Downloaded 05/12/22 to 35.8.11.3 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

SIAM J. IMAGING SCIENCES © 2021 Society for Industrial and Applied Mathematics
Vol. 14, No. 4, pp. 1601-1616

An Acousto-electric Inverse Source Problem*

Wei Lif, John C. Schotland®, Yang Yang®, and Yimin Zhong¥

Abstract. We propose a method to reconstruct the electrical current density inside a conducting medium from
acoustically modulated boundary measurements of the electric potential. We show that the current
can be uniquely reconstructed with Lipschitz stability. We also perform numerical simulations to
illustrate the analytical results, and we explore the partial data setting when measurements are taken
only on part of the boundary.
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1. Introduction. Electroencephalography is widely used in neurology and neurosurgery
to monitor the electrical activity of the human brain [17, 38, 9]. In a typical clinical setting,
the electrical signal is recorded from electrodes that are either placed on the scalp or surgically
implanted in the brain. In either case, the objective is to locate and characterize the current
source that produces the measured signal. An important application is to the localization
of seizure foci in patients undergoing epilepsy surgery. In mathematical terms, this problem
is closely related to the inverse problem of reconstructing the electrical current density of a
conducting medium from boundary measurements. It is well known, however, that this inverse
source problem is underdetermined and does not admit a unique solution [10, 18, 19, 20, 1].
That is, more than one source can give rise to the same measurements. This problem may
be overcome, to some extent, if a priori information about the source is known. For instance,
if the source consists of a single current dipole (or even a fixed number of dipoles), then its
position and strength can be uniquely determined [23, 36, 2, 41]. However, electrical activity
in the brain is distributed across networks of neurons of unknown structure, which leads to a
fundamental difficulty.

In this work we consider an alternative approach to the inverse source problem which, in
some sense, is in the spirit of several recently proposed hybrid imaging modalities [3, 6, 12,
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21, 27, 32, 33, 39]. In these methods, a wavefield is used to control the material properties
of a medium of interest, which is then probed by a second wavefield [6, 7, 4, 15, 13, 14, 37,
28, 25, 16, 30, 31]. Here we exploit the acousto-electric effect, in which the density of charge
carriers and conductivity are spatially modulated by an acoustic wave [29, 35]. We find that
it is possible to uniquely recover the current density from boundary measurements of the
electrical potential. Moreover, the stability of the reconstruction is shown to be Lipschitz,
which provides mathematical justification for the use of acoustic modulation in the electrical
inverse source problem.

The remainder of this paper is organized as follows. In section 2 we introduce a model
for the acousto-electric effect. This model is used as the basis for the treatment of the acous-
tically modulated inverse source problem that is taken up in section 3. We show that the
boundary measurements in the presence of acoustic modulation lead to knowledge of an inter-
nal functional, from which the current source may be recovered. In section 4 our results are
illustrated by numerical simulations, including the cases of full and partial boundary measure-
ments, along with an alternating minimization algorithm that improves numerical stability.
Finally, our conclusions are presented in section 5.

2. Acousto-electric effect. We begin by developing a simple model for the acousto-
electric effect, following the approach of [6]. Consider a system of conducting particles and
charge carriers in a fluid. If a small-amplitude acoustic wave is incident on the system, each
particle will oscillate about its local equilibrium position. We may thus regard the particles
as independent. It follows that the equation of motion of a single particle is of the form
0 o ==
where u is the velocity of the particle, p is its mass density, and p is the pressure in the fluid.
We consider a standing time-harmonic plane wave of frequency w with

(2) p = Acos(wt)cos(k-x+ ),

where A is the amplitude of the wave, k is its wave vector, and ¢ is the phase. For simplicity,
we have assumed that the speed of sound c; is constant with |k| = w/cs. The oscillatory
solution to (1) is given by

A :
(3) u = —sin(wt)sin(k - x + )k .

pw
Thus apart from a transient, the particle moves with the fluid.

