ o(a)]2 de.
[0,1)3

By [14, Corollary 1.2], the last integral is O(B%"¢), and so the desired conclu-
sion follows at once. OJ

Now we come to the proof of Theorem 1.1 in the case (iii).
Lemma 5.3. Suppose that m € {1,2} and k > 3. Then one has

Nima(B) — 12B° < BY/3+<,

Proof. An application of Cauchy’s inequality in combination with Lemma 5.1
yields the bound

Z uk,Q(h)vk,m(h)<< Z Vel )1/2<Zuk2 >1/2

1<|h|<2B¥ 1<|h|<2B* heZ
1/2
< (B¥e)1/2 (Z um(hf) . (5.2)
heZ

On recalling (2.4) and (2.5), the sum on the right hand side here may be reinter-
preted in terms of a Diophantine equation. Thus, it follows via orthogonality,
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Schwarz’s inequality and symmetry that

Zum(h)2 = / , |fk,2(a,ﬁ)fk,g(a,’y)|6da

heZ [0,1)

< / (e B fra(a, 1) dev. (5.3)
[0,1)3

Observe that by orthogonality in league with the triangle inequality,
SUE/ | fr2(e, 1) dy < / | fr2(0,7)|* dy < B**,
ac

wherein we interpreted the second integral as the number of solutions of the
equation z? + 23 = y? + y2 with 1 < z;,4; < B, and applied Hua’s lemma.
Returning to (5.3) and applying Hélder’s inequality, therefore, we find that

Zukg <<BZ+5/ / | fea(a, B))® dadB

heZ
BQ+EIQ/3[1/3

12 »

Iy = //|fk2 B)I" dardp.

By orthogonality, we see from (2.11) that
Is = u2(0) < B?,
whilst Lemma 5.2 delivers the bound I3 < B™*%. Thus we deduce that

Zum(h)? < B2+E(BS)2/3(B7+E)1/3 < 819/3+25.
heEZ

where

Finally, by substituting the last bound into (5.2), we arrive at the estimate

Z Uk’2(h)1}k’m(h) < <B3+5)1/2<BIQ/3+5)1/2 < Bl4/3+e'
1<|h|<2Bk
This, when substituted into (2.12), delivers the relation
Nimo(B) — 12B° < BY/3+e,

and this completes the proof of the lemma. O

6. A CHEAP COMPLIFICATION ARGUMENT WHEN n =1 AND k£ >4

The analysis of triples of type (iv) is similar to that applied in the previous
section for triples of type (iii). We now suppose that n = 1 and k > 4, however,
which prevents appeal to the relatively powerful mean value estimates for
quadratic Weyl sums available when n = 2. We again begin with an auxiliary
mean value estimate.
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Lemma 6.1. Suppose that k > 4. Then one has
/ ’fk,l(()é,ﬁ)Gfk,l(%’Y)14| da <« B,
[0,1)3

Proof. Write
F(a) = | fraler, B)° foa (o, 7)™

Then by applying the elementary inequality |2{23%| < |21]'® + |22|'®, we obtain

F(e) < |fuala, B)® frala, )2 + [ frale, ) fra (e, 7)™
Thus, by symmetry and orthogonality, we find that

1 1 1
18 2
/[0 | Fleydaso / / Feala B) /0 fer(aim) [ dy dB da
23/ / | fra (e, ) dadB.

The last integral is the subject of [2, Lemma 5|, which shows that

/ / | fealon )P dadB < BY 7 (2<j < k).

Thus, by applying this estimate with j = 4, we deduce that
/ | fr1(, 8)° fa(a,7)"|da < B - B¥*te = ptte,
[0,1)3

This completes the proof of the lemma. O
We may now tackle the main conclusion of this section.

Lemma 6.2. Suppose that m € {1,2} and k > 4. Then one has
Nima1(B) —12B° <« B*/10+=,

Proof. Just as in the initial stages of the proof of Lemma 5.3, an application
of Cauchy’s inequality in combination with Lemma 5.1 yields the bound

> wea o) < (B2 (Cuam?) . 6

1<|h|<2Bk hezZ

The sum on the right hand side here may be again reinterpreted as the number
of solutions of a Diophantine system, and thence by orthogonality and Holder’s
inequality we obtain

Suwaf = [ e dfalan) da< 7L (02)
0,1)

heZ
where

T1=/[O1 | fr(a, )fk,l(Oéa’Y)4’da

and

T, - / foa (@, B)° fior (0, ) M dex.
0,1)3
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By orthogonality, one sees that T} = Nj11(B), whilst by Lemma 6.1 we
have Ty < B¢, On substituting these estimates into (6.2) and thence into
(6.1), we see that

Z et (R)vgm(h) < (BS+5>1/2 (Nk,l,l(B))2/5 (Bl4+6)1/10,

1<|h|<2Bk
so that, as a consequence of (2.12),
Nim1(B) — 12B° < B3 4 B2/10+= (N 1(B))*°. (6.3)
This estimate applies when m = 1, and hence in particular one finds that
Nera(B) < B | p29/10+¢ (]\[,67171(3))2/57

whence Ny ;1 1(B) < B®. By substituting this upper bound back into (6.3), we
infer that

Nk,m,l(B) . 12B5 < B14/3_|_B29/10+€(B5)2/5 < B49/10+6.

