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An Acousto-electric Inverse Source Problem\ast 
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Abstract. We propose a method to reconstruct the electrical current density inside a conducting medium from
acoustically modulated boundary measurements of the electric potential. We show that the current
can be uniquely reconstructed with Lipschitz stability. We also perform numerical simulations to
illustrate the analytical results, and we explore the partial data setting when measurements are taken
only on part of the boundary.
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1. Introduction. Electroencephalography is widely used in neurology and neurosurgery
to monitor the electrical activity of the human brain [17, 38, 9]. In a typical clinical setting,
the electrical signal is recorded from electrodes that are either placed on the scalp or surgically
implanted in the brain. In either case, the objective is to locate and characterize the current
source that produces the measured signal. An important application is to the localization
of seizure foci in patients undergoing epilepsy surgery. In mathematical terms, this problem
is closely related to the inverse problem of reconstructing the electrical current density of a
conducting medium from boundary measurements. It is well known, however, that this inverse
source problem is underdetermined and does not admit a unique solution [10, 18, 19, 20, 1].
That is, more than one source can give rise to the same measurements. This problem may
be overcome, to some extent, if a priori information about the source is known. For instance,
if the source consists of a single current dipole (or even a fixed number of dipoles), then its
position and strength can be uniquely determined [23, 36, 2, 41]. However, electrical activity
in the brain is distributed across networks of neurons of unknown structure, which leads to a
fundamental difficulty.

In this work we consider an alternative approach to the inverse source problem which, in
some sense, is in the spirit of several recently proposed hybrid imaging modalities [3, 6, 12,
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21, 27, 32, 33, 39]. In these methods, a wavefield is used to control the material properties
of a medium of interest, which is then probed by a second wavefield [6, 7, 4, 15, 13, 14, 37,
28, 25, 16, 30, 31]. Here we exploit the acousto-electric effect, in which the density of charge
carriers and conductivity are spatially modulated by an acoustic wave [29, 35]. We find that
it is possible to uniquely recover the current density from boundary measurements of the
electrical potential. Moreover, the stability of the reconstruction is shown to be Lipschitz,
which provides mathematical justification for the use of acoustic modulation in the electrical
inverse source problem.

The remainder of this paper is organized as follows. In section 2 we introduce a model
for the acousto-electric effect. This model is used as the basis for the treatment of the acous-
tically modulated inverse source problem that is taken up in section 3. We show that the
boundary measurements in the presence of acoustic modulation lead to knowledge of an inter-
nal functional, from which the current source may be recovered. In section 4 our results are
illustrated by numerical simulations, including the cases of full and partial boundary measure-
ments, along with an alternating minimization algorithm that improves numerical stability.
Finally, our conclusions are presented in section 5.

2. Acousto-electric effect. We begin by developing a simple model for the acousto-
electric effect, following the approach of [6]. Consider a system of conducting particles and
charge carriers in a fluid. If a small-amplitude acoustic wave is incident on the system, each
particle will oscillate about its local equilibrium position. We may thus regard the particles
as independent. It follows that the equation of motion of a single particle is of the form

(1) \rho 
du

dt
=  - \nabla p ,

where u is the velocity of the particle, \rho is its mass density, and p is the pressure in the fluid.
We consider a standing time-harmonic plane wave of frequency \omega with

(2) p = A cos(\omega t) cos(k \cdot x+ \varphi ) ,

where A is the amplitude of the wave, k is its wave vector, and \varphi is the phase. For simplicity,
we have assumed that the speed of sound cs is constant with | k| = \omega /cs. The oscillatory
solution to (1) is given by

(3) u =
A

\rho \omega 
sin(\omega t) sin(k \cdot x+ \varphi )k .

Thus apart from a transient, the particle moves with the fluid.
In the presence of an applied field, the charge carriers move and generate a current. The

current density J\epsilon is of the form

(4) J\epsilon =
\sum 
i

qivi\delta (x - Ri(t)) ,

where Ri is the position of the ith charge carrier, vi is its velocity, and qi is the charge. Since
each particle is independent, it follows from integration of the equations of motion (1) that
J\epsilon is given by

(5) J\epsilon (x) = J0(x) [1 + \epsilon cos(k \cdot x+ \varphi )] ,
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where J0 is the current in the absence of the acoustic wave and \epsilon = A/(\rho c2s) \ll 1 is a small
parameter. The conductivity \sigma \epsilon of the medium is proportional to the density of conducting
particles and is given by

(6) \sigma \epsilon (x) = \sigma 0(x) [1 + \epsilon \beta cos(k \cdot x+ \varphi )] ,

where \sigma 0 is the unmodulated conductivity and \beta is the zero-frequency elasto-electric con-
stant. We conclude that the acoustic wave leads to spatial modulation of the current and the
conductivity.