In the presence of an applied field, the charge carriers move and generate a current. The
current density J. is of the form

(4) Je= Zqz‘vi5(x —Ri(1))

where R; is the position of the ith charge carrier, v; is its velocity, and ¢; is the charge. Since
each particle is independent, it follows from integration of the equations of motion (1) that
J. is given by

(5) J(x) =Jo(x)[1 +ecos(k-x+¢)] ,
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where J is the current in the absence of the acoustic wave and € = A/(pc?) < 1 is a small
parameter. The conductivity o, of the medium is proportional to the density of conducting
particles and is given by

(6) ge(x) = oo(x) [L +efcos(k-x+ )],

where og is the unmodulated conductivity and [ is the zero-frequency elasto-electric con-
stant. We conclude that the acoustic wave leads to spatial modulation of the current and the
conductivity.

Consider the flow of current in a bounded domain 2 C R" with a smooth boundary, n > 2.
The total current

(7) J=J.+ocE

consists of contributions from the source and the volume, where E is the electric field. Under
static conditions, the conservation of charge takes the form V -J = 0. In addition, E = —Vu,
where u is the potential. The potential then obeys the equation

(8) V-oe(x)Vuc=V-J. in Q,
Oue
9) 5 =0 on 09,

where the Neumann boundary condition prevents the outward flow of current through 0.
We now turn to the derivation of an internal functional from boundary measurements of
the potential. In section 3 we will show that it is possible to recover the current source from
the internal functional. The following assumptions are imposed throughout the paper:
(A-1) The domain € is simply connected with C? boundary 99.
(A-2) The (unmodulated) conductivity og € L>°(Q2) is known and satisfies

(10) 0< K <og< K>

for some positive constants K and Ks.
(A-3) Jo € (L?(2))" and Jg is compactly supported in €.
Under these assumptions, the boundary value problem (8)—(9) admits a unique weak solution
ue € H'(Q) up to an additive constant [22], satisfying

1
(11) Ve r2(0) < EHJGH(L?(Q))”'

We thus find that J. € (L?(Q))".
To derive the internal functional, we consider the following auxiliary boundary value prob-
lem:

V- oo(x)Vu; =0 in Q,

(12) v,

o =i on 01,
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where g; € H ~1/2(9Q),j =1,..., N, are prescribed boundary sources. Under the assumptions
(A-1) and (A-2), this auxiliary boundary value problem admits a unique weak solution v; €
H'(Q) up to an additive constant. Since the unmodulated conductivity o is known, the
solutions v; in principle can be computed.

Next, multiplying (8) by v; and (12) by wu, subtracting the resulting equations, and
integrating the difference over 2 yields

(13) ) = / [(0e — 00) Ve - Vv; +v;V - I dz .
Q

Here the surface term 29 ), which follows from an integration by parts, is defined by

; 0v; ou
(4) .— J _ . €
(14) PR /aQ [ueao 5, ~ Vi0e an} dx .

Making use of the boundary conditions (9) and (12), we see that
(15) 29) —/ ucoog;de .
oN

Therefore Zgj ) can be determined from boundary measurementlof Ue.
We now introduce the asymptotic expansions for u. and EEJ ) as

(16) Ue = Uy + €Uy + -+,
(17) 50 = vl 4 x4

which we substitute into (13). At O(1) we obtain

() _ .
(18) X5 = [ v;V-Jodz,

Q
and at O(e) we have
(19) Egj) = / (BooVug — Jo) - Vojcos(k - x + ¢) da.
Q

Here we have inserted (5) into (13), performed a further integration by parts, and then applied
the assumption that Jy vanishes on 0f2. Since Egj

)
ment, Egj ) is known. Provided the experiment is repeated with different k and ¢, it follows

from (19) that by inverting a Fourier transform, we can recover the internal functional

is determined by the boundary measure-

(20) Hj = (IBUOVUO - Jo) . V’Uj

at every point in ).

Remark 1. Despite the fact that the solutions u. and v; are known up to an additive
constant, the internal functional H; is unique.
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3. Inverse problem. It follows from the above discussion that the inverse problem consists
of recovering the (unmodulated) source current Jo from the internal functional H;. In this
section we will derive a reconstruction procedure that uniquely recovers Jg with Lipschitz
stability. The following hypothesis is necessary throughout.

