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Abstract The thermal rearrangements of 1,2-dialkynylimidazoles
have been shown to lead to trapping products of cyclopenta[b]pyrazine
carbene intermediates. Here we show that a similar rearrangement also
occurs in the case of 1,2-diethynyl-1H-pyrrole, and that trapping the in-
termediate cyclopenta[b]pyridine carbene with solvent THF affords an
ylide that undergoes a Stevens rearrangement to a spirocyclic product.
An analogous rearrangement and trapping is observed for thermolysis
of 1,2-dialkynylimidazoles in THF or 1,4-dioxane.

Key words azoles, carbenes, cycloaromatization, ylides, spiro com-
pounds

The cycloaromatization of enediynes and related sys-
tems with trapping of the intermediate diradicals is well
known.1 In certain cases, a facile collapse (retro-Bergman
cyclization) of diradical intermediates formed by cycloaro-
matization has been noted, for example in the case of di-
alkynylpyrazines and dialkynylcyclobutenes (Scheme 1A).2
Even more extreme are the heteroatom-substituted 3-aza-
hex-3-ene-1,5-diynes, which undergo cycloaromatization
under very mild conditions3 (below room temperature in
some cases)4 to form didehydropyridine diradicals that col-
lapse with a barrier of ~6.5 kcal/mol5 to the much more sta-
ble 1-azahex-3-ene-1,5-diynes (Scheme 1B). In the case of
these azaenediynes, the diradical singlet state (S) is stabi-
lized relative to the triplet (T), and the large difference in
energy of these states (S–T gap = 11.6 kcal/mol) relative to
the barrier to collapse further disfavors diradical trapping
by hydrogen-atom abstraction. There is no evidence that
the intermediate 2,5-didehydropyridine diradicals live long

enough or are reactive enough to undergo hydrogen-atom
abstraction trapping reactions.6,7

Efforts to mitigate this effect of the facile collapse of the
diradicals derived from 3-aza-3-ene-1,5-diyne cycloaroma-
tization led to the design of the 1,2-dialkynylimidazoles 1a
(R = CH2CH2CH=CH2) and 1b (R = Pr) (Scheme 1C). It was
reasoned that the collapse of the cycloaromatization-de-
rived diradical A would be disfavored due to the presumed
instability of the resultant cyclic cumulene B. In fact, mild
thermolysis (~90 °C) of such 1,2-dialkynylimidazoles af-
fords good yields of trapping products derived from the car-
bene C.8,9 Subsequent density functional theory (DFT) cal-
culations demonstrated the carbene C is derived from the
cyclic cumulene B, which is formed by a retro-aza-Bergman
collapse of diradical A.10 Surprisingly, the barrier for this
collapse of A to B (~0.8 to 1.3 kcal/mol for substituted ana-
logues)10 is even lower than that for the collapse of parent
3-aza-3-ene-1,5-diyne-derived diradical.

The rearrangement of 1a or 1b to C (Scheme 1C) pro-
vides a potential strategy to access carbenes under mild
thermolysis conditions, but the generality of this rear-
rangement has not been explored. Here we report a DFT
study of the rearrangement of 1,2-diethynyl-1H-pyrrole (4)
and the synthesis and thermolysis of this ‘azaenediyne’,
demonstrating the generality of this retro-aza-Bergman ap-
proach to reactive heterocyclic carbenes.

We carried out DFT calculations for the thermal rear-
rangement of 1,2-diethynyl-1H-imidazole (1) and 1,2-di-
ethynyl-1H-pyrrole (4) by using the B3LYP functional11 and
a 6-31G(d,p) basis set (Table 1). For the singlet-state biradi-
cals A and the transition states leading to these species (TSA

and TSB, respectively), the calculations employed the bro-
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ken-spin unrestricted formalism, with sum correction for
the effect of triplet-state contamination.12 The calculated
barriers for the initial aza-Bergman cyclization (TSA) of 1
and 4 are within 1 kcal/mol of each other, and the barriers
for collapse of the diradicals A are small in both systems. In
addition, the S–T gaps for these diradicals are identically
high, indicating that they are unlikely to undergo hydrogen-
atom-abstraction trapping before collapse. The cyclic cu-
mulenes B are surprisingly stable in both systems, yet in
both cases, the cyclization of B to carbene C (TSC) is ener-
getically accessible. In fact, the two overall carbene-gener-
ating pathways are remarkably similar in their relative en-
ergies, with the exception of the carbene C derived from the

diethynylpyrrole 4, which is thermodynamically favored
compared with the thermodynamically neutral rearrange-
ment of 1 to carbene C.

Based on these promising computational results, we set
out to synthesize 1,2-diethynyl-1H-pyrrole (4) to study its
thermolysis (Scheme 2). Our first attempt to prepare 4 be-
gan with bromination of the previously reported N-alkyn-
ylpyrrole 513 (Scheme 2A). Unfortunately, all attempts to
carry out Sonogashira couplings of the 2-bromopyrrole 6
met with failure, possibly due to reaction at the N-alkynyl
group.14 In an alternative approach, the previously reported
N-alkynyl-2-formylpyrrole 713 was prepared in high yield
and then treated with Bestmann–Ohira reagent to afford
the silyl-protected 1,2-diethynylpyrrole 815 (Scheme 2B).
Although 8 could be easily deprotected, the volatile nature
of 4 complicated its isolation. For NMR characterization, 4
was purified of tetraalkylammonium byproducts by chro-
matography and elution with THF-d8.16