Consider the flow of current in a bounded domain \Omega \subset \BbbR n with a smooth boundary, n \geq 2.
The total current

(7) J = J\epsilon + \sigma \epsilon E

consists of contributions from the source and the volume, where E is the electric field. Under
static conditions, the conservation of charge takes the form \nabla \cdot J = 0. In addition, E =  - \nabla u,
where u is the potential. The potential then obeys the equation

\nabla \cdot \sigma \epsilon (x)\nabla u\epsilon = \nabla \cdot J\epsilon in \Omega ,(8)

\partial u\epsilon 
\partial n

= 0 on \partial \Omega ,(9)

where the Neumann boundary condition prevents the outward flow of current through \partial \Omega .
We now turn to the derivation of an internal functional from boundary measurements of

the potential. In section 3 we will show that it is possible to recover the current source from
the internal functional. The following assumptions are imposed throughout the paper:
(A-1) The domain \Omega is simply connected with C2 boundary \partial \Omega .
(A-2) The (unmodulated) conductivity \sigma 0 \in L\infty (\Omega ) is known and satisfies

(10) 0 < K1 < \sigma 0 < K2

for some positive constants K1 and K2.
(A-3) J0 \in (L2(\Omega ))n and J0 is compactly supported in \Omega .
Under these assumptions, the boundary value problem (8)--(9) admits a unique weak solution
u\epsilon \in H1(\Omega ) up to an additive constant [22], satisfying

(11) \| \nabla u\epsilon \| L2(\Omega ) \leq 
1

K1
\| J\epsilon \| (L2(\Omega ))n .

We thus find that J\epsilon \in (L2(\Omega ))n.
To derive the internal functional, we consider the following auxiliary boundary value prob-

lem:

(12)
\nabla \cdot \sigma 0(x)\nabla vj = 0 in \Omega ,

\partial vj
\partial n

= gj on \partial \Omega ,D
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where gj \in H - 1/2(\partial \Omega ), j = 1, . . . , N , are prescribed boundary sources. Under the assumptions
(A-1) and (A-2), this auxiliary boundary value problem admits a unique weak solution vj \in 
H1(\Omega ) up to an additive constant. Since the unmodulated conductivity \sigma 0 is known, the
solutions vj in principle can be computed.

Next, multiplying (8) by vj and (12) by u\epsilon , subtracting the resulting equations, and
integrating the difference over \Omega yields

(13) \Sigma (j)
\epsilon =

\int 
\Omega 
[(\sigma \epsilon  - \sigma 0)\nabla u\epsilon \cdot \nabla vj + vj\nabla \cdot J\epsilon ] dx .

Here the surface term \Sigma 
(j)
\epsilon , which follows from an integration by parts, is defined by

(14) \Sigma (j)
\epsilon :=

\int 
\partial \Omega 

\biggl[ 
u\epsilon \sigma 0

\partial vj
\partial n

 - vj\sigma \epsilon 
\partial u\epsilon 
\partial n

\biggr] 
dx .

Making use of the boundary conditions (9) and (12), we see that

(15) \Sigma (j)
\epsilon =

\int 
\partial \Omega 
u\epsilon \sigma 0gjdx .

Therefore \Sigma 
(j)
\epsilon can be determined from boundary measurement of u\epsilon .

We now introduce the asymptotic expansions for u\epsilon and \Sigma 
(j)
\epsilon as

u\epsilon = u0 + \epsilon u1 + \cdot \cdot \cdot ,(16)

\Sigma (j)
\epsilon = \Sigma 

(j)
0 + \epsilon \Sigma 

(j)
1 + \cdot \cdot \cdot ,(17)

which we substitute into (13). At \scrO (1) we obtain

(18) \Sigma 
(j)
0 =

\int 
\Omega 
vj\nabla \cdot J0 dx ,

and at \scrO (\epsilon ) we have

(19) \Sigma 
(j)
1 =

\int 
\Omega 
(\beta \sigma 0\nabla u0  - J0) \cdot \nabla vj cos(k \cdot x+ \varphi ) dx.

Here we have inserted (5) into (13), performed a further integration by parts, and then applied

the assumption that J0 vanishes on \partial \Omega . Since \Sigma 
(j)
\epsilon is determined by the boundary measure-

ment, \Sigma 
(j)
1 is known. Provided the experiment is repeated with different k and \varphi , it follows

from (19) that by inverting a Fourier transform, we can recover the internal functional

(20) Hj := (\beta \sigma 0\nabla u0  - J0) \cdot \nabla vj

at every point in \Omega .

Remark 1. Despite the fact that the solutions u\epsilon and vj are known up to an additive
constant, the internal functional Hj is unique.
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AN ACOUSTO-ELECTRIC INVERSE SOURCE PROBLEM 1605

3. Inverse problem. It follows from the above discussion that the inverse problem consists
of recovering the (unmodulated) source current J0 from the internal functional Hj . In this
section we will derive a reconstruction procedure that uniquely recovers J0 with Lipschitz
stability. The following hypothesis is necessary throughout.

Hypothesis 2. There exist gj, j = 1, . . . , N , such that the gradients of the solutions vj \in 
C1(\Omega ) to the auxiliary problems (12) form a basis everywhere in \Omega . That is,

(21) det[\nabla v1, . . . ,\nabla vN ] \not = 0 in \Omega .

This hypothesis holds at least for sufficiently regular conductivity \sigma 0. We justify this fact
by applying a similar approach to [5].

Proposition 3. Let N \geq 2. Under the assumptions (A-1) and (A-2), if \sigma 0 \in H
N
2
+2+s(\Omega )

for some s > 0, there exist N (complex-valued) solutions v1, . . . , vN \in C1(\Omega ) to (12) with
pointwise linearly independent gradients.