Hypothesis 2. There exist g;, j = 1,..., N, such that the gradients of the solutions v; €
CL(Q) to the auziliary problems (12) form a basis everywhere in ). That is,

(21) det[Vvy,...,Von] #0 in Q.

This hypothesis holds at least for sufficiently regular conductivity og. We justify this fact
by applying a similar approach to [5].

Proposition 3. Let N > 2. Under the assumptions (A-1) and (A-2), if oo € H%H“(Q)
for some s > 0, there exist N (compler-valued) solutions vi,...,vx € CYQ) to (12) with
pointwise linearly independent gradients.

Proof. Tt has been established in [8, Proposition 3.3] that for N > 2, (12) admits complex-
valued solutions of the form

(22) 035 pj) = — e P (1 + 1l (5))
o0(x)

where p; € CV is a complex parameter with p; - p; = 0 and the function 1y, satisfies the
estimate

AL/og
(23) il coy + [¥plcr iy < € H\/g

N
H215(Q)

for some constant C' = C(€2,s) > 0. The right-hand-side of (23) is finite as a result of the
assumptions (A-2) and o9 € H St (€2). Observe that the gradient of v; is

ePiX 1 _3
VU]‘ = ﬁ (p] + pjij + Vlbpj — 5(1 + ij)o-() 2VUO> )
then N N
exp(SY pj %)
det[Vvl,...,VvN]:H|pj| ]N/Q
j=1 )

X det{m,...,m}—i—O( max {1}) .
1 lpn| 1<<N | |pj]

In particular, if we choose vectors p; as

V2 .
P2m—1 = 7’p2m—1’<62m—1 + Z€2m)7
(24)

P2m = 7|p2m|(62m—1 — i€2m,)
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form=1,..., L%J, where ¢ = y/—1 is the imaginary unit and e; denotes the unit vector whose
jth component is 1 and other components are 0, then the determinant det [Vvl, . ,V’UN]
is bounded away from zero uniformly when min;<;<n |p;| is sufficiently large. This is true
because the matrix [ﬁ—h, e %} is blockwise diagonal with blocks of the form
1 1 ¢+ 0
A:[l _Z}, B=1{1 —i 0
0 1 4

If N is even, then the matrix contains % blocks of A, and if N is odd, then the matrix has
(5] — 1) blocks of A and one block of B. Since det(A) = —2i, det(B) = 2, we obtain

!det {ﬁ, e %H > 2. The boundary potential sources g; in Hypothesis 2 then can be
taken as g; := Opvjloq, j=1,...,N. [ |

Let v1,...,vn be the auxiliary solutions in Hypothesis 2 with linearly independent gra-
dients, and let H; be the internal functional corresponding to v; as in (20), j = 1,...,N.
Then

(Hy, ..., Hy] = (B00Vug — 30)[Vor, ..., Vo],

where (BogVug — Jo) is viewed as a row vector. If we set

(25) A :=[Hy,...,Hy][Vo,...,Voy] 7!,
then
(26) A= ,BdovuO - JO .

Since each H; is known from boundary measurements and v; can be obtained via solving the
auxiliary problem (12) with the prescribed boundary potential source g;, we can compute the
matrix A explicitly. If 5 # 1, by taking the divergence of (26) and combining the result with
(8) for e = 0, we find that
(27) V.Jo— -1 V-.A

0= -1 .
Thus we can solve for up up to an additive constant from the boundary value problem (8),
and then compute Jy using

(28) Jo = IBUOVUO —A.

Note that Jg is uniquely determined, since ug is unique up to a constant. Evidently the above
procedure breaks down if 5 = 1. Finally, we show that the reconstruction from the internal
functional H;, j = 1,..., N, has Lipschitz stability.

Theorem 4. The reconstruction (28) is Lipschitz stable in the sense that if Jo and Jo are
currents reconstructed from the corresponding internal functionals A and A, then

3 8| K2 <
(29) [Jo — Joll(z2 ) < <1 + B 1K, A — All(z2@)n-
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Proof. The stability estimate is easily seen in two steps. First, from (26),
(30) 130 — Jollz2 (@) < 1A = Allz2(yye + [BIK2]V (o — o) || z2 () -
Second, combining (27), (8), and (9), we have that uy — @ satisfies

1 ~

V - oo(x)V(ug — p) = ﬂv- (A—A) in Q,
@1 0T
(an o) =0 on O0f.
n
Similar to the regularity property (11),
. 1 <
(32) luo — ol g1 (o) < m”A — Allz2@)n
which leads to the conclusion. |

The above stability result can be restated in terms of the internal functionals H; as follows.

