
Neuroevolution Guided Hybrid Spiking Neural
Network Training

Sen Lu, Abhronil Sengupta
School of Electrical Engineering and Computer Science

The Pennsylvania State University
University Park, PA 16802, USA

Email: sengupta@psu.edu

Abstract—Neuromorphic computing algorithms based on Spik-
ing Neural Networks (SNNs) are evolving to be a disruptive
technology driving machine learning research. The overarch-
ing goal of this work is to develop a structured algorithmic
framework for SNN training that optimizes unique SNN-specific
properties like neuron spiking threshold using neuroevolution as
a feedback strategy. We provide extensive results for this hybrid
bio-inspired training strategy and show that such a feedback-
based learning approach leads to explainable neuromorphic
systems that adapt to the specific underlying application. Our
analysis reveals 53.8%, 28.8% and 28.2% latency improvement
for the neuroevolution-based SNN training strategy on CIFAR-
10, CIFAR-100 and ImageNet datasets respectively in contrast
to state-of-the-art conversion based approaches. The proposed
algorithm can be easily extended to other application domains
like image classification in presence of adversarial attacks where
43.2% and 27.9% latency improvements were observed on
CIFAR-10 and CIFAR-100 datasets respectively.

Index Terms—Spiking Neural Networks, Neuroevolution, Ad-
versarial Attack, Neuromorphic Computing

I. INTRODUCTION

Spiking Neural Network (SNN) based next-generation
brain-inspired computational paradigms are emerging to be a
disruptive technology driving machine learning research due
to its unique temporal, event-driven behavior. SNN computing
models are driven by the fact that biological neurons process
information temporally and the computation is triggered by
sparse events or spikes transmitted from fan-in neurons. Recent
work has demonstrated that event-driven SNNs can result in
a significant reduction of power consumption and commu-
nication overhead in hardware implementations of Artificial
Intelligence (AI) platforms by exploiting ‘dynamic’ sparsity
in neural activations [1], [2]. In addition to event-driven com-
puting in the network itself, such a computing framework is
an ideal fit for the emerging market of low-power, low-latency
event-driven sensors [3] that capture spatio-temporal informa-
tion in the spiking domain. Such an end-to-end pipeline across
the stack from sensors to the hardware and computational
primitives enables us to truly leverage advantages from event-
driven computation and communication.

While the true potential of SNNs is expected to be demon-
strated on spatio-temporal application drivers triggered by
sparse events [3], [4] by leveraging its temporal processing
capability [5], [6], significant research has been also performed
to establish its near-term efficacy on standard static recognition

tasks [7]–[13], routinely performed by conventional deep
learning methods (referred to as Analog Neural Networks
(ANNs) [14], hereafter). The vast majority of works in this
domain have focused on rate encoding frameworks [14] where
the operation of the ANN is distributed as binary information
over time in the SNN, resulting in a significant reduction of
peak power consumption [15]. To achieve supervised SNN
training, two competing approaches are usually adopted:
(i) ANN-SNN conversion: In this scenario, an ANN is trained
with specific constraints [7], [8], [12], [14] and subsequently
converted to an SNN for event-driven inference on neuro-
morphic hardware. The conversion process is enabled by the
equivalence of Rectified Linear Unit (ReLU) functionality
of ANN neurons to the operation of an Integrate-Fire (IF)
spiking neuron. The method takes advantage of standard ANN
backpropagation techniques like stochastic gradient descent
but is limited by the baseline ANN accuracy. Recent works
have been directed at minimizing the accuracy loss during the
conversion process [12], [13] and have reported competitive
accuracies in large-scale machine learning tasks.
(ii) Direct SNN training: Direct SNN training by adopting
backpropagation through time (BPTT) has also proven suc-
cessful recently, albeit in simpler image classification tasks.
Gradient descent is usually performed in SNNs by approxi-
mating the spiking neuron operation by surrogate gradients to
avoid the discontinuity in the neuron transfer function due to
discrete spiking behavior [5], [6]. While SNN training from
scratch would probably benefit from temporal processing in
neuromorphic chips, current near-term GPU-enabled training
suffers from limited scalability due to exploding memory
requirements for BPTT.

Relative advantages and disadvantages of the two ap-
proaches are still being explored. Initial work has suggested
that direct SNN training from scratch [16] or a hybrid method
of fine-tuning an ANN-SNN converted network for a few
epochs through BPTT [10] can significantly reduce the SNN
inference latency. However, recent approaches have shown that
significant latency reduction can be also achieved through
simple design-time and run-time optimizations in the ANN-
SNN conversion process as well [12]. This is also intuitive
since the application drivers for image classification tasks
are static and do not involve temporal information. Also,
gradient descent is utilized to minimize the classification

error in the rate encoding framework for both scenarios and
not the inference latency. The ANN-SNN conversion process
essentially abstracts the SNN operation in a time-averaged
fashion during the training process without exploiting precise
timing information for gradient descent.

This paper is an attempt to develop a structured algorithmic
framework for the ANN-SNN conversion process. The key pa-
rameter driving the event-driven temporal behavior of neurons
in the SNN is the neuron threshold. A higher neuron threshold
is useful for distinguishability of temporal evidence integration
[8] and therefore translates to higher accuracy. A higher
threshold also causes the neurons to spike less frequently
thereby increasing the spiking sparsity at the cost of increased
latency. Inference latency (impacting delay) and sparsity of
the spike train (impacting power) are key metrics governing
the energy efficiency (delay × power) of SNNs implemented
on neuromorphic hardware. Hence, we can abstract the SNN
network performance (accuracy/latency/power/energy) to be
a function of the neuron thresholds in each layer of the
network. It is worth mentioning here that all neurons in a
particular layer have the same threshold to ensure consistent
rate encoded information in each layer. Previous works have
mainly optimized neuron thresholds to maximize accuracy [8]
or adopt a sub-optimal heuristic choice for all thresholds in
the network to reduce inference latency with minimal accuracy
drop [12]. However, different layers’ thresholds of a network
may have varying non-linear impact on the SNN efficiency
metric and a holistic singular choice for the entire network may
not be optimal. Further, the thresholds may also need to be re-
tuned for different efficiency metrics of choice. Driven by this
observation, we propose a hybrid training framework where
a converted SNN is optimized in tandem with a neuroevolu-
tionary algorithm. Once an ANN with appropriate constraints
for conversion has been trained, we optimize the layerwise
threshold using a neuroevolutionary algorithm. Neuroevolution
optimized neural networks is a growing topic of interest [17]
guided by the notion that biological brains are an outcome
of natural evolution. It is worth mentioning here that our
proposal is not specific to the optimizer. We chose evolutionary
algorithms due to their simple gradient-free operation, paral-
lelizability and ability to outperform reinforcement learning
algorithms at scale [17], [18]. The neuroevolution process
considers a space of possible candidate solutions (defined by
a set of layerwise neuron thresholds) and evaluates a cost
function (latency, accuracy, among others) by evaluating the
candidate SNN on a subset of the training set through the
evolution generations. The additional computing overhead due
to the hybrid approach is therefore driven by relatively cheaper
SNN inference runs. The main contributions of the paper can
be summarized as:

(i) We present a simple automated framework to optimize
an SNN by a hybrid training process that does not suffer from
computationally expensive operations like BPTT.