Proof. It has been established in [8, Proposition 3.3] that for N \geq 2, (12) admits complex-
valued solutions of the form

(22) vj(x; \rho j) =
1\sqrt{} 
\sigma 0(x)

e\rho j \cdot \bfx (1 + \psi \rho j (x)) ,

where \rho j \in \BbbC N is a complex parameter with \rho j \cdot \rho j = 0 and the function \psi \rho j satisfies the
estimate

(23) | \rho j | \| \psi \rho j\| C0(\Omega ) + \| \psi \rho j\| C1(\Omega ) \leq C

\bigm\| \bigm\| \bigm\| \bigm\| \Delta \surd 
\sigma 0\surd 
\sigma 0

\bigm\| \bigm\| \bigm\| \bigm\| 
H

N
2 +s(\Omega )

for some constant C = C(\Omega , s) > 0. The right-hand-side of (23) is finite as a result of the

assumptions (A-2) and \sigma 0 \in H
N
2
+2+s(\Omega ). Observe that the gradient of vj is

\nabla vj =
e\rho j \cdot \bfx 
\surd 
\sigma 0

\biggl( 
\rho j + \rho j\psi \rho j +\nabla \psi \rho j  - 

1

2
(1 + \psi \rho j )\sigma 

 - 3
2

0 \nabla \sigma 0
\biggr) 
;

then

det [\nabla v1, . . . ,\nabla vN ] =
N\prod 
j=1

| \rho j | 
exp(

\sum N
j=1 \rho j \cdot x)

\sigma 
N/2
0

\times 

\Biggl( 
det

\biggl\{ 
\rho 1
| \rho 1| 

, . . . ,
\rho N
| \rho N | 

\biggr\} 
+O

\biggl( 
max

1\leq j\leq N

\biggl\{ 
1

| \rho j | 

\biggr\} \biggr) \Biggr) 
.

In particular, if we choose vectors \rho j as

(24)
\rho 2m - 1 =

\surd 
2

2
| \rho 2m - 1| (e2m - 1 + i e2m),

\rho 2m =

\surd 
2

2
| \rho 2m| (e2m - 1  - i e2m)D
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form = 1, . . . , \lfloor N2 \rfloor , where i =
\surd 
 - 1 is the imaginary unit and ej denotes the unit vector whose

jth component is 1 and other components are 0, then the determinant det
\bigl[ 
\nabla v1, . . . ,\nabla vN

\bigr] 
is bounded away from zero uniformly when min1\leq j\leq N | \rho j | is sufficiently large. This is true
because the matrix

\bigl[ \rho 1
| \rho 1| , . . . ,

\rho N
| \rho N | 
\bigr] 
is blockwise diagonal with blocks of the form

A =

\biggl[ 
1 i
1  - i

\biggr] 
, B =

\left[  1 i 0
1  - i 0
0 1 i

\right]  .

If N is even, then the matrix contains N
2 blocks of A, and if N is odd, then the matrix has

(\lfloor N2 \rfloor  - 1) blocks of A and one block of B. Since det(A) =  - 2i, det(B) = 2, we obtain\bigm| \bigm| det\bigl\{ \rho 1
| \rho 1| , . . . ,

\rho N
| \rho N | 
\bigr\} \bigm| \bigm| \geq 2. The boundary potential sources gj in Hypothesis 2 then can be

taken as gj := \partial nvj | \partial \Omega , j = 1, . . . , N .

Let v1, . . . , vN be the auxiliary solutions in Hypothesis 2 with linearly independent gra-
dients, and let Hj be the internal functional corresponding to vj as in (20), j = 1, . . . , N .
Then

[H1, . . . ,HN ] = (\beta \sigma 0\nabla u0  - J0)[\nabla v1, . . . ,\nabla vN ],

where (\beta \sigma 0\nabla u0  - J0) is viewed as a row vector. If we set

(25) A := [H1, . . . ,HN ][\nabla v1, . . . ,\nabla vN ] - 1,

then

(26) A = \beta \sigma 0\nabla u0  - J0 .

Since each Hj is known from boundary measurements and vj can be obtained via solving the
auxiliary problem (12) with the prescribed boundary potential source gj , we can compute the
matrix A explicitly. If \beta \not = 1, by taking the divergence of (26) and combining the result with
(8) for \epsilon = 0, we find that

(27) \nabla \cdot J0 =
1

\beta  - 1
\nabla \cdot A .

Thus we can solve for u0 up to an additive constant from the boundary value problem (8),
and then compute J0 using

(28) J0 = \beta \sigma 0\nabla u0  - A .

Note that J0 is uniquely determined, since u0 is unique up to a constant. Evidently the above
procedure breaks down if \beta = 1. Finally, we show that the reconstruction from the internal
functional Hj , j = 1, . . . , N , has Lipschitz stability.

Theorem 4. The reconstruction (28) is Lipschitz stable in the sense that if J0 and \~J0 are
currents reconstructed from the corresponding internal functionals A and \~A, then

(29) \| J0  - \~J0\| (L2(\Omega ))n \leq 
\biggl( 
1 +

| \beta | K2

| \beta  - 1| K1

\biggr) 
\| A - \~A\| (L2(\Omega ))n .D
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Proof. The stability estimate is easily seen in two steps. First, from (26),

(30) \| J0  - \~J0\| (L2(\Omega ))n \leq \| A - \~A\| (L2(\Omega ))n + | \beta | K2\| \nabla (u0  - \~u0)\| (L2(\Omega ))n .

Second, combining (27), (8), and (9), we have that u0  - \~u0 satisfies

(31)

\nabla \cdot \sigma 0(x)\nabla (u0  - \~u0) =
1

\beta  - 1
\nabla \cdot (A - \~A) in \Omega ,

\partial (u0  - \~u0)

\partial n
= 0 on \partial \Omega .

Similar to the regularity property (11),

(32) \| u0  - \~u0\| H1(\Omega ) \leq 
1

| \beta  - 1| K1
\| A - \~A\| (L2(\Omega ))n ,

which leads to the conclusion.