Corollary 5. Let Jg, Jo, A, and A be as in Theorem 4, and let H; and ﬁj, j=1,...,N, be
the corresponding scalar internal functions. If Hypothesis 2 holds, then there exists a constant
C, such that

N
(33) 130 = JollE2pyn < C D I1H; — Hjll 7210 -
j=1

Proof. When Hypothesis 2 holds, there exists a constant C] such that
[Vor,...,Von] He < Cp forevery xe€Q,

where |- |2 is the matrix 2-norm. Thus combining (25) and Theorem 4, the proof is finished. W

4. Numerical reconstruction and validation. In this section we present numerical exper-
iments to validate the proposed reconstruction procedure for Jg. Reconstructions from both
full and partial boundary measurements are reported.

4.1. Forward problem. The problem

V-oo(x)Vug=V-Jg in Q,
(34) % =0 on 09
on

is solved to generate simulated measurements. Existence and uniqueness of the solution wuy,
up to a constant, are ensured by standard elliptic theory [22]. This boundary value problem is
numerically solved with the first order Lagrangian finite element method. The finite element
discretization results in a linear system of the form Ax = b with KerA = Span{1}, where
1 is the vector whose components are all 1’s. This linear system is then solved with the
biconjugate gradient stabilized method (BiCGStab) [24] by projecting the discretized solution
onto the orthogonal complement (KerA): = 1-+.
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4.2. Measurements. The measurements consist of the internal functionals H; in (20). To
proceed, we must first compute the v; which solve (12) for j = 1,2. The boundary sources g;
must be selected so that Hypothesis 2 holds. That is,

(35) det [Vor, Vg (x) #0, x € ().

Since measurements may carry noise, we would like to choose g; and g2 so that the condition
number of the above matrix remains small, in order to achieve stable numerical reconstruction.
For example, if g1 and g9 are chosen such that || V1| = ||[Vvz| = 1, then simple computation
shows the matrix has the smallest condition number when Vv; 1 Vwvsy. In the special case
where o is constant, we can simply take the linear functions v;(x) = d; - x with d; L da.

4.3. Optimization. For nonconstant oy, g; can be selected by solving the following mini-

max problem:

Vvl ) va
‘Vvﬂ ’V’Ug‘

(36) (g7, 93) = arg minmax

)
g1,92€G TEQ

where G = {g € L*(09) : ||g|l12(00) = 1}. However, this minimax problem is not in the
convex-concave setting [34] and cannot be efficiently solved by minimizing the primal-dual
gap [26]. Instead, we relax the minimax problem to the following alternating minimization
problem.

Suppose the medium permits a solution v? such that VU? = 0 everywhere in ). Then we
iteratively take alternating minimization steps. At the kth iteration, we solve

1 V. ooVé=0  inQ
(37) g5 = argmin 2/ Vo - Vo' [?dz  subject to {(% o0V In 32,
Q _

k
95€G on = 92 on 0f).

Next, we set v§ = ¢ and solve

1 V.00V =0 in Q,
(38) g¥ = arg min / |V - Vu§|?dz subject to o .
gkea 2 Jo %:gl on 082,
and we set v’f = 1. The iteration is terminated when either the increments in vy, v9 are smaller
than a prescribed tolerance or the maximum iteration number is reached.

The above minimization consists of two convex quadratically constrained quadratic pro-
grams, and we can apply the interior point method [11, 40] to solve them. Although the
solution to this relaxed alternating minimization problem is not necessarily the solution to
the original minimax problem, the boundary conditions selected from the relaxed problem do
stabilize the numerical reconstruction, as is shown in the subsequent numerical examples.