(ii) We evaluate our approach with regards to SNN infer-
ence latency improvements on static image classification tasks
and adversarial attack scenarios (CIFAR-10, CIFAR-100 and

ImageNet datasets). The framework can be easily extended to
involve hardware aware constraints as well like peak power or
energy consumption in specific layers.

(iii) We present design insights to interpret the optimized
SNN thresholds. For image classification and adversarial at-
tack scenarios, we obtain an interpretable understanding of the
need for layerwise SNN optimization.

II. RELATED WORKS

Hybrid SNN training: Prior work has considered hybrid
SNN training approaches [9], [10], [16], [19]. Relevant to our
approach, Ref. [9] considered training an ANN-SNN converted
spiking network through BPTT for a few epochs to improve
on inference latency. However, during the second stage of
BPTT training, gradient descent was performed not only on
the weights, but also on the neuron thresholds and additional
leak parameters that were introduced in this second training
stage. The requirement of joint optimization of weights and
thresholds may not be necessary since the ratio of the two
governs the spiking neuron behavior [8]. Further, optimization
of additional leak parameters adds to the computational burden
of SNN BPTT. It is also unclear whether the superior SNN
performance is attributed primarily to a fine-tuned optimized
threshold or whether time-based information in training also
plays a role.

In contrast, our algorithm adopts a simplistic approach of
fine-tuning only the SNN thresholds to optimize the metric of
choice using neuroevolutionary algorithms. Neuroevolutionary
algorithms are easily parallelizable and the search parameter
space in our scenario is bounded by the number of network
layers and hence is not computationally expensive. The search
process also involves evaluation of the cost function which is
equivalent to the relatively cheaper SNN inference simulations
and does not suffer from the explosive computational require-
ments of BPTT. The work also aims to serve as a benchmark
for static image classification tasks to address the question
of whether BPTT training from scratch or fine-tuning adds
significantly to the training process. We provide results to
substantiate that conversion techniques might produce com-
petitive SNNs in application drivers not exploiting temporal
information.
Neuroevolution in SNN training: Evolutionary algorithms
have been used for training SNNs [20]–[22] where the com-
putational unit (neuron/synapse) parameters and network ar-
chitectures have been optimized. A variety of techniques like
EONS [20] and HyperNEAT [21] algorithms have been used
to train the networks from scratch. However, the techniques
have been primarily evaluated on simple machine learning
tasks. Hence, the scalability of the approaches remains unclear.
Our work considers a hybridized approach where a supervised
conventional SNN is optimized with a neuroevolutionary al-
gorithm depending on the cost function of choice (accuracy,
latency, among others), thereby leveraging the scalability of
gradient descent approaches.
Significance driven layerwise optimizations: There have
been a plethora of works recently in the deep learning com-

munity on layerwise optimizations of different parameters
based on their significance to a relevant cost function. For
instance, bit widths of weights and activations per layer have
been optimized from computation requirement perspective
[23]–[27]. Distinct from prior methods, this work explores
significance-driven layerwise optimizations for SNN training.

III. PRELIMINARIES

A. Spiking Neural Networks

Let us first consider the algorithmic formulation underpin-
ning ANN-SNN conversion [7], [13]. In T timesteps, for an
N -layer SNN converted by copying the weights Wn from an
ANN (where n ∈ N), suppose that a particular neuron in
the n-th layer at the t-th timestep has membrane potential
denoted by V tn . When the membrane potential is greater than
the threshold V thn, the neuron is reset by subtracting V thn
from the potential. The membrane potential dynamics of the
subtractive IF neurons in response to the input signal xtn for
the n-th layer can be expressed as the following:

V t+1
n = V tn +Wn ∗ xtn − V thn ∗ 1V t

n>V thn
(1)

where, 1V t
n>V thn

is an indicator function defined as:

1V t
n>V thn

→ {0, 1} =

{
1 if V tn > V thn

0 otherwise
(2)

As the neuron accumulates spikes over time, assuming
V 0
n = 0, the membrane potential for a particular neuron of

the n-th layer can be expressed as:

V Tn = Wn ∗
T∑
t=0

xtn − V thn ∗
T∑
t=0

1V t
n>V thn

(3)

In the rate encoding framework, the average magnitude
of the input spikes over T timesteps, x̂n =

∑T
t=0 x

t
n/T ,

represents the equivalent SNN input activation for the n-th
layer. Simplifying Eqn. 3,

V Tn
T

= Wn ∗ x̂n −
V thn
T
∗

T∑
t=0

1V t
n>V thn

(4)

The average input spikes to the (n + 1)-th layer, x̂n+1, is
the summed indicator function

∑T
t=0 1V t

n>V thn
. Hence Eqn.

4 can be rearranged as:

x̂n+1 =
Wn ∗ x̂n
V thn/T

− V Tn
V thn

(5)

Assuming that the remaining V Tn will be less than the
threshold V thn and will not result in a spike, the neuron
transfer function can be formulated with a clipping function
as the following [13]:

x̂n+1 =
1

T
∗ clip

(⌊
Wn ∗ x̂n
V thn/T

⌋
, 0, T

)
(6)

where, a clipping function clip(a, b, c) restricts the value a to
be minimally b or maximally c, and does not affect a’s value
when b ≤ a ≤ c. As shown in Eqn. 6, the output of a layer

is critically dependent on the threshold V th of the layer and
is a bit discretized version of the ReLU functionality, thereby
enabling ANN-SNN conversion. It is worth mentioning that
this simplification of neuron transfer function may differ
slightly from the actual network simulation due to positive
and negative membrane potential cancellations [13] or multiple
neuron fan-in [8].

B. Differential Evolution Algorithm

Differential Evolution (DE) is a parallel direct search
method that optimizes a solution iteratively through evolving
candidate solutions. Unlike other optimization techniques such
as gradient descent that requires the problem to be differen-
tiable, DE can be applied to noisy and discrete problems.
DE starts with a population P of initial candidate solutions
(randomly initialized or normally distributed around the pre-
liminary solution). In each iteration, the existing candidates are
mutated and evaluated by a cost function, and the best ones
become members of the next generation. The evolution of new
solutions is achieved by two operations, namely ‘mutation’ and
‘crossover’.
(i) Mutation in DE algorithm refers to adding the weighted
difference between two candidates to the third. The mutation
process to obtain the i-th vector ~vg+1 at generation g + 1 is
given by:

~vi,g+1 = ~xr1,g +M × (~xr2,g − ~xr3,g) (7)

where, ~xr1,g is the r1-th vector of generation g, r1, r2, r3 ∈
{1, 2, .., P} are random indices in the population. M ∈ [0, 2]
is a real-valued hyper-parameter controlling the extent of
mutation in differential variation.
(ii) Crossover adds diversity by creating a trial vector ~ui,g+1

with problem dimension D at generation g + 1:

~ui,g+1 = (ui,g+1(1), ui,g+1(2), ..., ui,g+1(D)) (8)

in which,

ui,g+1(j) =

{
vi,g+1(j) if (rand(j) ≤ C) or j = randInd(~vi,g+1)

xi,g(j) otherwise
(9)

where, j ∈ 1, 2, ..., D, ui,g+1(j) is the j-th element of the trial
vector ~ui,g+1, rand(j) is a real-valued uniform random num-
ber generator (RNG) outcome with the range [0, 1] evaluated
at j-th time; C is another real-valued hyper-parameter that
controls the extent of inheritance from the mutant vector ~vi in
the trial vector ~ui. randInd(~vi,g+1) randomly selects an index
from the given vector’s dimension 1, 2, ..., D and the condition
after ‘or’ enforces that there is at least one element from ~vi.
The candidate solution ~ui,g+1 will be evaluated against ~xi,g on
the same cost function and the one with the lower cost will be
selected as the member of (g + 1)-th generation. Considering
that the DE solution takes G generations to converge, the total
number of function evaluations (nfe) during the optimization
process is therefore given by:

nfe = G× P (10)

In this work, we used the DE implementation by a Python-
based toolkit ‘SciPy’ [28], which is based on the algorithm
outlined in Ref. [29].

IV. NEUROEVOLUTION GUIDED HYBRID SNN TRAINING
ALGORITHM

As discussed previously, our proposed neuroevolution op-
timized SNN models are trained using a hybrid approach -
(i) standard ANN-SNN conversion [12] followed by (ii) DE
optimization of SNN neuron thresholds. The DE optimization
is driven by a cost-function evaluated on randomly chosen
subsets from the training set. The random shuffling of the
sub-dataset adds a regularization effect to the training process.
Next, we discuss our cost-function formulation for handling
the accuracy-latency tradeoff in standard image classification
tasks. We utilize a similar approach for adversarial attack
scenarios on the same dataset and show that the thresholds
adapt to the new cost-function, thereby showing the flexibility
of the approach. Finally, we also provide insights to explain
the optimal threshold choice.

A. Latency-Accuracy Tradeoff Driven Optimization and Inter-
pretibility

0 20 40 60
Timesteps

0.0

0.2

0.4

0.6

Ac
cu
ra
cy 99.7…Percentile

Accuracy-only…Opt.
Gradient-only…Opt.
Latency-only…Opt.

Fig. 1. Impact of various components of the cost function on the accuracy-
latency tradeoff for VGG-15 model on CIFAR-100 dataset.

Our multi-objective DE cost-function consists of weighted
factors to optimize the latency of the SNN along with the final
accuracy. In particular, the latency is abstracted by the timestep
at which it reaches the highest gradient in the accuracy-
time variation function. The resulting costs are scaled by
hyperparameters (α, β and γ) and then linearly summed up.
To summarize, the cost function is as follows:

Cost = α×J +β× (1−max(∇)) + γ× (1−Acc[T]) (11)

where, J is argmax
t
{∇Acc(t)}, the timestep at which the SNN

reaches the highest gradient in accuracy max(∇) with respect
to time. The maximal gradient magnitude is also added to the
cost function to guide solutions toward models with sharper
accuracy-timestep transitions such that latency required to
reach a specific accuracy is minimized. We observed that this
was critical to achieving the latency-accuracy tradeoff. Finally,
the cost function also includes Acc[T], the final accuracy of
the model at timestep T (a sufficiently long time window for
inference) where Acc[] is a function of accuracy against time.

It is worth reiterating here that the accuracy is evaluated over
randomly chosen subsets of the training set for each candidate
solution. The impact of each individual component in the cost
function is depicted in Fig. 1.

0 5 10
Layer#

85

90

95

100

Pe
rc
en
til
e

Optimized…Thr.
PCs

0.5

0.0

0.5

PC
A…

Pe
rc
en
ta
ge
…
C
ha
ng
e

(a) (b)

Fig. 2. The thresholds are expressed as the percentile of the maximum
ANN activations. Both the figures are plotting one of the best solutions
in their respective scenarios. (a) The optimized threshold shows a similar
general trend as the principal components. (b) Blue and red: layerwise ANS
value (left vertical axis) of the ANN and the converted + optimized SNN
respectively. ANS is significantly reduced after optimization. Green: The
optimized threshold (right vertical axis) shows drastic reduction after layer 10
corresponding to the layers where the ANS metric is significantly reduced.

Fig. 1(a) depicts the optimized threshold (expressed as
a percentile of the maximum ANN activation [12]: higher
percentile values translate to higher threshold) as a function
of layer number for a typical run. In order to attain an un-
derstanding for the importance of layerwise neuron threshold
optimization, we hypothesized that this might be correlated
to the significance of a particular layer toward its prediction
capability. For this purpose, we used Principal Component
Analysis (PCA) - one of the prominent tools that can be
used to quantify a neural network layer’s significance [30]. In
short, PCA can be thought of as an orthogonal transformation
that maps uncorrelated variables in the input data points
and forms a basis vector set that maximizes the variance in
different directions. Generally, neural network models project
the input into higher dimensions as layers get deeper with the
goal of achieving linear separability at the final output layer.
Therefore, the calculation of the Principal Components (PCs)
of each layer’s feature map is able to quantify the projective
ability of each layer and thus its significance.

We performed PCA on the feature maps before the non-
linear activation to examine the redundancy in every layer as
the dimension increases. To explain the first, say R%, of the
variance in the feature map of the layer, only a number of the
PCs, denoted by k, are needed. Given an activation map P
with dimension B ×H ×W × F , where B is the mini-batch
size, H and W are height and width of the filter respectively,
and F is the number of filters, it is first flattened to 1D in the
first 3 dimensions. This makes the activation Q a 2D matrix
with dimension K×F where K = B×H×W . Singular value
decomposition is applied to QTQ to obtain L eigenvectors vi
and eigenvalues λi. The total variance Pvar is given by:

Pvar =
L∑
i=1

σ2
ii (12)

1 Function CalculateCost(Acc[], α, β, γ):
Data:
Acc[t]: A list of size T , where t = {1, 2, ... , T}
α, β, γ ∈ R
Result: cost

33 ∇[]← ∂(Acc)
∂t // Gradient of accuracy

function

/* Use Eqn. 11 to evaluate the cost */

55 cost← α× argmax
t
{∇[t]}+ β × (1−

max{∇}) + γ × (1−Acc[T])
77 return cost

8 Function
DE(SNN, Thresholds[], TH, std, P,M,C,G, α, β, γ):

Data:
SNN: Base SNN model
Thresholds[]: A 2D array of shape P ∗N , where
N is the number of layers, P is the population size
TH : Base threshold values at 99.7 percentile
std: Desired standard deviation of the initial
population
M : Mutation factor
C: Crossover factor
G: Number of maximum generations
α, β, γ ∈ R: Scaling factors of the cost function
Result: bestThr: The threshold with lowest

evaluation score
1010 Thresholds[]← Initialize(TH, P, std) s.t.