The above stability result can be restated in terms of the internal functionalsHj as follows.

Corollary 5. Let J0, \~J0, A, and \~A be as in Theorem 4, and let Hj and \~Hj, j = 1, . . . , N , be
the corresponding scalar internal functions. If Hypothesis 2 holds, then there exists a constant
C, such that

(33) \| J0  - \~J0\| 2(L2(\Omega ))n \leq C

N\sum 
j=1

\| Hj  - \~Hj\| 2L2(\Omega ) .

Proof. When Hypothesis 2 holds, there exists a constant C1 such that

| [\nabla v1, . . . ,\nabla vN ] - 1| 2 \leq C1 for every x \in \Omega ,

where | \cdot | 2 is the matrix 2-norm. Thus combining (25) and Theorem 4, the proof is finished.

4. Numerical reconstruction and validation. In this section we present numerical exper-
iments to validate the proposed reconstruction procedure for J0. Reconstructions from both
full and partial boundary measurements are reported.

4.1. Forward problem. The problem

(34)
\nabla \cdot \sigma 0(x)\nabla u0 = \nabla \cdot J0 in \Omega ,

\partial u0
\partial n

= 0 on \partial \Omega 

is solved to generate simulated measurements. Existence and uniqueness of the solution u0,
up to a constant, are ensured by standard elliptic theory [22]. This boundary value problem is
numerically solved with the first order Lagrangian finite element method. The finite element
discretization results in a linear system of the form Ax = b with KerA = Span\{ 1\} , where
1 is the vector whose components are all 1's. This linear system is then solved with the
biconjugate gradient stabilized method (BiCGStab) [24] by projecting the discretized solution
onto the orthogonal complement (KerA)\bot = 1\bot .
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4.2. Measurements. The measurements consist of the internal functionals Hj in (20). To
proceed, we must first compute the vj which solve (12) for j = 1, 2. The boundary sources gj
must be selected so that Hypothesis 2 holds. That is,

(35) det
\bigl[ 
\nabla v1,\nabla v2

\bigr] 
(x) \not = 0 , x \in \Omega .

Since measurements may carry noise, we would like to choose g1 and g2 so that the condition
number of the above matrix remains small, in order to achieve stable numerical reconstruction.
For example, if g1 and g2 are chosen such that \| \nabla v1\| = \| \nabla v2\| = 1, then simple computation
shows the matrix has the smallest condition number when \nabla v1 \bot \nabla v2. In the special case
where \sigma 0 is constant, we can simply take the linear functions vj(x) = dj \cdot x with d1 \bot d2.

4.3. Optimization. For nonconstant \sigma 0, gj can be selected by solving the following mini-
max problem:

(36) (g\ast 1, g
\ast 
2) = argmin

g1,g2\in G
max
x\in \Omega 

\bigm| \bigm| \bigm| \bigm| \bigm| \nabla v1| \nabla v1| 
\cdot \nabla v2
| \nabla v2| 

\bigm| \bigm| \bigm| \bigm| \bigm| ,
where G = \{ g \in L2(\partial \Omega ) : \| g\| L2(\partial \Omega ) = 1\} . However, this minimax problem is not in the
convex-concave setting [34] and cannot be efficiently solved by minimizing the primal-dual
gap [26]. Instead, we relax the minimax problem to the following alternating minimization
problem.

Suppose the medium permits a solution v01 such that \nabla v01 \not = 0 everywhere in \Omega . Then we
iteratively take alternating minimization steps. At the kth iteration, we solve

(37) gk2 = argmin
gk2\in G

1

2

\int 
\Omega 
| \nabla \phi \cdot \nabla vk - 1

1 | 2dx subject to

\Biggl\{ 
\nabla \cdot \sigma 0\nabla \phi = 0 in \Omega ,
\partial \phi 
\partial n = gk2 on \partial \Omega .

Next, we set vk2 = \phi and solve

(38) gk1 = argmin
gk1\in G

1

2

\int 
\Omega 
| \nabla \psi \cdot \nabla vk2 | 2dx subject to

\left\{   \nabla \cdot \sigma 0\nabla \psi = 0 in \Omega ,
\partial \psi 

\partial n
= gk1 on \partial \Omega ,

and we set vk1 = \psi . The iteration is terminated when either the increments in v1, v2 are smaller
than a prescribed tolerance or the maximum iteration number is reached.

The above minimization consists of two convex quadratically constrained quadratic pro-
grams, and we can apply the interior point method [11, 40] to solve them. Although the
solution to this relaxed alternating minimization problem is not necessarily the solution to
the original minimax problem, the boundary conditions selected from the relaxed problem do
stabilize the numerical reconstruction, as is shown in the subsequent numerical examples.

4.4. Numerical examples. We present numerical examples with full boundary measure-
ment in this subsection, and partial boundary measurement in the next subsection. The
Shepp--Logan head phantom for \sigma 0 in the rectangular computational domain \Omega = [0.1, 0.9]\times 
[0, 1] is used to model the anatomy in an experiment, as shown in Figure 1. The values of \sigma 0
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AN ACOUSTO-ELECTRIC INVERSE SOURCE PROBLEM 1609

are assigned based on the conductivities of white matter, grey matter, cerebrospinal fluid, and
bone, where the region outside of the skull is assumed to have the same conductivity as the
scalp. In all experiments 5\% Gaussian random noise is added to the signal. The MATLAB
code for the following numerical examples is hosted on Github.1

scalp bone

brain white

matter

brain grey

matter

cerebrospinal

fluid

Figure 1. \itT \ith \ite \itc \ito \itn \itd \itu \itc \itt \iti \itv \iti \itt \ity \itf \itu \itn \itc \itt \iti \ito \itn \sigma 0.