This completes the proof of the lemma. O

7. AN APPLICATION OF THE HARDY-LITTLEWOOD METHOD

The final case (v) concerns the only remaining triple not already covered
in cases (i) to (iv), namely the triple (k,m,n) = (3,2,1). For this we must
modify the treatment of §6 by introducing some crude estimates pertaining to
the minor arcs of a Hardy-Littlewood dissection.

We define our Hardy-Littlewood dissection as follows. Take d to be any
positive number with 6 < 1/3, and let 9t denote the union of the intervals

M(q,a) = o € [0,1) : |qa — af < B}, (7.1)
with 0 < a < ¢ < B?% and (a,q) = 1. The complementary set of minor arcs is
then m = [0,1) \ 9. On writing

1 p1
NB:®) = [ [ [ fsla P hatan)dydsda, (72
®Jo Jo
we see that

N351(B) = N(B;0M) + N(B;m). (7.3)
We also define the auxiliary integral
u(h;B) = // | f3.1(c, B)|Pe(—ha) dB da.

In view of the definition of v(h) = vs2(h) via (2.6) and (2.7), we then have

> Z// oalew B)e(—(a + %~ — 43)o) A3

|h|<2B3
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where the summation over x and y is subject to the conditions 1 < z;,y; < B
(i = 1,2) and 22 +23 = y?+y3. Thus, by employing orthogonality and recalling
(7.2), we discern that

N(B;B) = Y u(h;B)o(h). (7.4)
|n|<2B3

In general terms, our strategy makes use of a complification step resembling
that used in both §§5 and 6. However, our use of a Hardy-Littlewood dissec-
tion necessitates that special attention be paid to the diagonal contribution
restricted to minor arcs.

Lemma 7.1. One has u(0;m) = 6B% + O(B%/3).
Proof. On recalling (2.11), we find that
u(0;[0,1)) = ug1(0) = 6B + O(B¥?).

In view of (7.1), we see that mes(9) = O(B*~3), meanwhile, and hence we
deduce via orthogonality that

womy= [ claled+ad+at -l - of - yd)da
m 1<z;,y:<B
z1t+z2+x3=Y1+Yy2+y3

< Bmes(9) < B>,
Thus we conclude that
u(0;m) = u(0;[0,1)) — u(0;9) = 6B + O(B¥3).
This completes the proof of the lemma. O
A similarly crude estimate for the major arc contribution handles N(B; ).

Lemma 7.2. One has N(B; M) < B4+2te,
Proof. By orthogonality, it follows from (7.2) that

WE) =3 [ (03w ) e

where the summation is over 5-tuples x, y with 1 < x;,y; < B subject to the

conditions
3 5

Z(% —Yi) = Z(x? —y) =0.

i=1 i=4
The number of choices for z; and y; (1 <4 < 3) is plainly O(B®). Meanwhile,
by applying Hua’s lemma (see [11, Lemma 2.5]) on a by now well-trodden
path, the number of choices for x;, y; (j = 4,5) is O(B**¢). Thus we deduce
via the triangle inequality that

N(B; M) < B® - B**mes(M) <« B . B¥3,

and the conclusion of the lemma follows. O
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We are now equipped to establish the final case of Theorem 1.1.
Lemma 7.3. One has
N3o.1(B) — 12B° < BP~0/4%,
Proof. In view of (7.3) and Lemma 7.2, we have
N31(B) = N(B;m) + O(B*7%9),
Then by (7.4), we deduce that
N391(B) = u(0;m)v(0) + = + O(B*27),

where

[1]

= > u(hym(h).

1<|h|<2B?
By wielding (2.9) in combination with Lemma 7.1, we may conclude thus far
that

Ns2.1(B) = (6B + O(B%?))(2B? + O(B)) + O(B*"**¢) + £,
whence
N3o1(B) —12B° < BYS3 4 =, (7.5)

Next we recall Lemma 5.1 and apply the inequalities of Cauchy and Bessel
to obtain the upper bound

=2 < Bt Z lu(h; m)|? <<B3+f/(/1|f3,1(a,5)|6d5>2da. (7.6)
m 0

|h|<2B3
As a consequence of Weyl’s inequality (see [11, Lemma 2.4]), one has

supsup | fa 1 (a, B)| < B4

acm BeER

Thus, by making use of orthogonality and [5, Theorem 1.1], we obtain the
bound

1 2
J([ Mhatap)ras) da s 30492 [ |psa ) fuafnn) | da
m Mo 0,1)3

— BQ—5/2+25N37171(B)
< B7_6/2+25.

By substituting this estimate into (7.6), we arrive at the bound = < B>~%/4+¢,
and hence (7.5) delivers the relation

Nso1(B) — 12B° < BY/3 4 Bo>-9/4+e

The conclusion of the lemma follows on recalling our hypothesis that § is any
positive number smaller than 1/3. O]

This completes the proof of the last case of Theorem 1.1, namely case (v).
We now discern via Lemmata 3.2, 4.2, 5.3, 6.2 and 7.3 that in cases (i) to (v)
we have the estimate (2.13). Thus, as discussed in the sequel to that equation,
the conclusion of Theorem 1.1 is confirmed.
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