Thresholds[, n]← X ∼ N (TH [n], std2)
1212 Randomly select B samples from the training set

and create mini-dataset S
1414 Acc[]← 0 // length of T

1616 bestCost ← 0, bestThr ← φ // Variables for

tracking

17 for g ← 1 to G do
18 for p← 1 to P do

/* Generates new candidate thresholds

after applying Eqn. 7 - 9 */

19 NewThreshold[]←
Evolution(Thresholds[], p,M,C)

/* Initialize SNN with the new

thresholds for evaluation */

20 SNN.Update (Threshold)
21 for samplebatch in S do

/* SNN inference */

2323 Acc[]←SNN(samplebatch, T)
24 end

/* Apply Eqn. 11 */

2626 cost← CalculateCost(Acc[], α, β, γ)
27 if bestCost>cost then
28 bestCost← cost
29 bestThr ← NewThreshold[]
30 end
31 end
32 return bestThr

Algorithm 1: DE Guided Hybrid SNN Training Algorithm

The significance of component λi would be simply λi

Pvar
. The

first k principal components explain variance of a threshold
value R:

R =

∑k
i=1 λ

2
i∑L

i=1 λ
2
i

(13)

The ratio R is used as a threshold for the algorithm to calculate
the first k PCs and k suggests the number of significant
components required after removing the redundancy in Q.
After obtaining k PCs for every layer in the SNN to explain
a fixed threshold of R% variance (99.9% in our case), we
interpreted a layer’s significance to be proportional to the
percentage increase in the number of PCs in comparison to
the previous layer, i.e. the layer contributes significantly to
the transformation of the input data provided to it by the
previous layer. The percentage layerwise changes in PCs are
plotted in Fig. 1(a), and interestingly the general trend matches
with the variation of layerwise optimized neuronal thresholds.
This is explainable since a higher spiking threshold allows
more time for evidence integration, thereby improving SNN
accuracy by ensuring more significant layers perform more
accurate computations.

B. Adversarial Attack Driven Optimization and Interpretabil-
ity

Next, we show that neuron threshold optimization is not
application agnostic, thereby requiring the need for a cross-
stack optimization. To substantiate our motivation, we consider
SNN adversarial attack scenarios. Adversarial attack in neural
networks refers to malicious attempts to mislead the model
prediction. Since neural networks are proven to be vulnerable
in such attacks [31], it becomes a non-trivial task to optimize
the model for adversarial scenarios. While there are a plethora
of adversarial attack algorithms [32], we used the vanilla
version of the Fast Gradient Sign Method (FGSM) attack as
a proof of concept for our optimization method’s adversarial
robustness. Details in the adversarial setup and implementation
will be discussed in the next section.

We applied our neuroevolutionary guided SNN training
strategy in this case but optimized for adversarial accuracy-
latency tradeoff. Fig. 1(b) depicts the optimized threshold
(expressed as a percentile of the maximum ANN activation)
as a function of layer number for a typical run. However, the
trend shows a slightly different distribution of thresholds as
compared to the normal accuracy scenario. We observe that the
deeper layers exhibits a similar downward trend of thresholds
but this occurs only after layer 10 in the adversarial scenario
whereas the network optimized for normal accuracy shows
this trend much before (explained by % changes in PCs, as
discussed in the previous subsection).

To explain this trend, we used Adversarial Noise Sensitivity
(ANS),Aδ , as a metric for measuring layerwise perturbation in
neural networks [27]. It is defined as the error ratio between
a particular layer’s perturbed adversarial activation and the

TABLE I
ALGORITHM HYPERPARAMETERS FOR VARIOUS DATASETS. *TRAINING COST COMPUTED USING EQN. 17

Dataset α β γ Initial Perc. std Population Size P No. of Generations G nfe Training Cost*
Image Classification

CIFAR-10 1 10 500 99.7 0.15 25 25.9 647.5 38.85
CIFAR-100(VGG15) 1 40 20 99.7 0.15 25 26.55 663.75 39.825
CIFAR-100(VGG11) 0.7 60 200 99.7 0.13 35 7.8 312 16.38

ImageNet 1 70 110 99.8 0.13 20 6.08 121.66 0.475
Image Classification with Adversarial Attack

CIFAR-10 1 2 60 99.7 0.25 25 21.94 548.5 13.2
CIFAR-100 1 2 60 99.7 0.25 25 24.22 605.5 14.5

0 25 50 75 100
Timesteps

0.2

0.4

0.6

0.8

Ac
cu
ra
cy

99.7…Percentile
Optimized…Thr.

(a) CIFAR-10

40 60 80 100
Timesteps

0.4

0.6

0.8

Ac
cu
ra
cy

t=89

0.45

t=42
0.91

99.7…Percentile
Optimized…Thr.

(b) CIFAR-10 Zoomed

0 25 50 75 100 125
Timesteps

0.0

0.2

0.4

0.6

Ac
cu
ra
cy

99.7…Percentile
Optimized…Thr.

(c) CIFAR-100

40 60 80 100 120
Timesteps

0.55

0.60

0.65

Ac
cu
ra
cy

0.662

t=89 t=125

0.67

99.7…Percentile
Optimized…Thr.

(d) CIFAR-100 Zoomed

0 25 50 75 100
Timesteps

0.2

0.4

0.6

Ac
cu
ra
cy

0.4834

t=42
0.689

99.7…Perc.
Optimized…Thr.

(e) CIFAR-10 Adversarial

0 25 50 75 100
Timesteps

0.0

0.1

0.2

0.3

A
cc
ur
ac
y

0.3054
t=44

0.2514

99.7…Percentile
Optimized…Thr.

(f) CIFAR-100 Adversarial

20 40 60 80 100
Timesteps

0.55

0.60

0.65

0.70
Ac
cu
ra
cy

99.7…Percentile
Optimized…Thr.

(g) ImageNet

40 60 80 100
Timesteps

0.62

0.64

0.66

0.68

Ac
cu
ra
cy

0.674

t=74 t=103

0.667

99.7…Percentile
Optimized…Thr.

(h) ImageNet Zoomed

Fig. 3. Accuracy vs timesteps for neuroevolutionary optimized SNN against homogeneously normalized (using 99.7 percentile of maximum activation [12])
SNN on CIFAR-10 dataset. Iso-time and iso-accuracy comparison are denoted by dotted-red line and textboxes.

unperturbed original activation and can be expressed by the
following equation:

Aδ,n =
||anadv − an||2
||an||2

(14)

where, an is the activation map of the n-th layer and the
subscript adv denotes the same activation with adversarial
input. In summary, the higher the ANS value of a particular
layer, the higher is the sensitivity to noise of that layer. In other
words, the layers with high ANS values will perform worse
than the layers with low ANS values under the same degree
of adversarial attack. In the SNN case, we use the cumulative
spikes as the activation:

Aδ,n =
||
∑T
t=1 x

n
adv,t −

∑T
t=1 x

n
t ||2

||
∑T
t=1 x

n
t ||2

(15)

where, xnt is the n-th layer’s spike at timestep t and adv
still denotes the adversarial version; T is the total duration
of inference. We can observe from Fig. 1(b) that the highest
ANS values start from layer 10, which incidentally correlates
with the trend of layerwise optimized neural thresholds.