The alternating minimization algorithm is initialized with boundary sources g1, g2 of the
form

(39) gj(x) = (cos \theta j , sin \theta j) \cdot n(x), \theta j \in [0, 2\pi ), j = 1, 2, x \in \partial \Omega .

When the difference between the angles \theta 1 and \theta 2 is relatively small, the resulting system is
ill-conditioned. We thus take two different pairs of angles in the experiments: (i) \theta 1 = 0 and
\theta 2 =

\pi 
2 ; (ii) \theta 1 =

5\pi 
6 and \theta 2 = \pi .

4.4.1. Experiment 1: \bfittheta \bfone = 0 and \bfittheta \bftwo = \bfitpi 
\bftwo 
. The initial Neumann boundary conditions

are

(40) g1(x) = (1, 0) \cdot n(x) , g2(x) = (0, 1) \cdot n(x) .

The choice is made to assess the performance of the alternating minimization algorithm when
the gradients of v1 and v2 are nearly orthogonal. Note that these gradients are indeed orthog-
onal if \sigma 0 is constant. The reconstructions are shown in Figure 2. The relative L2 error is
2.99\% using the initial Neumann conditions g1, g2, and the relative L2 error is 2.87\% using the
Neumann conditions g\ast 1, g

\ast 
2 generated by the alternating minimization problem. The Neumann

conditions g1, g2, g
\ast 
1, g

\ast 
2 are plotted in Figure 3, where the horizontal axis represents the grid

points on \partial \Omega . In this case, the initial guess g1, g2 is already very good and the optimization
improves the result only to a small extent.

4.4.2. Experiment 2: \bfittheta \bfone = \bffive \bfitpi 
\bfsix 

and \bfittheta \bftwo = \bfitpi . The initial Neumann boundary conditions
are

(41) g1(x) =

\Biggl( 
 - 
\surd 
3

2
,
1

2

\Biggr) 
\cdot n(x) , g2(x) = ( - 1, 0) \cdot n(x).

1https://github.com/lowrank/aem-isp
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1610 W. LI, J. C. SCHOTLAND, Y. YANG, AND Y. ZHONG

Figure 2. \itE \itx \itp \ite \itr \iti \itm \ite \itn \itt 1. \itR \ite \itc \ito \itn \its \itt \itr \itu \itc \itt \iti \ito \itn \itw \iti \itt \ith \iti \itn \iti \itt \iti \ita \itl \itN \ite \itu \itm \ita \itn \itn \itd \ita \itt \ita \itc \ito \itr \itr \ite \its \itp \ito \itn \itd \iti \itn \itg \itt \ito \theta 1 = 0 \ita \itn \itd \theta 2 = \pi 
2

\itf \itr \ito \itm \itf \itu \itl \itl \itd \ita \itt \ita . \itT \ith \ite fi\itr \its \itt (\its \ite \itc \ito \itn \itd ) \itr \ito \itw \itr \ite \itp \itr \ite \its \ite \itn \itt \its \itt \ith \ite fi\itr \its \itt (\its \ite \itc \ito \itn \itd ) \itc \ito \itm \itp \ito \itn \ite \itn \itt \ito \itf \itt \ith \ite \itc \itu \itr \itr \ite \itn \itt \itd \ite \itn \its \iti \itt \ity . \itF \itr \ito \itm \itt \ith \ite 
\itl \ite \itf \itt : \itt \ith \ite \ite \itx \ita \itc \itt \itc \itu \itr \itr \ite \itn \itt \itd \ite \itn \its \iti \itt \ity , \itt \ith \ite \itr \ite \itc \ito \itn \its \itt \itr \itu \itc \itt \ite \itd \itc \itu \itr \itr \ite \itn \itt \itd \ite \itn \its \iti \itt \ity , \ita \itn \itd \itt \ith \ite \ite \itx \ita \itc \itt (\itr \ite \itd ) \ita \itn \itd \itr \ite \itc \ito \itn \its \itt \itr \itu \itc \itt \ite \itd (\itb \itl \itu \ite )
\itc \itu \itr \itr \ite \itn \itt \itd \ite \itn \its \iti \itt \ity \ito \itn \itt \ith \ite \itv \ite \itr \itt \iti \itc \ita \itl \itl \iti \itn \ite x = 0.6.

Figure 3. \itE \itx \itp \ite \itr \iti \itm \ite \itn \itt 1. \itI \itn \iti \itt \iti \ita \itl \itN \ite \itu \itm \ita \itn \itn \itd \ita \itt \ita (\itc \ito \itr \itr \ite \its \itp \ito \itn \itd \iti \itn \itg \itt \ito \theta 1 = 0 \ita \itn \itd \theta 2 = \pi 
2
) \ita \itn \itd \ito \itp \itt \iti \itm \iti \itz \ite \itd 

\itN \ite \itu \itm \ita \itn \itn \itd \ita \itt \ita . \itT \ith \ite \itg \itr \ita \itp \ith \its \ito \itf g1 \ita \itn \itd g\ast 1 \ita \itr \ite \ito \itn \itt \ith \ite \itl \ite \itf \itt , \itt \ith \ite \itg \itr \ita \itp \ith \its \ito \itf g2 \ita \itn \itd g\ast 2 \ita \itr \ite \ito \itn \itt \ith \ite \itr \iti \itg \ith \itt , \ita \itn \itd \itt \ith \ite 
\itf \itu \itn \itc \itt \iti \ito \itn \its \ita \itr \ite \itp \itl \ito \itt \itt \ite \itd \itf \itr \ito \itm \itt \ith \ite \itb \ito \itt \itt \ito \itm \itl \ite \itf \itt \itc \ito \itr \itn \ite \itr \ito \itf \itt \ith \ite \itd \ito \itm \ita \iti \itn \itc \itl \ito \itc \itk \itw \iti \its \ite .