Scheme 1  (A) Retro-Bergman collapse of enediyne-derived diradicals 
and (B) azaenediyne-derived didehydropyridine, with computational 
barriers as reported in reference 5. (C) In the case of 1,2-dialkynylimid-
azoles, the diradicals A undergo collapse followed by cyclization to car-
benes that efficiently undergo intramolecular trapping. Here we 
explore the potential of diethynylpyrrole 4 to serve as precursor to a cy-
clopenta[b]pyridine carbene.
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Table 1  DFT Energies for Rearrangements to Carbenes

Molecule B3LYP Relative Energy (kcal/mol) Notes

1 0.0

TSA (1)‡ 25.9

A (1) 4.9 S–T gap = 10.5 kcal/mol

TSB (1)‡ 5.9 +1.0 relative to A

B (1) –12.5

TSC (1)‡ 3.8 +16.3 relative to B

C (1) 0.6

4 0.0

TSA (4)‡ 26.6

A (4) 8.1 S–T gap = 10.5 kcal/mol

TSB (4)‡ 9.9 +1.8 kcal/mol relative to A

B (4) –13.8

TSC (4)‡ 4.5 +18.3 kcal/mol relative to B

C (4) –8.1
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Scheme 2  Preparation of 1,2-diethynyl-1H-pyrrole (4)

Mild thermolysis of solutions of 4 in THF afforded some-
what complex mixtures of products [see the Supporting In-
formation (SI)], from which the spirocycle 917 could be iso-
lated (Scheme 3A).18 The structure of 9 was established by
COSY and NOESY NMR analyses (see SI). We propose that 9
is derived from the ylide D, formed by interception of the
carbene C by THF (Scheme 3A). A Stevens rearrangement19

of ylide D under the reaction conditions affords the spirocy-
cle 9.20 The conversion of 1 into 9 at 70 °C was monitored by
GC/MS; the reaction followed first-order kinetics (see SI)
with a half-life of 11 hours.

Further support for the proposed carbene trapping and
Stevens rearrangement of carbene C derived from 4 comes
from a similar thermolysis of 1,2-diethynyl-1H-imidazole
(1) in 1,4-dioxane, which afforded the spirocycle 10
(Scheme 3B).18,20 Interestingly, this reaction is faster than
the conversion of 4 into 9, with a half-life of only 5.5 hours
at 70 °C. Although this might reflect the lower initial aza-
Bergman barrier TSA for 1 (25.9 kcal/mol) relative to 4 (26.6
kcal/mol) (Table 1), it is not clear if this represents the rate-
limiting step in the overall transformation. Indeed, an Ar-
rhenius plot of the thermolysis of 1,2-diethynyl-1H-pyrrole
(4) in THF at temperatures between 50 and 90 °C gives an
activation energy (Ea) of 34.4 kcal/mol (see SI), which is sig-
nificantly higher that the barrier calculated for aza-Berg-
man cyclization (26.6 kcal/mol). This might indicate that
steps following the initial aza-Bergman cyclization contrib-
ute to the observed rate, but this will require further inves-
tigation, as the mechanism for the Stevens rearrangement
in this case is not clear.

To further establish the generality of this approach, we
carried out the thermolysis of the previously reported10

substituted 1,2-dialkynylimidazole 11 in THF, and we iso-
lated the spirocycle 12 in low yield.18,21 This indicates that
carbenes derived from 1,2-dialkynylimidazoles react simi-
larly to those derived from 1,2-dialkynylpyrroles in the
presence of THF, leading to ylide formation and Stevens re-

arrangement to spiropyrans, and that ylide formation fol-
lowed by Stevens rearrangement occurs for substituted 1,2-
dialkynylimidazoles in addition to the parent 1,2-di-
ethynyl-1H-imidazole (1).

Although the yields for these spirocycle-forming reac-
tions are low, they permit access to previously unknown
6,9-dioxaspiro[4,6]undecane-containing compounds and
they represent a single-step approach to 6-oxaspiro[4.5]de-
cane-containing compounds, which have previously only
been prepared by multistep methods.22 The optimization of
the cascade aza-Bergman cyclization–diradical collapse–
carbene formation–ylide trapping–Stevens rearrangement
process described here might further improve the synthetic
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utility of this method. Currently, these efforts are focused
on improving the ylide trapping–Stevens rearrangement
components, as our previous work has demonstrated the
efficiency of carbene generation from 1,2-dialkynylimidaz-
oles and trapping by intermolecular cyclopropanation and
intramolecular C–H insertion reactions.

In conclusion, we have demonstrated that the remark-
able thermal rearrangements of 1,2-dialkynylimidazoles to
carbene intermediates might be a general reaction of 1,x-
dialkynylazoles by showing that 1,2-diethynyl-1H-pyrrole
also undergoes this rearrangement. No evidence for trap-
ping by hydrogen-atom abstraction of diradical intermedi-
ates derived from aza-Bergman cyclization is found in ei-
ther the 1,2-dialkynylimidazole or 1,2-diethynylpyrrole
cases, in accord with the computational predictions of a
facile collapse of these diradicals having large S–T gaps. The
carbenes that form from the products of diradical collapse
can participate in a variety of reactions. Here, we show that
these carbenes can form ylides that undergo a subsequent
Stevens rearrangement to afford spirocyclic products. This
represents a novel process to rapidly access complex spiro-
cyclic heterocycles. Further explorations of the thermal re-
arrangements of related 1,x-dialkynylazoles are currently
underway.
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