To understand the relationship between neuron threshold
and noise sensitivity, one needs to consider the activation
discretization caused by the firing threshold. As shown in Eqn.
6, the output of a layer is critically dependent on the threshold
V th of the layer and is a bit discretized version of the ReLU
functionality. Thus, the SNN neuron activation representation
can be considered to be discretized due to the spiking be-
havior. When the threshold is lower in the denominator of
Eqn. 6, there will be more discrete states and vice versa.
Therefore lower firing threshold should relate to layers with
higher noise sensitivity since reduced precision/discretization
results in minimizing the adversarial perturbation [33], [34].
To summarize, in adversarial scenarios, the optimal set of
thresholds attributes low thresholds to high ANS layers to
increase discretization to resist the effect of adversarial noise.

V. EXPERIMENTS AND RESULTS

A. Datasets and Implementation

We evaluated our proposal on the CIFAR-10, CIFAR-100
[43] and the large-scale ImageNet [44] dataset. CIFAR-10 and
CIFAR-100 datasets consist of 10 and 100 classes respectively.
They include 60,000 32 × 32 colored images partitioned into

TABLE II
PERFORMANCE BENCHMARKING OF OUR PROPOSAL AGAINST PRIOR WORKS

Reference Method Architecture SNN Accuracy Timesteps
CIFAR10

[35] ANN-SNN 2C, 2L 82.95% 6000
[8] ANN-SNN VGG16 91.55% 2500

[36] Phase-coding VGG16 91.2% 1500
[37] Burst-coding VGG16 91.4% 1125
[38] Time-Till-First-Spike VGG16 91.40% 680
[7] ANN-SNN 4 Conv, 2 FC 90.85% 400

[39] ANN-SNN 3C,2L 77.43% 400
[10] Hybrid VGG16 92.02% 200
[16] Backprop VGG9 90.45% 100
[12] ANN-SNN VGG15 91.03% 91

This work Neuroevolutionary SNNs VGG15 91.05% 42
CIFAR100

[36] Phase-coding VGG16 68.6% 8950
[37] Burst-coding VGG16 68.77% 3100
[40] ANN-SNN VGG16 70.09% 768
[38] Time-Till-First-Spike VGG16 68.8% 680
[10] Hybrid VGG11 67.87% 125
[12] ANN-SNN VGG11 67.00% 125

This work Neuroevolutionary SNNs VGG11 67.00% 89
ImageNet

[8] ANN-SNN VGG16 69.96% 2500
[40] ANN-SNN VGG16 71.34% 768
[7] ANN-SNN VGG16 49.61% 400

[10] Hybrid VGG16 65.19% 250
[12] ANN-SNN VGG15 67.40% 103

This work Neuroevolutionary SNNs VGG15 67.40% 74

TABLE III
PERFORMANCE BENCHMARKING OF OUR PROPOSAL AGAINST PRIOR WORKS FOR SNN ADVERSARIAL ATTACKS. ALL FGSM ARE WHITE-BOX

ATTACKS AND USE ε = 8/255.

Reference Attack Method Architecture ANN SNN Timesteps
CIFAR10

[41] FGSM Backprop ResNet20 1.8% 3.8% 200
[41] FGSM Backprop VGG5 10.4% 15.0% 100
[42] FGSM Backprop VGG9 61.7% 51.6% 70
[12] FGSM ANN-SNN VGG15 67.42% 67.40% 74

This work FGSM Neuroevolutionary SNNs VGG15 67.42% 68.9% 42
CIFAR100

[41] FGSM Backprop VGG11 17.1% 15.5% 200
[12] FGSM ANN-SNN VGG15 30.54% 31.11% 61

This work FGSM Neuroevolutionary SNNs VGG15 30.54% 33.1% 44

50,000 and 10,000 training and testing images respectively.
ImageNet 2012 is a much more challenging dataset with
1000 object categories that include 1.28 million images for
training and 50,000 images for validation. The ImageNet
images are randomly cropped into 224 × 224 pixels before
being fed into the network. All images are normalized with
zero mean and unit variance and shuffled during the training
and DE optimization phase. The ANN models are pretrained
VGG15 architectures based on constraints described in our
prior work [12]. All experiments are conducted in ‘PyTorch’
framework using ‘BindsNet’ toolbox [45] with the ‘SciPy’
toolbox providing efficient DE algorithm implementation.

For the adversarial attack scenario, we used FGSM as a
white box attack where the model parameters and network
structure are fully available to the attacker. It utilizes the
gradient of the original input and then perturbs it to create an

adversarial version that maximizes the loss. This perturbation
process can be summarized as:

X̂ = X + ε× sign(∇XL(w,X, y)) (16)

where, X̂ is the perturbed image, X is the original input
image, ε is the hyper-parameter to adjust the extent of per-
turbation, ∇XL(w,X, y) is the gradient of the loss L given
model parameter w, input X and label y, sign() operation
provides the direction of the gradient (in terms of ‘1’s and
‘-1’s). In our case, we adopted ε = 8/255, commonly used in
other works. Further details can be found in Ref. [46].

B. Results

The specific hyperparameter settings for our algorithm are
specified in Table I for the various datasets and applications.
For the DE algorithm, we used a typical setting of the mutation

rate (M is a random number between 0.5 and 1.5) and
crossover rate (C = 0.7). It is worth reiterating here that
only the training set is utilized during the neuroevolutionary
optimization process. Considering that the DE algorithm is ini-
tialized with P particles and takes G generations to converge
(measured by averaging over 20 runs), the excess overhead of
running our hybrid training technique is tabulated as “Training
Cost” in Table I and is computed in terms of the training set
size by:

Training Cost = (E ×G× P)/Dtrain (17)

where, E is the total number of images used for cost function
evaluation per particle per generation and Dtrain is the total
number of images in the training set. Table I illustrates the
advantage of our proposed algorithm in terms of scalability.
The number of evaluation images required for the optimization
process is primarily determined by the dimensionality of the
optimization space rather than the size of the training set of
the dataset. Hence, the “Training Cost” reduces significantly
for complex datasets like ImageNet. This is in stark contrast
to BPTT guided hybrid training approaches where backprop-
agation based gradient updates will require significantly large
training datasets.

The performance of our proposed hybrid SNN training
technique for CIFAR-10, CIFAR-100 and ImageNet datasets
are depicted in Fig. 3 including adversarial attack scenarios.
Significant latency improvement is consistently observed in
all cases in contrast to a uniform percentile-based threshold
optimization scheme. Iso-accuracy and iso-latency improve-
ments for latency and accuracy respectively are also provided.
A detailed comparison of the performance of our algorithm
against prior work is provided in Tables II-III.