This choice is made to assess the performance of the alternating minimization algorithm when
the adjoint solutions v1 and v2 are nearly parallel. The reconstruction is shown in Figure 4.
The relative L2 error is 13.7\% using the initial boundary sources g1, g2, and the relative L2

error is 6.10\% using the sources g\ast 1, g
\ast 
2 generated by the alternating minimization problem.

The sources g1, g2, g
\ast 
1, g

\ast 
2 are plotted in Figure 5, where the horizontal axis represents the grid

points on \partial \Omega . The alternating minimization improves the result significantly in this case.
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AN ACOUSTO-ELECTRIC INVERSE SOURCE PROBLEM 1611

Figure 4. \itE \itx \itp \ite \itr \iti \itm \ite \itn \itt 2. \itR \ite \itc \ito \itn \its \itt \itr \itu \itc \itt \iti \ito \itn \itw \iti \itt \ith \iti \itn \iti \itt \iti \ita \itl \itN \ite \itu \itm \ita \itn \itn \itd \ita \itt \ita \itc \ito \itr \itr \ite \its \itp \ito \itn \itd \iti \itn \itg \itt \ito \theta 1 = 5\pi 
6

\ita \itn \itd \theta 2 = \pi 
\itf \itr \ito \itm \itf \itu \itl \itl \itd \ita \itt \ita . \itT \ith \ite fi\itr \its \itt (\its \ite \itc \ito \itn \itd ) \itr \ito \itw \itr \ite \itp \itr \ite \its \ite \itn \itt \its \itt \ith \ite fi\itr \its \itt (\its \ite \itc \ito \itn \itd ) \itc \ito \itm \itp \ito \itn \ite \itn \itt \ito \itf \itt \ith \ite \itc \itu \itr \itr \ite \itn \itt \itd \ite \itn \its \iti \itt \ity . \itF \itr \ito \itm \itt \ith \ite 
\itl \ite \itf \itt : \itt \ith \ite \ite \itx \ita \itc \itt \itc \itu \itr \itr \ite \itn \itt \itd \ite \itn \its \iti \itt \ity , \itt \ith \ite \itr \ite \itc \ito \itn \its \itt \itr \itu \itc \itt \ite \itd \itc \itu \itr \itr \ite \itn \itt \itd \ite \itn \its \iti \itt \ity , \ita \itn \itd \itt \ith \ite \ite \itx \ita \itc \itt (\itr \ite \itd ) \ita \itn \itd \itr \ite \itc \ito \itn \its \itt \itr \itu \itc \itt \ite \itd (\itb \itl \itu \ite )
\itc \itu \itr \itr \ite \itn \itt \itd \ite \itn \its \iti \itt \ity \ito \itn \itt \ith \ite \itv \ite \itr \itt \iti \itc \ita \itl \itl \iti \itn \ite x = 0.6.

Figure 5. \itE \itx \itp \ite \itr \iti \itm \ite \itn \itt 2. \itI \itn \iti \itt \iti \ita \itl \itN \ite \itu \itm \ita \itn \itn \itd \ita \itt \ita (\itc \ito \itr \itr \ite \its \itp \ito \itn \itd \iti \itn \itg \itt \ito \theta 1 = 5\pi 
6

\ita \itn \itd \theta 2 = \pi ) \ita \itn \itd \ito \itp \itt \iti \itm \iti \itz \ite \itd 
\itN \ite \itu \itm \ita \itn \itn \itd \ita \itt \ita . \itT \ith \ite \itg \itr \ita \itp \ith \its \ito \itf g1 \ita \itn \itd g\ast 1 \ita \itr \ite \ito \itn \itt \ith \ite \itl \ite \itf \itt , \itt \ith \ite \itg \itr \ita \itp \ith \its \ito \itf g2 \ita \itn \itd g\ast 2 \ita \itr \ite \ito \itn \itt \ith \ite \itr \iti \itg \ith \itt , \ita \itn \itd \itt \ith \ite 
\itf \itu \itn \itc \itt \iti \ito \itn \its \ita \itr \ite \itp \itl \ito \itt \itt \ite \itd \itf \itr \ito \itm \itt \ith \ite \itb \ito \itt \itt \ito \itm \itl \ite \itf \itt \itc \ito \itr \itn \ite \itr \ito \itf \itt \ith \ite \itd \ito \itm \ita \iti \itn \itc \itl \ito \itc \itk \itw \iti \its \ite .

4.5. Partial data. We also tested the reconstruction algorithm for the case of partial
boundary measurements, where measurements are only taken on a part of the boundary
\Gamma \subset \partial \Omega . In this case, one can only prescribe Neumann conditions g1, g2 that are compactly
supported in the interior of \Gamma . It is not possible to find vj , j = 1, . . . , n, whose gradients are
uniformly linearly independent in \Omega since the gradients are linearly dependent on the bound-
ary. However, since J is compactly supported in \Omega , we can look for vj , j = 1, . . . , n, whose
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1612 W. LI, J. C. SCHOTLAND, Y. YANG, AND Y. ZHONG

gradients are uniformly linearly independent on supp(J). If such vj exist, the internal func-
tional (26) on supp(J) is available from the measurements, and the reconstruction procedure
works identically from this point on.