4.4. Numerical examples. We present numerical examples with full boundary measure-
ment in this subsection, and partial boundary measurement in the next subsection. The
Shepp-Logan head phantom for og in the rectangular computational domain Q = [0.1,0.9] x
[0, 1] is used to model the anatomy in an experiment, as shown in Figure 1. The values of og

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.
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are assigned based on the conductivities of white matter, grey matter, cerebrospinal fluid, and
bone, where the region outside of the skull is assumed to have the same conductivity as the
scalp. In all experiments 5% Gaussian random noise is added to the signal. The MATLAB
code for the following numerical examples is hosted on Github.!

1 0.1

0.9
brain grey -
matter 0.01
0.7
cerebrospinal os
. —_
fluid 05 0.001
brain white °4
matter 0.3
0.0001
0.2
0.1
0 le-05

/ 0.2 0.4 0.6 0.8 1

scalp bone

Figure 1. The conductivity function og.

The alternating minimization algorithm is initialized with boundary sources g1, go of the
form

(39) gj(z) = (cosbj,sinb;) -n(zx), 6;€[0,2r), j=1,2, x€ .

When the difference between the angles 6, and 6 is relatively small, the resulting system is
ill-conditioned. We thus take two different pairs of angles in the experiments: (i) #; = 0 and
0y = 5; (ii) 01 = %r and 0y = 7.

4.4.1. Experiment 1: 6; = 0 and 05 = g The initial Neumann boundary conditions
are

(40) gi(z) = (1,0) -n(z) ,  g2(x) = (0,1) -n(x) .

The choice is made to assess the performance of the alternating minimization algorithm when
the gradients of v; and vy are nearly orthogonal. Note that these gradients are indeed orthog-
onal if o is constant. The reconstructions are shown in Figure 2. The relative L? error is
2.99% using the initial Neumann conditions g1, g2, and the relative L? error is 2.87% using the
Neumann conditions g7, g5 generated by the alternating minimization problem. The Neumann
conditions g1, g2, 97, g5 are plotted in Figure 3, where the horizontal axis represents the grid
points on 9. In this case, the initial guess g1, g2 is already very good and the optimization
improves the result only to a small extent.

4.4.2. Experiment 2: 601 = ‘%’r and 02 = 7. The initial Neumann boundary conditions
are
V31
(41) g1(x) = <_2a 5 -n(z) , 92(z) = (=1,0) - n(z).

"https://github.com/lowrank /aecm-isp
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Figure 2. Ezperiment 1. Reconstruction with initial Neumann data corresponding to 01 = 0 and 02 = %
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from full data. The first (second) row represents the first (second) component of the current density. From the
left: the exact current density, the reconstructed current density, and the exact (red) and reconstructed (blue)
current density on the vertical line x = 0.6.
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Figure 3. Ezperiment 1. Initial Neumann data (corresponding to 61 = 0 and 02
The graphs of g1 and gi are on the left, the graphs of g2 and g5 are on the right, and the
functions are plotted from the bottom left corner of the domain clockwise.

Neumann data.

600

700

5 ) and optimized

This choice is made to assess the performance of the alternating minimization algorithm when
the adjoint solutions v; and vy are nearly parallel. The reconstruction is shown in Figure 4.
The relative L? error is 13.7% using the initial boundary sources g1, g2, and the relative L?
error is 6.10% using the sources g7, g3 generated by the alternating minimization problem.
The sources g1, g2, g7 , g5 are plotted in Figure 5, where the horizontal axis represents the grid
points on 0f). The alternating minimization improves the result significantly in this case.
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Figure 4. Ezperiment 2. Reconstruction with initial Neumann data corresponding to 61 = 3% and 02 = 7

6

from full data. The first (second) row represents the first (second) component of the current density. From the
left: the exact current density, the reconstructed current density, and the exact (red) and reconstructed (blue)
current density on the vertical line x = 0.6.
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The graphs of g1 and gy are on the left, the graphs of g2 and g5 are on the right, and the

4.5. Partial data. We also tested the reconstruction algorithm for the case of partial
boundary measurements, where measurements are only taken on a part of the boundary
I' € 99). In this case, one can only prescribe Neumann conditions g1, go that are compactly
supported in the interior of I'. It is not possible to find v;, j = 1,...,n, whose gradients are
uniformly linearly independent in 2 since the gradients are linearly dependent on the bound-
ary. However, since J is compactly supported in €2, we can look for v;, j = 1,...,n, whose
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gradients are uniformly linearly independent on supp(J). If such v; exist, the internal func-
tional (26) on supp(J) is available from the measurements, and the reconstruction procedure
works identically from this point on.