C. Comparison Against Backpropagation Through Time
(BPTT) Fine-Tuning

40 60 80
Timesteps

0.4

0.6

0.8

Ac
cu
ra
cy

0.91

99.7…Percentile
Optimized…Thr.
BPTT

Fig. 4. Performance of VGG15 model on the CIFAR-10 dataset based on
various training techniques - (blue) ANN-SNN conversion: 99.7 Percentile,
(orange) Hybrid neuroevolutionary approach: Optimized Thr. and (green)
BPTT: Hybrid training with backpropagation through time.

As mentioned before, our work is most relevant to hybrid
SNN training approaches where the network is fine-tuned us-
ing BPTT after conversion [9], [10]. While the computational
overhead is significantly higher in BPTT based approaches,
another important difference between the two approaches lies
in the absence of any temporal information in our neuroevo-
lutionary optimization process. In order to benchmark the

performance of the two hybrid training techniques, we per-
formed BPTT fine-tuning from the same initialized converted
SNN model as used in our neuroevolutionary algorithm. For
BPTT, the network layers are unfolded at each timestep for IF
operations. The BPTT method uses surrogate gradient for IF
neurons [47]:

∂pti
∂V ti

= γmax{0, 1− |Vi(t)|} (18)

where, p is the output spike train, Vi(t) is the normalized
membrane potential voltage of neuron i at timestep t. γ
is a hyper-parameter to dampen the error which is set to
0.15 in our case. For our experiments, we used a pre-trained
VGG15 model on CIFAR-10 dataset, initialized with 99.7
percentile thresholds for the IF neuron layers. The BPTT
algorithm was run for 25 epochs and the network was un-
rolled over 70 timesteps. However, as shown in Fig. 4, while
the hybrid BPTT training performed better than a simple
conversion approach, it was outperformed by our proposed
hybrid neuroevolutionary approach. While recent versions of
hybrid BPTT training [9] have reported only 5 timesteps as
SNN latency, it is probably attributed to performing gradient
descent on additional introduced parameters like neuron leak.
Further, latency is re-defined to exclude intrinsic delay of an
SNN where the neuron in each layer spikes at the current
timestep instead of the next, and therefore eliminates the
intrinsic layerwise SNN delay. While this is a simple method
to reduce SNN latency, it may potentially have limitations
in neuromorphic chip designs in terms of spike routing or
parallel spike processing capability. It is worth mentioning
here that additional optimizations like learnable membrane
time constants [9], [48], network architectures like Residual
networks [49], conversion error calibration techniques [13],
[50], hybrid spike encoding [51] are complementary to the
current proposal and can be augmented in the algorithm to
further minimize the inference latency. Tables II-III therefore
includes primarily basic SNN architectures based on IF nodes
without any additional optimizations to substantiate the impor-
tance and interpretability of the need for layerwise threshold
optimization. The dimensionality of the optimization algorithm
can be easily expanded to incorporate additional optimization
parameters like membrane potential leak, spike encoding rate,
among others.

2.9X

21X

35X
95X

(a) Memory Usage

42X

63X
72X

69X

(b) Expected Running Time

Fig. 5. Memory usage and running time comparison of hybrid neuroevolution-
ary and BPTT based approaches of VGG-15 model on ImageNet dataset, with
maximum batch-size (21, 2, 2, 1) for (5, 25, 50, 75) timesteps respectively.

To quantitatively substantiate the computational benefit
of our proposed hybrid neuroevolutionary training approach
against BPTT based methods, we also report the memory
usage and running time of the two methodologies on the
ImageNet dataset in Fig. 5. The memory usage was profiled
and the extrapolated running time for our proposed neuroevo-
lutionary algorithm is calculated as:

Total Running T ime = τ̄×Training Cost×Dtrain

B
(19)

where, τ̄ is the average running time per batch (averaged
over 20 batches), “Training Cost” is calculated from Eqn. 17
and B is the batch-size. The average running time τ̄ is used to
minimize the fluctuations caused by external processes. The
“Training Cost” of BPTT was considered to be 20 epochs as
reported in prior literature [10]. It is worth mentioning here
that unlike our proposed algorithm, BPTT is heavily memory-
constrained for large scale datasets like ImageNet even for
5 timesteps, as shown in Fig. 5. Our algorithms were run
on Nvidia Tesla V100 16GB GPUs where we had to limit
the batch-size for the BPTT based hybrid training approach
due to memory limit. The batch-sizes of Fig. 5 are chosen
based on the maximum memory capacity of the BPTT based
approach and iso-batch-size comparison is performed with
the neuroevolutionary method. As illustrated in the plot, the
situation worsens significantly with increasing timesteps due
to drastic increase in gradient trace information. As shown in
Fig. 5, our proposed neuroevolutionary method requires 2.9×
less memory and 42× less running time than BPTT based
framework even for 5 timesteps used for SNN simulation. It
is worth mentioning here that iso-timestep based comparison
may not be valid for further optimized SNN algorithms like
BPTT with membrane potential leak [9], [48] and therefore
require further benchmarking.

VI. CONCLUSIONS

In conclusion, the work explores a neuroevolution-based
hybrid SNN training strategy that optimizes SNN specific
parameters like neuron spiking threshold after the conver-
sion process. While significantly outperforming state-of-the-
art approaches in terms of accuracy-latency tradeoffs in image
classification tasks including adversarial attack scenarios, the
work highlights the need for significance-driven layerwise
SNN optimization schemes leading to explainable SNNs.
We also highlight that the work outperforms computationally
expensive BPTT based fine-tuning approaches since temporal
information may not be relevant in static image classification
tasks. Future exploration into application drivers with temporal
information [4], [52] or temporal spike encoding schemes [53],
[54] is expected to truly leverage the full potential of BPTT
based SNN training strategies.

ACKNOWLEDGMENTS

The work was supported in part by the National Science
Foundation grants CCF #1955815, BCS #2031632 and ECCS
#2028213 and by Oracle Cloud credits and related resources
provided by the Oracle for Research program.

REFERENCES

[1] P. A. Merolla, J. V. Arthur, R. Alvarez-Icaza, A. S. Cassidy, J. Sawada,
F. Akopyan, B. L. Jackson, N. Imam, C. Guo, Y. Nakamura, B. Brezzo,
I. Vo, S. K. Esser, R. Appuswamy, B. Taba, A. Amir, M. D. Flickner,
W. P. Risk, R. Manohar, and D. S. Modha, “A million spiking-neuron
integrated circuit with a scalable communication network and interface,”
Science, vol. 345, no. 6197, pp. 668–673, 2014.

[2] M. Davies, N. Srinivasa, T. Lin, G. Chinya, Y. Cao, S. H. Choday,
G. Dimou, P. Joshi, N. Imam, S. Jain, Y. Liao, C. Lin, A. Lines, R. Liu,
D. Mathaikutty, S. McCoy, A. Paul, J. Tse, G. Venkataramanan, Y. Weng,
A. Wild, Y. Yang, and H. Wang, “Loihi: A neuromorphic manycore
processor with on-chip learning,” IEEE Micro, vol. 38, no. 1, pp. 82–
99, 2018.