In the following examples, measurements on the bottom edge of \Omega = [0.1, 0.9]\times [0, 1] are
absent, that is, \partial \Omega \setminus \Gamma = [0.1, 0.9]\times \{ 0\} . The boundary sources g1, g2 are the same as in (39),
except that they vanish on the bottom edge. We will again consider the two pairs of angles:
(i) \theta 1 = 0 and \theta 2 =

\pi 
2 ; (ii) \theta 1 =

5\pi 
6 and \theta 2 = \pi .

4.5.1. Experiment 3: \bfittheta \bfone = 0 and \bfittheta \bftwo = \bfitpi 
\bftwo 
. The initial boundary sources g1, g2 are as

in (40) on \Gamma , and are set to be zero on \partial \Omega \setminus \Gamma . Note that the gradients of v1, v2 cannot be
everywhere orthogonal due to the boundary constraint that \partial v1

\partial n = \partial v2
\partial n = 0 on the bottom

boundary. The reconstruction is shown in Figure 6. The relative L2 error is 2.82\% using the
initial g1, g2, and the relative L2 error is 2.70\% using the boundary sources g\ast 1, g

\ast 
2 generated

by the alternating minimization problem. The boundary sources g1, g2, g
\ast 
1, g

\ast 
2 are plotted in

Figure 7, where the horizontal axis represents the grid points on \partial \Omega .

Figure 6. \itE \itx \itp \ite \itr \iti \itm \ite \itn \itt 3. \itR \ite \itc \ito \itn \its \itt \itr \itu \itc \itt \iti \ito \itn \itw \iti \itt \ith \iti \itn \iti \itt \iti \ita \itl \itN \ite \itu \itm \ita \itn \itn \itd \ita \itt \ita \itc \ito \itr \itr \ite \its \itp \ito \itn \itd \iti \itn \itg \itt \ito \theta 1 = 0 \ita \itn \itd \theta 2 = \pi 
2

\itf \itr \ito \itm \itp \ita \itr \itt \iti \ita \itl \itd \ita \itt \ita . \itT \ith \ite fi\itr \its \itt (\its \ite \itc \ito \itn \itd ) \itr \ito \itw \itr \ite \itp \itr \ite \its \ite \itn \itt \its \itt \ith \ite fi\itr \its \itt (\its \ite \itc \ito \itn \itd ) \itc \ito \itm \itp \ito \itn \ite \itn \itt \ito \itf \itt \ith \ite \itc \itu \itr \itr \ite \itn \itt \itd \ite \itn \its \iti \itt \ity . \itF \itr \ito \itm 
\itt \ith \ite \itl \ite \itf \itt : \itt \ith \ite \ite \itx \ita \itc \itt \itc \itu \itr \itr \ite \itn \itt \itd \ite \itn \its \iti \itt \ity , \itt \ith \ite \itr \ite \itc \ito \itn \its \itt \itr \itu \itc \itt \ite \itd \itc \itu \itr \itr \ite \itn \itt \itd \ite \itn \its \iti \itt \ity , \ita \itn \itd \itt \ith \ite \ite \itx \ita \itc \itt (\itr \ite \itd ) \ita \itn \itd \itr \ite \itc \ito \itn \its \itt \itr \itu \itc \itt \ite \itd 
(\itb \itl \itu \ite ) \itc \itu \itr \itr \ite \itn \itt \itd \ite \itn \its \iti \itt \ity \ito \itn \itt \ith \ite \itv \ite \itr \itt \iti \itc \ita \itl \itl \iti \itn \ite x = 0.6.

4.5.2. Experiment 4: \bfittheta \bfone = \bffive \bfitpi 
\bfsix 

and \bfittheta \bftwo = \bfitpi . The initial Neumann boundary conditions
g1, g2 are as in (41) on \Gamma , and are set to be zero on \partial \Omega \setminus \Gamma . The reconstruction is shown in
Figure 8. The relative L2 error is 34.1\% using the initial boundary sources g1, g2, and the
relative L2 error is 10.2\% using the sources g\ast 1, g

\ast 
2 generated by the alternating minimization

problem. The sources g1, g2, g
\ast 
1, g

\ast 
2 are plotted in Figure 9, where the horizontal axis represents
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AN ACOUSTO-ELECTRIC INVERSE SOURCE PROBLEM 1613

Figure 7. \itE \itx \itp \ite \itr \iti \itm \ite \itn \itt 3. \itI \itn \iti \itt \iti \ita \itl \itN \ite \itu \itm \ita \itn \itn \itc \ito \itn \itd \iti \itt \iti \ito \itn \its (\itc \ito \itr \itr \ite \its \itp \ito \itn \itd \iti \itn \itg \itt \ito \theta 1 = 0 \ita \itn \itd \theta 2 = \pi 
2
) \ita \itn \itd \ito \itp \itt \iti \itm \iti \itz \ite \itd 

\itN \ite \itu \itm \ita \itn \itn \itc \ito \itn \itd \iti \itt \iti \ito \itn \its \itw \iti \itt \ith \itp \ita \itr \itt \iti \ita \itl \itd \ita \itt \ita . \itT \ith \ite \itg \itr \ita \itp \ith \its \ito \itf g1 \ita \itn \itd g\ast 1 \ita \itr \ite \ito \itn \itt \ith \ite \itl \ite \itf \itt , \itt \ith \ite \itg \itr \ita \itp \ith \its \ito \itf g2 \ita \itn \itd g\ast 2 \ita \itr \ite \ito \itn 
\itt \ith \ite \itr \iti \itg \ith \itt , \ita \itn \itd \itt \ith \ite \itf \itu \itn \itc \itt \iti \ito \itn \its \ita \itr \ite \itp \itl \ito \itt \itt \ite \itd \itf \itr \ito \itm \itt \ith \ite \itb \ito \itt \itt \ito \itm \itl \ite \itf \itt \itc \ito \itr \itn \ite \itr \ito \itf \itt \ith \ite \itd \ito \itm \ita \iti \itn \itc \itl \ito \itc \itk \itw \iti \its \ite .