In the following examples, measurements on the bottom edge of Q = [0.1,0.9] x [0, 1] are
absent, that is, OQ\I' = [0.1,0.9] x {0}. The boundary sources gi, g2 are the same as in (39),
except that they vanish on the bottom edge. We will again consider the two pairs of angles:
(i) 1 =0 and 6 = 7; (ii) 01 = 5 and O = 7.

4.5.1. Experiment 3: 6; = 0 and 0> = 7. The initial boundary sources g1, g2 are as
in (40) on I', and are set to be zero on IQ\I'. Note that the gradients of v1,v2 cannot be
everywhere orthogonal due to the boundary constraint that % = % = 0 on the bottom
boundary. The reconstruction is shown in Figure 6. The relative L? error is 2.82% using the
initial g1, g2, and the relative L? error is 2.70% using the boundary sources g}, g5 generated
by the alternating minimization problem. The boundary sources g1, g2, g7, g5 are plotted in
Figure 7, where the horizontal axis represents the grid points on 0f).
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Figure 6. Experiment 3. Reconstruction with initial Neumann data corresponding to 61 = 0 and 62 = 5
from partial data. The first (second) row represents the first (second) component of the current density. From
the left: the exact current density, the reconstructed current demsity, and the exact (red) and reconstructed

(blue) current density on the vertical line x = 0.6.

4.5.2. Experiment 4: 6, = ‘%’r and 02 = 7. The initial Neumann boundary conditions
91,92 are as in (41) on I', and are set to be zero on IQ\I'. The reconstruction is shown in
Figure 8. The relative L? error is 34.1% using the initial boundary sources gi, g2, and the
relative L? error is 10.2% using the sources g%, g5 generated by the alternating minimization

problem. The sources g1, g2, 97, g5 are plotted in Figure 9, where the horizontal axis represents
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Figure 7. Experiment 3. Initial Neumann conditions (corresponding to 61 =0 and 62 = T ) and optimized
Neumann conditions with partial data. The graphs of g1 and gi are on the left, the graphs of g2 and g5 are on
the right, and the functions are plotted from the bottom left corner of the domain clockwise.
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Figure 8. Experiment 4. Reconstruction with initial Neumann data corresponding to 61 = %” and 0 =7

from partial data. The first (second) row represents the first (second) component of the current density. From
the left: the exzact current density, the reconstructed current density, and the exact (red) and reconstructed
(blue) current density on the vertical line x = 0.6.

the grid points on 9€2. Evidently, optimization improves the result significantly.

5. Discussion. In this paper, we formulated a mathematical model of an acoustically
modulated electrical source problem. We showed that boundary measurement of the electric
potential in the presence of acoustic modulation leads to knowledge of an internal functional.
Based on this observation, we devised explicit procedures to reconstruct the (unmodulated)
source current Jo from the internal functional. The reconstruction is shown to be unique
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Figure 9. FEzperiment 4. Initial Neumann data (corresponding to 61 = %” and 02 = ) and optimized

Neumann data with partial data. The graphs of g1 and gi are on the left, the graphs of g2 and g5 are on the
right, and the functions are plotted from the bottom left corner of the domain clockwise.

with Lipschitz stability, which serves as the mathematical justification for the elimination of
nonuniqueness in the classical inverse problem. We also present numerical implementations
of the proposed procedures with both full and partial boundary measurements, including
an alternating minimization algorithm that improves numerical stability. We note that the
model we consider holds for the case of steady currents and is suitable for applications to
low-frequency biological currents. Although this work was motivated by neurophysiologic
applications, similar considerations apply to cardiac electrophysiology. In future work, we
intend to explore the high-frequency regime, where it is necessary to employ the apparatus of
the full Maxwell system.
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