[3] G. Gallego, T. Delbruck, G. Orchard, C. Bartolozzi, B. Taba, A. Censi,
S. Leutenegger, A. Davison, J. Conradt, K. Daniilidis et al., “Event-
based vision: A survey,” arXiv preprint arXiv:1904.08405, 2019.

[4] K. Mahapatra, A. Sengupta, and N. R. Chaudhuri, “Power system distur-
bance classification with online event-driven neuromorphic computing,”
IEEE Transactions on Smart Grid, 2020.

[5] S. B. Shrestha and G. Orchard, “SLAYER: Spike layer error reassign-
ment in time,” Advances in Neural Information Processing Systems,
vol. 31, pp. 1412–1421, 2018.

[6] E. O. Neftci, H. Mostafa, and F. Zenke, “Surrogate gradient learning in
spiking neural networks,” IEEE Signal Processing Magazine, vol. 36,
pp. 61–63, 2019.

[7] B. Rueckauer, I.-A. Lungu, Y. Hu, M. Pfeiffer, and S.-C. Liu, “Con-
version of continuous-valued deep networks to efficient event-driven
networks for image classification,” Frontiers in neuroscience, vol. 11,
p. 682, 2017.

[8] A. Sengupta, Y. Ye, R. Wang, C. Liu, and K. Roy, “Going deeper in
spiking neural networks: VGG and residual architectures,” Frontiers in
neuroscience, vol. 13, 2019.

[9] N. Rathi and K. Roy, “DIET-SNN: Direct input encoding with leakage
and threshold optimization in deep spiking neural networks,” ArXiv, vol.
abs/2008.03658, 2020.

[10] N. Rathi, G. Srinivasan, P. Panda, and K. Roy, “Enabling deep spiking
neural networks with hybrid conversion and spike timing dependent
backpropagation,” in International Conference on Learning Represen-
tations, 2020.

[11] Y. Wu, L. Deng, G. Li, J. Zhu, Y. Xie, and L. Shi, “Direct training for
spiking neural networks: Faster, larger, better,” in Proceedings of the
AAAI Conference on Artificial Intelligence, vol. 33, no. 01, 2019, pp.
1311–1318.

[12] S. Lu and A. Sengupta, “Exploring the connection between binary and
spiking neural networks,” Frontiers in neuroscience, vol. 14, 2020.

[13] S. Deng and S. Gu, “Optimal conversion of conventional artificial
neural networks to spiking neural networks,” in International
Conference on Learning Representations, 2021. [Online]. Available:
https://openreview.net/forum?id=FZ1oTwcXchK

[14] P. U. Diehl, D. Neil, J. Binas, M. Cook, S.-C. Liu, and M. Pfeiffer, “Fast-
classifying, high-accuracy spiking deep networks through weight and
threshold balancing,” in Neural Networks (IJCNN), 2015 International
Joint Conference on. IEEE, 2015, pp. 1–8.

[15] S. Singh, A. Sarma, N. Jao, A. Pattnaik, S. Lu, K. Yang, A. Sengupta,
V. Narayanan, and C. R. Das, “NEBULA: a neuromorphic spin-based
ultra-low power architecture for SNNs and ANNs,” in 2020 ACM/IEEE
47th Annual International Symposium on Computer Architecture (ISCA).
IEEE, 2020, pp. 363–376.

[16] C. Lee, S. S. Sarwar, P. Panda, G. Srinivasan, and K. Roy, “Enabling
spike-based backpropagation for training deep neural network architec-
tures,” Frontiers in neuroscience, vol. 14, 2020.

[17] K. O. Stanley, J. Clune, J. Lehman, and R. Miikkulainen, “Designing
neural networks through neuroevolution,” Nature Machine Intelligence,
vol. 1, no. 1, pp. 24–35, 2019.

[18] F. P. Such, V. Madhavan, E. Conti, J. Lehman, K. O. Stanley, and
J. Clune, “Deep neuroevolution: Genetic algorithms are a competitive
alternative for training deep neural networks for reinforcement learning,”
arXiv preprint arXiv:1712.06567, 2017.

[19] C. Lee, P. Panda, G. Srinivasan, and K. Roy, “Training deep spiking con-
volutional neural networks with STDP-based unsupervised pre-training
followed by supervised fine-tuning,” Frontiers in neuroscience, vol. 12,
p. 435, 2018.

https://openreview.net/forum?id=FZ1oTwcXchK

[20] C. D. Schuman, J. P. Mitchell, R. M. Patton, T. E. Potok, and J. S. Plank,
“Evolutionary optimization for neuromorphic systems,” in Proceedings
of the Neuro-inspired Computational Elements Workshop, 2020, pp. 1–9.

[21] D. Elbrecht and C. Schuman, “Neuroevolution of spiking neural net-
works using compositional pattern producing networks,” in International
Conference on Neuromorphic Systems 2020, 2020, pp. 1–5.

[22] C. D. Schuman, J. S. Plank, A. Disney, and J. Reynolds, “An evolu-
tionary optimization framework for neural networks and neuromorphic
architectures,” in 2016 International Joint Conference on Neural Net-
works (IJCNN). IEEE, 2016, pp. 145–154.

[23] K. Wang, Z. Liu, Y. Lin, J. Lin, and S. Han, “HAQ: Hardware-aware
automated quantization with mixed precision,” in Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, 2019,
pp. 8612–8620.

[24] I. Chakraborty, D. Roy, I. Garg, A. Ankit, and K. Roy, “Construct-
ing energy-efficient mixed-precision neural networks through principal
component analysis for edge intelligence,” Nature Machine Intelligence,
vol. 2, no. 1, pp. 43–55, 2020.

[25] I. Garg, P. Panda, and K. Roy, “A low effort approach to structured CNN
design using PCA,” IEEE Access, vol. PP, pp. 1–1, 12 2019.

[26] M. F. F. Khan, M. M. Kamani, M. Mahdavi, and V. Narayanan,
“Learning to quantize deep neural networks: A competitive-collaborative
approach,” in 2020 57th ACM/IEEE Design Automation Conference
(DAC). IEEE, 2020, pp. 1–6.

[27] P. Panda, “QUANOS: adversarial noise sensitivity driven hybrid quan-
tization of neural networks,” in Proceedings of the ACM/IEEE Inter-
national Symposium on Low Power Electronics and Design, 2020, pp.
187–192.

[28] P. Virtanen, R. Gommers, T. E. Oliphant, M. Haberland, T. Reddy,
D. Cournapeau, E. Burovski, P. Peterson, W. Weckesser, J. Bright et al.,
“SciPy 1.0: fundamental algorithms for scientific computing in python,”
Nature methods, vol. 17, no. 3, pp. 261–272, 2020.

[29] R. Storn and K. Price, “Differential evolution–a simple and efficient
heuristic for global optimization over continuous spaces,” Journal of
global optimization, vol. 11, no. 4, pp. 341–359, 1997.

[30] I. Chakraborty, D. Roy, I. Garg, A. Ankit, and K. Roy, “Construct-
ing energy-efficient mixed-precision neural networks through principal
component analysis for edge intelligence,” Nature Machine Intelligence,
vol. 2, pp. 1–13, 01 2020.