Figure 8. \itE \itx \itp \ite \itr \iti \itm \ite \itn \itt 4. \itR \ite \itc \ito \itn \its \itt \itr \itu \itc \itt \iti \ito \itn \itw \iti \itt \ith \iti \itn \iti \itt \iti \ita \itl \itN \ite \itu \itm \ita \itn \itn \itd \ita \itt \ita \itc \ito \itr \itr \ite \its \itp \ito \itn \itd \iti \itn \itg \itt \ito \theta 1 = 5\pi 
6

\ita \itn \itd \theta 2 = \pi 
\itf \itr \ito \itm \itp \ita \itr \itt \iti \ita \itl \itd \ita \itt \ita . \itT \ith \ite fi\itr \its \itt (\its \ite \itc \ito \itn \itd ) \itr \ito \itw \itr \ite \itp \itr \ite \its \ite \itn \itt \its \itt \ith \ite fi\itr \its \itt (\its \ite \itc \ito \itn \itd ) \itc \ito \itm \itp \ito \itn \ite \itn \itt \ito \itf \itt \ith \ite \itc \itu \itr \itr \ite \itn \itt \itd \ite \itn \its \iti \itt \ity . \itF \itr \ito \itm 
\itt \ith \ite \itl \ite \itf \itt : \itt \ith \ite \ite \itx \ita \itc \itt \itc \itu \itr \itr \ite \itn \itt \itd \ite \itn \its \iti \itt \ity , \itt \ith \ite \itr \ite \itc \ito \itn \its \itt \itr \itu \itc \itt \ite \itd \itc \itu \itr \itr \ite \itn \itt \itd \ite \itn \its \iti \itt \ity , \ita \itn \itd \itt \ith \ite \ite \itx \ita \itc \itt (\itr \ite \itd ) \ita \itn \itd \itr \ite \itc \ito \itn \its \itt \itr \itu \itc \itt \ite \itd 
(\itb \itl \itu \ite ) \itc \itu \itr \itr \ite \itn \itt \itd \ite \itn \its \iti \itt \ity \ito \itn \itt \ith \ite \itv \ite \itr \itt \iti \itc \ita \itl \itl \iti \itn \ite x = 0.6.

the grid points on \partial \Omega . Evidently, optimization improves the result significantly.

5. Discussion. In this paper, we formulated a mathematical model of an acoustically
modulated electrical source problem. We showed that boundary measurement of the electric
potential in the presence of acoustic modulation leads to knowledge of an internal functional.
Based on this observation, we devised explicit procedures to reconstruct the (unmodulated)
source current J0 from the internal functional. The reconstruction is shown to be unique
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Figure 9. \itE \itx \itp \ite \itr \iti \itm \ite \itn \itt 4. \itI \itn \iti \itt \iti \ita \itl \itN \ite \itu \itm \ita \itn \itn \itd \ita \itt \ita (\itc \ito \itr \itr \ite \its \itp \ito \itn \itd \iti \itn \itg \itt \ito \theta 1 = 5\pi 
6

\ita \itn \itd \theta 2 = \pi ) \ita \itn \itd \ito \itp \itt \iti \itm \iti \itz \ite \itd 
\itN \ite \itu \itm \ita \itn \itn \itd \ita \itt \ita \itw \iti \itt \ith \itp \ita \itr \itt \iti \ita \itl \itd \ita \itt \ita . \itT \ith \ite \itg \itr \ita \itp \ith \its \ito \itf g1 \ita \itn \itd g\ast 1 \ita \itr \ite \ito \itn \itt \ith \ite \itl \ite \itf \itt , \itt \ith \ite \itg \itr \ita \itp \ith \its \ito \itf g2 \ita \itn \itd g\ast 2 \ita \itr \ite \ito \itn \itt \ith \ite 
\itr \iti \itg \ith \itt , \ita \itn \itd \itt \ith \ite \itf \itu \itn \itc \itt \iti \ito \itn \its \ita \itr \ite \itp \itl \ito \itt \itt \ite \itd \itf \itr \ito \itm \itt \ith \ite \itb \ito \itt \itt \ito \itm \itl \ite \itf \itt \itc \ito \itr \itn \ite \itr \ito \itf \itt \ith \ite \itd \ito \itm \ita \iti \itn \itc \itl \ito \itc \itk \itw \iti \its \ite .

with Lipschitz stability, which serves as the mathematical justification for the elimination of
nonuniqueness in the classical inverse problem. We also present numerical implementations
of the proposed procedures with both full and partial boundary measurements, including
an alternating minimization algorithm that improves numerical stability. We note that the
model we consider holds for the case of steady currents and is suitable for applications to
low-frequency biological currents. Although this work was motivated by neurophysiologic
applications, similar considerations apply to cardiac electrophysiology. In future work, we
intend to explore the high-frequency regime, where it is necessary to employ the apparatus of
the full Maxwell system.
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