[31] A. Madry, A. Makelov, L. Schmidt, D. Tsipras, and A. Vladu, “Towards
deep learning models resistant to adversarial attacks,” arXiv preprint
arXiv:1706.06083, 2017.

[32] A. Chakraborty, M. Alam, V. Dey, A. Chattopadhyay, and D. Mukhopad-
hyay, “Adversarial attacks and defences: A survey,” arXiv preprint
arXiv:1810.00069, 2018.

[33] A. S. Rakin, J. Yi, B. Gong, and D. Fan, “Defend deep neural networks
against adversarial examples via fixed and dynamic quantized activation
functions,” arXiv preprint arXiv:1807.06714, 2018.

[34] S. Sen, B. Ravindran, and A. Raghunathan, “EMPIR: Ensembles of
mixed precision deep networks for increased robustness against adver-
sarial attacks,” arXiv preprint arXiv:2004.10162, 2020.

[35] E. Hunsberger and C. Eliasmith, “Spiking deep networks with LIF
neurons,” arXiv preprint arXiv:1510.08829, 2015.

[36] J. Kim, H. Kim, S. Huh, J. Lee, and K. Choi, “Deep neural networks
with weighted spikes,” Neurocomputing, vol. 311, pp. 373–386, 2018.

[37] S. Park, S. Kim, H. Choe, and S. Yoon, “Fast and efficient information
transmission with burst spikes in deep spiking neural networks,” in 2019
56th ACM/IEEE Design Automation Conference (DAC), 2019, pp. 1–6.

[38] S. Park, S. Kim, B. Na, and S. Yoon, “T2FSNN: Deep spiking neural
networks with time-to-first-spike coding,” in 2020 57th ACM/IEEE
Design Automation Conference (DAC), 2020, pp. 1–6.

[39] Y. Cao, Y. Chen, and D. Khosla, “Spiking deep convolutional neural
networks for energy-efficient object recognition,” International Journal
of Computer Vision, vol. 113, no. 1, pp. 54–66, 2015.

[40] B. Han, G. Srinivasan, and K. Roy, “RMP-SNN: Residual membrane
potential neuron for enabling deeper high-accuracy and low-latency
spiking neural network,” 06 2020, pp. 13 555–13 564.

[41] S. Sharmin, N. Rathi, P. Panda, and K. Roy, “Inherent adversarial
robustness of deep spiking neural networks: Effects of discrete input
encoding and non-linear activations,” in Computer Vision – ECCV 2020,
A. Vedaldi, H. Bischof, T. Brox, and J.-M. Frahm, Eds. Cham: Springer
International Publishing, 2020, pp. 399–414.

[42] S. Sharmin, P. Panda, S. S. Sarwar, C. Lee, W. Ponghiran, and K. Roy,
“A comprehensive analysis on adversarial robustness of spiking neural

networks,” in 2019 International Joint Conference on Neural Networks
(IJCNN). IEEE, 2019, pp. 1–8.

[43] A. Krizhevsky, V. Nair, and G. Hinton, “CIFAR-100 (canadian institute
for advanced research).” [Online]. Available: http://www.cs.toronto.edu/
∼kriz/cifar.html

[44] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “ImageNet:
A large-scale hierarchical image database,” in Computer Vision and
Pattern Recognition, 2009. CVPR 2009. IEEE Conference on. IEEE,
2009, pp. 248–255.

[45] H. Hazan, D. J. Saunders, H. Khan, D. Patel, D. T. Sanghavi,
H. T. Siegelmann, and R. Kozma, “BindsNET: A machine learning-
oriented spiking neural networks library in python,” Frontiers in
Neuroinformatics, vol. 12, Dec 2018. [Online]. Available: http:
//dx.doi.org/10.3389/fninf.2018.00089

[46] I. Goodfellow, J. Shlens, and C. Szegedy, “Explaining and harnessing
adversarial examples,” in International Conference on Learning
Representations, 2015. [Online]. Available: http://arxiv.org/abs/1412.
6572

[47] G. Bellec, D. Salaj, A. Subramoney, R. Legenstein, and W. Maass,
“Long short-term memory and learning-to-learn in networks of spiking
neurons,” ser. NIPS’18. Red Hook, NY, USA: Curran Associates Inc.,
2018, p. 795–805.

[48] W. Fang, Z. Yu, Y. Chen, T. Masquelier, T. Huang, and Y. Tian,
“Incorporating learnable membrane time constant to enhance learning of
spiking neural networks,” in Proceedings of the IEEE/CVF International
Conference on Computer Vision, 2021, pp. 2661–2671.

[49] W. Fang, Z. Yu, Y. Chen, T. Huang, T. Masquelier, and Y. Tian,
“Deep residual learning in spiking neural networks,” Advances in Neural
Information Processing Systems, vol. 34, 2021.

[50] Y. Li, S. Deng, X. Dong, R. Gong, and S. Gu, “A free lunch from
ANN: Towards efficient, accurate spiking neural networks calibration,”
in International Conference on Machine Learning. PMLR, 2021, pp.
6316–6325.

[51] G. Datta, S. Kundu, and P. A. Beerel, “Training energy-efficient deep
spiking neural networks with single-spike hybrid input encoding,” in
2021 International Joint Conference on Neural Networks (IJCNN).
IEEE, 2021, pp. 1–8.

[52] S. Singh, A. Sarma, S. Lu, A. Sengupta, V. Narayanan, and C. R.
Das, “Gesture-SNN: Co-optimizing accuracy, latency and energy of
snns for neuromorphic vision sensors,” in 2021 IEEE/ACM International
Symposium on Low Power Electronics and Design (ISLPED). IEEE,
2021, pp. 1–6.

[53] K. Yang and A. Sengupta, “Stochastic magnetoelectric neuron for
temporal information encoding,” Applied Physics Letters, vol. 116, no. 4,
p. 043701, 2020.

[54] B. Petro, N. Kasabov, and R. M. Kiss, “Selection and optimization of
temporal spike encoding methods for spiking neural networks,” IEEE
transactions on neural networks and learning systems, vol. 31, no. 2,
pp. 358–370, 2019.

http://www.cs.toronto.edu/~kriz/cifar.html
http://www.cs.toronto.edu/~kriz/cifar.html
http://dx.doi.org/10.3389/fninf.2018.00089
http://dx.doi.org/10.3389/fninf.2018.00089
http://arxiv.org/abs/1412.6572
http://arxiv.org/abs/1412.6572

	Introduction
	Related Works
	Preliminaries
	Spiking Neural Networks
	Differential Evolution Algorithm

	Neuroevolution Guided Hybrid SNN Training Algorithm
	Latency-Accuracy Tradeoff Driven Optimization and Interpretibility
	Adversarial Attack Driven Optimization and Interpretability

	Experiments and Results
	Datasets and Implementation
	Results
	Comparison Against Backpropagation Through Time (BPTT) Fine-Tuning

	Conclusions
	References

